1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/igmp.h> 15 #include <linux/xarray.h> 16 #include <linux/inetdevice.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <net/route.h> 20 21 #include <net/net_namespace.h> 22 #include <net/netns/generic.h> 23 #include <net/tcp.h> 24 #include <net/ipv6.h> 25 #include <net/ip_fib.h> 26 #include <net/ip6_route.h> 27 28 #include <rdma/rdma_cm.h> 29 #include <rdma/rdma_cm_ib.h> 30 #include <rdma/rdma_netlink.h> 31 #include <rdma/ib.h> 32 #include <rdma/ib_cache.h> 33 #include <rdma/ib_cm.h> 34 #include <rdma/ib_sa.h> 35 #include <rdma/iw_cm.h> 36 37 #include "core_priv.h" 38 #include "cma_priv.h" 39 #include "cma_trace.h" 40 41 MODULE_AUTHOR("Sean Hefty"); 42 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 43 MODULE_LICENSE("Dual BSD/GPL"); 44 45 #define CMA_CM_RESPONSE_TIMEOUT 20 46 #define CMA_MAX_CM_RETRIES 15 47 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 48 #define CMA_IBOE_PACKET_LIFETIME 18 49 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 50 51 static const char * const cma_events[] = { 52 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 53 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 54 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 55 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 56 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 57 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 58 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 59 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 60 [RDMA_CM_EVENT_REJECTED] = "rejected", 61 [RDMA_CM_EVENT_ESTABLISHED] = "established", 62 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 63 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 64 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 65 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 66 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 67 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 68 }; 69 70 static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, 71 union ib_gid *mgid); 72 73 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 74 { 75 size_t index = event; 76 77 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 78 cma_events[index] : "unrecognized event"; 79 } 80 EXPORT_SYMBOL(rdma_event_msg); 81 82 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 83 int reason) 84 { 85 if (rdma_ib_or_roce(id->device, id->port_num)) 86 return ibcm_reject_msg(reason); 87 88 if (rdma_protocol_iwarp(id->device, id->port_num)) 89 return iwcm_reject_msg(reason); 90 91 WARN_ON_ONCE(1); 92 return "unrecognized transport"; 93 } 94 EXPORT_SYMBOL(rdma_reject_msg); 95 96 /** 97 * rdma_is_consumer_reject - return true if the consumer rejected the connect 98 * request. 99 * @id: Communication identifier that received the REJECT event. 100 * @reason: Value returned in the REJECT event status field. 101 */ 102 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 103 { 104 if (rdma_ib_or_roce(id->device, id->port_num)) 105 return reason == IB_CM_REJ_CONSUMER_DEFINED; 106 107 if (rdma_protocol_iwarp(id->device, id->port_num)) 108 return reason == -ECONNREFUSED; 109 110 WARN_ON_ONCE(1); 111 return false; 112 } 113 114 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 115 struct rdma_cm_event *ev, u8 *data_len) 116 { 117 const void *p; 118 119 if (rdma_is_consumer_reject(id, ev->status)) { 120 *data_len = ev->param.conn.private_data_len; 121 p = ev->param.conn.private_data; 122 } else { 123 *data_len = 0; 124 p = NULL; 125 } 126 return p; 127 } 128 EXPORT_SYMBOL(rdma_consumer_reject_data); 129 130 /** 131 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 132 * @id: Communication Identifier 133 */ 134 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 135 { 136 struct rdma_id_private *id_priv; 137 138 id_priv = container_of(id, struct rdma_id_private, id); 139 if (id->device->node_type == RDMA_NODE_RNIC) 140 return id_priv->cm_id.iw; 141 return NULL; 142 } 143 EXPORT_SYMBOL(rdma_iw_cm_id); 144 145 /** 146 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 147 * @res: rdma resource tracking entry pointer 148 */ 149 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 150 { 151 struct rdma_id_private *id_priv = 152 container_of(res, struct rdma_id_private, res); 153 154 return &id_priv->id; 155 } 156 EXPORT_SYMBOL(rdma_res_to_id); 157 158 static int cma_add_one(struct ib_device *device); 159 static void cma_remove_one(struct ib_device *device, void *client_data); 160 161 static struct ib_client cma_client = { 162 .name = "cma", 163 .add = cma_add_one, 164 .remove = cma_remove_one 165 }; 166 167 static struct ib_sa_client sa_client; 168 static LIST_HEAD(dev_list); 169 static LIST_HEAD(listen_any_list); 170 static DEFINE_MUTEX(lock); 171 static struct workqueue_struct *cma_wq; 172 static unsigned int cma_pernet_id; 173 174 struct cma_pernet { 175 struct xarray tcp_ps; 176 struct xarray udp_ps; 177 struct xarray ipoib_ps; 178 struct xarray ib_ps; 179 }; 180 181 static struct cma_pernet *cma_pernet(struct net *net) 182 { 183 return net_generic(net, cma_pernet_id); 184 } 185 186 static 187 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 188 { 189 struct cma_pernet *pernet = cma_pernet(net); 190 191 switch (ps) { 192 case RDMA_PS_TCP: 193 return &pernet->tcp_ps; 194 case RDMA_PS_UDP: 195 return &pernet->udp_ps; 196 case RDMA_PS_IPOIB: 197 return &pernet->ipoib_ps; 198 case RDMA_PS_IB: 199 return &pernet->ib_ps; 200 default: 201 return NULL; 202 } 203 } 204 205 struct cma_device { 206 struct list_head list; 207 struct ib_device *device; 208 struct completion comp; 209 refcount_t refcount; 210 struct list_head id_list; 211 enum ib_gid_type *default_gid_type; 212 u8 *default_roce_tos; 213 }; 214 215 struct rdma_bind_list { 216 enum rdma_ucm_port_space ps; 217 struct hlist_head owners; 218 unsigned short port; 219 }; 220 221 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 222 struct rdma_bind_list *bind_list, int snum) 223 { 224 struct xarray *xa = cma_pernet_xa(net, ps); 225 226 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 227 } 228 229 static struct rdma_bind_list *cma_ps_find(struct net *net, 230 enum rdma_ucm_port_space ps, int snum) 231 { 232 struct xarray *xa = cma_pernet_xa(net, ps); 233 234 return xa_load(xa, snum); 235 } 236 237 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 238 int snum) 239 { 240 struct xarray *xa = cma_pernet_xa(net, ps); 241 242 xa_erase(xa, snum); 243 } 244 245 enum { 246 CMA_OPTION_AFONLY, 247 }; 248 249 void cma_dev_get(struct cma_device *cma_dev) 250 { 251 refcount_inc(&cma_dev->refcount); 252 } 253 254 void cma_dev_put(struct cma_device *cma_dev) 255 { 256 if (refcount_dec_and_test(&cma_dev->refcount)) 257 complete(&cma_dev->comp); 258 } 259 260 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 261 void *cookie) 262 { 263 struct cma_device *cma_dev; 264 struct cma_device *found_cma_dev = NULL; 265 266 mutex_lock(&lock); 267 268 list_for_each_entry(cma_dev, &dev_list, list) 269 if (filter(cma_dev->device, cookie)) { 270 found_cma_dev = cma_dev; 271 break; 272 } 273 274 if (found_cma_dev) 275 cma_dev_get(found_cma_dev); 276 mutex_unlock(&lock); 277 return found_cma_dev; 278 } 279 280 int cma_get_default_gid_type(struct cma_device *cma_dev, 281 u32 port) 282 { 283 if (!rdma_is_port_valid(cma_dev->device, port)) 284 return -EINVAL; 285 286 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 287 } 288 289 int cma_set_default_gid_type(struct cma_device *cma_dev, 290 u32 port, 291 enum ib_gid_type default_gid_type) 292 { 293 unsigned long supported_gids; 294 295 if (!rdma_is_port_valid(cma_dev->device, port)) 296 return -EINVAL; 297 298 if (default_gid_type == IB_GID_TYPE_IB && 299 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 300 default_gid_type = IB_GID_TYPE_ROCE; 301 302 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 303 304 if (!(supported_gids & 1 << default_gid_type)) 305 return -EINVAL; 306 307 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 308 default_gid_type; 309 310 return 0; 311 } 312 313 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 314 { 315 if (!rdma_is_port_valid(cma_dev->device, port)) 316 return -EINVAL; 317 318 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 319 } 320 321 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 322 u8 default_roce_tos) 323 { 324 if (!rdma_is_port_valid(cma_dev->device, port)) 325 return -EINVAL; 326 327 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 328 default_roce_tos; 329 330 return 0; 331 } 332 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 333 { 334 return cma_dev->device; 335 } 336 337 /* 338 * Device removal can occur at anytime, so we need extra handling to 339 * serialize notifying the user of device removal with other callbacks. 340 * We do this by disabling removal notification while a callback is in process, 341 * and reporting it after the callback completes. 342 */ 343 344 struct cma_multicast { 345 struct rdma_id_private *id_priv; 346 union { 347 struct ib_sa_multicast *sa_mc; 348 struct { 349 struct work_struct work; 350 struct rdma_cm_event event; 351 } iboe_join; 352 }; 353 struct list_head list; 354 void *context; 355 struct sockaddr_storage addr; 356 u8 join_state; 357 }; 358 359 struct cma_work { 360 struct work_struct work; 361 struct rdma_id_private *id; 362 enum rdma_cm_state old_state; 363 enum rdma_cm_state new_state; 364 struct rdma_cm_event event; 365 }; 366 367 union cma_ip_addr { 368 struct in6_addr ip6; 369 struct { 370 __be32 pad[3]; 371 __be32 addr; 372 } ip4; 373 }; 374 375 struct cma_hdr { 376 u8 cma_version; 377 u8 ip_version; /* IP version: 7:4 */ 378 __be16 port; 379 union cma_ip_addr src_addr; 380 union cma_ip_addr dst_addr; 381 }; 382 383 #define CMA_VERSION 0x00 384 385 struct cma_req_info { 386 struct sockaddr_storage listen_addr_storage; 387 struct sockaddr_storage src_addr_storage; 388 struct ib_device *device; 389 union ib_gid local_gid; 390 __be64 service_id; 391 int port; 392 bool has_gid; 393 u16 pkey; 394 }; 395 396 static int cma_comp_exch(struct rdma_id_private *id_priv, 397 enum rdma_cm_state comp, enum rdma_cm_state exch) 398 { 399 unsigned long flags; 400 int ret; 401 402 /* 403 * The FSM uses a funny double locking where state is protected by both 404 * the handler_mutex and the spinlock. State is not allowed to change 405 * to/from a handler_mutex protected value without also holding 406 * handler_mutex. 407 */ 408 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 409 lockdep_assert_held(&id_priv->handler_mutex); 410 411 spin_lock_irqsave(&id_priv->lock, flags); 412 if ((ret = (id_priv->state == comp))) 413 id_priv->state = exch; 414 spin_unlock_irqrestore(&id_priv->lock, flags); 415 return ret; 416 } 417 418 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 419 { 420 return hdr->ip_version >> 4; 421 } 422 423 static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 424 { 425 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 426 } 427 428 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 429 { 430 struct in_device *in_dev = NULL; 431 432 if (ndev) { 433 rtnl_lock(); 434 in_dev = __in_dev_get_rtnl(ndev); 435 if (in_dev) { 436 if (join) 437 ip_mc_inc_group(in_dev, 438 *(__be32 *)(mgid->raw + 12)); 439 else 440 ip_mc_dec_group(in_dev, 441 *(__be32 *)(mgid->raw + 12)); 442 } 443 rtnl_unlock(); 444 } 445 return (in_dev) ? 0 : -ENODEV; 446 } 447 448 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 449 struct cma_device *cma_dev) 450 { 451 cma_dev_get(cma_dev); 452 id_priv->cma_dev = cma_dev; 453 id_priv->id.device = cma_dev->device; 454 id_priv->id.route.addr.dev_addr.transport = 455 rdma_node_get_transport(cma_dev->device->node_type); 456 list_add_tail(&id_priv->list, &cma_dev->id_list); 457 458 trace_cm_id_attach(id_priv, cma_dev->device); 459 } 460 461 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 462 struct cma_device *cma_dev) 463 { 464 _cma_attach_to_dev(id_priv, cma_dev); 465 id_priv->gid_type = 466 cma_dev->default_gid_type[id_priv->id.port_num - 467 rdma_start_port(cma_dev->device)]; 468 } 469 470 static void cma_release_dev(struct rdma_id_private *id_priv) 471 { 472 mutex_lock(&lock); 473 list_del(&id_priv->list); 474 cma_dev_put(id_priv->cma_dev); 475 id_priv->cma_dev = NULL; 476 id_priv->id.device = NULL; 477 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 478 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 479 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 480 } 481 mutex_unlock(&lock); 482 } 483 484 static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 485 { 486 return (struct sockaddr *) &id_priv->id.route.addr.src_addr; 487 } 488 489 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 490 { 491 return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; 492 } 493 494 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 495 { 496 return id_priv->id.route.addr.src_addr.ss_family; 497 } 498 499 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 500 { 501 struct ib_sa_mcmember_rec rec; 502 int ret = 0; 503 504 if (id_priv->qkey) { 505 if (qkey && id_priv->qkey != qkey) 506 return -EINVAL; 507 return 0; 508 } 509 510 if (qkey) { 511 id_priv->qkey = qkey; 512 return 0; 513 } 514 515 switch (id_priv->id.ps) { 516 case RDMA_PS_UDP: 517 case RDMA_PS_IB: 518 id_priv->qkey = RDMA_UDP_QKEY; 519 break; 520 case RDMA_PS_IPOIB: 521 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 522 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 523 id_priv->id.port_num, &rec.mgid, 524 &rec); 525 if (!ret) 526 id_priv->qkey = be32_to_cpu(rec.qkey); 527 break; 528 default: 529 break; 530 } 531 return ret; 532 } 533 534 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 535 { 536 dev_addr->dev_type = ARPHRD_INFINIBAND; 537 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 538 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 539 } 540 541 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 542 { 543 int ret; 544 545 if (addr->sa_family != AF_IB) { 546 ret = rdma_translate_ip(addr, dev_addr); 547 } else { 548 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 549 ret = 0; 550 } 551 552 return ret; 553 } 554 555 static const struct ib_gid_attr * 556 cma_validate_port(struct ib_device *device, u32 port, 557 enum ib_gid_type gid_type, 558 union ib_gid *gid, 559 struct rdma_id_private *id_priv) 560 { 561 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 562 int bound_if_index = dev_addr->bound_dev_if; 563 const struct ib_gid_attr *sgid_attr; 564 int dev_type = dev_addr->dev_type; 565 struct net_device *ndev = NULL; 566 567 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 568 return ERR_PTR(-ENODEV); 569 570 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 571 return ERR_PTR(-ENODEV); 572 573 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 574 return ERR_PTR(-ENODEV); 575 576 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 577 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 578 if (!ndev) 579 return ERR_PTR(-ENODEV); 580 } else { 581 gid_type = IB_GID_TYPE_IB; 582 } 583 584 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 585 if (ndev) 586 dev_put(ndev); 587 return sgid_attr; 588 } 589 590 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 591 const struct ib_gid_attr *sgid_attr) 592 { 593 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 594 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 595 } 596 597 /** 598 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 599 * based on source ip address. 600 * @id_priv: cm_id which should be bound to cma device 601 * 602 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 603 * based on source IP address. It returns 0 on success or error code otherwise. 604 * It is applicable to active and passive side cm_id. 605 */ 606 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 607 { 608 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 609 const struct ib_gid_attr *sgid_attr; 610 union ib_gid gid, iboe_gid, *gidp; 611 struct cma_device *cma_dev; 612 enum ib_gid_type gid_type; 613 int ret = -ENODEV; 614 u32 port; 615 616 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 617 id_priv->id.ps == RDMA_PS_IPOIB) 618 return -EINVAL; 619 620 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 621 &iboe_gid); 622 623 memcpy(&gid, dev_addr->src_dev_addr + 624 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 625 626 mutex_lock(&lock); 627 list_for_each_entry(cma_dev, &dev_list, list) { 628 rdma_for_each_port (cma_dev->device, port) { 629 gidp = rdma_protocol_roce(cma_dev->device, port) ? 630 &iboe_gid : &gid; 631 gid_type = cma_dev->default_gid_type[port - 1]; 632 sgid_attr = cma_validate_port(cma_dev->device, port, 633 gid_type, gidp, id_priv); 634 if (!IS_ERR(sgid_attr)) { 635 id_priv->id.port_num = port; 636 cma_bind_sgid_attr(id_priv, sgid_attr); 637 cma_attach_to_dev(id_priv, cma_dev); 638 ret = 0; 639 goto out; 640 } 641 } 642 } 643 out: 644 mutex_unlock(&lock); 645 return ret; 646 } 647 648 /** 649 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 650 * @id_priv: cm id to bind to cma device 651 * @listen_id_priv: listener cm id to match against 652 * @req: Pointer to req structure containaining incoming 653 * request information 654 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 655 * rdma device matches for listen_id and incoming request. It also verifies 656 * that a GID table entry is present for the source address. 657 * Returns 0 on success, or returns error code otherwise. 658 */ 659 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 660 const struct rdma_id_private *listen_id_priv, 661 struct cma_req_info *req) 662 { 663 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 664 const struct ib_gid_attr *sgid_attr; 665 enum ib_gid_type gid_type; 666 union ib_gid gid; 667 668 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 669 id_priv->id.ps == RDMA_PS_IPOIB) 670 return -EINVAL; 671 672 if (rdma_protocol_roce(req->device, req->port)) 673 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 674 &gid); 675 else 676 memcpy(&gid, dev_addr->src_dev_addr + 677 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 678 679 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 680 sgid_attr = cma_validate_port(req->device, req->port, 681 gid_type, &gid, id_priv); 682 if (IS_ERR(sgid_attr)) 683 return PTR_ERR(sgid_attr); 684 685 id_priv->id.port_num = req->port; 686 cma_bind_sgid_attr(id_priv, sgid_attr); 687 /* Need to acquire lock to protect against reader 688 * of cma_dev->id_list such as cma_netdev_callback() and 689 * cma_process_remove(). 