xref: /linux/drivers/infiniband/core/cma.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
2 /*
3  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
4  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
5  * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved.
6  * Copyright (c) 2005-2006 Intel Corporation.  All rights reserved.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/in.h>
11 #include <linux/in6.h>
12 #include <linux/mutex.h>
13 #include <linux/random.h>
14 #include <linux/rbtree.h>
15 #include <linux/igmp.h>
16 #include <linux/xarray.h>
17 #include <linux/inetdevice.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <net/route.h>
21 
22 #include <net/net_namespace.h>
23 #include <net/netns/generic.h>
24 #include <net/netevent.h>
25 #include <net/tcp.h>
26 #include <net/ipv6.h>
27 #include <net/ip_fib.h>
28 #include <net/ip6_route.h>
29 
30 #include <rdma/rdma_cm.h>
31 #include <rdma/rdma_cm_ib.h>
32 #include <rdma/rdma_netlink.h>
33 #include <rdma/ib.h>
34 #include <rdma/ib_cache.h>
35 #include <rdma/ib_cm.h>
36 #include <rdma/ib_sa.h>
37 #include <rdma/iw_cm.h>
38 
39 #include "core_priv.h"
40 #include "cma_priv.h"
41 #include "cma_trace.h"
42 
43 MODULE_AUTHOR("Sean Hefty");
44 MODULE_DESCRIPTION("Generic RDMA CM Agent");
45 MODULE_LICENSE("Dual BSD/GPL");
46 
47 #define CMA_CM_RESPONSE_TIMEOUT 20
48 #define CMA_MAX_CM_RETRIES 15
49 #define CMA_IBOE_PACKET_LIFETIME 16
50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP
51 
52 static const char * const cma_events[] = {
53 	[RDMA_CM_EVENT_ADDR_RESOLVED]	 = "address resolved",
54 	[RDMA_CM_EVENT_ADDR_ERROR]	 = "address error",
55 	[RDMA_CM_EVENT_ROUTE_RESOLVED]	 = "route resolved ",
56 	[RDMA_CM_EVENT_ROUTE_ERROR]	 = "route error",
57 	[RDMA_CM_EVENT_CONNECT_REQUEST]	 = "connect request",
58 	[RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response",
59 	[RDMA_CM_EVENT_CONNECT_ERROR]	 = "connect error",
60 	[RDMA_CM_EVENT_UNREACHABLE]	 = "unreachable",
61 	[RDMA_CM_EVENT_REJECTED]	 = "rejected",
62 	[RDMA_CM_EVENT_ESTABLISHED]	 = "established",
63 	[RDMA_CM_EVENT_DISCONNECTED]	 = "disconnected",
64 	[RDMA_CM_EVENT_DEVICE_REMOVAL]	 = "device removal",
65 	[RDMA_CM_EVENT_MULTICAST_JOIN]	 = "multicast join",
66 	[RDMA_CM_EVENT_MULTICAST_ERROR]	 = "multicast error",
67 	[RDMA_CM_EVENT_ADDR_CHANGE]	 = "address change",
68 	[RDMA_CM_EVENT_TIMEWAIT_EXIT]	 = "timewait exit",
69 };
70 
71 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
72 			      enum ib_gid_type gid_type);
73 
74 static void cma_netevent_work_handler(struct work_struct *_work);
75 
76 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event)
77 {
78 	size_t index = event;
79 
80 	return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ?
81 			cma_events[index] : "unrecognized event";
82 }
83 EXPORT_SYMBOL(rdma_event_msg);
84 
85 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id,
86 						int reason)
87 {
88 	if (rdma_ib_or_roce(id->device, id->port_num))
89 		return ibcm_reject_msg(reason);
90 
91 	if (rdma_protocol_iwarp(id->device, id->port_num))
92 		return iwcm_reject_msg(reason);
93 
94 	WARN_ON_ONCE(1);
95 	return "unrecognized transport";
96 }
97 EXPORT_SYMBOL(rdma_reject_msg);
98 
99 /**
100  * rdma_is_consumer_reject - return true if the consumer rejected the connect
101  *                           request.
102  * @id: Communication identifier that received the REJECT event.
103  * @reason: Value returned in the REJECT event status field.
104  */
105 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason)
106 {
107 	if (rdma_ib_or_roce(id->device, id->port_num))
108 		return reason == IB_CM_REJ_CONSUMER_DEFINED;
109 
110 	if (rdma_protocol_iwarp(id->device, id->port_num))
111 		return reason == -ECONNREFUSED;
112 
113 	WARN_ON_ONCE(1);
114 	return false;
115 }
116 
117 const void *rdma_consumer_reject_data(struct rdma_cm_id *id,
118 				      struct rdma_cm_event *ev, u8 *data_len)
119 {
120 	const void *p;
121 
122 	if (rdma_is_consumer_reject(id, ev->status)) {
123 		*data_len = ev->param.conn.private_data_len;
124 		p = ev->param.conn.private_data;
125 	} else {
126 		*data_len = 0;
127 		p = NULL;
128 	}
129 	return p;
130 }
131 EXPORT_SYMBOL(rdma_consumer_reject_data);
132 
133 /**
134  * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id.
135  * @id: Communication Identifier
136  */
137 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id)
138 {
139 	struct rdma_id_private *id_priv;
140 
141 	id_priv = container_of(id, struct rdma_id_private, id);
142 	if (id->device->node_type == RDMA_NODE_RNIC)
143 		return id_priv->cm_id.iw;
144 	return NULL;
145 }
146 EXPORT_SYMBOL(rdma_iw_cm_id);
147 
148 static int cma_add_one(struct ib_device *device);
149 static void cma_remove_one(struct ib_device *device, void *client_data);
150 
151 static struct ib_client cma_client = {
152 	.name   = "cma",
153 	.add    = cma_add_one,
154 	.remove = cma_remove_one
155 };
156 
157 static struct ib_sa_client sa_client;
158 static LIST_HEAD(dev_list);
159 static LIST_HEAD(listen_any_list);
160 static DEFINE_MUTEX(lock);
161 static struct rb_root id_table = RB_ROOT;
162 /* Serialize operations of id_table tree */
163 static DEFINE_SPINLOCK(id_table_lock);
164 static struct workqueue_struct *cma_wq;
165 static unsigned int cma_pernet_id;
166 
167 struct cma_pernet {
168 	struct xarray tcp_ps;
169 	struct xarray udp_ps;
170 	struct xarray ipoib_ps;
171 	struct xarray ib_ps;
172 };
173 
174 static struct cma_pernet *cma_pernet(struct net *net)
175 {
176 	return net_generic(net, cma_pernet_id);
177 }
178 
179 static
180 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps)
181 {
182 	struct cma_pernet *pernet = cma_pernet(net);
183 
184 	switch (ps) {
185 	case RDMA_PS_TCP:
186 		return &pernet->tcp_ps;
187 	case RDMA_PS_UDP:
188 		return &pernet->udp_ps;
189 	case RDMA_PS_IPOIB:
190 		return &pernet->ipoib_ps;
191 	case RDMA_PS_IB:
192 		return &pernet->ib_ps;
193 	default:
194 		return NULL;
195 	}
196 }
197 
198 struct id_table_entry {
199 	struct list_head id_list;
200 	struct rb_node rb_node;
201 };
202 
203 struct cma_device {
204 	struct list_head	list;
205 	struct ib_device	*device;
206 	struct completion	comp;
207 	refcount_t refcount;
208 	struct list_head	id_list;
209 	enum ib_gid_type	*default_gid_type;
210 	u8			*default_roce_tos;
211 };
212 
213 struct rdma_bind_list {
214 	enum rdma_ucm_port_space ps;
215 	struct hlist_head	owners;
216 	unsigned short		port;
217 };
218 
219 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps,
220 			struct rdma_bind_list *bind_list, int snum)
221 {
222 	struct xarray *xa = cma_pernet_xa(net, ps);
223 
224 	return xa_insert(xa, snum, bind_list, GFP_KERNEL);
225 }
226 
227 static struct rdma_bind_list *cma_ps_find(struct net *net,
228 					  enum rdma_ucm_port_space ps, int snum)
229 {
230 	struct xarray *xa = cma_pernet_xa(net, ps);
231 
232 	return xa_load(xa, snum);
233 }
234 
235 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps,
236 			  int snum)
237 {
238 	struct xarray *xa = cma_pernet_xa(net, ps);
239 
240 	xa_erase(xa, snum);
241 }
242 
243 enum {
244 	CMA_OPTION_AFONLY,
245 };
246 
247 void cma_dev_get(struct cma_device *cma_dev)
248 {
249 	refcount_inc(&cma_dev->refcount);
250 }
251 
252 void cma_dev_put(struct cma_device *cma_dev)
253 {
254 	if (refcount_dec_and_test(&cma_dev->refcount))
255 		complete(&cma_dev->comp);
256 }
257 
258 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter	filter,
259 					     void		*cookie)
260 {
261 	struct cma_device *cma_dev;
262 	struct cma_device *found_cma_dev = NULL;
263 
264 	mutex_lock(&lock);
265 
266 	list_for_each_entry(cma_dev, &dev_list, list)
267 		if (filter(cma_dev->device, cookie)) {