690 */ 691 mutex_lock(&lock); 692 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 693 mutex_unlock(&lock); 694 rdma_restrack_add(&id_priv->res); 695 return 0; 696 } 697 698 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 699 const struct rdma_id_private *listen_id_priv) 700 { 701 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 702 const struct ib_gid_attr *sgid_attr; 703 struct cma_device *cma_dev; 704 enum ib_gid_type gid_type; 705 int ret = -ENODEV; 706 union ib_gid gid; 707 u32 port; 708 709 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 710 id_priv->id.ps == RDMA_PS_IPOIB) 711 return -EINVAL; 712 713 memcpy(&gid, dev_addr->src_dev_addr + 714 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 715 716 mutex_lock(&lock); 717 718 cma_dev = listen_id_priv->cma_dev; 719 port = listen_id_priv->id.port_num; 720 gid_type = listen_id_priv->gid_type; 721 sgid_attr = cma_validate_port(cma_dev->device, port, 722 gid_type, &gid, id_priv); 723 if (!IS_ERR(sgid_attr)) { 724 id_priv->id.port_num = port; 725 cma_bind_sgid_attr(id_priv, sgid_attr); 726 ret = 0; 727 goto out; 728 } 729 730 list_for_each_entry(cma_dev, &dev_list, list) { 731 rdma_for_each_port (cma_dev->device, port) { 732 if (listen_id_priv->cma_dev == cma_dev && 733 listen_id_priv->id.port_num == port) 734 continue; 735 736 gid_type = cma_dev->default_gid_type[port - 1]; 737 sgid_attr = cma_validate_port(cma_dev->device, port, 738 gid_type, &gid, id_priv); 739 if (!IS_ERR(sgid_attr)) { 740 id_priv->id.port_num = port; 741 cma_bind_sgid_attr(id_priv, sgid_attr); 742 ret = 0; 743 goto out; 744 } 745 } 746 } 747 748 out: 749 if (!ret) { 750 cma_attach_to_dev(id_priv, cma_dev); 751 rdma_restrack_add(&id_priv->res); 752 } 753 754 mutex_unlock(&lock); 755 return ret; 756 } 757 758 /* 759 * Select the source IB device and address to reach the destination IB address. 760 */ 761 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 762 { 763 struct cma_device *cma_dev, *cur_dev; 764 struct sockaddr_ib *addr; 765 union ib_gid gid, sgid, *dgid; 766 unsigned int p; 767 u16 pkey, index; 768 enum ib_port_state port_state; 769 int i; 770 771 cma_dev = NULL; 772 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 773 dgid = (union ib_gid *) &addr->sib_addr; 774 pkey = ntohs(addr->sib_pkey); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cur_dev, &dev_list, list) { 778 rdma_for_each_port (cur_dev->device, p) { 779 if (!rdma_cap_af_ib(cur_dev->device, p)) 780 continue; 781 782 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 783 continue; 784 785 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 786 continue; 787 for (i = 0; !rdma_query_gid(cur_dev->device, 788 p, i, &gid); 789 i++) { 790 if (!memcmp(&gid, dgid, sizeof(gid))) { 791 cma_dev = cur_dev; 792 sgid = gid; 793 id_priv->id.port_num = p; 794 goto found; 795 } 796 797 if (!cma_dev && (gid.global.subnet_prefix == 798 dgid->global.subnet_prefix) && 799 port_state == IB_PORT_ACTIVE) { 800 cma_dev = cur_dev; 801 sgid = gid; 802 id_priv->id.port_num = p; 803 goto found; 804 } 805 } 806 } 807 } 808 mutex_unlock(&lock); 809 return -ENODEV; 810 811 found: 812 cma_attach_to_dev(id_priv, cma_dev); 813 rdma_restrack_add(&id_priv->res); 814 mutex_unlock(&lock); 815 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 816 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 817 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 818 return 0; 819 } 820 821 static void cma_id_get(struct rdma_id_private *id_priv) 822 { 823 refcount_inc(&id_priv->refcount); 824 } 825 826 static void cma_id_put(struct rdma_id_private *id_priv) 827 { 828 if (refcount_dec_and_test(&id_priv->refcount)) 829 complete(&id_priv->comp); 830 } 831 832 static struct rdma_id_private * 833 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 834 void *context, enum rdma_ucm_port_space ps, 835 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 836 { 837 struct rdma_id_private *id_priv; 838 839 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 840 if (!id_priv) 841 return ERR_PTR(-ENOMEM); 842 843 id_priv->state = RDMA_CM_IDLE; 844 id_priv->id.context = context; 845 id_priv->id.event_handler = event_handler; 846 id_priv->id.ps = ps; 847 id_priv->id.qp_type = qp_type; 848 id_priv->tos_set = false; 849 id_priv->timeout_set = false; 850 id_priv->min_rnr_timer_set = false; 851 id_priv->gid_type = IB_GID_TYPE_IB; 852 spin_lock_init(&id_priv->lock); 853 mutex_init(&id_priv->qp_mutex); 854 init_completion(&id_priv->comp); 855 refcount_set(&id_priv->refcount, 1); 856 mutex_init(&id_priv->handler_mutex); 857 INIT_LIST_HEAD(&id_priv->listen_list); 858 INIT_LIST_HEAD(&id_priv->mc_list); 859 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 860 id_priv->id.route.addr.dev_addr.net = get_net(net); 861 id_priv->seq_num &= 0x00ffffff; 862 863 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 864 if (parent) 865 rdma_restrack_parent_name(&id_priv->res, &parent->res); 866 867 return id_priv; 868 } 869 870 struct rdma_cm_id * 871 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 872 void *context, enum rdma_ucm_port_space ps, 873 enum ib_qp_type qp_type, const char *caller) 874 { 875 struct rdma_id_private *ret; 876 877 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 878 if (IS_ERR(ret)) 879 return ERR_CAST(ret); 880 881 rdma_restrack_set_name(&ret->res, caller); 882 return &ret->id; 883 } 884 EXPORT_SYMBOL(__rdma_create_kernel_id); 885 886 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 887 void *context, 888 enum rdma_ucm_port_space ps, 889 enum ib_qp_type qp_type) 890 { 891 struct rdma_id_private *ret; 892 893 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 894 ps, qp_type, NULL); 895 if (IS_ERR(ret)) 896 return ERR_CAST(ret); 897 898 rdma_restrack_set_name(&ret->res, NULL); 899 return &ret->id; 900 } 901 EXPORT_SYMBOL(rdma_create_user_id); 902 903 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 904 { 905 struct ib_qp_attr qp_attr; 906 int qp_attr_mask, ret; 907 908 qp_attr.qp_state = IB_QPS_INIT; 909 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 910 if (ret) 911 return ret; 912 913 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 914 if (ret) 915 return ret; 916 917 qp_attr.qp_state = IB_QPS_RTR; 918 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 919 if (ret) 920 return ret; 921 922 qp_attr.qp_state = IB_QPS_RTS; 923 qp_attr.sq_psn = 0; 924 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 925 926 return ret; 927 } 928 929 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 930 struct ib_qp_init_attr *qp_init_attr) 931 { 932 struct rdma_id_private *id_priv; 933 struct ib_qp *qp; 934 int ret = 0; 935 936 id_priv = container_of(id, struct rdma_id_private, id); 937 if (id->device != pd->device) { 938 ret = -EINVAL; 939 goto out_err; 940 } 941 942 qp_init_attr->port_num = id->port_num; 943 qp = ib_create_qp(pd, qp_init_attr); 944 if (IS_ERR(qp)) { 945 ret = PTR_ERR(qp); 946 goto out_err; 947 } 948 949 if (id->qp_type == IB_QPT_UD) 950 ret = cma_init_ud_qp(id_priv, qp); 951 if (ret) 952 goto out_destroy; 953 954 id->qp = qp; 955 id_priv->qp_num = qp->qp_num; 956 id_priv->srq = (qp->srq != NULL); 957 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 958 return 0; 959 out_destroy: 960 ib_destroy_qp(qp); 961 out_err: 962 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 963 return ret; 964 } 965 EXPORT_SYMBOL(rdma_create_qp); 966 967 void rdma_destroy_qp(struct rdma_cm_id *id) 968 { 969 struct rdma_id_private *id_priv; 970 971 id_priv = container_of(id, struct rdma_id_private, id); 972 trace_cm_qp_destroy(id_priv); 973 mutex_lock(&id_priv->qp_mutex); 974 ib_destroy_qp(id_priv->id.qp); 975 id_priv->id.qp = NULL; 976 mutex_unlock(&id_priv->qp_mutex); 977 } 978 EXPORT_SYMBOL(rdma_destroy_qp); 979 980 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 981 struct rdma_conn_param *conn_param) 982 { 983 struct ib_qp_attr qp_attr; 984 int qp_attr_mask, ret; 985 986 mutex_lock(&id_priv->qp_mutex); 987 if (!id_priv->id.qp) { 988 ret = 0; 989 goto out; 990 } 991 992 /* Need to update QP attributes from default values. */ 993 qp_attr.qp_state = IB_QPS_INIT; 994 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 995 if (ret) 996 goto out; 997 998 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 999 if (ret) 1000 goto out; 1001 1002 qp_attr.qp_state = IB_QPS_RTR; 1003 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1004 if (ret) 1005 goto out; 1006 1007 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1008 1009 if (conn_param) 1010 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1011 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1012 out: 1013 mutex_unlock(&id_priv->qp_mutex); 1014 return ret; 1015 } 1016 1017 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1018 struct rdma_conn_param *conn_param) 1019 { 1020 struct ib_qp_attr qp_attr; 1021 int qp_attr_mask, ret; 1022 1023 mutex_lock(&id_priv->qp_mutex); 1024 if (!id_priv->id.qp) { 1025 ret = 0; 1026 goto out; 1027 } 1028 1029 qp_attr.qp_state = IB_QPS_RTS; 1030 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1031 if (ret) 1032 goto out; 1033 1034 if (conn_param) 1035 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1036 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1037 out: 1038 mutex_unlock(&id_priv->qp_mutex); 1039 return ret; 1040 } 1041 1042 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1043 { 1044 struct ib_qp_attr qp_attr; 1045 int ret; 1046 1047 mutex_lock(&id_priv->qp_mutex); 1048 if (!id_priv->id.qp) { 1049 ret = 0; 1050 goto out; 1051 } 1052 1053 qp_attr.qp_state = IB_QPS_ERR; 1054 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1055 out: 1056 mutex_unlock(&id_priv->qp_mutex); 1057 return ret; 1058 } 1059 1060 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1061 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1062 { 1063 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1064 int ret; 1065 u16 pkey; 1066 1067 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1068 pkey = 0xffff; 1069 else 1070 pkey = ib_addr_get_pkey(dev_addr); 1071 1072 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1073 pkey, &qp_attr->pkey_index); 1074 if (ret) 1075 return ret; 1076 1077 qp_attr->port_num = id_priv->id.port_num; 1078 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1079 1080 if (id_priv->id.qp_type == IB_QPT_UD) { 1081 ret = cma_set_qkey(id_priv, 0); 1082 if (ret) 1083 return ret; 1084 1085 qp_attr->qkey = id_priv->qkey; 1086 *qp_attr_mask |= IB_QP_QKEY; 1087 } else { 1088 qp_attr->qp_access_flags = 0; 1089 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1090 } 1091 return 0; 1092 } 1093 1094 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1095 int *qp_attr_mask) 1096 { 1097 struct rdma_id_private *id_priv; 1098 int ret = 0; 1099 1100 id_priv = container_of(id, struct rdma_id_private, id); 1101 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1102 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1103 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1104 else 1105 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1106 qp_attr_mask); 1107 1108 if (qp_attr->qp_state == IB_QPS_RTR) 1109 qp_attr->rq_psn = id_priv->seq_num; 1110 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1111 if (!id_priv->cm_id.iw) { 1112 qp_attr->qp_access_flags = 0; 1113 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1114 } else 1115 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1116 qp_attr_mask); 1117 qp_attr->port_num = id_priv->id.port_num; 1118 *qp_attr_mask |= IB_QP_PORT; 1119 } else { 1120 ret = -ENOSYS; 1121 } 1122 1123 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1124 qp_attr->timeout = id_priv->timeout; 1125 1126 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1127 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1128 1129 return ret; 1130 } 1131 EXPORT_SYMBOL(rdma_init_qp_attr); 1132 1133 static inline bool cma_zero_addr(const struct sockaddr *addr) 1134 { 1135 switch (addr->sa_family) { 1136 case AF_INET: 1137 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1138 case AF_INET6: 1139 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1140 case AF_IB: 1141 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1142 default: 1143 return false; 1144 } 1145 } 1146 1147 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1148 { 1149 switch (addr->sa_family) { 1150 case AF_INET: 1151 return ipv4_is_loopback( 1152 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1153 case AF_INET6: 1154 return ipv6_addr_loopback( 1155 &((struct sockaddr_in6 *)addr)->sin6_addr); 1156 case AF_IB: 1157 return ib_addr_loopback( 1158 &((struct sockaddr_ib *)addr)->sib_addr); 1159 default: 1160 return false; 1161 } 1162 } 1163 1164 static inline bool cma_any_addr(const struct sockaddr *addr) 1165 { 1166 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1167 } 1168 1169 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1170 { 1171 if (src->sa_family != dst->sa_family) 1172 return -1; 1173 1174 switch (src->sa_family) { 1175 case AF_INET: 1176 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1177 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1178 case AF_INET6: { 1179 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1180 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1181 bool link_local; 1182 1183 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1184 &dst_addr6->sin6_addr)) 1185 return 1; 1186 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1187 IPV6_ADDR_LINKLOCAL; 1188 /* Link local must match their scope_ids */ 1189 return link_local ? (src_addr6->sin6_scope_id != 1190 dst_addr6->sin6_scope_id) : 1191 0; 1192 } 1193 1194 default: 1195 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1196 &((struct sockaddr_ib *) dst)->sib_addr); 1197 } 1198 } 1199 1200 static __be16 cma_port(const struct sockaddr *addr) 1201 { 1202 struct sockaddr_ib *sib; 1203 1204 switch (addr->sa_family) { 1205 case AF_INET: 1206 return ((struct sockaddr_in *) addr)->sin_port; 1207 case AF_INET6: 1208 return ((struct sockaddr_in6 *) addr)->sin6_port; 1209 case AF_IB: 1210 sib = (struct sockaddr_ib *) addr; 1211 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1212 be64_to_cpu(sib->sib_sid_mask))); 1213 default: 1214 return 0; 1215 } 1216 } 1217 1218 static inline int cma_any_port(const struct sockaddr *addr) 1219 { 1220 return !cma_port(addr); 1221 } 1222 1223 static void cma_save_ib_info(struct sockaddr *src_addr, 1224 struct sockaddr *dst_addr, 1225 const struct rdma_cm_id *listen_id, 1226 const struct sa_path_rec *path) 1227 { 1228 struct sockaddr_ib *listen_ib, *ib; 1229 1230 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1231 if (src_addr) { 1232 ib = (struct sockaddr_ib *)src_addr; 1233 ib->sib_family = AF_IB; 1234 if (path) { 1235 ib->sib_pkey = path->pkey; 1236 ib->sib_flowinfo = path->flow_label; 1237 memcpy(&ib->sib_addr, &path->sgid, 16); 1238 ib->sib_sid = path->service_id; 1239 ib->sib_scope_id = 0; 1240 } else { 1241 ib->sib_pkey = listen_ib->sib_pkey; 1242 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1243 ib->sib_addr = listen_ib->sib_addr; 1244 ib->sib_sid = listen_ib->sib_sid; 1245 ib->sib_scope_id = listen_ib->sib_scope_id; 1246 } 1247 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1248 } 1249 if (dst_addr) { 1250 ib = (struct sockaddr_ib *)dst_addr; 1251 ib->sib_family = AF_IB; 1252 if (path) { 1253 ib->sib_pkey = path->pkey; 1254 ib->sib_flowinfo = path->flow_label; 1255 memcpy(&ib->sib_addr, &path->dgid, 16); 1256 } 1257 } 1258 } 1259 1260 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1261 struct sockaddr_in *dst_addr, 1262 struct cma_hdr *hdr, 1263 __be16 local_port) 1264 { 1265 if (src_addr) { 1266 *src_addr = (struct sockaddr_in) { 1267 .sin_family = AF_INET, 1268 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1269 .sin_port = local_port, 1270 }; 1271 } 1272 1273 if (dst_addr) { 1274 *dst_addr = (struct sockaddr_in) { 1275 .sin_family = AF_INET, 1276 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1277 .sin_port = hdr->port, 1278 }; 1279 } 1280 } 1281 1282 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1283 struct sockaddr_in6 *dst_addr, 1284 struct cma_hdr *hdr, 1285 __be16 local_port) 1286 { 1287 if (src_addr) { 1288 *src_addr = (struct sockaddr_in6) { 1289 .sin6_family = AF_INET6, 1290 .sin6_addr = hdr->dst_addr.ip6, 1291 .sin6_port = local_port, 1292 }; 1293 } 1294 1295 if (dst_addr) { 1296 *dst_addr = (struct sockaddr_in6) { 1297 .sin6_family = AF_INET6, 1298 .sin6_addr = hdr->src_addr.ip6, 1299 .sin6_port = hdr->port, 1300 }; 1301 } 1302 } 1303 1304 static u16 cma_port_from_service_id(__be64 service_id) 1305 { 1306 return (u16)be64_to_cpu(service_id); 1307 } 1308 1309 static int cma_save_ip_info(struct sockaddr *src_addr, 1310 struct sockaddr *dst_addr, 1311 const struct ib_cm_event *ib_event, 1312 __be64 service_id) 1313 { 1314 struct cma_hdr *hdr; 1315 __be16 port; 1316 1317 hdr = ib_event->private_data; 1318 if (hdr->cma_version != CMA_VERSION) 1319 return -EINVAL; 1320 1321 port = htons(cma_port_from_service_id(service_id)); 1322 1323 switch (cma_get_ip_ver(hdr)) { 1324 case 4: 1325 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1326 (struct sockaddr_in *)dst_addr, hdr, port); 1327 break; 1328 case 6: 1329 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1330 (struct sockaddr_in6 *)dst_addr, hdr, port); 1331 break; 1332 default: 1333 return -EAFNOSUPPORT; 1334 } 1335 1336 return 0; 1337 } 1338 1339 static int cma_save_net_info(struct sockaddr *src_addr, 1340 struct sockaddr *dst_addr, 1341 const struct rdma_cm_id *listen_id, 1342 const struct ib_cm_event *ib_event, 1343 sa_family_t sa_family, __be64 service_id) 1344 { 1345 if (sa_family == AF_IB) { 1346 if (ib_event->event == IB_CM_REQ_RECEIVED) 1347 cma_save_ib_info(src_addr, dst_addr, listen_id, 1348 ib_event->param.req_rcvd.primary_path); 1349 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1350 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1351 return 0; 1352 } 1353 1354 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1355 } 1356 1357 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1358 struct cma_req_info *req) 1359 { 1360 const struct ib_cm_req_event_param *req_param = 1361 &ib_event->param.req_rcvd; 1362 const struct ib_cm_sidr_req_event_param *sidr_param = 1363 &ib_event->param.sidr_req_rcvd; 1364 1365 switch (ib_event->event) { 