268 			found_cma_dev = cma_dev;
269 			break;
270 		}
271 
272 	if (found_cma_dev)
273 		cma_dev_get(found_cma_dev);
274 	mutex_unlock(&lock);
275 	return found_cma_dev;
276 }
277 
278 int cma_get_default_gid_type(struct cma_device *cma_dev,
279 			     u32 port)
280 {
281 	if (!rdma_is_port_valid(cma_dev->device, port))
282 		return -EINVAL;
283 
284 	return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)];
285 }
286 
287 int cma_set_default_gid_type(struct cma_device *cma_dev,
288 			     u32 port,
289 			     enum ib_gid_type default_gid_type)
290 {
291 	unsigned long supported_gids;
292 
293 	if (!rdma_is_port_valid(cma_dev->device, port))
294 		return -EINVAL;
295 
296 	if (default_gid_type == IB_GID_TYPE_IB &&
297 	    rdma_protocol_roce_eth_encap(cma_dev->device, port))
298 		default_gid_type = IB_GID_TYPE_ROCE;
299 
300 	supported_gids = roce_gid_type_mask_support(cma_dev->device, port);
301 
302 	if (!(supported_gids & 1 << default_gid_type))
303 		return -EINVAL;
304 
305 	cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] =
306 		default_gid_type;
307 
308 	return 0;
309 }
310 
311 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port)
312 {
313 	if (!rdma_is_port_valid(cma_dev->device, port))
314 		return -EINVAL;
315 
316 	return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)];
317 }
318 
319 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port,
320 			     u8 default_roce_tos)
321 {
322 	if (!rdma_is_port_valid(cma_dev->device, port))
323 		return -EINVAL;
324 
325 	cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] =
326 		 default_roce_tos;
327 
328 	return 0;
329 }
330 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev)
331 {
332 	return cma_dev->device;
333 }
334 
335 /*
336  * Device removal can occur at anytime, so we need extra handling to
337  * serialize notifying the user of device removal with other callbacks.
338  * We do this by disabling removal notification while a callback is in process,
339  * and reporting it after the callback completes.
340  */
341 
342 struct cma_multicast {
343 	struct rdma_id_private *id_priv;
344 	union {
345 		struct ib_sa_multicast *sa_mc;
346 		struct {
347 			struct work_struct work;
348 			struct rdma_cm_event event;
349 		} iboe_join;
350 	};
351 	struct list_head	list;
352 	void			*context;
353 	struct sockaddr_storage	addr;
354 	u8			join_state;
355 };
356 
357 struct cma_work {
358 	struct work_struct	work;
359 	struct rdma_id_private	*id;
360 	enum rdma_cm_state	old_state;
361 	enum rdma_cm_state	new_state;
362 	struct rdma_cm_event	event;
363 };
364 
365 union cma_ip_addr {
366 	struct in6_addr ip6;
367 	struct {
368 		__be32 pad[3];
369 		__be32 addr;
370 	} ip4;
371 };
372 
373 struct cma_hdr {
374 	u8 cma_version;
375 	u8 ip_version;	/* IP version: 7:4 */
376 	__be16 port;
377 	union cma_ip_addr src_addr;
378 	union cma_ip_addr dst_addr;
379 };
380 
381 #define CMA_VERSION 0x00
382 
383 struct cma_req_info {
384 	struct sockaddr_storage listen_addr_storage;
385 	struct sockaddr_storage src_addr_storage;
386 	struct ib_device *device;
387 	union ib_gid local_gid;
388 	__be64 service_id;
389 	int port;
390 	bool has_gid;
391 	u16 pkey;
392 };
393 
394 static int cma_comp_exch(struct rdma_id_private *id_priv,
395 			 enum rdma_cm_state comp, enum rdma_cm_state exch)
396 {
397 	unsigned long flags;
398 	int ret;
399 
400 	/*
401 	 * The FSM uses a funny double locking where state is protected by both
402 	 * the handler_mutex and the spinlock. State is not allowed to change
403 	 * to/from a handler_mutex protected value without also holding
404 	 * handler_mutex.
405 	 */
406 	if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT)
407 		lockdep_assert_held(&id_priv->handler_mutex);
408 
409 	spin_lock_irqsave(&id_priv->lock, flags);
410 	if ((ret = (id_priv->state == comp)))
411 		id_priv->state = exch;
412 	spin_unlock_irqrestore(&id_priv->lock, flags);
413 	return ret;
414 }
415 
416 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr)
417 {
418 	return hdr->ip_version >> 4;
419 }
420 
421 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver)
422 {
423 	hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF);
424 }
425 
426 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv)
427 {
428 	return (struct sockaddr *)&id_priv->id.route.addr.src_addr;
429 }
430 
431 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv)
432 {
433 	return (struct sockaddr *)&id_priv->id.route.addr.dst_addr;
434 }
435 
436 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join)
437 {
438 	struct in_device *in_dev = NULL;
439 
440 	if (ndev) {
441 		rtnl_lock();
442 		in_dev = __in_dev_get_rtnl(ndev);
443 		if (in_dev) {
444 			if (join)
445 				ip_mc_inc_group(in_dev,
446 						*(__be32 *)(mgid->raw + 12));
447 			else
448 				ip_mc_dec_group(in_dev,
449 						*(__be32 *)(mgid->raw + 12));
450 		}
451 		rtnl_unlock();
452 	}
453 	return (in_dev) ? 0 : -ENODEV;
454 }
455 
456 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa,
457 				 struct id_table_entry *entry_b)
458 {
459 	struct rdma_id_private *id_priv = list_first_entry(
460 		&entry_b->id_list, struct rdma_id_private, id_list_entry);
461 	int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if;
462 	struct sockaddr *sb = cma_dst_addr(id_priv);
463 
464 	if (ifindex_a != ifindex_b)
465 		return (ifindex_a > ifindex_b) ? 1 : -1;
466 
467 	if (sa->sa_family != sb->sa_family)
468 		return sa->sa_family - sb->sa_family;
469 
470 	if (sa->sa_family == AF_INET &&
471 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) {
472 		return memcmp(&((struct sockaddr_in *)sa)->sin_addr,
473 			      &((struct sockaddr_in *)sb)->sin_addr,
474 			      sizeof(((struct sockaddr_in *)sa)->sin_addr));
475 	}
476 
477 	if (sa->sa_family == AF_INET6 &&
478 	    __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) {
479 		return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr,
480 				     &((struct sockaddr_in6 *)sb)->sin6_addr);
481 	}
482 
483 	return -1;
484 }
485 
486 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv)
487 {
488 	struct rb_node **new, *parent = NULL;
489 	struct id_table_entry *this, *node;
490 	unsigned long flags;
491 	int result;
492 
493 	node = kzalloc(sizeof(*node), GFP_KERNEL);
494 	if (!node)
495 		return -ENOMEM;
496 
497 	spin_lock_irqsave(&id_table_lock, flags);
498 	new = &id_table.rb_node;
499 	while (*new) {
500 		this = container_of(*new, struct id_table_entry, rb_node);
501 		result = compare_netdev_and_ip(
502 			node_id_priv->id.route.addr.dev_addr.bound_dev_if,
503 			cma_dst_addr(node_id_priv), this);
504 
505 		parent = *new;
506 		if (result < 0)
507 			new = &((*new)->rb_left);
508 		else if (result > 0)
509 			new = &((*new)->rb_right);
510 		else {
511 			list_add_tail(&node_id_priv->id_list_entry,
512 				      &this->id_list);
513 			kfree(node);
514 			goto unlock;
515 		}
516 	}
517 
518 	INIT_LIST_HEAD(&node->id_list);
519 	list_add_tail(&node_id_priv->id_list_entry, &node->id_list);
520 
521 	rb_link_node(&node->rb_node, parent, new);
522 	rb_insert_color(&node->rb_node, &id_table);
523 
524 unlock:
525 	spin_unlock_irqrestore(&id_table_lock, flags);
526 	return 0;
527 }
528 
529 static struct id_table_entry *
530 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa)
531 {
532 	struct rb_node *node = root->rb_node;
533 	struct id_table_entry *data;
534 	int result;
535 
536 	while (node) {
537 		data = container_of(node, struct id_table_entry, rb_node);
538 		result = compare_netdev_and_ip(ifindex, sa, data);
539 		if (result < 0)
540 			node = node->rb_left;
541 		else if (result > 0)
542 			node = node->rb_right;
543 		else
544 			return data;
545 	}
546 
547 	return NULL;
548 }
549 
550 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv)
551 {
552 	struct id_table_entry *data;
553 	unsigned long flags;
554 
555 	spin_lock_irqsave(&id_table_lock, flags);
556 	if (list_empty(&id_priv->id_list_entry))
557 		goto out;
558 
559 	data = node_from_ndev_ip(&id_table,
560 				 id_priv->id.route.addr.dev_addr.bound_dev_if,
561 				 cma_dst_addr(id_priv));
562 	if (!data)
563 		goto out;
564 
565 	list_del_init(&id_priv->id_list_entry);
566 	if (list_empty(&data->id_list)) {
567 		rb_erase(&data->rb_node, &id_table);
568 		kfree(data);
569 	}
570 out:
571 	spin_unlock_irqrestore(&id_table_lock, flags);
572 }
573 
574 static void _cma_attach_to_dev(struct rdma_id_private *id_priv,
575 			       struct cma_device *cma_dev)
576 {
577 	cma_dev_get(cma_dev);
578 	id_priv->cma_dev = cma_dev;
579 	id_priv->id.device = cma_dev->device;
580 	id_priv->id.route.addr.dev_addr.transport =
581 		rdma_node_get_transport(cma_dev->device->node_type);
582 	list_add_tail(&id_priv->device_item, &cma_dev->id_list);
583 
584 	trace_cm_id_attach(id_priv, cma_dev->device);
585 }
586 
587 static void cma_attach_to_dev(struct rdma_id_private *id_priv,
588 			      struct cma_device *cma_dev)
589 {
590 	_cma_attach_to_dev(id_priv, cma_dev);
591 	id_priv->gid_type =
592 		cma_dev->default_gid_type[id_priv->id.port_num -
593 					  rdma_start_port(cma_dev->device)];
594 }
595 
596 static void cma_release_dev(struct rdma_id_private *id_priv)
597 {
598 	mutex_lock(&lock);
599 	list_del_init(&id_priv->device_item);
600 	cma_dev_put(id_priv->cma_dev);
601 	id_priv->cma_dev = NULL;
602 	id_priv->id.device = NULL;
603 	if (id_priv->id.route.addr.dev_addr.sgid_attr) {
604 		rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr);
605 		id_priv->id.route.addr.dev_addr.sgid_attr = NULL;
606 	}
607 	mutex_unlock(&lock);
608 }
609 
610 static inline unsigned short cma_family(struct rdma_id_private *id_priv)
611 {
612 	return id_priv->id.route.addr.src_addr.ss_family;
613 }
614 
615 static int cma_set_default_qkey(struct rdma_id_private *id_priv)
616 {
617 	struct ib_sa_mcmember_rec rec;
618 	int ret = 0;
619 
620 	switch (id_priv->id.ps) {
621 	case RDMA_PS_UDP:
622 	case RDMA_PS_IB:
623 		id_priv->qkey = RDMA_UDP_QKEY;
624 		break;
625 	case RDMA_PS_IPOIB:
626 		ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid);
627 		ret = ib_sa_get_mcmember_rec(id_priv->id.device,
628 					     id_priv->id.port_num, &rec.mgid,
629 					     &rec);
630 		if (!ret)
631 			id_priv->qkey = be32_to_cpu(rec.qkey);
632 		break;
633 	default:
634 		break;
635 	}
636 	return ret;
637 }
638 
639 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey)
640 {
641 	if (!qkey ||
642 	    (id_priv->qkey && (id_priv->qkey != qkey)))
643 		return -EINVAL;
644 
645 	id_priv->qkey = qkey;
646 	return 0;
647 }
648 
649 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr)
650 {
651 	dev_addr->dev_type = ARPHRD_INFINIBAND;
652 	rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr);
653 	ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey));
654 }
655 
656 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
657 {
658 	int ret;
659 
660 	if (addr->sa_family != AF_IB) {
661 		ret = rdma_translate_ip(addr, dev_addr);
662 	} else {
663 		cma_translate_ib((struct sockaddr_ib *) addr, dev_addr);
664 		ret = 0;
665 	}
666 
667 	return ret;
668 }
669 
670 static const struct ib_gid_attr *
671 cma_validate_port(struct ib_device *device, u32 port,
672 		  enum ib_gid_type gid_type,
673 		  union ib_gid *gid,
674 		  struct rdma_id_private *id_priv)
675 {
676 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
677 	const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV);
678 	int bound_if_index = dev_addr->bound_dev_if;
679 	int dev_type = dev_addr->dev_type;
680 	struct net_device *ndev = NULL;
681 	struct net_device *pdev = NULL;
682 
683 	if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net))
684 		goto out;
685 
686 	if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port))
687 		goto out;
688 
689 	if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port))
690 		goto out;
691 
692 	/*
693 	 * For drivers that do not associate more than one net device with
694 	 * their gid tables, such as iWARP drivers, it is sufficient to
695 	 * return the first table entry.
696 	 *
697 	 * Other driver classes might be included in the future.
698 	 */
699 	if (rdma_protocol_iwarp(device, port)) {
700 		sgid_attr = rdma_get_gid_attr(device, port, 0);
701 		if (IS_ERR(sgid_attr))
702 			goto out;
703 
704 		rcu_read_lock();
705 		ndev = rcu_dereference(sgid_attr->ndev);
706 		if (ndev->ifindex != bound_if_index) {
707 			pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index);
708 			if (pdev) {
709 				if (is_vlan_dev(pdev)) {
710 					pdev = vlan_dev_real_dev(pdev);
711 					if (ndev->ifindex == pdev->ifindex)
712 						bound_if_index = pdev->ifindex;
713 				}
714 				if (is_vlan_dev(ndev)) {
715 					pdev = vlan_dev_real_dev(ndev);
716 					if (bound_if_index == pdev->ifindex)
717 						bound_if_index = ndev->ifindex;
718 				}
719 			}
720 		}
721 		if (!net_eq(dev_net(ndev), dev_addr->net) ||
722 		    ndev->ifindex != bound_if_index) {
723 			rdma_put_gid_attr(sgid_attr);
724 			sgid_attr = ERR_PTR(-ENODEV);
725 		}
726 		rcu_read_unlock();
727 		goto out;
728 	}
729 
730 	/*
731 	 * For a RXE device, it should work with TUN device and normal ethernet
732 	 * devices. Use driver_id to check if a device is a RXE device or not.
733 	 * ARPHDR_NONE means a TUN device.
734 	 */
735 	if (device->ops.driver_id == RDMA_DRIVER_RXE) {
736 		if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER)
737 			&& rdma_protocol_roce(device, port)) {
738 			ndev = dev_get_by_index(dev_addr->net, bound_if_index);
739 			if (!ndev)
740 				goto out;
741 		}
742 	} else {
743 		if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) {
744 			ndev = dev_get_by_index(dev_addr->net, bound_if_index);
745 			if (!ndev)
746 				goto out;
747 		} else {
748 			gid_type = IB_GID_TYPE_IB;
749 		}
750 	}
751 
752 	sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev);
753 	dev_put(ndev);
754 out:
755 	return sgid_attr;
756 }
757 
758 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv,
759 			       const struct ib_gid_attr *sgid_attr)
760 {
761 	WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr);
762 	id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr;
763 }
764 
765 /**
766  * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute
767  * based on source ip address.
768  * @id_priv:	cm_id which should be bound to cma device
769  *
770  * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute
771  * based on source IP address. It returns 0 on success or error code otherwise.
772  * It is applicable to active and passive side cm_id.
773  */
774 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv)
775 {
776 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
777 	const struct ib_gid_attr *sgid_attr;
778 	union ib_gid gid, iboe_gid, *gidp;
779 	struct cma_device *cma_dev;
780 	enum ib_gid_type gid_type;
781 	int ret = -ENODEV;
782 	u32 port;
783 
784 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
785 	    id_priv->id.ps == RDMA_PS_IPOIB)
786 		return -EINVAL;
787 
788 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
789 		    &iboe_gid);
790 
791 	memcpy(&gid, dev_addr->src_dev_addr +
792 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
793 
794 	mutex_lock(&lock);
795 	list_for_each_entry(cma_dev, &dev_list, list) {
796 		rdma_for_each_port (cma_dev->device, port) {
797 			gidp = rdma_protocol_roce(cma_dev->device, port) ?