1366 case IB_CM_REQ_RECEIVED: 1367 req->device = req_param->listen_id->device; 1368 req->port = req_param->port; 1369 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1370 sizeof(req->local_gid)); 1371 req->has_gid = true; 1372 req->service_id = req_param->primary_path->service_id; 1373 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1374 if (req->pkey != req_param->bth_pkey) 1375 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1376 "RDMA CMA: in the future this may cause the request to be dropped\n", 1377 req_param->bth_pkey, req->pkey); 1378 break; 1379 case IB_CM_SIDR_REQ_RECEIVED: 1380 req->device = sidr_param->listen_id->device; 1381 req->port = sidr_param->port; 1382 req->has_gid = false; 1383 req->service_id = sidr_param->service_id; 1384 req->pkey = sidr_param->pkey; 1385 if (req->pkey != sidr_param->bth_pkey) 1386 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1387 "RDMA CMA: in the future this may cause the request to be dropped\n", 1388 sidr_param->bth_pkey, req->pkey); 1389 break; 1390 default: 1391 return -EINVAL; 1392 } 1393 1394 return 0; 1395 } 1396 1397 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1398 const struct sockaddr_in *dst_addr, 1399 const struct sockaddr_in *src_addr) 1400 { 1401 __be32 daddr = dst_addr->sin_addr.s_addr, 1402 saddr = src_addr->sin_addr.s_addr; 1403 struct fib_result res; 1404 struct flowi4 fl4; 1405 int err; 1406 bool ret; 1407 1408 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1409 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1410 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1411 ipv4_is_loopback(saddr)) 1412 return false; 1413 1414 memset(&fl4, 0, sizeof(fl4)); 1415 fl4.flowi4_iif = net_dev->ifindex; 1416 fl4.daddr = daddr; 1417 fl4.saddr = saddr; 1418 1419 rcu_read_lock(); 1420 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1421 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1422 rcu_read_unlock(); 1423 1424 return ret; 1425 } 1426 1427 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1428 const struct sockaddr_in6 *dst_addr, 1429 const struct sockaddr_in6 *src_addr) 1430 { 1431 #if IS_ENABLED(CONFIG_IPV6) 1432 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1433 IPV6_ADDR_LINKLOCAL; 1434 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1435 &src_addr->sin6_addr, net_dev->ifindex, 1436 NULL, strict); 1437 bool ret; 1438 1439 if (!rt) 1440 return false; 1441 1442 ret = rt->rt6i_idev->dev == net_dev; 1443 ip6_rt_put(rt); 1444 1445 return ret; 1446 #else 1447 return false; 1448 #endif 1449 } 1450 1451 static bool validate_net_dev(struct net_device *net_dev, 1452 const struct sockaddr *daddr, 1453 const struct sockaddr *saddr) 1454 { 1455 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1456 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1457 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1458 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1459 1460 switch (daddr->sa_family) { 1461 case AF_INET: 1462 return saddr->sa_family == AF_INET && 1463 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1464 1465 case AF_INET6: 1466 return saddr->sa_family == AF_INET6 && 1467 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1468 1469 default: 1470 return false; 1471 } 1472 } 1473 1474 static struct net_device * 1475 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1476 { 1477 const struct ib_gid_attr *sgid_attr = NULL; 1478 struct net_device *ndev; 1479 1480 if (ib_event->event == IB_CM_REQ_RECEIVED) 1481 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1482 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1483 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1484 1485 if (!sgid_attr) 1486 return NULL; 1487 1488 rcu_read_lock(); 1489 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1490 if (IS_ERR(ndev)) 1491 ndev = NULL; 1492 else 1493 dev_hold(ndev); 1494 rcu_read_unlock(); 1495 return ndev; 1496 } 1497 1498 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1499 struct cma_req_info *req) 1500 { 1501 struct sockaddr *listen_addr = 1502 (struct sockaddr *)&req->listen_addr_storage; 1503 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1504 struct net_device *net_dev; 1505 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1506 int err; 1507 1508 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1509 req->service_id); 1510 if (err) 1511 return ERR_PTR(err); 1512 1513 if (rdma_protocol_roce(req->device, req->port)) 1514 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1515 else 1516 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1517 req->pkey, 1518 gid, listen_addr); 1519 if (!net_dev) 1520 return ERR_PTR(-ENODEV); 1521 1522 return net_dev; 1523 } 1524 1525 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1526 { 1527 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1528 } 1529 1530 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1531 const struct cma_hdr *hdr) 1532 { 1533 struct sockaddr *addr = cma_src_addr(id_priv); 1534 __be32 ip4_addr; 1535 struct in6_addr ip6_addr; 1536 1537 if (cma_any_addr(addr) && !id_priv->afonly) 1538 return true; 1539 1540 switch (addr->sa_family) { 1541 case AF_INET: 1542 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1543 if (cma_get_ip_ver(hdr) != 4) 1544 return false; 1545 if (!cma_any_addr(addr) && 1546 hdr->dst_addr.ip4.addr != ip4_addr) 1547 return false; 1548 break; 1549 case AF_INET6: 1550 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1551 if (cma_get_ip_ver(hdr) != 6) 1552 return false; 1553 if (!cma_any_addr(addr) && 1554 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1555 return false; 1556 break; 1557 case AF_IB: 1558 return true; 1559 default: 1560 return false; 1561 } 1562 1563 return true; 1564 } 1565 1566 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1567 { 1568 struct ib_device *device = id->device; 1569 const u32 port_num = id->port_num ?: rdma_start_port(device); 1570 1571 return rdma_protocol_roce(device, port_num); 1572 } 1573 1574 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1575 { 1576 const struct sockaddr *daddr = 1577 (const struct sockaddr *)&req->listen_addr_storage; 1578 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1579 1580 /* Returns true if the req is for IPv6 link local */ 1581 return (daddr->sa_family == AF_INET6 && 1582 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1583 } 1584 1585 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1586 const struct net_device *net_dev, 1587 const struct cma_req_info *req) 1588 { 1589 const struct rdma_addr *addr = &id->route.addr; 1590 1591 if (!net_dev) 1592 /* This request is an AF_IB request */ 1593 return (!id->port_num || id->port_num == req->port) && 1594 (addr->src_addr.ss_family == AF_IB); 1595 1596 /* 1597 * If the request is not for IPv6 link local, allow matching 1598 * request to any netdevice of the one or multiport rdma device. 1599 */ 1600 if (!cma_is_req_ipv6_ll(req)) 1601 return true; 1602 /* 1603 * Net namespaces must match, and if the listner is listening 1604 * on a specific netdevice than netdevice must match as well. 1605 */ 1606 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1607 (!!addr->dev_addr.bound_dev_if == 1608 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1609 return true; 1610 else 1611 return false; 1612 } 1613 1614 static struct rdma_id_private *cma_find_listener( 1615 const struct rdma_bind_list *bind_list, 1616 const struct ib_cm_id *cm_id, 1617 const struct ib_cm_event *ib_event, 1618 const struct cma_req_info *req, 1619 const struct net_device *net_dev) 1620 { 1621 struct rdma_id_private *id_priv, *id_priv_dev; 1622 1623 lockdep_assert_held(&lock); 1624 1625 if (!bind_list) 1626 return ERR_PTR(-EINVAL); 1627 1628 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1629 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1630 if (id_priv->id.device == cm_id->device && 1631 cma_match_net_dev(&id_priv->id, net_dev, req)) 1632 return id_priv; 1633 list_for_each_entry(id_priv_dev, 1634 &id_priv->listen_list, 1635 listen_list) { 1636 if (id_priv_dev->id.device == cm_id->device && 1637 cma_match_net_dev(&id_priv_dev->id, 1638 net_dev, req)) 1639 return id_priv_dev; 1640 } 1641 } 1642 } 1643 1644 return ERR_PTR(-EINVAL); 1645 } 1646 1647 static struct rdma_id_private * 1648 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1649 const struct ib_cm_event *ib_event, 1650 struct cma_req_info *req, 1651 struct net_device **net_dev) 1652 { 1653 struct rdma_bind_list *bind_list; 1654 struct rdma_id_private *id_priv; 1655 int err; 1656 1657 err = cma_save_req_info(ib_event, req); 1658 if (err) 1659 return ERR_PTR(err); 1660 1661 *net_dev = cma_get_net_dev(ib_event, req); 1662 if (IS_ERR(*net_dev)) { 1663 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1664 /* Assuming the protocol is AF_IB */ 1665 *net_dev = NULL; 1666 } else { 1667 return ERR_CAST(*net_dev); 1668 } 1669 } 1670 1671 mutex_lock(&lock); 1672 /* 1673 * Net namespace might be getting deleted while route lookup, 1674 * cm_id lookup is in progress. Therefore, perform netdevice 1675 * validation, cm_id lookup under rcu lock. 1676 * RCU lock along with netdevice state check, synchronizes with 1677 * netdevice migrating to different net namespace and also avoids 1678 * case where net namespace doesn't get deleted while lookup is in 1679 * progress. 1680 * If the device state is not IFF_UP, its properties such as ifindex 1681 * and nd_net cannot be trusted to remain valid without rcu lock. 1682 * net/core/dev.c change_net_namespace() ensures to synchronize with 1683 * ongoing operations on net device after device is closed using 1684 * synchronize_net(). 1685 */ 1686 rcu_read_lock(); 1687 if (*net_dev) { 1688 /* 1689 * If netdevice is down, it is likely that it is administratively 1690 * down or it might be migrating to different namespace. 1691 * In that case avoid further processing, as the net namespace 1692 * or ifindex may change. 1693 */ 1694 if (((*net_dev)->flags & IFF_UP) == 0) { 1695 id_priv = ERR_PTR(-EHOSTUNREACH); 1696 goto err; 1697 } 1698 1699 if (!validate_net_dev(*net_dev, 1700 (struct sockaddr *)&req->listen_addr_storage, 1701 (struct sockaddr *)&req->src_addr_storage)) { 1702 id_priv = ERR_PTR(-EHOSTUNREACH); 1703 goto err; 1704 } 1705 } 1706 1707 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1708 rdma_ps_from_service_id(req->service_id), 1709 cma_port_from_service_id(req->service_id)); 1710 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1711 err: 1712 rcu_read_unlock(); 1713 mutex_unlock(&lock); 1714 if (IS_ERR(id_priv) && *net_dev) { 1715 dev_put(*net_dev); 1716 *net_dev = NULL; 1717 } 1718 return id_priv; 1719 } 1720 1721 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1722 { 1723 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1724 } 1725 1726 static void cma_cancel_route(struct rdma_id_private *id_priv) 1727 { 1728 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1729 if (id_priv->query) 1730 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1731 } 1732 } 1733 1734 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1735 { 1736 struct rdma_id_private *dev_id_priv; 1737 1738 /* 1739 * Remove from listen_any_list to prevent added devices from spawning 1740 * additional listen requests. 1741 */ 1742 mutex_lock(&lock); 1743 list_del(&id_priv->list); 1744 1745 while (!list_empty(&id_priv->listen_list)) { 1746 dev_id_priv = list_entry(id_priv->listen_list.next, 1747 struct rdma_id_private, listen_list); 1748 /* sync with device removal to avoid duplicate destruction */ 1749 list_del_init(&dev_id_priv->list); 1750 list_del(&dev_id_priv->listen_list); 1751 mutex_unlock(&lock); 1752 1753 rdma_destroy_id(&dev_id_priv->id); 1754 mutex_lock(&lock); 1755 } 1756 mutex_unlock(&lock); 1757 } 1758 1759 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1760 enum rdma_cm_state state) 1761 { 1762 switch (state) { 1763 case RDMA_CM_ADDR_QUERY: 1764 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1765 break; 1766 case RDMA_CM_ROUTE_QUERY: 1767 cma_cancel_route(id_priv); 1768 break; 1769 case RDMA_CM_LISTEN: 1770 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1771 cma_cancel_listens(id_priv); 1772 break; 1773 default: 1774 break; 1775 } 1776 } 1777 1778 static void cma_release_port(struct rdma_id_private *id_priv) 1779 { 1780 struct rdma_bind_list *bind_list = id_priv->bind_list; 1781 struct net *net = id_priv->id.route.addr.dev_addr.net; 1782 1783 if (!bind_list) 1784 return; 1785 1786 mutex_lock(&lock); 1787 hlist_del(&id_priv->node); 1788 if (hlist_empty(&bind_list->owners)) { 1789 cma_ps_remove(net, bind_list->ps, bind_list->port); 1790 kfree(bind_list); 1791 } 1792 mutex_unlock(&lock); 1793 } 1794 1795 static void destroy_mc(struct rdma_id_private *id_priv, 1796 struct cma_multicast *mc) 1797 { 1798 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1799 ib_sa_free_multicast(mc->sa_mc); 1800 1801 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1802 struct rdma_dev_addr *dev_addr = 1803 &id_priv->id.route.addr.dev_addr; 1804 struct net_device *ndev = NULL; 1805 1806 if (dev_addr->bound_dev_if) 1807 ndev = dev_get_by_index(dev_addr->net, 1808 dev_addr->bound_dev_if); 1809 if (ndev) { 1810 union ib_gid mgid; 1811 1812 cma_set_mgid(id_priv, (struct sockaddr *)&mc->addr, 1813 &mgid); 1814 cma_igmp_send(ndev, &mgid, false); 1815 dev_put(ndev); 1816 } 1817 1818 cancel_work_sync(&mc->iboe_join.work); 1819 } 1820 kfree(mc); 1821 } 1822 1823 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 1824 { 1825 struct cma_multicast *mc; 1826 1827 while (!list_empty(&id_priv->mc_list)) { 1828 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 1829 list); 1830 list_del(&mc->list); 1831 destroy_mc(id_priv, mc); 1832 } 1833 } 1834 1835 static void _destroy_id(struct rdma_id_private *id_priv, 1836 enum rdma_cm_state state) 1837 { 1838 cma_cancel_operation(id_priv, state); 1839 1840 rdma_restrack_del(&id_priv->res); 1841 if (id_priv->cma_dev) { 1842 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 1843 if (id_priv->cm_id.ib) 1844 ib_destroy_cm_id(id_priv->cm_id.ib); 1845 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 1846 if (id_priv->cm_id.iw) 1847 iw_destroy_cm_id(id_priv->cm_id.iw); 1848 } 1849 cma_leave_mc_groups(id_priv); 1850 cma_release_dev(id_priv); 1851 } 1852 1853 cma_release_port(id_priv); 1854 cma_id_put(id_priv); 1855 wait_for_completion(&id_priv->comp); 1856 1857 if (id_priv->internal_id) 1858 cma_id_put(id_priv->id.context); 1859 1860 kfree(id_priv->id.route.path_rec); 1861 1862 put_net(id_priv->id.route.addr.dev_addr.net); 1863 kfree(id_priv); 1864 } 1865 1866 /* 1867 * destroy an ID from within the handler_mutex. This ensures that no other 1868 * handlers can start running concurrently. 1869 */ 1870 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 1871 __releases(&idprv->handler_mutex) 1872 { 1873 enum rdma_cm_state state; 1874 unsigned long flags; 1875 1876 trace_cm_id_destroy(id_priv); 1877 1878 /* 1879 * Setting the state to destroyed under the handler mutex provides a 1880 * fence against calling handler callbacks. If this is invoked due to 1881 * the failure of a handler callback then it guarentees that no future 1882 * handlers will be called. 1883 */ 1884 lockdep_assert_held(&id_priv->handler_mutex); 1885 spin_lock_irqsave(&id_priv->lock, flags); 1886 state = id_priv->state; 1887 id_priv->state = RDMA_CM_DESTROYING; 1888 spin_unlock_irqrestore(&id_priv->lock, flags); 1889 mutex_unlock(&id_priv->handler_mutex); 1890 _destroy_id(id_priv, state); 1891 } 1892 1893 void rdma_destroy_id(struct rdma_cm_id *id) 1894 { 1895 struct rdma_id_private *id_priv = 1896 container_of(id, struct rdma_id_private, id); 1897 1898 mutex_lock(&id_priv->handler_mutex); 1899 destroy_id_handler_unlock(id_priv); 1900 } 1901 EXPORT_SYMBOL(rdma_destroy_id); 1902 1903 static int cma_rep_recv(struct rdma_id_private *id_priv) 1904 { 1905 int ret; 1906 1907 ret = cma_modify_qp_rtr(id_priv, NULL); 1908 if (ret) 1909 goto reject; 1910 1911 ret = cma_modify_qp_rts(id_priv, NULL); 1912 if (ret) 1913 goto reject; 1914 1915 trace_cm_send_rtu(id_priv); 1916 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 1917 if (ret) 1918 goto reject; 1919 1920 return 0; 1921 reject: 1922 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 1923 cma_modify_qp_err(id_priv); 1924 trace_cm_send_rej(id_priv); 1925 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 1926 NULL, 0, NULL, 0); 1927 return ret; 1928 } 1929 1930 static void cma_set_rep_event_data(struct rdma_cm_event *event, 1931 const struct ib_cm_rep_event_param *rep_data, 1932 void *private_data) 1933 { 1934 event->param.conn.private_data = private_data; 1935 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 1936 event->param.conn.responder_resources = rep_data->responder_resources; 1937 event->param.conn.initiator_depth = rep_data->initiator_depth; 1938 event->param.conn.flow_control = rep_data->flow_control; 1939 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 1940 event->param.conn.srq = rep_data->srq; 1941 event->param.conn.qp_num = rep_data->remote_qpn; 1942 1943 event->ece.vendor_id = rep_data->ece.vendor_id; 1944 event->ece.attr_mod = rep_data->ece.attr_mod; 1945 } 1946 1947 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 1948 struct rdma_cm_event *event) 1949 { 1950 int ret; 1951 1952 lockdep_assert_held(&id_priv->handler_mutex); 1953 1954 trace_cm_event_handler(id_priv, event); 1955 ret = id_priv->id.event_handler(&id_priv->id, event); 1956 trace_cm_event_done(id_priv, event, ret); 1957 return ret; 1958 } 1959 1960 static int cma_ib_handler(struct ib_cm_id *cm_id, 1961 const struct ib_cm_event *ib_event) 1962 { 1963 struct rdma_id_private *id_priv = cm_id->context; 1964 struct rdma_cm_event event = {}; 1965 enum rdma_cm_state state; 1966 int ret; 1967 1968 mutex_lock(&id_priv->handler_mutex); 1969 state = READ_ONCE(id_priv->state); 1970 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 1971 state != RDMA_CM_CONNECT) || 1972 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 1973 state != RDMA_CM_DISCONNECT)) 1974 goto out; 1975 1976 switch (ib_event->event) { 1977 case IB_CM_REQ_ERROR: 1978 case IB_CM_REP_ERROR: 1979 event.event = RDMA_CM_EVENT_UNREACHABLE; 1980 event.status = -ETIMEDOUT; 1981 break; 1982 case IB_CM_REP_RECEIVED: 1983 if (state == RDMA_CM_CONNECT && 1984 (id_priv->id.qp_type != IB_QPT_UD)) { 1985 trace_cm_send_mra(id_priv); 1986 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 1987 } 1988 if (id_priv->id.qp) { 1989 event.status = cma_rep_recv(id_priv); 1990 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 1991 RDMA_CM_EVENT_ESTABLISHED; 1992 } else { 1993 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 1994 } 1995 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 1996 ib_event->private_data); 1997 break; 1998 case IB_CM_RTU_RECEIVED: 1999 case IB_CM_USER_ESTABLISHED: 2000 event.event = RDMA_CM_EVENT_ESTABLISHED; 2001 break; 2002 case IB_CM_DREQ_ERROR: 2003 event.status = -ETIMEDOUT; 2004 fallthrough; 2005 case IB_CM_DREQ_RECEIVED: 2006 case IB_CM_DREP_RECEIVED: 2007 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2008 RDMA_CM_DISCONNECT)) 2009 goto out; 2010 event.event = RDMA_CM_EVENT_DISCONNECTED; 2011 break; 2012 case IB_CM_TIMEWAIT_EXIT: 2013 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2014 break; 2015 case IB_CM_MRA_RECEIVED: 2016 /* ignore event */ 2017 goto out; 2018 case IB_CM_REJ_RECEIVED: 2019 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2020 ib_event->param.rej_rcvd.reason)); 2021 cma_modify_qp_err(id_priv); 2022 event.status = ib_event->param.rej_rcvd.reason; 2023 event.event = RDMA_CM_EVENT_REJECTED; 2024 event.param.conn.private_data = ib_event->private_data; 2025 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2026 break; 2027 default: 2028 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2029 ib_event->event); 2030 goto out; 2031 } 2032 2033 ret = cma_cm_event_handler(id_priv, &event); 2034 if (ret) { 2035 /* Destroy the CM ID by returning a non-zero value. */ 2036 id_priv->cm_id.ib = NULL; 2037 destroy_id_handler_unlock(id_priv); 2038 return ret; 2039 } 2040 out: 2041 mutex_unlock(&id_priv->handler_mutex); 2042 return 0; 2043 } 2044 2045 static struct rdma_id_private * 2046 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2047 const struct ib_cm_event *ib_event, 2048 struct net_device *net_dev) 2049 { 2050 struct rdma_id_private *listen_id_priv; 2051 struct rdma_id_private *id_priv; 2052 struct rdma_cm_id *id; 2053 struct rdma_route *rt; 2054 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2055 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2056 const __be64 service_id = 2057 ib_event->param.req_rcvd.primary_path->service_id; 2058 int ret; 2059 2060 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2061 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2062 listen_id->event_handler, listen_id->context, 2063 listen_id->ps, 2064 ib_event->param.req_rcvd.qp_type, 2065 listen_id_priv); 2066 if (IS_ERR(id_priv)) 2067 return NULL; 2068 2069 id = &id_priv->id; 2070 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2071 (struct sockaddr *)&id->route.addr.dst_addr, 2072 listen_id, ib_event, ss_family, service_id)) 2073 goto err; 2074 2075 rt = &id->route; 2076 rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2077 rt->path_rec = kmalloc_array(rt->num_paths, sizeof(*rt->path_rec), 2078 GFP_KERNEL); 2079 if (!rt->path_rec) 2080 goto err; 2081 2082 rt->path_rec[0] = *path; 2083 if (rt->num_paths == 2) 2084 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2085 2086 if (net_dev) { 2087 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2088 } else { 2089 if (!cma_protocol_roce(listen_id) && 2090 cma_any_addr(cma_src_addr(id_priv))) { 2091 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2092 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2093 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2094 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2095 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2096 if (ret) 2097 goto err; 2098 } 2099 } 2100 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2101 2102 id_priv->state = RDMA_CM_CONNECT; 2103 return id_priv; 2104 2105 err: 2106 rdma_destroy_id(id); 2107 return NULL; 2108 } 2109 2110 static struct rdma_id_private * 2111 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2112 const struct ib_cm_event *ib_event, 2113 struct net_device *net_dev) 2114 { 2115 const struct rdma_id_private *listen_id_priv; 2116 struct rdma_id_private *id_priv; 2117 struct rdma_cm_id *id; 2118 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2119 struct net *net = listen_id->route.addr.dev_addr.net; 2120 int ret; 2121 2122 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2123 id_priv = __rdma_create_id(net, listen_id->event_handler, 2124 listen_id->context, listen_id->ps, IB_QPT_UD, 2125 listen_id_priv); 2126 if (IS_ERR(id_priv)) 2127 return NULL; 2128 2129 id = &id_priv->id; 2130 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2131 (struct sockaddr *)&id->route.addr.dst_addr, 2132 listen_id, ib_event, ss_family, 2133 ib_event->param.sidr_req_rcvd.service_id)) 2134 goto err; 2135 2136 if (net_dev) { 2137 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2138 } else { 2139 if (!cma_any_addr(cma_src_addr(id_priv))) { 2140 ret = cma_translate_addr(cma_src_addr(id_priv), 2141 &id->route.addr.dev_addr); 2142 if (ret) 2143 goto err; 2144 } 2145 } 2146 2147 id_priv->state = RDMA_CM_CONNECT; 2148 return id_priv; 2149 err: 2150 rdma_destroy_id(id); 2151 return NULL; 2152 } 2153 2154 static void cma_set_req_event_data(struct rdma_cm_event *event, 2155 const struct ib_cm_req_event_param *req_data, 2156 void *private_data, int offset) 2157 { 2158 event->param.conn.private_data = private_data + offset; 2159 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2160 event->param.conn.responder_resources = req_data->responder_resources; 2161 event->param.conn.initiator_depth = req_data->initiator_depth; 2162 event->param.conn.flow_control = req_data->flow_control; 2163 event->param.conn.retry_count = req_data->retry_count; 2164 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2165 event->param.conn.srq = req_data->srq; 2166 event->param.conn.qp_num = req_data->remote_qpn; 2167 2168 event->ece.vendor_id = req_data->ece.vendor_id; 2169 event->ece.attr_mod = req_data->ece.attr_mod; 2170 } 2171 2172 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2173 const struct ib_cm_event *ib_event) 2174 { 2175 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2176 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2177 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2178 (id->qp_type == IB_QPT_UD)) || 2179 (!id->qp_type)); 2180 } 2181 2182 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2183 const struct ib_cm_event *ib_event) 2184 { 2185 struct rdma_id_private *listen_id, *conn_id = NULL; 2186 struct rdma_cm_event event = {}; 2187 struct cma_req_info req = {}; 2188 struct net_device *net_dev; 2189 u8 offset; 2190 int ret; 2191 2192 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2193 if (IS_ERR(listen_id)) 2194 return PTR_ERR(listen_id); 2195 2196 trace_cm_req_handler(listen_id, ib_event->event); 2197 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2198 ret = -EINVAL; 2199 goto net_dev_put; 2200 } 2201 2202 mutex_lock(&listen_id->handler_mutex); 2203 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2204 ret = -ECONNABORTED; 2205 goto err_unlock; 2206 } 2207 2208 offset = cma_user_data_offset(listen_id); 2209 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2210 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2211 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2212 event.param.ud.private_data = ib_event->private_data + offset; 2213 event.param.ud.private_data_len = 2214 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2215 } else { 2216 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2217 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2218 ib_event->private_data, offset); 2219 } 2220 if (!conn_id) { 2221 ret = -ENOMEM; 2222 goto err_unlock; 2223 } 2224 2225 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2226 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2227 if (ret) { 2228 destroy_id_handler_unlock(conn_id); 2229 goto err_unlock; 2230 } 2231 2232 conn_id->cm_id.ib = cm_id; 2233 cm_id->context = conn_id; 2234 cm_id->cm_handler = cma_ib_handler; 2235 2236 ret = cma_cm_event_handler(conn_id, &event); 2237 if (ret) { 2238 /* Destroy the CM ID by returning a non-zero value. */ 2239 conn_id->cm_id.ib = NULL; 2240 mutex_unlock(&listen_id->handler_mutex); 2241 destroy_id_handler_unlock(conn_id); 2242 goto net_dev_put; 2243 } 2244 2245 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2246 conn_id->id.qp_type != IB_QPT_UD) { 2247 trace_cm_send_mra(cm_id->context); 2248 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2249 } 2250 mutex_unlock(&conn_id->handler_mutex); 2251 2252 err_unlock: 2253 mutex_unlock(&listen_id->handler_mutex); 2254 2255 net_dev_put: 2256 if (net_dev) 2257 dev_put(net_dev); 2258 2259 return ret; 2260 } 2261 2262 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2263 { 2264 if (addr->sa_family == AF_IB) 2265 return ((struct sockaddr_ib *) addr)->sib_sid; 2266 2267 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2268 } 2269 EXPORT_SYMBOL(rdma_get_service_id); 2270 2271 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2272 union ib_gid *dgid) 2273 { 2274 struct rdma_addr *addr = &cm_id->route.addr; 2275 2276 if (!cm_id->device) { 2277 if (sgid) 2278 memset(sgid, 0, sizeof(*sgid)); 2279 if (dgid) 2280 memset(dgid, 0, sizeof(*dgid)); 2281 return; 2282 } 2283 2284 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2285 if (sgid) 2286 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2287 if (dgid) 2288 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2289 } else { 2290 if (sgid) 2291 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2292 if (dgid) 2293 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2294 } 2295 } 2296 EXPORT_SYMBOL(rdma_read_gids); 2297 2298 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2299 { 2300 struct rdma_id_private *id_priv = iw_id->context; 2301 struct rdma_cm_event event = {}; 2302 int ret = 0; 2303 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2304 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2305 2306 mutex_lock(&id_priv->handler_mutex); 2307 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2308 goto out; 2309 2310 switch (iw_event->event) { 2311 case IW_CM_EVENT_CLOSE: 2312 event.event = RDMA_CM_EVENT_DISCONNECTED; 2313 break; 2314 case IW_CM_EVENT_CONNECT_REPLY: 2315 memcpy(cma_src_addr(id_priv), laddr, 2316 rdma_addr_size(laddr)); 2317 memcpy(cma_dst_addr(id_priv), raddr, 2318 rdma_addr_size(raddr)); 2319 switch (iw_event->status) { 2320 case 0: 2321 event.event = RDMA_CM_EVENT_ESTABLISHED; 2322 event.param.conn.initiator_depth = iw_event->ird; 2323 event.param.conn.responder_resources = iw_event->ord; 2324 break; 2325 case -ECONNRESET: 2326 case -ECONNREFUSED: 2327 event.event = RDMA_CM_EVENT_REJECTED; 2328 break; 2329 case -ETIMEDOUT: 2330 event.event = RDMA_CM_EVENT_UNREACHABLE; 2331 break; 2332 default: 2333 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2334 break; 2335 } 2336 break; 2337 case IW_CM_EVENT_ESTABLISHED: 2338 event.event = RDMA_CM_EVENT_ESTABLISHED; 2339 event.param.conn.initiator_depth = iw_event->ird; 2340 event.param.conn.responder_resources = iw_event->ord; 2341 break; 2342 default: 2343 goto out; 2344 } 2345 2346 event.status = iw_event->status; 2347 event.param.conn.private_data = iw_event->private_data; 2348 event.param.conn.private_data_len = iw_event->private_data_len; 2349 ret = cma_cm_event_handler(id_priv, &event); 2350 if (ret) { 2351 /* Destroy the CM ID by returning a non-zero value. */ 2352 id_priv->cm_id.iw = NULL; 2353 destroy_id_handler_unlock(id_priv); 2354 return ret; 2355 } 2356 2357 out: 2358 mutex_unlock(&id_priv->handler_mutex); 2359 return ret; 2360 } 2361 2362 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2363 struct iw_cm_event *iw_event) 2364 { 2365 struct rdma_id_private *listen_id, *conn_id; 2366 struct rdma_cm_event event = {}; 2367 int ret = -ECONNABORTED; 2368 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2369 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2370 2371 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2372 event.param.conn.private_data = iw_event->private_data; 2373 event.param.conn.private_data_len = iw_event->private_data_len; 2374 event.param.conn.initiator_depth = iw_event->ird; 2375 event.param.conn.responder_resources = iw_event->ord; 2376 2377 listen_id = cm_id->context; 2378 2379 mutex_lock(&listen_id->handler_mutex); 2380 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2381 goto out; 2382 2383 /* Create a new RDMA id for the new IW CM ID */ 2384 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2385 listen_id->id.event_handler, 2386 listen_id->id.context, RDMA_PS_TCP, 2387 IB_QPT_RC, listen_id); 2388 if (IS_ERR(conn_id)) { 2389 ret = -ENOMEM; 2390 goto out; 2391 } 2392 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2393 conn_id->state = RDMA_CM_CONNECT; 2394 2395 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2396 if (ret) { 2397 mutex_unlock(&listen_id->handler_mutex); 2398 destroy_id_handler_unlock(conn_id); 2399 return ret; 2400 } 2401 2402 ret = cma_iw_acquire_dev(conn_id, listen_id); 2403 if (ret) { 2404 mutex_unlock(&listen_id->handler_mutex); 2405 destroy_id_handler_unlock(conn_id); 2406 return ret; 2407 } 2408 2409 conn_id->cm_id.iw = cm_id; 2410 cm_id->context = conn_id; 2411 cm_id->cm_handler = cma_iw_handler; 2412 2413 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2414 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2415 2416 ret = cma_cm_event_handler(conn_id, &event); 2417 if (ret) { 2418 /* User wants to destroy the CM ID */ 2419 conn_id->cm_id.iw = NULL; 2420 mutex_unlock(&listen_id->handler_mutex); 2421 destroy_id_handler_unlock(conn_id); 2422 return ret; 2423 } 2424 2425 mutex_unlock(&conn_id->handler_mutex); 2426 2427 out: 2428 mutex_unlock(&listen_id->handler_mutex); 2429 return ret; 2430 } 2431 2432 static int cma_ib_listen(struct rdma_id_private *id_priv) 2433 { 2434 struct sockaddr *addr; 2435 struct ib_cm_id *id; 2436 __be64 svc_id; 2437 2438 addr = cma_src_addr(id_priv); 2439 svc_id = rdma_get_service_id(&id_priv->id, addr); 2440 id = ib_cm_insert_listen(id_priv->id.device, 2441 cma_ib_req_handler, svc_id); 2442 if (IS_ERR(id)) 2443 return PTR_ERR(id); 2444 id_priv->cm_id.ib = id; 2445 2446 return 0; 2447 } 2448 2449 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2450 { 2451 int ret; 2452 struct iw_cm_id *id; 2453 2454 id = iw_create_cm_id(id_priv->id.device, 2455 iw_conn_req_handler, 2456 id_priv); 2457 if (IS_ERR(id)) 2458 return PTR_ERR(id); 2459 2460 mutex_lock(&id_priv->qp_mutex); 2461 id->tos = id_priv->tos; 2462 id->tos_set = id_priv->tos_set; 2463 mutex_unlock(&id_priv->qp_mutex); 2464 id->afonly = id_priv->afonly; 2465 id_priv->cm_id.iw = id; 2466 2467 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2468 rdma_addr_size(cma_src_addr(id_priv))); 2469 2470 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2471 2472 if (ret) { 2473 iw_destroy_cm_id(id_priv->cm_id.iw); 2474 id_priv->cm_id.iw = NULL; 2475 } 2476 2477 return ret; 2478 } 2479 2480 static int cma_listen_handler(struct rdma_cm_id *id, 2481 struct rdma_cm_event *event) 2482 { 2483 struct rdma_id_private *id_priv = id->context; 2484 2485 /* Listening IDs are always destroyed on removal */ 2486 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2487 return -1; 2488 2489 id->context = id_priv->id.context; 2490 id->event_handler = id_priv->id.event_handler; 2491 trace_cm_event_handler(id_priv, event); 2492 return id_priv->id.event_handler(id, event); 2493 } 2494 2495 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2496 struct cma_device *cma_dev, 2497 struct rdma_id_private **to_destroy) 2498 { 2499 struct rdma_id_private *dev_id_priv; 2500 struct net *net = id_priv->id.route.addr.dev_addr.net; 2501 int ret; 2502 2503 lockdep_assert_held(&lock); 2504 2505 *to_destroy = NULL; 2506 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2507 return 0; 2508 2509 dev_id_priv = 2510 __rdma_create_id(net, cma_listen_handler, id_priv, 2511 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2512 if (IS_ERR(dev_id_priv)) 2513 return PTR_ERR(dev_id_priv); 2514 2515 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2516 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2517 rdma_addr_size(cma_src_addr(id_priv))); 2518 2519 _cma_attach_to_dev(dev_id_priv, cma_dev); 2520 rdma_restrack_add(&dev_id_priv->res); 2521 cma_id_get(id_priv); 2522 dev_id_priv->internal_id = 1; 2523 dev_id_priv->afonly = id_priv->afonly; 2524 mutex_lock(&id_priv->qp_mutex); 2525 dev_id_priv->tos_set = id_priv->tos_set; 2526 dev_id_priv->tos = id_priv->tos; 2527 mutex_unlock(&id_priv->qp_mutex); 2528 2529 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2530 if (ret) 2531 goto err_listen; 2532 list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); 2533 return 0; 2534 err_listen: 2535 /* Caller must destroy this after releasing lock */ 2536 *to_destroy = dev_id_priv; 2537 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2538 return ret; 2539 } 2540 2541 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2542 { 2543 struct rdma_id_private *to_destroy; 2544 struct cma_device *cma_dev; 2545 int ret; 2546 2547 mutex_lock(&lock); 2548 list_add_tail(&id_priv->list, &listen_any_list); 2549 list_for_each_entry(cma_dev, &dev_list, list) { 2550 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2551 if (ret) { 2552 /* Prevent racing with cma_process_remove() */ 2553 if (to_destroy) 2554 list_del_init(&to_destroy->list); 2555 goto err_listen; 2556 } 2557 } 2558 mutex_unlock(&lock); 2559 return 0; 2560 2561 err_listen: 2562 list_del(&id_priv->list); 2563 mutex_unlock(&lock); 2564 if (to_destroy) 2565 rdma_destroy_id(&to_destroy->id); 2566 return ret; 2567 } 2568 2569 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2570 { 2571 struct rdma_id_private *id_priv; 2572 2573 id_priv = container_of(id, struct rdma_id_private, id); 2574 mutex_lock(&id_priv->qp_mutex); 2575 id_priv->tos = (u8) tos; 2576 id_priv->tos_set = true; 2577 mutex_unlock(&id_priv->qp_mutex); 2578 } 2579 EXPORT_SYMBOL(rdma_set_service_type); 2580 2581 /** 2582 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2583 * with a connection identifier. 