798 			       &iboe_gid : &gid;
799 			gid_type = cma_dev->default_gid_type[port - 1];
800 			sgid_attr = cma_validate_port(cma_dev->device, port,
801 						      gid_type, gidp, id_priv);
802 			if (!IS_ERR(sgid_attr)) {
803 				id_priv->id.port_num = port;
804 				cma_bind_sgid_attr(id_priv, sgid_attr);
805 				cma_attach_to_dev(id_priv, cma_dev);
806 				ret = 0;
807 				goto out;
808 			}
809 		}
810 	}
811 out:
812 	mutex_unlock(&lock);
813 	return ret;
814 }
815 
816 /**
817  * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute
818  * @id_priv:		cm id to bind to cma device
819  * @listen_id_priv:	listener cm id to match against
820  * @req:		Pointer to req structure containaining incoming
821  *			request information
822  * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when
823  * rdma device matches for listen_id and incoming request. It also verifies
824  * that a GID table entry is present for the source address.
825  * Returns 0 on success, or returns error code otherwise.
826  */
827 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv,
828 			      const struct rdma_id_private *listen_id_priv,
829 			      struct cma_req_info *req)
830 {
831 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
832 	const struct ib_gid_attr *sgid_attr;
833 	enum ib_gid_type gid_type;
834 	union ib_gid gid;
835 
836 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
837 	    id_priv->id.ps == RDMA_PS_IPOIB)
838 		return -EINVAL;
839 
840 	if (rdma_protocol_roce(req->device, req->port))
841 		rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
842 			    &gid);
843 	else
844 		memcpy(&gid, dev_addr->src_dev_addr +
845 		       rdma_addr_gid_offset(dev_addr), sizeof(gid));
846 
847 	gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1];
848 	sgid_attr = cma_validate_port(req->device, req->port,
849 				      gid_type, &gid, id_priv);
850 	if (IS_ERR(sgid_attr))
851 		return PTR_ERR(sgid_attr);
852 
853 	id_priv->id.port_num = req->port;
854 	cma_bind_sgid_attr(id_priv, sgid_attr);
855 	/* Need to acquire lock to protect against reader
856 	 * of cma_dev->id_list such as cma_netdev_callback() and
857 	 * cma_process_remove().
858 	 */
859 	mutex_lock(&lock);
860 	cma_attach_to_dev(id_priv, listen_id_priv->cma_dev);
861 	mutex_unlock(&lock);
862 	rdma_restrack_add(&id_priv->res);
863 	return 0;
864 }
865 
866 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv,
867 			      const struct rdma_id_private *listen_id_priv)
868 {
869 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
870 	const struct ib_gid_attr *sgid_attr;
871 	struct cma_device *cma_dev;
872 	enum ib_gid_type gid_type;
873 	int ret = -ENODEV;
874 	union ib_gid gid;
875 	u32 port;
876 
877 	if (dev_addr->dev_type != ARPHRD_INFINIBAND &&
878 	    id_priv->id.ps == RDMA_PS_IPOIB)
879 		return -EINVAL;
880 
881 	memcpy(&gid, dev_addr->src_dev_addr +
882 	       rdma_addr_gid_offset(dev_addr), sizeof(gid));
883 
884 	mutex_lock(&lock);
885 
886 	cma_dev = listen_id_priv->cma_dev;
887 	port = listen_id_priv->id.port_num;
888 	gid_type = listen_id_priv->gid_type;
889 	sgid_attr = cma_validate_port(cma_dev->device, port,
890 				      gid_type, &gid, id_priv);
891 	if (!IS_ERR(sgid_attr)) {
892 		id_priv->id.port_num = port;
893 		cma_bind_sgid_attr(id_priv, sgid_attr);
894 		ret = 0;
895 		goto out;
896 	}
897 
898 	list_for_each_entry(cma_dev, &dev_list, list) {
899 		rdma_for_each_port (cma_dev->device, port) {
900 			if (listen_id_priv->cma_dev == cma_dev &&
901 			    listen_id_priv->id.port_num == port)
902 				continue;
903 
904 			gid_type = cma_dev->default_gid_type[port - 1];
905 			sgid_attr = cma_validate_port(cma_dev->device, port,
906 						      gid_type, &gid, id_priv);
907 			if (!IS_ERR(sgid_attr)) {
908 				id_priv->id.port_num = port;
909 				cma_bind_sgid_attr(id_priv, sgid_attr);
910 				ret = 0;
911 				goto out;
912 			}
913 		}
914 	}
915 
916 out:
917 	if (!ret) {
918 		cma_attach_to_dev(id_priv, cma_dev);
919 		rdma_restrack_add(&id_priv->res);
920 	}
921 
922 	mutex_unlock(&lock);
923 	return ret;
924 }
925 
926 /*
927  * Select the source IB device and address to reach the destination IB address.
928  */
929 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv)
930 {
931 	struct cma_device *cma_dev, *cur_dev;
932 	struct sockaddr_ib *addr;
933 	union ib_gid gid, sgid, *dgid;
934 	unsigned int p;
935 	u16 pkey, index;
936 	enum ib_port_state port_state;
937 	int ret;
938 	int i;
939 
940 	cma_dev = NULL;
941 	addr = (struct sockaddr_ib *) cma_dst_addr(id_priv);
942 	dgid = (union ib_gid *) &addr->sib_addr;
943 	pkey = ntohs(addr->sib_pkey);
944 
945 	mutex_lock(&lock);
946 	list_for_each_entry(cur_dev, &dev_list, list) {
947 		rdma_for_each_port (cur_dev->device, p) {
948 			if (!rdma_cap_af_ib(cur_dev->device, p))
949 				continue;
950 
951 			if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index))
952 				continue;
953 
954 			if (ib_get_cached_port_state(cur_dev->device, p, &port_state))
955 				continue;
956 
957 			for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len;
958 			     ++i) {
959 				ret = rdma_query_gid(cur_dev->device, p, i,
960 						     &gid);
961 				if (ret)
962 					continue;
963 
964 				if (!memcmp(&gid, dgid, sizeof(gid))) {
965 					cma_dev = cur_dev;
966 					sgid = gid;
967 					id_priv->id.port_num = p;
968 					goto found;
969 				}
970 
971 				if (!cma_dev && (gid.global.subnet_prefix ==
972 				    dgid->global.subnet_prefix) &&
973 				    port_state == IB_PORT_ACTIVE) {
974 					cma_dev = cur_dev;
975 					sgid = gid;
976 					id_priv->id.port_num = p;
977 					goto found;
978 				}
979 			}
980 		}
981 	}
982 	mutex_unlock(&lock);
983 	return -ENODEV;
984 
985 found:
986 	cma_attach_to_dev(id_priv, cma_dev);
987 	rdma_restrack_add(&id_priv->res);
988 	mutex_unlock(&lock);
989 	addr = (struct sockaddr_ib *)cma_src_addr(id_priv);
990 	memcpy(&addr->sib_addr, &sgid, sizeof(sgid));
991 	cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr);
992 	return 0;
993 }
994 
995 static void cma_id_get(struct rdma_id_private *id_priv)
996 {
997 	refcount_inc(&id_priv->refcount);
998 }
999 
1000 static void cma_id_put(struct rdma_id_private *id_priv)
1001 {
1002 	if (refcount_dec_and_test(&id_priv->refcount))
1003 		complete(&id_priv->comp);
1004 }
1005 
1006 static struct rdma_id_private *
1007 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler,
1008 		 void *context, enum rdma_ucm_port_space ps,
1009 		 enum ib_qp_type qp_type, const struct rdma_id_private *parent)
1010 {
1011 	struct rdma_id_private *id_priv;
1012 
1013 	id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL);
1014 	if (!id_priv)
1015 		return ERR_PTR(-ENOMEM);
1016 
1017 	id_priv->state = RDMA_CM_IDLE;
1018 	id_priv->id.context = context;
1019 	id_priv->id.event_handler = event_handler;
1020 	id_priv->id.ps = ps;
1021 	id_priv->id.qp_type = qp_type;
1022 	id_priv->tos_set = false;
1023 	id_priv->timeout_set = false;
1024 	id_priv->min_rnr_timer_set = false;
1025 	id_priv->gid_type = IB_GID_TYPE_IB;
1026 	spin_lock_init(&id_priv->lock);
1027 	mutex_init(&id_priv->qp_mutex);
1028 	init_completion(&id_priv->comp);
1029 	refcount_set(&id_priv->refcount, 1);
1030 	mutex_init(&id_priv->handler_mutex);
1031 	INIT_LIST_HEAD(&id_priv->device_item);
1032 	INIT_LIST_HEAD(&id_priv->id_list_entry);
1033 	INIT_LIST_HEAD(&id_priv->listen_list);
1034 	INIT_LIST_HEAD(&id_priv->mc_list);
1035 	get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num);
1036 	id_priv->id.route.addr.dev_addr.net = get_net(net);
1037 	id_priv->seq_num &= 0x00ffffff;