2584 * @id: Communication identifier to associated with service type. 2585 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2586 * 2587 * This function should be called before rdma_connect() on active side, 2588 * and on passive side before rdma_accept(). It is applicable to primary 2589 * path only. The timeout will affect the local side of the QP, it is not 2590 * negotiated with remote side and zero disables the timer. In case it is 2591 * set before rdma_resolve_route, the value will also be used to determine 2592 * PacketLifeTime for RoCE. 2593 * 2594 * Return: 0 for success 2595 */ 2596 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2597 { 2598 struct rdma_id_private *id_priv; 2599 2600 if (id->qp_type != IB_QPT_RC) 2601 return -EINVAL; 2602 2603 id_priv = container_of(id, struct rdma_id_private, id); 2604 mutex_lock(&id_priv->qp_mutex); 2605 id_priv->timeout = timeout; 2606 id_priv->timeout_set = true; 2607 mutex_unlock(&id_priv->qp_mutex); 2608 2609 return 0; 2610 } 2611 EXPORT_SYMBOL(rdma_set_ack_timeout); 2612 2613 /** 2614 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2615 * QP associated with a connection identifier. 2616 * @id: Communication identifier to associated with service type. 2617 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2618 * Timer Field" in the IBTA specification. 2619 * 2620 * This function should be called before rdma_connect() on active 2621 * side, and on passive side before rdma_accept(). The timer value 2622 * will be associated with the local QP. When it receives a send it is 2623 * not read to handle, typically if the receive queue is empty, an RNR 2624 * Retry NAK is returned to the requester with the min_rnr_timer 2625 * encoded. The requester will then wait at least the time specified 2626 * in the NAK before retrying. The default is zero, which translates 2627 * to a minimum RNR Timer value of 655 ms. 2628 * 2629 * Return: 0 for success 2630 */ 2631 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2632 { 2633 struct rdma_id_private *id_priv; 2634 2635 /* It is a five-bit value */ 2636 if (min_rnr_timer & 0xe0) 2637 return -EINVAL; 2638 2639 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2640 return -EINVAL; 2641 2642 id_priv = container_of(id, struct rdma_id_private, id); 2643 mutex_lock(&id_priv->qp_mutex); 2644 id_priv->min_rnr_timer = min_rnr_timer; 2645 id_priv->min_rnr_timer_set = true; 2646 mutex_unlock(&id_priv->qp_mutex); 2647 2648 return 0; 2649 } 2650 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2651 2652 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2653 void *context) 2654 { 2655 struct cma_work *work = context; 2656 struct rdma_route *route; 2657 2658 route = &work->id->id.route; 2659 2660 if (!status) { 2661 route->num_paths = 1; 2662 *route->path_rec = *path_rec; 2663 } else { 2664 work->old_state = RDMA_CM_ROUTE_QUERY; 2665 work->new_state = RDMA_CM_ADDR_RESOLVED; 2666 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2667 work->event.status = status; 2668 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2669 status); 2670 } 2671 2672 queue_work(cma_wq, &work->work); 2673 } 2674 2675 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2676 unsigned long timeout_ms, struct cma_work *work) 2677 { 2678 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2679 struct sa_path_rec path_rec; 2680 ib_sa_comp_mask comp_mask; 2681 struct sockaddr_in6 *sin6; 2682 struct sockaddr_ib *sib; 2683 2684 memset(&path_rec, 0, sizeof path_rec); 2685 2686 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2687 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2688 else 2689 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2690 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2691 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2692 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2693 path_rec.numb_path = 1; 2694 path_rec.reversible = 1; 2695 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2696 cma_dst_addr(id_priv)); 2697 2698 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2699 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2700 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2701 2702 switch (cma_family(id_priv)) { 2703 case AF_INET: 2704 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2705 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2706 break; 2707 case AF_INET6: 2708 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2709 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2710 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2711 break; 2712 case AF_IB: 2713 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2714 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2715 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2716 break; 2717 } 2718 2719 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2720 id_priv->id.port_num, &path_rec, 2721 comp_mask, timeout_ms, 2722 GFP_KERNEL, cma_query_handler, 2723 work, &id_priv->query); 2724 2725 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2726 } 2727 2728 static void cma_iboe_join_work_handler(struct work_struct *work) 2729 { 2730 struct cma_multicast *mc = 2731 container_of(work, struct cma_multicast, iboe_join.work); 2732 struct rdma_cm_event *event = &mc->iboe_join.event; 2733 struct rdma_id_private *id_priv = mc->id_priv; 2734 int ret; 2735 2736 mutex_lock(&id_priv->handler_mutex); 2737 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2738 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2739 goto out_unlock; 2740 2741 ret = cma_cm_event_handler(id_priv, event); 2742 WARN_ON(ret); 2743 2744 out_unlock: 2745 mutex_unlock(&id_priv->handler_mutex); 2746 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2747 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2748 } 2749 2750 static void cma_work_handler(struct work_struct *_work) 2751 { 2752 struct cma_work *work = container_of(_work, struct cma_work, work); 2753 struct rdma_id_private *id_priv = work->id; 2754 2755 mutex_lock(&id_priv->handler_mutex); 2756 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2757 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2758 goto out_unlock; 2759 if (work->old_state != 0 || work->new_state != 0) { 2760 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 2761 goto out_unlock; 2762 } 2763 2764 if (cma_cm_event_handler(id_priv, &work->event)) { 2765 cma_id_put(id_priv); 2766 destroy_id_handler_unlock(id_priv); 2767 goto out_free; 2768 } 2769 2770 out_unlock: 2771 mutex_unlock(&id_priv->handler_mutex); 2772 cma_id_put(id_priv); 2773 out_free: 2774 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 2775 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 2776 kfree(work); 2777 } 2778 2779 static void cma_init_resolve_route_work(struct cma_work *work, 2780 struct rdma_id_private *id_priv) 2781 { 2782 work->id = id_priv; 2783 INIT_WORK(&work->work, cma_work_handler); 2784 work->old_state = RDMA_CM_ROUTE_QUERY; 2785 work->new_state = RDMA_CM_ROUTE_RESOLVED; 2786 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 2787 } 2788 2789 static void enqueue_resolve_addr_work(struct cma_work *work, 2790 struct rdma_id_private *id_priv) 2791 { 2792 /* Balances with cma_id_put() in cma_work_handler */ 2793 cma_id_get(id_priv); 2794 2795 work->id = id_priv; 2796 INIT_WORK(&work->work, cma_work_handler); 2797 work->old_state = RDMA_CM_ADDR_QUERY; 2798 work->new_state = RDMA_CM_ADDR_RESOLVED; 2799 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 2800 2801 queue_work(cma_wq, &work->work); 2802 } 2803 2804 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 2805 unsigned long timeout_ms) 2806 { 2807 struct rdma_route *route = &id_priv->id.route; 2808 struct cma_work *work; 2809 int ret; 2810 2811 work = kzalloc(sizeof *work, GFP_KERNEL); 2812 if (!work) 2813 return -ENOMEM; 2814 2815 cma_init_resolve_route_work(work, id_priv); 2816 2817 if (!route->path_rec) 2818 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 2819 if (!route->path_rec) { 2820 ret = -ENOMEM; 2821 goto err1; 2822 } 2823 2824 ret = cma_query_ib_route(id_priv, timeout_ms, work); 2825 if (ret) 2826 goto err2; 2827 2828 return 0; 2829 err2: 2830 kfree(route->path_rec); 2831 route->path_rec = NULL; 2832 err1: 2833 kfree(work); 2834 return ret; 2835 } 2836 2837 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 2838 unsigned long supported_gids, 2839 enum ib_gid_type default_gid) 2840 { 2841 if ((network_type == RDMA_NETWORK_IPV4 || 2842 network_type == RDMA_NETWORK_IPV6) && 2843 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 2844 return IB_GID_TYPE_ROCE_UDP_ENCAP; 2845 2846 return default_gid; 2847 } 2848 2849 /* 2850 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 2851 * path record type based on GID type. 2852 * It also sets up other L2 fields which includes destination mac address 2853 * netdev ifindex, of the path record. 2854 * It returns the netdev of the bound interface for this path record entry. 2855 */ 2856 static struct net_device * 2857 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 2858 { 2859 struct rdma_route *route = &id_priv->id.route; 2860 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 2861 struct rdma_addr *addr = &route->addr; 2862 unsigned long supported_gids; 2863 struct net_device *ndev; 2864 2865 if (!addr->dev_addr.bound_dev_if) 2866 return NULL; 2867 2868 ndev = dev_get_by_index(addr->dev_addr.net, 2869 addr->dev_addr.bound_dev_if); 2870 if (!ndev) 2871 return NULL; 2872 2873 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 2874 id_priv->id.port_num); 2875 gid_type = cma_route_gid_type(addr->dev_addr.network, 2876 supported_gids, 2877 id_priv->gid_type); 2878 /* Use the hint from IP Stack to select GID Type */ 2879 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 2880 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 2881 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 2882 2883 route->path_rec->roce.route_resolved = true; 2884 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 2885 return ndev; 2886 } 2887 2888 int rdma_set_ib_path(struct rdma_cm_id *id, 2889 struct sa_path_rec *path_rec) 2890 { 2891 struct rdma_id_private *id_priv; 2892 struct net_device *ndev; 2893 int ret; 2894 2895 id_priv = container_of(id, struct rdma_id_private, id); 2896 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 2897 RDMA_CM_ROUTE_RESOLVED)) 2898 return -EINVAL; 2899 2900 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 2901 GFP_KERNEL); 2902 if (!id->route.path_rec) { 2903 ret = -ENOMEM; 2904 goto err; 2905 } 2906 2907 if (rdma_protocol_roce(id->device, id->port_num)) { 2908 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 2909 if (!ndev) { 2910 ret = -ENODEV; 2911 goto err_free; 2912 } 2913 dev_put(ndev); 2914 } 2915 2916 id->route.num_paths = 1; 2917 return 0; 2918 2919 err_free: 2920 kfree(id->route.path_rec); 2921 id->route.path_rec = NULL; 2922 err: 2923 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 2924 return ret; 2925 } 2926 EXPORT_SYMBOL(rdma_set_ib_path); 2927 2928 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 2929 { 2930 struct cma_work *work; 2931 2932 work = kzalloc(sizeof *work, GFP_KERNEL); 2933 if (!work) 2934 return -ENOMEM; 2935 2936 cma_init_resolve_route_work(work, id_priv); 2937 queue_work(cma_wq, &work->work); 2938 return 0; 2939 } 2940 2941 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 2942 { 2943 struct net_device *dev; 2944 2945 dev = vlan_dev_real_dev(vlan_ndev); 2946 if (dev->num_tc) 2947 return netdev_get_prio_tc_map(dev, prio); 2948 2949 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 2950 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 2951 } 2952 2953 struct iboe_prio_tc_map { 2954 int input_prio; 2955 int output_tc; 2956 bool found; 2957 }; 2958 2959 static int get_lower_vlan_dev_tc(struct net_device *dev, 2960 struct netdev_nested_priv *priv) 2961 { 2962 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 2963 2964 if (is_vlan_dev(dev)) 2965 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 2966 else if (dev->num_tc) 2967 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 2968 else 2969 map->output_tc = 0; 2970 /* We are interested only in first level VLAN device, so always 2971 * return 1 to stop iterating over next level devices. 2972 */ 2973 map->found = true; 2974 return 1; 2975 } 2976 2977 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 2978 { 2979 struct iboe_prio_tc_map prio_tc_map = {}; 2980 int prio = rt_tos2priority(tos); 2981 struct netdev_nested_priv priv; 2982 2983 /* If VLAN device, get it directly from the VLAN netdev */ 2984 if (is_vlan_dev(ndev)) 2985 return get_vlan_ndev_tc(ndev, prio); 2986 2987 prio_tc_map.input_prio = prio; 2988 priv.data = (void *)&prio_tc_map; 2989 rcu_read_lock(); 2990 netdev_walk_all_lower_dev_rcu(ndev, 2991 get_lower_vlan_dev_tc, 2992 &priv); 2993 rcu_read_unlock(); 2994 /* If map is found from lower device, use it; Otherwise 2995 * continue with the current netdevice to get priority to tc map. 2996 */ 2997 if (prio_tc_map.found) 2998 return prio_tc_map.output_tc; 2999 else if (ndev->num_tc) 3000 return netdev_get_prio_tc_map(ndev, prio); 3001 else 3002 return 0; 3003 } 3004 3005 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3006 { 3007 struct sockaddr_in6 *addr6; 3008 u16 dport, sport; 3009 u32 hash, fl; 3010 3011 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3012 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3013 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3014 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3015 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3016 hash = (u32)sport * 31 + dport; 3017 fl = hash & IB_GRH_FLOWLABEL_MASK; 3018 } 3019 3020 return cpu_to_be32(fl); 3021 } 3022 3023 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3024 { 3025 struct rdma_route *route = &id_priv->id.route; 3026 struct rdma_addr *addr = &route->addr; 3027 struct cma_work *work; 3028 int ret; 3029 struct net_device *ndev; 3030 3031 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3032 rdma_start_port(id_priv->cma_dev->device)]; 3033 u8 tos; 3034 3035 mutex_lock(&id_priv->qp_mutex); 3036 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3037 mutex_unlock(&id_priv->qp_mutex); 3038 3039 work = kzalloc(sizeof *work, GFP_KERNEL); 3040 if (!work) 3041 return -ENOMEM; 3042 3043 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3044 if (!route->path_rec) { 3045 ret = -ENOMEM; 3046 goto err1; 3047 } 3048 3049 route->num_paths = 1; 3050 3051 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3052 if (!ndev) { 3053 ret = -ENODEV; 3054 goto err2; 3055 } 3056 3057 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3058 &route->path_rec->sgid); 3059 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3060 &route->path_rec->dgid); 3061 3062 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3063 /* TODO: get the hoplimit from the inet/inet6 device */ 3064 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3065 else 3066 route->path_rec->hop_limit = 1; 3067 route->path_rec->reversible = 1; 3068 route->path_rec->pkey = cpu_to_be16(0xffff); 3069 route->path_rec->mtu_selector = IB_SA_EQ; 3070 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3071 route->path_rec->traffic_class = tos; 3072 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3073 route->path_rec->rate_selector = IB_SA_EQ; 3074 route->path_rec->rate = iboe_get_rate(ndev); 3075 dev_put(ndev); 3076 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3077 /* In case ACK timeout is set, use this value to calculate 3078 * PacketLifeTime. As per IBTA 12.7.34, 3079 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3080 * Assuming a negligible local ACK delay, we can use 3081 * PacketLifeTime = local ACK timeout/2 3082 * as a reasonable approximation for RoCE networks. 3083 */ 3084 mutex_lock(&id_priv->qp_mutex); 3085 if (id_priv->timeout_set && id_priv->timeout) 3086 route->path_rec->packet_life_time = id_priv->timeout - 1; 3087 else 3088 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3089 mutex_unlock(&id_priv->qp_mutex); 3090 3091 if (!route->path_rec->mtu) { 3092 ret = -EINVAL; 3093 goto err2; 3094 } 3095 3096 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3097 id_priv->id.port_num)) 3098 route->path_rec->flow_label = 3099 cma_get_roce_udp_flow_label(id_priv); 3100 3101 cma_init_resolve_route_work(work, id_priv); 3102 queue_work(cma_wq, &work->work); 3103 3104 return 0; 3105 3106 err2: 3107 kfree(route->path_rec); 3108 route->path_rec = NULL; 3109 route->num_paths = 0; 3110 err1: 3111 kfree(work); 3112 return ret; 3113 } 3114 3115 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3116 { 3117 struct rdma_id_private *id_priv; 3118 int ret; 3119 3120 id_priv = container_of(id, struct rdma_id_private, id); 3121 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3122 return -EINVAL; 3123 3124 cma_id_get(id_priv); 3125 if (rdma_cap_ib_sa(id->device, id->port_num)) 3126 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3127 else if (rdma_protocol_roce(id->device, id->port_num)) 3128 ret = cma_resolve_iboe_route(id_priv); 3129 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3130 ret = cma_resolve_iw_route(id_priv); 3131 else 3132 ret = -ENOSYS; 3133 3134 if (ret) 3135 goto err; 3136 3137 return 0; 3138 err: 3139 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3140 cma_id_put(id_priv); 3141 return ret; 3142 } 3143 EXPORT_SYMBOL(rdma_resolve_route); 3144 3145 static void cma_set_loopback(struct sockaddr *addr) 3146 { 3147 switch (addr->sa_family) { 3148 case AF_INET: 3149 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3150 break; 3151 case AF_INET6: 3152 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3153 0, 0, 0, htonl(1)); 3154 break; 3155 default: 3156 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3157 0, 0, 0, htonl(1)); 3158 break; 3159 } 3160 } 3161 3162 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3163 { 3164 struct cma_device *cma_dev, *cur_dev; 3165 union ib_gid gid; 3166 enum ib_port_state port_state; 3167 unsigned int p; 3168 u16 pkey; 3169 int ret; 3170 3171 cma_dev = NULL; 3172 mutex_lock(&lock); 3173 list_for_each_entry(cur_dev, &dev_list, list) { 3174 if (cma_family(id_priv) == AF_IB && 3175 !rdma_cap_ib_cm(cur_dev->device, 1)) 3176 continue; 3177 3178 if (!cma_dev) 3179 cma_dev = cur_dev; 3180 3181 rdma_for_each_port (cur_dev->device, p) { 3182 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3183 port_state == IB_PORT_ACTIVE) { 3184 cma_dev = cur_dev; 3185 goto port_found; 3186 } 3187 } 3188 } 3189 3190 if (!cma_dev) { 3191 ret = -ENODEV; 3192 goto out; 3193 } 3194 3195 p = 1; 3196 3197 port_found: 3198 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3199 if (ret) 3200 goto out; 3201 3202 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3203 if (ret) 3204 goto out; 3205 3206 id_priv->id.route.addr.dev_addr.dev_type = 3207 (rdma_protocol_ib(cma_dev->device, p)) ? 3208 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3209 3210 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3211 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3212 id_priv->id.port_num = p; 3213 cma_attach_to_dev(id_priv, cma_dev); 3214 rdma_restrack_add(&id_priv->res); 3215 cma_set_loopback(cma_src_addr(id_priv)); 3216 out: 3217 mutex_unlock(&lock); 3218 return ret; 3219 } 3220 3221 static void addr_handler(int status, struct sockaddr *src_addr, 3222 struct rdma_dev_addr *dev_addr, void *context) 3223 { 3224 struct rdma_id_private *id_priv = context; 3225 struct rdma_cm_event event = {}; 3226 struct sockaddr *addr; 3227 struct sockaddr_storage old_addr; 3228 3229 mutex_lock(&id_priv->handler_mutex); 3230 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3231 RDMA_CM_ADDR_RESOLVED)) 3232 goto out; 3233 3234 /* 3235 * Store the previous src address, so that if we fail to acquire 3236 * matching rdma device, old address can be restored back, which helps 3237 * to cancel the cma listen operation correctly. 3238 */ 3239 addr = cma_src_addr(id_priv); 3240 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3241 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3242 if (!status && !id_priv->cma_dev) { 3243 status = cma_acquire_dev_by_src_ip(id_priv); 3244 if (status) 3245 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3246 status); 3247 rdma_restrack_add(&id_priv->res); 3248 } else if (status) { 3249 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3250 } 3251 3252 if (status) { 3253 memcpy(addr, &old_addr, 3254 rdma_addr_size((struct sockaddr *)&old_addr)); 3255 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3256 RDMA_CM_ADDR_BOUND)) 3257 goto out; 3258 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3259 event.status = status; 3260 } else 3261 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3262 3263 if (cma_cm_event_handler(id_priv, &event)) { 3264 destroy_id_handler_unlock(id_priv); 3265 return; 3266 } 3267 out: 3268 mutex_unlock(&id_priv->handler_mutex); 3269 } 3270 3271 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3272 { 3273 struct cma_work *work; 3274 union ib_gid gid; 3275 int ret; 3276 3277 work = kzalloc(sizeof *work, GFP_KERNEL); 3278 if (!work) 3279 return -ENOMEM; 3280 3281 if (!id_priv->cma_dev) { 3282 ret = cma_bind_loopback(id_priv); 3283 if (ret) 3284 goto err; 3285 } 3286 3287 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3288 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3289 3290 enqueue_resolve_addr_work(work, id_priv); 3291 return 0; 3292 err: 3293 kfree(work); 3294 return ret; 3295 } 3296 3297 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3298 { 3299 struct cma_work *work; 3300 int ret; 3301 3302 work = kzalloc(sizeof *work, GFP_KERNEL); 3303 if (!work) 3304 return -ENOMEM; 3305 3306 if (!id_priv->cma_dev) { 3307 ret = cma_resolve_ib_dev(id_priv); 3308 if (ret) 3309 goto err; 3310 } 3311 3312 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3313 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3314 3315 enqueue_resolve_addr_work(work, id_priv); 3316 return 0; 3317 err: 3318 kfree(work); 3319 return ret; 3320 } 3321 3322 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3323 const struct sockaddr *dst_addr) 3324 { 3325 if (!src_addr || !src_addr->sa_family) { 3326 src_addr = (struct sockaddr *) &id->route.addr.src_addr; 3327 src_addr->sa_family = dst_addr->sa_family; 3328 if (IS_ENABLED(CONFIG_IPV6) && 3329 dst_addr->sa_family == AF_INET6) { 3330 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *) src_addr; 3331 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *) dst_addr; 3332 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 3333 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 3334 id->route.addr.dev_addr.bound_dev_if = dst_addr6->sin6_scope_id; 3335 } else if (dst_addr->sa_family == AF_IB) { 3336 ((struct sockaddr_ib *) src_addr)->sib_pkey = 3337 ((struct sockaddr_ib *) dst_addr)->sib_pkey; 3338 } 3339 } 3340 return rdma_bind_addr(id, src_addr); 3341 } 3342 3343 /* 3344 * If required, resolve the source address for bind and leave the id_priv in 3345 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 3346 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 3347 * ignored. 3348 */ 3349 static int resolve_prepare_src(struct rdma_id_private *id_priv, 3350 struct sockaddr *src_addr, 3351 const struct sockaddr *dst_addr) 3352 { 3353 int ret; 3354 3355 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 3356 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 3357 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3358 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 3359 if (ret) 3360 goto err_dst; 3361 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3362 RDMA_CM_ADDR_QUERY))) { 3363 ret = -EINVAL; 3364 goto err_dst; 3365 } 3366 } 3367 3368 if (cma_family(id_priv) != dst_addr->sa_family) { 3369 ret = -EINVAL; 3370 goto err_state; 3371 } 3372 return 0; 3373 3374 err_state: 3375 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3376 err_dst: 3377 memset(cma_dst_addr(id_priv), 0, rdma_addr_size(dst_addr)); 3378 return ret; 3379 } 3380 3381 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 3382 const struct sockaddr *dst_addr, unsigned long timeout_ms) 3383 { 3384 struct rdma_id_private *id_priv = 3385 container_of(id, struct rdma_id_private, id); 3386 int ret; 3387 3388 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 3389 if (ret) 3390 return ret; 3391 3392 if (cma_any_addr(dst_addr)) { 3393 ret = cma_resolve_loopback(id_priv); 3394 } else { 3395 if (dst_addr->sa_family == AF_IB) { 3396 ret = cma_resolve_ib_addr(id_priv); 3397 } else { 3398 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 3399 &id->route.addr.dev_addr, 3400 timeout_ms, addr_handler, 3401 false, id_priv); 3402 } 3403 } 3404 if (ret) 3405 goto err; 3406 3407 return 0; 3408 err: 3409 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 3410 return ret; 3411 } 3412 EXPORT_SYMBOL(rdma_resolve_addr); 3413 3414 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3415 { 3416 struct rdma_id_private *id_priv; 3417 unsigned long flags; 3418 int ret; 3419 3420 id_priv = container_of(id, struct rdma_id_private, id); 3421 spin_lock_irqsave(&id_priv->lock, flags); 3422 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3423 id_priv->state == RDMA_CM_IDLE) { 3424 id_priv->reuseaddr = reuse; 3425 ret = 0; 3426 } else { 3427 ret = -EINVAL; 3428 } 3429 spin_unlock_irqrestore(&id_priv->lock, flags); 3430 return ret; 3431 } 3432 EXPORT_SYMBOL(rdma_set_reuseaddr); 3433 3434 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3435 { 3436 struct rdma_id_private *id_priv; 3437 unsigned long flags; 3438 int ret; 3439 3440 id_priv = container_of(id, struct rdma_id_private, id); 3441 spin_lock_irqsave(&id_priv->lock, flags); 3442 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3443 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3444 id_priv->afonly = afonly; 3445 ret = 0; 3446 } else { 3447 ret = -EINVAL; 3448 } 3449 spin_unlock_irqrestore(&id_priv->lock, flags); 3450 return ret; 3451 } 3452 EXPORT_SYMBOL(rdma_set_afonly); 3453 3454 static void cma_bind_port(struct rdma_bind_list *bind_list, 3455 struct rdma_id_private *id_priv) 3456 { 3457 struct sockaddr *addr; 3458 struct sockaddr_ib *sib; 3459 u64 sid, mask; 3460 __be16 port; 3461 3462 lockdep_assert_held(&lock); 3463 3464 addr = cma_src_addr(id_priv); 3465 port = htons(bind_list->port); 3466 3467 switch (addr->sa_family) { 3468 case AF_INET: 3469 ((struct sockaddr_in *) addr)->sin_port = port; 3470 break; 3471 case AF_INET6: 3472 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3473 break; 3474 case AF_IB: 3475 sib = (struct sockaddr_ib *) addr; 3476 sid = be64_to_cpu(sib->sib_sid); 3477 mask = be64_to_cpu(sib->sib_sid_mask); 3478 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3479 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3480 break; 3481 } 3482 id_priv->bind_list = bind_list; 3483 hlist_add_head(&id_priv->node, &bind_list->owners); 3484 } 3485 3486 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3487 struct rdma_id_private *id_priv, unsigned short snum) 3488 { 3489 struct rdma_bind_list *bind_list; 3490 int ret; 3491 3492 lockdep_assert_held(&lock); 3493 3494 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3495 if (!bind_list) 3496 return -ENOMEM; 3497 3498 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3499 snum); 3500 if (ret < 0) 3501 goto err; 3502 3503 bind_list->ps = ps; 3504 bind_list->port = snum; 3505 cma_bind_port(bind_list, id_priv); 3506 return 0; 3507 err: 3508 kfree(bind_list); 3509 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3510 } 3511 3512 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3513 struct rdma_id_private *id_priv) 3514 { 3515 struct rdma_id_private *cur_id; 3516 struct sockaddr *daddr = cma_dst_addr(id_priv); 3517 struct sockaddr *saddr = cma_src_addr(id_priv); 3518 __be16 dport = cma_port(daddr); 3519 3520 lockdep_assert_held(&lock); 3521 3522 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3523 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3524 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3525 __be16 cur_dport = cma_port(cur_daddr); 3526 3527 if (id_priv == cur_id) 3528 continue; 3529 3530 /* different dest port -> unique */ 3531 if (!cma_any_port(daddr) && 3532 !cma_any_port(cur_daddr) && 3533 (dport != cur_dport)) 3534 continue; 3535 3536 /* different src address -> unique */ 3537 if (!cma_any_addr(saddr) && 3538 !cma_any_addr(cur_saddr) && 3539 cma_addr_cmp(saddr, cur_saddr)) 3540 continue; 3541 3542 /* different dst address -> unique */ 3543 if (!cma_any_addr(daddr) && 3544 !cma_any_addr(cur_daddr) && 3545 cma_addr_cmp(daddr, cur_daddr)) 3546 continue; 3547 3548 return -EADDRNOTAVAIL; 3549 } 3550 return 0; 3551 } 3552 3553 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3554 struct rdma_id_private *id_priv) 3555 { 3556 static unsigned int last_used_port; 3557 int low, high, remaining; 3558 unsigned int rover; 3559 struct net *net = id_priv->id.route.addr.dev_addr.net; 3560 3561 lockdep_assert_held(&lock); 3562 3563 inet_get_local_port_range(net, &low, &high); 3564 remaining = (high - low) + 1; 3565 rover = prandom_u32() % remaining + low; 3566 retry: 3567 if (last_used_port != rover) { 3568 struct rdma_bind_list *bind_list; 3569 int ret; 3570 3571 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3572 3573 if (!bind_list) { 3574 ret = cma_alloc_port(ps, id_priv, rover); 3575 } else { 3576 ret = cma_port_is_unique(bind_list, id_priv); 3577 if (!ret) 3578 cma_bind_port(bind_list, id_priv); 3579 } 3580 /* 3581 * Remember previously used port number in order to avoid 3582 * re-using same port immediately after it is closed. 3583 */ 3584 if (!ret) 3585 last_used_port = rover; 3586 if (ret != -EADDRNOTAVAIL) 3587 return ret; 3588 } 3589 if (--remaining) { 3590 rover++; 3591 if ((rover < low) || (rover > high)) 3592 rover = low; 3593 goto retry; 3594 } 3595 return -EADDRNOTAVAIL; 3596 } 3597 3598 /* 3599 * Check that the requested port is available. This is called when trying to 3600 * bind to a specific port, or when trying to listen on a bound port. In 3601 * the latter case, the provided id_priv may already be on the bind_list, but 3602 * we still need to check that it's okay to start listening. 3603 */ 3604 static int cma_check_port(struct rdma_bind_list *bind_list, 3605 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3606 { 3607 struct rdma_id_private *cur_id; 3608 struct sockaddr *addr, *cur_addr; 3609 3610 lockdep_assert_held(&lock); 3611 3612 addr = cma_src_addr(id_priv); 3613 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3614 if (id_priv == cur_id) 3615 continue; 3616 3617 if (reuseaddr && cur_id->reuseaddr) 3618 continue; 3619 3620 cur_addr = cma_src_addr(cur_id); 3621 if (id_priv->afonly && cur_id->afonly && 3622 (addr->sa_family != cur_addr->sa_family)) 3623 continue; 3624 3625 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3626 return -EADDRNOTAVAIL; 3627 3628 if (!cma_addr_cmp(addr, cur_addr)) 3629 return -EADDRINUSE; 3630 } 3631 return 0; 3632 } 3633 3634 static int cma_use_port(enum rdma_ucm_port_space ps, 3635 struct rdma_id_private *id_priv) 3636 { 3637 struct rdma_bind_list *bind_list; 3638 unsigned short snum; 3639 int ret; 3640 3641 lockdep_assert_held(&lock); 3642 3643 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3644 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3645 return -EACCES; 3646 3647 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3648 if (!bind_list) { 3649 ret = cma_alloc_port(ps, id_priv, snum); 3650 } else { 3651 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3652 if (!ret) 3653 cma_bind_port(bind_list, id_priv); 3654 } 3655 return ret; 3656 } 3657 3658 static enum rdma_ucm_port_space 3659 cma_select_inet_ps(struct rdma_id_private *id_priv) 3660 { 3661 switch (id_priv->id.ps) { 3662 case RDMA_PS_TCP: 3663 case RDMA_PS_UDP: 3664 case RDMA_PS_IPOIB: 3665 case RDMA_PS_IB: 3666 return id_priv->id.ps; 3667 default: 3668 3669 return 0; 3670 } 3671 } 3672 3673 static enum rdma_ucm_port_space 3674 cma_select_ib_ps(struct rdma_id_private *id_priv) 3675 { 3676 enum rdma_ucm_port_space ps = 0; 3677 struct sockaddr_ib *sib; 3678 u64 sid_ps, mask, sid; 3679 3680 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3681 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3682 sid = be64_to_cpu(sib->sib_sid) & mask; 3683 3684 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3685 sid_ps = RDMA_IB_IP_PS_IB; 3686 ps = RDMA_PS_IB; 3687 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3688 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3689 sid_ps = RDMA_IB_IP_PS_TCP; 3690 ps = RDMA_PS_TCP; 3691 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3692 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3693 sid_ps = RDMA_IB_IP_PS_UDP; 3694 ps = RDMA_PS_UDP; 3695 } 3696 3697 if (ps) { 3698 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3699 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3700 be64_to_cpu(sib->sib_sid_mask)); 3701 } 3702 return ps; 3703 } 3704 3705 static int cma_get_port(struct rdma_id_private *id_priv) 3706 { 3707 enum rdma_ucm_port_space ps; 3708 int ret; 3709 3710 if (cma_family(id_priv) != AF_IB) 3711 ps = cma_select_inet_ps(id_priv); 3712 else 3713 ps = cma_select_ib_ps(id_priv); 3714 if (!ps) 3715 return -EPROTONOSUPPORT; 3716 3717 mutex_lock(&lock); 3718 if (cma_any_port(cma_src_addr(id_priv))) 3719 ret = cma_alloc_any_port(ps, id_priv); 3720 else 3721 ret = cma_use_port(ps, id_priv); 3722 mutex_unlock(&lock); 3723 3724 return ret; 3725 } 3726 3727 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3728 struct sockaddr *addr) 3729 { 3730 #if IS_ENABLED(CONFIG_IPV6) 3731 struct sockaddr_in6 *sin6; 3732 3733 if (addr->sa_family != AF_INET6) 3734 return 0; 3735 3736 sin6 = (struct sockaddr_in6 *) addr; 3737 3738 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3739 return 0; 3740 3741 if (!sin6->sin6_scope_id) 3742 return -EINVAL; 3743 3744 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3745 #endif 3746 return 0; 3747 } 3748 3749 int rdma_listen(struct rdma_cm_id *id, int backlog) 3750 { 3751 struct rdma_id_private *id_priv = 3752 container_of(id, struct rdma_id_private, id); 3753 int ret; 3754 3755 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3756 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3757 id->route.addr.src_addr.ss_family = AF_INET; 3758 ret = rdma_bind_addr(id, cma_src_addr(id_priv)); 3759 if (ret) 3760 return ret; 3761 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3762 RDMA_CM_LISTEN))) 3763 return -EINVAL; 3764 } 3765 3766 /* 3767 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3768 * any more, and has to be unique in the bind list. 3769 */ 3770 if (id_priv->reuseaddr) { 3771 mutex_lock(&lock); 3772 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3773 if (!ret) 3774 id_priv->reuseaddr = 0; 3775 mutex_unlock(&lock); 3776 if (ret) 3777 goto err; 3778 } 3779 3780 id_priv->backlog = backlog; 3781 if (id_priv->cma_dev) { 3782 if (rdma_cap_ib_cm(id->device, 1)) { 3783 ret = cma_ib_listen(id_priv); 3784 if (ret) 3785 goto err; 3786 } else if (rdma_cap_iw_cm(id->device, 1)) { 3787 ret = cma_iw_listen(id_priv, backlog); 3788 if (ret) 3789 goto err; 3790 } else { 3791 ret = -ENOSYS; 3792 goto err; 3793 } 3794 } else { 3795 ret = cma_listen_on_all(id_priv); 3796 if (ret) 3797 goto err; 3798 } 3799 3800 return 0; 3801 err: 3802 id_priv->backlog = 0; 3803 /* 3804 * All the failure paths that lead here will not allow the req_handler's 3805 * to have run. 3806 */ 3807 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3808 return ret; 3809 } 3810 EXPORT_SYMBOL(rdma_listen); 3811 3812 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 3813 { 3814 struct rdma_id_private *id_priv; 3815 int ret; 3816 struct sockaddr *daddr; 3817 3818 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3819 addr->sa_family != AF_IB) 3820 return -EAFNOSUPPORT; 3821 3822 id_priv = container_of(id, struct rdma_id_private, id); 3823 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3824 return -EINVAL; 3825 3826 ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); 3827 if (ret) 3828 goto err1; 3829 3830 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3831 if (!cma_any_addr(addr)) { 3832 ret = cma_translate_addr(addr, &id->route.addr.dev_addr); 3833 if (ret) 3834 goto err1; 3835 3836 ret = cma_acquire_dev_by_src_ip(id_priv); 3837 if (ret) 3838 goto err1; 3839 } 3840 3841 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 3842 if (addr->sa_family == AF_INET) 3843 id_priv->afonly = 1; 3844 #if IS_ENABLED(CONFIG_IPV6) 3845 else if (addr->sa_family == AF_INET6) { 3846 struct net *net = id_priv->id.route.addr.dev_addr.net; 3847 3848 id_priv->afonly = net->ipv6.sysctl.bindv6only; 3849 } 3850 #endif 3851 } 3852 daddr = cma_dst_addr(id_priv); 3853 daddr->sa_family = addr->sa_family; 3854 3855 ret = cma_get_port(id_priv); 3856 if (ret) 3857 goto err2; 3858 3859 if (!cma_any_addr(addr)) 3860 rdma_restrack_add(&id_priv->res); 3861 return 0; 3862 err2: 3863 if (id_priv->cma_dev) 3864 cma_release_dev(id_priv); 3865 err1: 3866 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 3867 return ret; 3868 } 3869 EXPORT_SYMBOL(rdma_bind_addr); 3870 3871 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 3872 { 3873 struct