1038 	INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler);
1039 
1040 	rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID);
1041 	if (parent)
1042 		rdma_restrack_parent_name(&id_priv->res, &parent->res);
1043 
1044 	return id_priv;
1045 }
1046 
1047 struct rdma_cm_id *
1048 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler,
1049 			void *context, enum rdma_ucm_port_space ps,
1050 			enum ib_qp_type qp_type, const char *caller)
1051 {
1052 	struct rdma_id_private *ret;
1053 
1054 	ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL);
1055 	if (IS_ERR(ret))
1056 		return ERR_CAST(ret);
1057 
1058 	rdma_restrack_set_name(&ret->res, caller);
1059 	return &ret->id;
1060 }
1061 EXPORT_SYMBOL(__rdma_create_kernel_id);
1062 
1063 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler,
1064 				       void *context,
1065 				       enum rdma_ucm_port_space ps,
1066 				       enum ib_qp_type qp_type)
1067 {
1068 	struct rdma_id_private *ret;
1069 
1070 	ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context,
1071 			       ps, qp_type, NULL);
1072 	if (IS_ERR(ret))
1073 		return ERR_CAST(ret);
1074 
1075 	rdma_restrack_set_name(&ret->res, NULL);
1076 	return &ret->id;
1077 }
1078 EXPORT_SYMBOL(rdma_create_user_id);
1079 
1080 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1081 {
1082 	struct ib_qp_attr qp_attr;
1083 	int qp_attr_mask, ret;
1084 
1085 	qp_attr.qp_state = IB_QPS_INIT;
1086 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1087 	if (ret)
1088 		return ret;
1089 
1090 	ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1091 	if (ret)
1092 		return ret;
1093 
1094 	qp_attr.qp_state = IB_QPS_RTR;
1095 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE);
1096 	if (ret)
1097 		return ret;
1098 
1099 	qp_attr.qp_state = IB_QPS_RTS;
1100 	qp_attr.sq_psn = 0;
1101 	ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN);
1102 
1103 	return ret;
1104 }
1105 
1106 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp)
1107 {
1108 	struct ib_qp_attr qp_attr;
1109 	int qp_attr_mask, ret;
1110 
1111 	qp_attr.qp_state = IB_QPS_INIT;
1112 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1113 	if (ret)
1114 		return ret;
1115 
1116 	return ib_modify_qp(qp, &qp_attr, qp_attr_mask);
1117 }
1118 
1119 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd,
1120 		   struct ib_qp_init_attr *qp_init_attr)
1121 {
1122 	struct rdma_id_private *id_priv;
1123 	struct ib_qp *qp;
1124 	int ret;
1125 
1126 	id_priv = container_of(id, struct rdma_id_private, id);
1127 	if (id->device != pd->device) {
1128 		ret = -EINVAL;
1129 		goto out_err;
1130 	}
1131 
1132 	qp_init_attr->port_num = id->port_num;
1133 	qp = ib_create_qp(pd, qp_init_attr);
1134 	if (IS_ERR(qp)) {
1135 		ret = PTR_ERR(qp);
1136 		goto out_err;
1137 	}
1138 
1139 	if (id->qp_type == IB_QPT_UD)
1140 		ret = cma_init_ud_qp(id_priv, qp);
1141 	else
1142 		ret = cma_init_conn_qp(id_priv, qp);
1143 	if (ret)
1144 		goto out_destroy;
1145 
1146 	id->qp = qp;
1147 	id_priv->qp_num = qp->qp_num;
1148 	id_priv->srq = (qp->srq != NULL);
1149 	trace_cm_qp_create(id_priv, pd, qp_init_attr, 0);
1150 	return 0;
1151 out_destroy:
1152 	ib_destroy_qp(qp);
1153 out_err:
1154 	trace_cm_qp_create(id_priv, pd, qp_init_attr, ret);
1155 	return ret;
1156 }
1157 EXPORT_SYMBOL(rdma_create_qp);
1158 
1159 void rdma_destroy_qp(struct rdma_cm_id *id)
1160 {
1161 	struct rdma_id_private *id_priv;
1162 
1163 	id_priv = container_of(id, struct rdma_id_private, id);
1164 	trace_cm_qp_destroy(id_priv);
1165 	mutex_lock(&id_priv->qp_mutex);
1166 	ib_destroy_qp(id_priv->id.qp);
1167 	id_priv->id.qp = NULL;
1168 	mutex_unlock(&id_priv->qp_mutex);
1169 }
1170 EXPORT_SYMBOL(rdma_destroy_qp);
1171 
1172 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv,
1173 			     struct rdma_conn_param *conn_param)
1174 {
1175 	struct ib_qp_attr qp_attr;
1176 	int qp_attr_mask, ret;
1177 
1178 	mutex_lock(&id_priv->qp_mutex);
1179 	if (!id_priv->id.qp) {
1180 		ret = 0;
1181 		goto out;
1182 	}
1183 
1184 	/* Need to update QP attributes from default values. */
1185 	qp_attr.qp_state = IB_QPS_INIT;
1186 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1187 	if (ret)
1188 		goto out;
1189 
1190 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1191 	if (ret)
1192 		goto out;
1193 
1194 	qp_attr.qp_state = IB_QPS_RTR;
1195 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1196 	if (ret)
1197 		goto out;
1198 
1199 	BUG_ON(id_priv->cma_dev->device != id_priv->id.device);
1200 
1201 	if (conn_param)
1202 		qp_attr.max_dest_rd_atomic = conn_param->responder_resources;
1203 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1204 out:
1205 	mutex_unlock(&id_priv->qp_mutex);
1206 	return ret;
1207 }
1208 
1209 static int cma_modify_qp_rts(struct rdma_id_private *id_priv,
1210 			     struct rdma_conn_param *conn_param)
1211 {
1212 	struct ib_qp_attr qp_attr;
1213 	int qp_attr_mask, ret;
1214 
1215 	mutex_lock(&id_priv->qp_mutex);
1216 	if (!id_priv->id.qp) {
1217 		ret = 0;
1218 		goto out;
1219 	}
1220 
1221 	qp_attr.qp_state = IB_QPS_RTS;
1222 	ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask);
1223 	if (ret)
1224 		goto out;
1225 
1226 	if (conn_param)
1227 		qp_attr.max_rd_atomic = conn_param->initiator_depth;
1228 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask);
1229 out:
1230 	mutex_unlock(&id_priv->qp_mutex);
1231 	return ret;
1232 }
1233 
1234 static int cma_modify_qp_err(struct rdma_id_private *id_priv)
1235 {
1236 	struct ib_qp_attr qp_attr;
1237 	int ret;
1238 
1239 	mutex_lock(&id_priv->qp_mutex);
1240 	if (!id_priv->id.qp) {
1241 		ret = 0;
1242 		goto out;
1243 	}
1244 
1245 	qp_attr.qp_state = IB_QPS_ERR;
1246 	ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE);
1247 out:
1248 	mutex_unlock(&id_priv->qp_mutex);
1249 	return ret;
1250 }
1251 
1252 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv,
1253 			       struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1254 {
1255 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
1256 	int ret;
1257 	u16 pkey;
1258 
1259 	if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num))
1260 		pkey = 0xffff;
1261 	else
1262 		pkey = ib_addr_get_pkey(dev_addr);
1263 
1264 	ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num,
1265 				  pkey, &qp_attr->pkey_index);
1266 	if (ret)
1267 		return ret;
1268 
1269 	qp_attr->port_num = id_priv->id.port_num;
1270 	*qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT;
1271 
1272 	if (id_priv->id.qp_type == IB_QPT_UD) {
1273 		ret = cma_set_default_qkey(id_priv);
1274 		if (ret)
1275 			return ret;
1276 
1277 		qp_attr->qkey = id_priv->qkey;
1278 		*qp_attr_mask |= IB_QP_QKEY;
1279 	} else {
1280 		qp_attr->qp_access_flags = 0;
1281 		*qp_attr_mask |= IB_QP_ACCESS_FLAGS;
1282 	}
1283 	return 0;
1284 }
1285 
1286 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr,
1287 		       int *qp_attr_mask)
1288 {
1289 	struct rdma_id_private *id_priv;
1290 	int ret = 0;
1291 
1292 	id_priv = container_of(id, struct rdma_id_private, id);
1293 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
1294 		if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD))
1295 			ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask);
1296 		else
1297 			ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr,
1298 						 qp_attr_mask);
1299 
1300 		if (qp_attr->qp_state == IB_QPS_RTR)
1301 			qp_attr->rq_psn = id_priv->seq_num;
1302 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
1303 		if (!id_priv->cm_id.iw) {
1304 			qp_attr->qp_access_flags = 0;