cma_hdr *cma_hdr; 3874 3875 cma_hdr = hdr; 3876 cma_hdr->cma_version = CMA_VERSION; 3877 if (cma_family(id_priv) == AF_INET) { 3878 struct sockaddr_in *src4, *dst4; 3879 3880 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 3881 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 3882 3883 cma_set_ip_ver(cma_hdr, 4); 3884 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 3885 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 3886 cma_hdr->port = src4->sin_port; 3887 } else if (cma_family(id_priv) == AF_INET6) { 3888 struct sockaddr_in6 *src6, *dst6; 3889 3890 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 3891 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 3892 3893 cma_set_ip_ver(cma_hdr, 6); 3894 cma_hdr->src_addr.ip6 = src6->sin6_addr; 3895 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 3896 cma_hdr->port = src6->sin6_port; 3897 } 3898 return 0; 3899 } 3900 3901 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 3902 const struct ib_cm_event *ib_event) 3903 { 3904 struct rdma_id_private *id_priv = cm_id->context; 3905 struct rdma_cm_event event = {}; 3906 const struct ib_cm_sidr_rep_event_param *rep = 3907 &ib_event->param.sidr_rep_rcvd; 3908 int ret; 3909 3910 mutex_lock(&id_priv->handler_mutex); 3911 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 3912 goto out; 3913 3914 switch (ib_event->event) { 3915 case IB_CM_SIDR_REQ_ERROR: 3916 event.event = RDMA_CM_EVENT_UNREACHABLE; 3917 event.status = -ETIMEDOUT; 3918 break; 3919 case IB_CM_SIDR_REP_RECEIVED: 3920 event.param.ud.private_data = ib_event->private_data; 3921 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 3922 if (rep->status != IB_SIDR_SUCCESS) { 3923 event.event = RDMA_CM_EVENT_UNREACHABLE; 3924 event.status = ib_event->param.sidr_rep_rcvd.status; 3925 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 3926 event.status); 3927 break; 3928 } 3929 ret = cma_set_qkey(id_priv, rep->qkey); 3930 if (ret) { 3931 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 3932 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3933 event.status = ret; 3934 break; 3935 } 3936 ib_init_ah_attr_from_path(id_priv->id.device, 3937 id_priv->id.port_num, 3938 id_priv->id.route.path_rec, 3939 &event.param.ud.ah_attr, 3940 rep->sgid_attr); 3941 event.param.ud.qp_num = rep->qpn; 3942 event.param.ud.qkey = rep->qkey; 3943 event.event = RDMA_CM_EVENT_ESTABLISHED; 3944 event.status = 0; 3945 break; 3946 default: 3947 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 3948 ib_event->event); 3949 goto out; 3950 } 3951 3952 ret = cma_cm_event_handler(id_priv, &event); 3953 3954 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 3955 if (ret) { 3956 /* Destroy the CM ID by returning a non-zero value. */ 3957 id_priv->cm_id.ib = NULL; 3958 destroy_id_handler_unlock(id_priv); 3959 return ret; 3960 } 3961 out: 3962 mutex_unlock(&id_priv->handler_mutex); 3963 return 0; 3964 } 3965 3966 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 3967 struct rdma_conn_param *conn_param) 3968 { 3969 struct ib_cm_sidr_req_param req; 3970 struct ib_cm_id *id; 3971 void *private_data; 3972 u8 offset; 3973 int ret; 3974 3975 memset(&req, 0, sizeof req); 3976 offset = cma_user_data_offset(id_priv); 3977 req.private_data_len = offset + conn_param->private_data_len; 3978 if (req.private_data_len < conn_param->private_data_len) 3979 return -EINVAL; 3980 3981 if (req.private_data_len) { 3982 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 3983 if (!private_data) 3984 return -ENOMEM; 3985 } else { 3986 private_data = NULL; 3987 } 3988 3989 if (conn_param->private_data && conn_param->private_data_len) 3990 memcpy(private_data + offset, conn_param->private_data, 3991 conn_param->private_data_len); 3992 3993 if (private_data) { 3994 ret = cma_format_hdr(private_data, id_priv); 3995 if (ret) 3996 goto out; 3997 req.private_data = private_data; 3998 } 3999 4000 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4001 id_priv); 4002 if (IS_ERR(id)) { 4003 ret = PTR_ERR(id); 4004 goto out; 4005 } 4006 id_priv->cm_id.ib = id; 4007 4008 req.path = id_priv->id.route.path_rec; 4009 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4010 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4011 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4012 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4013 4014 trace_cm_send_sidr_req(id_priv); 4015 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4016 if (ret) { 4017 ib_destroy_cm_id(id_priv->cm_id.ib); 4018 id_priv->cm_id.ib = NULL; 4019 } 4020 out: 4021 kfree(private_data); 4022 return ret; 4023 } 4024 4025 static int cma_connect_ib(struct rdma_id_private *id_priv, 4026 struct rdma_conn_param *conn_param) 4027 { 4028 struct ib_cm_req_param req; 4029 struct rdma_route *route; 4030 void *private_data; 4031 struct ib_cm_id *id; 4032 u8 offset; 4033 int ret; 4034 4035 memset(&req, 0, sizeof req); 4036 offset = cma_user_data_offset(id_priv); 4037 req.private_data_len = offset + conn_param->private_data_len; 4038 if (req.private_data_len < conn_param->private_data_len) 4039 return -EINVAL; 4040 4041 if (req.private_data_len) { 4042 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4043 if (!private_data) 4044 return -ENOMEM; 4045 } else { 4046 private_data = NULL; 4047 } 4048 4049 if (conn_param->private_data && conn_param->private_data_len) 4050 memcpy(private_data + offset, conn_param->private_data, 4051 conn_param->private_data_len); 4052 4053 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4054 if (IS_ERR(id)) { 4055 ret = PTR_ERR(id); 4056 goto out; 4057 } 4058 id_priv->cm_id.ib = id; 4059 4060 route = &id_priv->id.route; 4061 if (private_data) { 4062 ret = cma_format_hdr(private_data, id_priv); 4063 if (ret) 4064 goto out; 4065 req.private_data = private_data; 4066 } 4067 4068 req.primary_path = &route->path_rec[0]; 4069 if (route->num_paths == 2) 4070 req.alternate_path = &route->path_rec[1]; 4071 4072 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4073 /* Alternate path SGID attribute currently unsupported */ 4074 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4075 req.qp_num = id_priv->qp_num; 4076 req.qp_type = id_priv->id.qp_type; 4077 req.starting_psn = id_priv->seq_num; 4078 req.responder_resources = conn_param->responder_resources; 4079 req.initiator_depth = conn_param->initiator_depth; 4080 req.flow_control = conn_param->flow_control; 4081 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4082 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4083 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4084 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4085 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4086 req.srq = id_priv->srq ? 1 : 0; 4087 req.ece.vendor_id = id_priv->ece.vendor_id; 4088 req.ece.attr_mod = id_priv->ece.attr_mod; 4089 4090 trace_cm_send_req(id_priv); 4091 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4092 out: 4093 if (ret && !IS_ERR(id)) { 4094 ib_destroy_cm_id(id); 4095 id_priv->cm_id.ib = NULL; 4096 } 4097 4098 kfree(private_data); 4099 return ret; 4100 } 4101 4102 static int cma_connect_iw(struct rdma_id_private *id_priv, 4103 struct rdma_conn_param *conn_param) 4104 { 4105 struct iw_cm_id *cm_id; 4106 int ret; 4107 struct iw_cm_conn_param iw_param; 4108 4109 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4110 if (IS_ERR(cm_id)) 4111 return PTR_ERR(cm_id); 4112 4113 mutex_lock(&id_priv->qp_mutex); 4114 cm_id->tos = id_priv->tos; 4115 cm_id->tos_set = id_priv->tos_set; 4116 mutex_unlock(&id_priv->qp_mutex); 4117 4118 id_priv->cm_id.iw = cm_id; 4119 4120 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4121 rdma_addr_size(cma_src_addr(id_priv))); 4122 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4123 rdma_addr_size(cma_dst_addr(id_priv))); 4124 4125 ret = cma_modify_qp_rtr(id_priv, conn_param); 4126 if (ret) 4127 goto out; 4128 4129 if (conn_param) { 4130 iw_param.ord = conn_param->initiator_depth; 4131 iw_param.ird = conn_param->responder_resources; 4132 iw_param.private_data = conn_param->private_data; 4133 iw_param.private_data_len = conn_param->private_data_len; 4134 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4135 } else { 4136 memset(&iw_param, 0, sizeof iw_param); 4137 iw_param.qpn = id_priv->qp_num; 4138 } 4139 ret = iw_cm_connect(cm_id, &iw_param); 4140 out: 4141 if (ret) { 4142 iw_destroy_cm_id(cm_id); 4143 id_priv->cm_id.iw = NULL; 4144 } 4145 return ret; 4146 } 4147 4148 /** 4149 * rdma_connect_locked - Initiate an active connection request. 4150 * @id: Connection identifier to connect. 4151 * @conn_param: Connection information used for connected QPs. 4152 * 4153 * Same as rdma_connect() but can only be called from the 4154 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4155 */ 4156 int rdma_connect_locked(struct rdma_cm_id *id, 4157 struct rdma_conn_param *conn_param) 4158 { 4159 struct rdma_id_private *id_priv = 4160 container_of(id, struct rdma_id_private, id); 4161 int ret; 4162 4163 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4164 return -EINVAL; 4165 4166 if (!id->qp) { 4167 id_priv->qp_num = conn_param->qp_num; 4168 id_priv->srq = conn_param->srq; 4169 } 4170 4171 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4172 if (id->qp_type == IB_QPT_UD) 4173 ret = cma_resolve_ib_udp(id_priv, conn_param); 4174 else 4175 ret = cma_connect_ib(id_priv, conn_param); 4176 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4177 ret = cma_connect_iw(id_priv, conn_param); 4178 } else { 4179 ret = -ENOSYS; 4180 } 4181 if (ret) 4182 goto err_state; 4183 return 0; 4184 err_state: 4185 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4186 return ret; 4187 } 4188 EXPORT_SYMBOL(rdma_connect_locked); 4189 4190 /** 4191 * rdma_connect - Initiate an active connection request. 4192 * @id: Connection identifier to connect. 4193 * @conn_param: Connection information used for connected QPs. 4194 * 4195 * Users must have resolved a route for the rdma_cm_id to connect with by having 4196 * called rdma_resolve_route before calling this routine. 4197 * 4198 * This call will either connect to a remote QP or obtain remote QP information 4199 * for unconnected rdma_cm_id's. The actual operation is based on the 4200 * rdma_cm_id's port space. 4201 */ 4202 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4203 { 4204 struct rdma_id_private *id_priv = 4205 container_of(id, struct rdma_id_private, id); 4206 int ret; 4207 4208 mutex_lock(&id_priv->handler_mutex); 4209 ret = rdma_connect_locked(id, conn_param); 4210 mutex_unlock(&id_priv->handler_mutex); 4211 return ret; 4212 } 4213 EXPORT_SYMBOL(rdma_connect); 4214 4215 /** 4216 * rdma_connect_ece - Initiate an active connection request with ECE data. 4217 * @id: Connection identifier to connect. 4218 * @conn_param: Connection information used for connected QPs. 4219 * @ece: ECE parameters 4220 * 4221 * See rdma_connect() explanation. 4222 */ 4223 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4224 struct rdma_ucm_ece *ece) 4225 { 4226 struct rdma_id_private *id_priv = 4227 container_of(id, struct rdma_id_private, id); 4228 4229 id_priv->ece.vendor_id = ece->vendor_id; 4230 id_priv->ece.attr_mod = ece->attr_mod; 4231 4232 return rdma_connect(id, conn_param); 4233 } 4234 EXPORT_SYMBOL(rdma_connect_ece); 4235 4236 static int cma_accept_ib(struct rdma_id_private *id_priv, 4237 struct rdma_conn_param *conn_param) 4238 { 4239 struct ib_cm_rep_param rep; 4240 int ret; 4241 4242 ret = cma_modify_qp_rtr(id_priv, conn_param); 4243 if (ret) 4244 goto out; 4245 4246 ret = cma_modify_qp_rts(id_priv, conn_param); 4247 if (ret) 4248 goto out; 4249 4250 memset(&rep, 0, sizeof rep); 4251 rep.qp_num = id_priv->qp_num; 4252 rep.starting_psn = id_priv->seq_num; 4253 rep.private_data = conn_param->private_data; 4254 rep.private_data_len = conn_param->private_data_len; 4255 rep.responder_resources = conn_param->responder_resources; 4256 rep.initiator_depth = conn_param->initiator_depth; 4257 rep.failover_accepted = 0; 4258 rep.flow_control = conn_param->flow_control; 4259 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4260 rep.srq = id_priv->srq ? 1 : 0; 4261 rep.ece.vendor_id = id_priv->ece.vendor_id; 4262 rep.ece.attr_mod = id_priv->ece.attr_mod; 4263 4264 trace_cm_send_rep(id_priv); 4265 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4266 out: 4267 return ret; 4268 } 4269 4270 static int cma_accept_iw(struct rdma_id_private *id_priv, 4271 struct rdma_conn_param *conn_param) 4272 { 4273 struct iw_cm_conn_param iw_param; 4274 int ret; 4275 4276 if (!conn_param) 4277 return -EINVAL; 4278 4279 ret = cma_modify_qp_rtr(id_priv, conn_param); 4280 if (ret) 4281 return ret; 4282 4283 iw_param.ord = conn_param->initiator_depth; 4284 iw_param.ird = conn_param->responder_resources; 4285 iw_param.private_data = conn_param->private_data; 4286 iw_param.private_data_len = conn_param->private_data_len; 4287 if (id_priv->id.qp) 4288 iw_param.qpn = id_priv->qp_num; 4289 else 4290 iw_param.qpn = conn_param->qp_num; 4291 4292 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4293 } 4294 4295 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4296 enum ib_cm_sidr_status status, u32 qkey, 4297 const void *private_data, int private_data_len) 4298 { 4299 struct ib_cm_sidr_rep_param rep; 4300 int ret; 4301 4302 memset(&rep, 0, sizeof rep); 4303 rep.status = status; 4304 if (status == IB_SIDR_SUCCESS) { 4305 ret = cma_set_qkey(id_priv, qkey); 4306 if (ret) 4307 return ret; 4308 rep.qp_num = id_priv->qp_num; 4309 rep.qkey = id_priv->qkey; 4310 4311 rep.ece.vendor_id = id_priv->ece.vendor_id; 4312 rep.ece.attr_mod = id_priv->ece.attr_mod; 4313 } 4314 4315 rep.private_data = private_data; 4316 rep.private_data_len = private_data_len; 4317 4318 trace_cm_send_sidr_rep(id_priv); 4319 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4320 } 4321 4322 /** 4323 * rdma_accept - Called to accept a connection request or response. 4324 * @id: Connection identifier associated with the request. 4325 * @conn_param: Information needed to establish the connection. This must be 4326 * provided if accepting a connection request. If accepting a connection 4327 * response, this parameter must be NULL. 4328 * 4329 * Typically, this routine is only called by the listener to accept a connection 4330 * request. It must also be called on the active side of a connection if the 4331 * user is performing their own QP transitions. 4332 * 4333 * In the case of error, a reject message is sent to the remote side and the 4334 * state of the qp associated with the id is modified to error, such that any 4335 * previously posted receive buffers would be flushed. 4336 * 4337 * This function is for use by kernel ULPs and must be called from under the 4338 * handler callback. 4339 */ 4340 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4341 { 4342 struct rdma_id_private *id_priv = 4343 container_of(id, struct rdma_id_private, id); 4344 int ret; 4345 4346 lockdep_assert_held(&id_priv->handler_mutex); 4347 4348 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4349 return -EINVAL; 4350 4351 if (!id->qp && conn_param) { 4352 id_priv->qp_num = conn_param->qp_num; 4353 id_priv->srq = conn_param->srq; 4354 } 4355 4356 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4357 if (id->qp_type == IB_QPT_UD) { 4358 if (conn_param) 4359 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4360 conn_param->qkey, 4361 conn_param->private_data, 4362 conn_param->private_data_len); 4363 else 4364 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4365 0, NULL, 0); 4366 } else { 4367 if (conn_param) 4368 ret = cma_accept_ib(id_priv, conn_param); 4369 else 4370 ret = cma_rep_recv(id_priv); 4371 } 4372 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4373 ret = cma_accept_iw(id_priv, conn_param); 4374 } else { 4375 ret = -ENOSYS; 4376 } 4377 if (ret) 4378 goto reject; 4379 4380 return 0; 4381 reject: 4382 cma_modify_qp_err(id_priv); 4383 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4384 return ret; 4385 } 4386 EXPORT_SYMBOL(rdma_accept); 4387 4388 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4389 struct rdma_ucm_ece *ece) 4390 { 4391 struct rdma_id_private *id_priv = 4392 container_of(id, struct rdma_id_private, id); 4393 4394 id_priv->ece.vendor_id = ece->vendor_id; 4395 id_priv->ece.attr_mod = ece->attr_mod; 4396 4397 return rdma_accept(id, conn_param); 4398 } 4399 EXPORT_SYMBOL(rdma_accept_ece); 4400 4401 void rdma_lock_handler(struct rdma_cm_id *id) 4402 { 4403 struct rdma_id_private *id_priv = 4404 container_of(id, struct rdma_id_private, id); 4405 4406 mutex_lock(&id_priv->handler_mutex); 4407 } 4408 EXPORT_SYMBOL(rdma_lock_handler); 4409 4410 void rdma_unlock_handler(struct rdma_cm_id *id) 4411 { 4412 struct rdma_id_private *id_priv = 4413 container_of(id, struct rdma_id_private, id); 4414 4415 mutex_unlock(&id_priv->handler_mutex); 4416 } 4417 EXPORT_SYMBOL(rdma_unlock_handler); 4418 4419 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4420 { 4421 struct rdma_id_private *id_priv; 4422 int ret; 4423 4424 id_priv = container_of(id, struct rdma_id_private, id); 4425 if (!id_priv->cm_id.ib) 4426 return -EINVAL; 4427 4428 switch (id->device->node_type) { 4429 case RDMA_NODE_IB_CA: 4430 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4431 break; 4432 default: 4433 ret = 0; 4434 break; 4435 } 4436 return ret; 4437 } 4438 EXPORT_SYMBOL(rdma_notify); 4439 4440 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4441 u8 private_data_len, u8 reason) 4442 { 4443 struct rdma_id_private *id_priv; 4444 int ret; 4445 4446 id_priv = container_of(id, struct rdma_id_private, id); 4447 if (!id_priv->cm_id.ib) 4448 return -EINVAL; 4449 4450 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4451 if (id->qp_type == IB_QPT_UD) { 4452 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4453 private_data, private_data_len); 4454 } else { 4455 trace_cm_send_rej(id_priv); 4456 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4457 private_data, private_data_len); 4458 } 4459 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4460 ret = iw_cm_reject(id_priv->cm_id.iw, 4461 private_data, private_data_len); 4462 } else { 4463 ret = -ENOSYS; 4464 } 4465 4466 return ret; 4467 } 4468 EXPORT_SYMBOL(rdma_reject); 4469 4470 int rdma_disconnect(struct rdma_cm_id *id) 4471 { 4472 struct rdma_id_private *id_priv; 4473 int ret; 4474 4475 id_priv = container_of(id, struct rdma_id_private, id); 4476 if (!id_priv->cm_id.ib) 4477 return -EINVAL; 4478 4479 