1305 			*qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS;
1306 		} else
1307 			ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr,
1308 						 qp_attr_mask);
1309 		qp_attr->port_num = id_priv->id.port_num;
1310 		*qp_attr_mask |= IB_QP_PORT;
1311 	} else {
1312 		ret = -ENOSYS;
1313 	}
1314 
1315 	if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set)
1316 		qp_attr->timeout = id_priv->timeout;
1317 
1318 	if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set)
1319 		qp_attr->min_rnr_timer = id_priv->min_rnr_timer;
1320 
1321 	return ret;
1322 }
1323 EXPORT_SYMBOL(rdma_init_qp_attr);
1324 
1325 static inline bool cma_zero_addr(const struct sockaddr *addr)
1326 {
1327 	switch (addr->sa_family) {
1328 	case AF_INET:
1329 		return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr);
1330 	case AF_INET6:
1331 		return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr);
1332 	case AF_IB:
1333 		return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr);
1334 	default:
1335 		return false;
1336 	}
1337 }
1338 
1339 static inline bool cma_loopback_addr(const struct sockaddr *addr)
1340 {
1341 	switch (addr->sa_family) {
1342 	case AF_INET:
1343 		return ipv4_is_loopback(
1344 			((struct sockaddr_in *)addr)->sin_addr.s_addr);
1345 	case AF_INET6:
1346 		return ipv6_addr_loopback(
1347 			&((struct sockaddr_in6 *)addr)->sin6_addr);
1348 	case AF_IB:
1349 		return ib_addr_loopback(
1350 			&((struct sockaddr_ib *)addr)->sib_addr);
1351 	default:
1352 		return false;
1353 	}
1354 }
1355 
1356 static inline bool cma_any_addr(const struct sockaddr *addr)
1357 {
1358 	return cma_zero_addr(addr) || cma_loopback_addr(addr);
1359 }
1360 
1361 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst)
1362 {
1363 	if (src->sa_family != dst->sa_family)
1364 		return -1;
1365 
1366 	switch (src->sa_family) {
1367 	case AF_INET:
1368 		return ((struct sockaddr_in *)src)->sin_addr.s_addr !=
1369 		       ((struct sockaddr_in *)dst)->sin_addr.s_addr;
1370 	case AF_INET6: {
1371 		struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src;
1372 		struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst;
1373 		bool link_local;
1374 
1375 		if (ipv6_addr_cmp(&src_addr6->sin6_addr,
1376 					  &dst_addr6->sin6_addr))
1377 			return 1;
1378 		link_local = ipv6_addr_type(&dst_addr6->sin6_addr) &
1379 			     IPV6_ADDR_LINKLOCAL;
1380 		/* Link local must match their scope_ids */
1381 		return link_local ? (src_addr6->sin6_scope_id !=
1382 				     dst_addr6->sin6_scope_id) :
1383 				    0;
1384 	}
1385 
1386 	default:
1387 		return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr,
1388 				   &((struct sockaddr_ib *) dst)->sib_addr);
1389 	}
1390 }
1391 
1392 static __be16 cma_port(const struct sockaddr *addr)
1393 {
1394 	struct sockaddr_ib *sib;
1395 
1396 	switch (addr->sa_family) {
1397 	case AF_INET:
1398 		return ((struct sockaddr_in *) addr)->sin_port;
1399 	case AF_INET6:
1400 		return ((struct sockaddr_in6 *) addr)->sin6_port;
1401 	case AF_IB:
1402 		sib = (struct sockaddr_ib *) addr;
1403 		return htons((u16) (be64_to_cpu(sib->sib_sid) &
1404 				    be64_to_cpu(sib->sib_sid_mask)));
1405 	default:
1406 		return 0;
1407 	}
1408 }
1409 
1410 static inline int cma_any_port(const struct sockaddr *addr)
1411 {
1412 	return !cma_port(addr);
1413 }
1414 
1415 static void cma_save_ib_info(struct sockaddr *src_addr,
1416 			     struct sockaddr *dst_addr,
1417 			     const struct rdma_cm_id *listen_id,
1418 			     const struct sa_path_rec *path)
1419 {
1420 	struct sockaddr_ib *listen_ib, *ib;
1421 
1422 	listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr;
1423 	if (src_addr) {
1424 		ib = (struct sockaddr_ib *)src_addr;
1425 		ib->sib_family = AF_IB;
1426 		if (path) {
1427 			ib->sib_pkey = path->pkey;
1428 			ib->sib_flowinfo = path->flow_label;
1429 			memcpy(&ib->sib_addr, &path->sgid, 16);
1430 			ib->sib_sid = path->service_id;
1431 			ib->sib_scope_id = 0;
1432 		} else {
1433 			ib->sib_pkey = listen_ib->sib_pkey;
1434 			ib->sib_flowinfo = listen_ib->sib_flowinfo;
1435 			ib->sib_addr = listen_ib->sib_addr;
1436 			ib->sib_sid = listen_ib->sib_sid;
1437 			ib->sib_scope_id = listen_ib->sib_scope_id;
1438 		}
1439 		ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL);
1440 	}
1441 	if (dst_addr) {
1442 		ib = (struct sockaddr_ib *)dst_addr;
1443 		ib->sib_family = AF_IB;
1444 		if (path) {
1445 			ib->sib_pkey = path->pkey;
1446 			ib->sib_flowinfo = path->flow_label;
1447 			memcpy(&ib->sib_addr, &path->dgid, 16);
1448 		}
1449 	}
1450 }
1451 
1452 static void cma_save_ip4_info(struct sockaddr_in *src_addr,
1453 			      struct sockaddr_in *dst_addr,
1454 			      struct cma_hdr *hdr,
1455 			      __be16 local_port)
1456 {
1457 	if (src_addr) {
1458 		*src_addr = (struct sockaddr_in) {
1459 			.sin_family = AF_INET,
1460 			.sin_addr.s_addr = hdr->dst_addr.ip4.addr,
1461 			.sin_port = local_port,
1462 		};
1463 	}
1464 
1465 	if (dst_addr) {
1466 		*dst_addr = (struct sockaddr_in) {
1467 			.sin_family = AF_INET,
1468 			.sin_addr.s_addr = hdr->src_addr.ip4.addr,
1469 			.sin_port = hdr->port,
1470 		};
1471 	}
1472 }
1473 
1474 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr,
1475 			      struct sockaddr_in6 *dst_addr,
1476 			      struct cma_hdr *hdr,
1477 			      __be16 local_port)
1478 {
1479 	if (src_addr) {
1480 		*src_addr = (struct sockaddr_in6) {
1481 			.sin6_family = AF_INET6,
1482 			.sin6_addr = hdr->dst_addr.ip6,
1483 			.sin6_port = local_port,
1484 		};
1485 	}
1486 
1487 	if (dst_addr) {
1488 		*dst_addr = (struct sockaddr_in6) {
1489 			.sin6_family = AF_INET6,
1490 			.sin6_addr = hdr->src_addr.ip6,
1491 			.sin6_port = hdr->port,
1492 		};
1493 	}
1494 }
1495 
1496 static u16 cma_port_from_service_id(__be64 service_id)
1497 {
1498 	return (u16)be64_to_cpu(service_id);
1499 }
1500 
1501 static int cma_save_ip_info(struct sockaddr *src_addr,
1502 			    struct sockaddr *dst_addr,
1503 			    const struct ib_cm_event *ib_event,
1504 			    __be64 service_id)
1505 {
1506 	struct cma_hdr *hdr;
1507 	__be16 port;
1508 
1509 	hdr = ib_event->private_data;
1510 	if (hdr->cma_version != CMA_VERSION)
1511 		return -EINVAL;
1512 
1513 	port = htons(cma_port_from_service_id(service_id));
1514 
1515 	switch (cma_get_ip_ver(hdr)) {
1516 	case 4:
1517 		cma_save_ip4_info((struct sockaddr_in *)src_addr,
1518 				  (struct sockaddr_in *)dst_addr, hdr, port);
1519 		break;
1520 	case 6:
1521 		cma_save_ip6_info((struct sockaddr_in6 *)src_addr,
1522 				  (struct sockaddr_in6 *)dst_addr, hdr, port);
1523 		break;
1524 	default:
1525 		return -EAFNOSUPPORT;
1526 	}
1527 
1528 	return 0;
1529 }
1530 
1531 static int cma_save_net_info(struct sockaddr *src_addr,
1532 			     struct sockaddr *dst_addr,
1533 			     const struct rdma_cm_id *listen_id,
1534 			     const struct ib_cm_event *ib_event,
1535 			     sa_family_t sa_family, __be64 service_id)
1536 {
1537 	if (sa_family == AF_IB) {
1538 		if (ib_event->event == IB_CM_REQ_RECEIVED)
1539 			cma_save_ib_info(src_addr, dst_addr, listen_id,
1540 					 ib_event->param.req_rcvd.primary_path);
1541 		else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1542 			cma_save_ib_info(src_addr, dst_addr, listen_id, NULL);
1543 		return 0;
1544 	}
1545 
1546 	return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id);
1547 }
1548 
1549 static int cma_save_req_info(const struct ib_cm_event *ib_event,
1550 			     struct cma_req_info *req)
1551 {
1552 	const struct ib_cm_req_event_param *req_param =
1553 		&ib_event->param.req_rcvd;
1554 	const struct ib_cm_sidr_req_event_param *sidr_param =
1555 		&ib_event->param.sidr_req_rcvd;
1556 
1557 	switch (ib_event->event) {
1558 	case IB_CM_REQ_RECEIVED:
1559 		req->device	= req_param->listen_id->device;
1560 		req->port	= req_param->port;
1561 		memcpy(&req->local_gid, &req_param->primary_path->sgid,
1562 		       sizeof(req->local_gid));
1563 		req->has_gid	= true;
1564 		req->service_id = req_param->primary_path->service_id;
1565 		req->pkey	= be16_to_cpu(req_param->primary_path->pkey);
1566 		if (req->pkey != req_param->bth_pkey)
1567 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n"
1568 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1569 					    req_param->bth_pkey, req->pkey);
1570 		break;
1571 	case IB_CM_SIDR_REQ_RECEIVED:
1572 		req->device	= sidr_param->listen_id->device;
1573 		req->port	= sidr_param->port;
1574 		req->has_gid	= false;
1575 		req->service_id	= sidr_param->service_id;
1576 		req->pkey	= sidr_param->pkey;
1577 		if (req->pkey != sidr_param->bth_pkey)
1578 			pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n"
1579 					    "RDMA CMA: in the future this may cause the request to be dropped\n",
1580 					    sidr_param->bth_pkey, req->pkey);
1581 		break;
1582 	default:
1583 		return -EINVAL;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static bool validate_ipv4_net_dev(struct net_device *net_dev,
1590 				  const struct sockaddr_in *dst_addr,
1591 				  const struct sockaddr_in *src_addr)
1592 {
1593 	__be32 daddr = dst_addr->sin_addr.s_addr,
1594 	       saddr = src_addr->sin_addr.s_addr;
1595 	struct fib_result res;
1596 	struct flowi4 fl4;
1597 	int err;
1598 	bool ret;
1599 
1600 	if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) ||
1601 	    ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) ||
1602 	    ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) ||
1603 	    ipv4_is_loopback(saddr))
1604 		return false;
1605 
1606 	memset(&fl4, 0, sizeof(fl4));
1607 	fl4.flowi4_oif = net_dev->ifindex;
1608 	fl4.daddr = daddr;
1609 	fl4.saddr = saddr;
1610 
1611 	rcu_read_lock();
1612 	err = fib_lookup(dev_net(net_dev), &fl4, &res, 0);
1613 	ret = err == 0 && FIB_RES_DEV(res) == net_dev;
1614 	rcu_read_unlock();
1615 
1616 	return ret;
1617 }
1618 
1619 static bool validate_ipv6_net_dev(struct net_device *net_dev,
1620 				  const struct sockaddr_in6 *dst_addr,
1621 				  const struct sockaddr_in6 *src_addr)
1622 {
1623 #if IS_ENABLED(CONFIG_IPV6)
1624 	const int strict = ipv6_addr_type(&dst_addr->sin6_addr) &
1625 			   IPV6_ADDR_LINKLOCAL;
1626 	struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr,
1627 					 &src_addr->sin6_addr, net_dev->ifindex,
1628 					 NULL, strict);
1629 	bool ret;
1630 
1631 	if (!rt)
1632 		return false;
1633 
1634 	ret = rt->rt6i_idev->dev == net_dev;
1635 	ip6_rt_put(rt);
1636 
1637 	return ret;
1638 #else
1639 	return false;
1640 #endif
1641 }
1642 
1643 static bool validate_net_dev(struct net_device *net_dev,
1644 			     const struct sockaddr *daddr,
1645 			     const struct sockaddr *saddr)
1646 {
1647 	const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr;
1648 	const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr;
1649 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1650 	const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr;
1651 
1652 	switch (daddr->sa_family) {
1653 	case AF_INET:
1654 		return saddr->sa_family == AF_INET &&
1655 		       validate_ipv4_net_dev(net_dev, daddr4, saddr4);
1656 
1657 	case AF_INET6:
1658 		return saddr->sa_family == AF_INET6 &&
1659 		       validate_ipv6_net_dev(net_dev, daddr6, saddr6);
1660 
1661 	default:
1662 		return false;
1663 	}
1664 }
1665 
1666 static struct net_device *
1667 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event)
1668 {
1669 	const struct ib_gid_attr *sgid_attr = NULL;
1670 	struct net_device *ndev;
1671 
1672 	if (ib_event->event == IB_CM_REQ_RECEIVED)
1673 		sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr;
1674 	else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED)
1675 		sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr;
1676 
1677 	if (!sgid_attr)
1678 		return NULL;
1679 
1680 	rcu_read_lock();
1681 	ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr);
1682 	if (IS_ERR(ndev))
1683 		ndev = NULL;
1684 	else
1685 		dev_hold(ndev);
1686 	rcu_read_unlock();
1687 	return ndev;
1688 }
1689 
1690 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event,
1691 					  struct cma_req_info *req)
1692 {
1693 	struct sockaddr *listen_addr =
1694 			(struct sockaddr *)&req->listen_addr_storage;
1695 	struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage;
1696 	struct net_device *net_dev;
1697 	const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL;
1698 	int err;
1699 
1700 	err = cma_save_ip_info(listen_addr, src_addr, ib_event,
1701 			       req->service_id);
1702 	if (err)
1703 		return ERR_PTR(err);
1704 
1705 	if (rdma_protocol_roce(req->device, req->port))
1706 		net_dev = roce_get_net_dev_by_cm_event(ib_event);
1707 	else
1708 		net_dev = ib_get_net_dev_by_params(req->device, req->port,
1709 						   req->pkey,
1710 						   gid, listen_addr);
1711 	if (!net_dev)
1712 		return ERR_PTR(-ENODEV);
1713 
1714 	return net_dev;
1715 }
1716 
1717 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id)
1718 {
1719 	return (be64_to_cpu(service_id) >> 16) & 0xffff;
1720 }
1721 
1722 static bool cma_match_private_data(struct rdma_id_private *id_priv,
1723 				   const struct cma_hdr *hdr)
1724 {
1725 	struct sockaddr *addr = cma_src_addr(id_priv);
1726 	__be32 ip4_addr;
1727 	struct in6_addr ip6_addr;
1728 
1729 	if (cma_any_addr(addr) && !id_priv->afonly)
1730 		return true;
1731 
1732 	switch (addr->sa_family) {
1733 	case AF_INET:
1734 		ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr;
1735 		if (cma_get_ip_ver(hdr) != 4)
1736 			return false;
1737 		if (!cma_any_addr(addr) &&
1738 		    hdr->dst_addr.ip4.addr != ip4_addr)
1739 			return false;
1740 		break;
1741 	case AF_INET6:
1742 		ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr;
1743 		if (cma_get_ip_ver(hdr) != 6)
1744 			return false;
1745 		if (!cma_any_addr(addr) &&
1746 		    memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr)))
1747 			return false;
1748 		break;
1749 	case AF_IB:
1750 		return true;
1751 	default:
1752 		return false;
1753 	}
1754 
1755 	return true;
1756 }
1757 
1758 static bool cma_protocol_roce(const struct rdma_cm_id *id)
1759 {
1760 	struct ib_device *device = id->device;
1761 	const u32 port_num = id->port_num ?: rdma_start_port(device);
1762 
1763 	return rdma_protocol_roce(device, port_num);
1764 }
1765 
1766 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req)
1767 {
1768 	const struct sockaddr *daddr =
1769 			(const struct sockaddr *)&req->listen_addr_storage;
1770 	const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr;
1771 
1772 	/* Returns true if the req is for IPv6 link local */
1773 	return (daddr->sa_family == AF_INET6 &&
1774 		(ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL));
1775 }
1776 
1777 static bool cma_match_net_dev(const struct rdma_cm_id *id,
1778 			      const struct net_device *net_dev,
1779 			      const struct cma_req_info *req)
1780 {
1781 	const struct rdma_addr *addr = &id->route.addr;
1782 
1783 	if (!net_dev)
1784 		/* This request is an AF_IB request */
1785 		return (!id->port_num || id->port_num == req->port) &&
1786 		       (addr->src_addr.ss_family == AF_IB);
1787 
1788 	/*
1789 	 * If the request is not for IPv6 link local, allow matching
1790 	 * request to any netdevice of the one or multiport rdma device.