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4480 ret = cma_modify_qp_err(id_priv); 4481 if (ret) 4482 goto out; 4483 /* Initiate or respond to a disconnect. */ 4484 trace_cm_disconnect(id_priv); 4485 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4486 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4487 trace_cm_sent_drep(id_priv); 4488 } else { 4489 trace_cm_sent_dreq(id_priv); 4490 } 4491 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4492 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4493 } else 4494 ret = -EINVAL; 4495 4496 out: 4497 return ret; 4498 } 4499 EXPORT_SYMBOL(rdma_disconnect); 4500 4501 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4502 struct ib_sa_multicast *multicast, 4503 struct rdma_cm_event *event, 4504 struct cma_multicast *mc) 4505 { 4506 struct rdma_dev_addr *dev_addr; 4507 enum ib_gid_type gid_type; 4508 struct net_device *ndev; 4509 4510 if (!status) 4511 status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4512 else 4513 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4514 status); 4515 4516 event->status = status; 4517 event->param.ud.private_data = mc->context; 4518 if (status) { 4519 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4520 return; 4521 } 4522 4523 dev_addr = &id_priv->id.route.addr.dev_addr; 4524 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4525 gid_type = 4526 id_priv->cma_dev 4527 ->default_gid_type[id_priv->id.port_num - 4528 rdma_start_port( 4529 id_priv->cma_dev->device)]; 4530 4531 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4532 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4533 &multicast->rec, ndev, gid_type, 4534 &event->param.ud.ah_attr)) { 4535 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4536 goto out; 4537 } 4538 4539 event->param.ud.qp_num = 0xFFFFFF; 4540 event->param.ud.qkey = be32_to_cpu(multicast->rec.qkey); 4541 4542 out: 4543 if (ndev) 4544 dev_put(ndev); 4545 } 4546 4547 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4548 { 4549 struct cma_multicast *mc = multicast->context; 4550 struct rdma_id_private *id_priv = mc->id_priv; 4551 struct rdma_cm_event event = {}; 4552 int ret = 0; 4553 4554 mutex_lock(&id_priv->handler_mutex); 4555 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4556 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4557 goto out; 4558 4559 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4560 ret = cma_cm_event_handler(id_priv, &event); 4561 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4562 WARN_ON(ret); 4563 4564 out: 4565 mutex_unlock(&id_priv->handler_mutex); 4566 return 0; 4567 } 4568 4569 static void cma_set_mgid(struct rdma_id_private *id_priv, 4570 struct sockaddr *addr, union ib_gid *mgid) 4571 { 4572 unsigned char mc_map[MAX_ADDR_LEN]; 4573 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4574 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4575 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4576 4577 if (cma_any_addr(addr)) { 4578 memset(mgid, 0, sizeof *mgid); 4579 } else if ((addr->sa_family == AF_INET6) && 4580 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4581 0xFF10A01B)) { 4582 /* IPv6 address is an SA assigned MGID. */ 4583 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4584 } else if (addr->sa_family == AF_IB) { 4585 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4586 } else if (addr->sa_family == AF_INET6) { 4587 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4588 if (id_priv->id.ps == RDMA_PS_UDP) 4589 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4590 *mgid = *(union ib_gid *) (mc_map + 4); 4591 } else { 4592 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4593 if (id_priv->id.ps == RDMA_PS_UDP) 4594 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4595 *mgid = *(union ib_gid *) (mc_map + 4); 4596 } 4597 } 4598 4599 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4600 struct cma_multicast *mc) 4601 { 4602 struct ib_sa_mcmember_rec rec; 4603 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4604 ib_sa_comp_mask comp_mask; 4605 int ret; 4606 4607 ib_addr_get_mgid(dev_addr, &rec.mgid); 4608 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4609 &rec.mgid, &rec); 4610 if (ret) 4611 return ret; 4612 4613 ret = cma_set_qkey(id_priv, 0); 4614 if (ret) 4615 return ret; 4616 4617 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4618 rec.qkey = cpu_to_be32(id_priv->qkey); 4619 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4620 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4621 rec.join_state = mc->join_state; 4622 4623 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4624 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4625 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4626 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4627 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4628 4629 if (id_priv->id.ps == RDMA_PS_IPOIB) 4630 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4631 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4632 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4633 IB_SA_MCMEMBER_REC_MTU | 4634 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4635 4636 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4637 id_priv->id.port_num, &rec, comp_mask, 4638 GFP_KERNEL, cma_ib_mc_handler, mc); 4639 return PTR_ERR_OR_ZERO(mc->sa_mc); 4640 } 4641 4642 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4643 enum ib_gid_type gid_type) 4644 { 4645 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4646 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4647 4648 if (cma_any_addr(addr)) { 4649 memset(mgid, 0, sizeof *mgid); 4650 } else if (addr->sa_family == AF_INET6) { 4651 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4652 } else { 4653 mgid->raw[0] = 4654 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4655 mgid->raw[1] = 4656 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4657 mgid->raw[2] = 0; 4658 mgid->raw[3] = 0; 4659 mgid->raw[4] = 0; 4660 mgid->raw[5] = 0; 4661 mgid->raw[6] = 0; 4662 mgid->raw[7] = 0; 4663 mgid->raw[8] = 0; 4664 mgid->raw[9] = 0; 4665 mgid->raw[10] = 0xff; 4666 mgid->raw[11] = 0xff; 4667 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4668 } 4669 } 4670 4671 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4672 struct cma_multicast *mc) 4673 { 4674 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4675 int err = 0; 4676 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4677 struct net_device *ndev = NULL; 4678 struct ib_sa_multicast ib; 4679 enum ib_gid_type gid_type; 4680 bool send_only; 4681 4682 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4683 4684 if (cma_zero_addr(addr)) 4685 return -EINVAL; 4686 4687 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4688 rdma_start_port(id_priv->cma_dev->device)]; 4689 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4690 4691 ib.rec.pkey = cpu_to_be16(0xffff); 4692 if (id_priv->id.ps == RDMA_PS_UDP) 4693 ib.rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); 4694 4695 if (dev_addr->bound_dev_if) 4696 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4697 if (!ndev) 4698 return -ENODEV; 4699 4700 ib.rec.rate = iboe_get_rate(ndev); 4701 ib.rec.hop_limit = 1; 4702 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4703 4704 if (addr->sa_family == AF_INET) { 4705 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4706 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4707 if (!send_only) { 4708 err = cma_igmp_send(ndev, &ib.rec.mgid, 4709 true); 4710 } 4711 } 4712 } else { 4713 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 4714 err = -ENOTSUPP; 4715 } 4716 dev_put(ndev); 4717 if (err || !ib.rec.mtu) 4718 return err ?: -EINVAL; 4719 4720 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 4721 &ib.rec.port_gid); 4722 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 4723 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 4724 queue_work(cma_wq, &mc->iboe_join.work); 4725 return 0; 4726 } 4727 4728 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 4729 u8 join_state, void *context) 4730 { 4731 struct rdma_id_private *id_priv = 4732 container_of(id, struct rdma_id_private, id); 4733 struct cma_multicast *mc; 4734 int ret; 4735 4736 /* Not supported for kernel QPs */ 4737 if (WARN_ON(id->qp)) 4738 return -EINVAL; 4739 4740 /* ULP is calling this wrong. */ 4741 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 4742 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 4743 return -EINVAL; 4744 4745 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 4746 if (!mc) 4747 return -ENOMEM; 4748 4749 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 4750 mc->context = context; 4751 mc->id_priv = id_priv; 4752 mc->join_state = join_state; 4753 4754 if (rdma_protocol_roce(id->device, id->port_num)) { 4755 ret = cma_iboe_join_multicast(id_priv, mc); 4756 if (ret) 4757 goto out_err; 4758 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 4759 ret = cma_join_ib_multicast(id_priv, mc); 4760 if (ret) 4761 goto out_err; 4762 } else { 4763 ret = -ENOSYS; 4764 goto out_err; 4765 } 4766 4767 spin_lock(&id_priv->lock); 4768 list_add(&mc->list, &id_priv->mc_list); 4769 spin_unlock(&id_priv->lock); 4770 4771 return 0; 4772 out_err: 4773 kfree(mc); 4774 return ret; 4775 } 4776 EXPORT_SYMBOL(rdma_join_multicast); 4777 4778 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 4779 { 4780 struct rdma_id_private *id_priv; 4781 struct cma_multicast *mc; 4782 4783 id_priv = container_of(id, struct rdma_id_private, id); 4784 spin_lock_irq(&id_priv->lock); 4785 list_for_each_entry(mc, &id_priv->mc_list, list) { 4786 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 4787 continue; 4788 list_del(&mc->list); 4789 spin_unlock_irq(&id_priv->lock); 4790 4791 WARN_ON(id_priv->cma_dev->device != id->device); 4792 destroy_mc(id_priv, mc); 4793 return; 4794 } 4795 spin_unlock_irq(&id_priv->lock); 4796 } 4797 EXPORT_SYMBOL(rdma_leave_multicast); 4798 4799 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 4800 { 4801 struct rdma_dev_addr *dev_addr; 4802 struct cma_work *work; 4803 4804 dev_addr = &id_priv->id.route.addr.dev_addr; 4805 4806 if ((dev_addr->bound_dev_if == ndev->ifindex) && 4807 (net_eq(dev_net(ndev), dev_addr->net)) && 4808 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 4809 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 4810 ndev->name, &id_priv->id); 4811 work = kzalloc(sizeof *work, GFP_KERNEL); 4812 if (!work) 4813 return -ENOMEM; 4814 4815 INIT_WORK(&work->work, cma_work_handler); 4816 work->id = id_priv; 4817 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 4818 cma_id_get(id_priv); 4819 queue_work(cma_wq, &work->work); 4820 } 4821 4822 return 0; 4823 } 4824 4825 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 4826 void *ptr) 4827 { 4828 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 4829 struct cma_device *cma_dev; 4830 struct rdma_id_private *id_priv; 4831 int ret = NOTIFY_DONE; 4832 4833 if (event != NETDEV_BONDING_FAILOVER) 4834 return NOTIFY_DONE; 4835 4836 if (!netif_is_bond_master(ndev)) 4837 return NOTIFY_DONE; 4838 4839 mutex_lock(&lock); 4840 list_for_each_entry(cma_dev, &dev_list, list) 4841 list_for_each_entry(id_priv, &cma_dev->id_list, list) { 4842 ret = cma_netdev_change(ndev, id_priv); 4843 if (ret) 4844 goto out; 4845 } 4846 4847 out: 4848 mutex_unlock(&lock); 4849 return ret; 4850 } 4851 4852 static struct notifier_block cma_nb = { 4853 .notifier_call = cma_netdev_callback 4854 }; 4855 4856 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 4857 { 4858 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 4859 enum rdma_cm_state state; 4860 unsigned long flags; 4861 4862 mutex_lock(&id_priv->handler_mutex); 4863 /* Record that we want to remove the device */ 4864 spin_lock_irqsave(&id_priv->lock, flags); 4865 state = id_priv->state; 4866 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 4867 spin_unlock_irqrestore(&id_priv->lock, flags); 4868 mutex_unlock(&id_priv->handler_mutex); 4869 cma_id_put(id_priv); 4870 return; 4871 } 4872 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 4873 spin_unlock_irqrestore(&id_priv->lock, flags); 4874 4875 if (cma_cm_event_handler(id_priv, &event)) { 4876 /* 4877 * At this point the ULP promises it won't call 4878 * rdma_destroy_id() concurrently 4879 */ 4880 cma_id_put(id_priv); 4881 mutex_unlock(&id_priv->handler_mutex); 4882 trace_cm_id_destroy(id_priv); 4883 _destroy_id(id_priv, state); 4884 return; 4885 } 4886 mutex_unlock(&id_priv->handler_mutex); 4887 4888 /* 4889 * If this races with destroy then the thread that first assigns state 4890 * to a destroying does the cancel. 4891 */ 4892 cma_cancel_operation(id_priv, state); 4893 cma_id_put(id_priv); 4894 } 4895 4896 static void cma_process_remove(struct cma_device *cma_dev) 4897 { 4898 mutex_lock(&lock); 4899 while (!list_empty(&cma_dev->id_list)) { 4900 struct rdma_id_private *id_priv = list_first_entry( 4901 &cma_dev->id_list, struct rdma_id_private, list); 4902 4903 list_del(&id_priv->listen_list); 4904 list_del_init(&id_priv->list); 4905 cma_id_get(id_priv); 4906 mutex_unlock(&lock); 4907 4908 cma_send_device_removal_put(id_priv); 4909 4910 mutex_lock(&lock); 4911 } 4912 mutex_unlock(&lock); 4913 4914 cma_dev_put(cma_dev); 4915 wait_for_completion(&cma_dev->comp); 4916 } 4917 4918 static bool cma_supported(struct ib_device *device) 4919 { 4920 u32 i; 4921 4922 rdma_for_each_port(device, i) { 4923 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 4924 return true; 4925 } 4926 return false; 4927 } 4928 4929 static int cma_add_one(struct ib_device *device) 4930 { 4931 struct rdma_id_private *to_destroy; 4932 struct cma_device *cma_dev; 4933 struct rdma_id_private *id_priv; 4934 unsigned long supported_gids = 0; 4935 int ret; 4936 u32 i; 4937 4938 if (!cma_supported(device)) 4939 return -EOPNOTSUPP; 4940 4941 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 4942 if (!cma_dev) 4943 return -ENOMEM; 4944 4945 cma_dev->device = device; 4946 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 4947 sizeof(*cma_dev->default_gid_type), 4948 GFP_KERNEL); 4949 if (!cma_dev->default_gid_type) { 4950 ret = -ENOMEM; 4951 goto free_cma_dev; 4952 } 4953 4954 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 4955 sizeof(*cma_dev->default_roce_tos), 4956 GFP_KERNEL); 4957 if (!cma_dev->default_roce_tos) { 4958 ret = -ENOMEM; 4959 goto free_gid_type; 4960 } 4961 4962 rdma_for_each_port (device, i) { 4963 supported_gids = roce_gid_type_mask_support(device, i); 4964 WARN_ON(!supported_gids); 4965 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 4966 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4967 CMA_PREFERRED_ROCE_GID_TYPE; 4968 else 4969 cma_dev->default_gid_type[i - rdma_start_port(device)] = 4970 find_first_bit(&supported_gids, BITS_PER_LONG); 4971 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 4972 } 4973 4974 init_completion(&cma_dev->comp); 4975 refcount_set(&cma_dev->refcount, 1); 4976 INIT_LIST_HEAD(&cma_dev->id_list); 4977 ib_set_client_data(device, &cma_client, cma_dev); 4978 4979 mutex_lock(&lock); 4980 list_add_tail(&cma_dev->list, &dev_list); 4981 list_for_each_entry(id_priv, &listen_any_list, list) { 4982 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 4983 if (ret) 4984 goto free_listen; 4985 } 4986 mutex_unlock(&lock); 4987 4988 trace_cm_add_one(device); 4989 return 0; 4990 4991 free_listen: 4992 list_del(&cma_dev->list); 4993 mutex_unlock(&lock); 4994 4995 /* cma_process_remove() will delete to_destroy */ 4996 cma_process_remove(cma_dev); 4997 kfree(cma_dev->default_roce_tos); 4998 free_gid_type: 4999 kfree(cma_dev->default_gid_type); 5000 5001 free_cma_dev: 5002 kfree(cma_dev); 5003 return ret; 5004 } 5005 5006 static void cma_remove_one(struct ib_device *device, void *client_data) 5007 { 5008 struct cma_device *cma_dev = client_data; 5009 5010 trace_cm_remove_one(device); 5011 5012 mutex_lock(&lock); 5013 list_del(&cma_dev->list); 5014 mutex_unlock(&lock); 5015 5016 cma_process_remove(cma_dev); 5017 kfree(cma_dev->default_roce_tos); 5018 kfree(cma_dev->default_gid_type); 5019 kfree(cma_dev); 5020 } 5021 5022 static int cma_init_net(struct net *net) 5023 { 5024 struct cma_pernet *pernet = cma_pernet(net); 5025 5026 xa_init(&pernet->tcp_ps); 5027 xa_init(&pernet->udp_ps); 5028 xa_init(&pernet->ipoib_ps); 5029 xa_init(&pernet->ib_ps); 5030 5031 return 0; 5032 } 5033 5034 static void cma_exit_net(struct net *net) 5035 { 5036 struct cma_pernet *pernet = cma_pernet(net); 5037 5038 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5039 WARN_ON(!xa_empty(&pernet->udp_ps)); 5040 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5041 WARN_ON(!xa_empty(&pernet->ib_ps)); 5042 } 5043 5044 static struct pernet_operations cma_pernet_operations = { 5045 .init = cma_init_net, 5046 .exit = cma_exit_net, 5047 .id = &cma_pernet_id, 5048 .size = sizeof(struct cma_pernet), 5049 }; 5050 5051 static int __init cma_init(void) 5052 { 5053 int ret; 5054 5055 /* 5056 * There is a rare lock ordering dependency in cma_netdev_callback() 5057 * that only happens when bonding is enabled. Teach lockdep that rtnl 5058 * must never be nested under lock so it can find these without having 5059 * to test with bonding. 5060 */ 5061 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5062 rtnl_lock(); 5063 mutex_lock(&lock); 5064 mutex_unlock(&lock); 5065 rtnl_unlock(); 5066 } 5067 5068 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5069 if (!cma_wq) 5070 return -ENOMEM; 5071 5072 ret = register_pernet_subsys(&cma_pernet_operations); 5073 if (ret) 5074 goto err_wq; 5075 5076 ib_sa_register_client(&sa_client); 5077 register_netdevice_notifier(&cma_nb); 5078 5079 ret = ib_register_client(&cma_client); 5080 if (ret) 5081 goto err; 5082 5083 ret = cma_configfs_init(); 5084 if (ret) 5085 goto err_ib; 5086 5087 return 0; 5088 5089 err_ib: 5090 ib_unregister_client(&cma_client); 5091 err: 5092 unregister_netdevice_notifier(&cma_nb); 5093 ib_sa_unregister_client(&sa_client); 5094 unregister_pernet_subsys(&cma_pernet_operations); 5095 err_wq: 5096 destroy_workqueue(cma_wq); 5097 return ret; 5098 } 5099 5100 static void __exit cma_cleanup(void) 5101 { 5102 cma_configfs_exit(); 5103 ib_unregister_client(&cma_client); 5104 unregister_netdevice_notifier(&cma_nb); 5105 ib_sa_unregister_client(&sa_client); 5106 unregister_pernet_subsys(&cma_pernet_operations); 5107 destroy_workqueue(cma_wq); 5108 } 5109 5110 module_init(cma_init); 5111 module_exit(cma_cleanup); 5112