1791 	 */
1792 	if (!cma_is_req_ipv6_ll(req))
1793 		return true;
1794 	/*
1795 	 * Net namespaces must match, and if the listner is listening
1796 	 * on a specific netdevice than netdevice must match as well.
1797 	 */
1798 	if (net_eq(dev_net(net_dev), addr->dev_addr.net) &&
1799 	    (!!addr->dev_addr.bound_dev_if ==
1800 	     (addr->dev_addr.bound_dev_if == net_dev->ifindex)))
1801 		return true;
1802 	else
1803 		return false;
1804 }
1805 
1806 static struct rdma_id_private *cma_find_listener(
1807 		const struct rdma_bind_list *bind_list,
1808 		const struct ib_cm_id *cm_id,
1809 		const struct ib_cm_event *ib_event,
1810 		const struct cma_req_info *req,
1811 		const struct net_device *net_dev)
1812 {
1813 	struct rdma_id_private *id_priv, *id_priv_dev;
1814 
1815 	lockdep_assert_held(&lock);
1816 
1817 	if (!bind_list)
1818 		return ERR_PTR(-EINVAL);
1819 
1820 	hlist_for_each_entry(id_priv, &bind_list->owners, node) {
1821 		if (cma_match_private_data(id_priv, ib_event->private_data)) {
1822 			if (id_priv->id.device == cm_id->device &&
1823 			    cma_match_net_dev(&id_priv->id, net_dev, req))
1824 				return id_priv;
1825 			list_for_each_entry(id_priv_dev,
1826 					    &id_priv->listen_list,
1827 					    listen_item) {
1828 				if (id_priv_dev->id.device == cm_id->device &&
1829 				    cma_match_net_dev(&id_priv_dev->id,
1830 						      net_dev, req))
1831 					return id_priv_dev;
1832 			}
1833 		}
1834 	}
1835 
1836 	return ERR_PTR(-EINVAL);
1837 }
1838 
1839 static struct rdma_id_private *
1840 cma_ib_id_from_event(struct ib_cm_id *cm_id,
1841 		     const struct ib_cm_event *ib_event,
1842 		     struct cma_req_info *req,
1843 		     struct net_device **net_dev)
1844 {
1845 	struct rdma_bind_list *bind_list;
1846 	struct rdma_id_private *id_priv;
1847 	int err;
1848 
1849 	err = cma_save_req_info(ib_event, req);
1850 	if (err)
1851 		return ERR_PTR(err);
1852 
1853 	*net_dev = cma_get_net_dev(ib_event, req);
1854 	if (IS_ERR(*net_dev)) {
1855 		if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) {
1856 			/* Assuming the protocol is AF_IB */
1857 			*net_dev = NULL;
1858 		} else {
1859 			return ERR_CAST(*net_dev);
1860 		}
1861 	}
1862 
1863 	mutex_lock(&lock);
1864 	/*
1865 	 * Net namespace might be getting deleted while route lookup,
1866 	 * cm_id lookup is in progress. Therefore, perform netdevice
1867 	 * validation, cm_id lookup under rcu lock.
1868 	 * RCU lock along with netdevice state check, synchronizes with
1869 	 * netdevice migrating to different net namespace and also avoids
1870 	 * case where net namespace doesn't get deleted while lookup is in
1871 	 * progress.
1872 	 * If the device state is not IFF_UP, its properties such as ifindex
1873 	 * and nd_net cannot be trusted to remain valid without rcu lock.
1874 	 * net/core/dev.c change_net_namespace() ensures to synchronize with
1875 	 * ongoing operations on net device after device is closed using
1876 	 * synchronize_net().
1877 	 */
1878 	rcu_read_lock();
1879 	if (*net_dev) {
1880 		/*
1881 		 * If netdevice is down, it is likely that it is administratively
1882 		 * down or it might be migrating to different namespace.
1883 		 * In that case avoid further processing, as the net namespace
1884 		 * or ifindex may change.
1885 		 */
1886 		if (((*net_dev)->flags & IFF_UP) == 0) {
1887 			id_priv = ERR_PTR(-EHOSTUNREACH);
1888 			goto err;
1889 		}
1890 
1891 		if (!validate_net_dev(*net_dev,
1892 				 (struct sockaddr *)&req->src_addr_storage,
1893 				 (struct sockaddr *)&req->listen_addr_storage)) {
1894 			id_priv = ERR_PTR(-EHOSTUNREACH);
1895 			goto err;
1896 		}
1897 	}
1898 
1899 	bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net,
1900 				rdma_ps_from_service_id(req->service_id),
1901 				cma_port_from_service_id(req->service_id));
1902 	id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev);
1903 err:
1904 	rcu_read_unlock();
1905 	mutex_unlock(&lock);
1906 	if (IS_ERR(id_priv) && *net_dev) {
1907 		dev_put(*net_dev);
1908 		*net_dev = NULL;
1909 	}
1910 	return id_priv;
1911 }
1912 
1913 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv)
1914 {
1915 	return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr);
1916 }
1917 
1918 static void cma_cancel_route(struct rdma_id_private *id_priv)
1919 {
1920 	if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) {
1921 		if (id_priv->query)
1922 			ib_sa_cancel_query(id_priv->query_id, id_priv->query);
1923 	}
1924 }
1925 
1926 static void _cma_cancel_listens(struct rdma_id_private *id_priv)
1927 {
1928 	struct rdma_id_private *dev_id_priv;
1929 
1930 	lockdep_assert_held(&lock);
1931 
1932 	/*
1933 	 * Remove from listen_any_list to prevent added devices from spawning
1934 	 * additional listen requests.
1935 	 */
1936 	list_del_init(&id_priv->listen_any_item);
1937 
1938 	while (!list_empty(&id_priv->listen_list)) {
1939 		dev_id_priv =
1940 			list_first_entry(&id_priv->listen_list,
1941 					 struct rdma_id_private, listen_item);
1942 		/* sync with device removal to avoid duplicate destruction */
1943 		list_del_init(&dev_id_priv->device_item);
1944 		list_del_init(&dev_id_priv->listen_item);
1945 		mutex_unlock(&lock);
1946 
1947 		rdma_destroy_id(&dev_id_priv->id);
1948 		mutex_lock(&lock);
1949 	}
1950 }
1951 
1952 static void cma_cancel_listens(struct rdma_id_private *id_priv)
1953 {
1954 	mutex_lock(&lock);
1955 	_cma_cancel_listens(id_priv);
1956 	mutex_unlock(&lock);
1957 }
1958 
1959 static void cma_cancel_operation(struct rdma_id_private *id_priv,
1960 				 enum rdma_cm_state state)
1961 {
1962 	switch (state) {
1963 	case RDMA_CM_ADDR_QUERY:
1964 		/*
1965 		 * We can avoid doing the rdma_addr_cancel() based on state,
1966 		 * only RDMA_CM_ADDR_QUERY has a work that could still execute.
1967 		 * Notice that the addr_handler work could still be exiting
1968 		 * outside this state, however due to the interaction with the
1969 		 * handler_mutex the work is guaranteed not to touch id_priv
1970 		 * during exit.
1971 		 */
1972 		rdma_addr_cancel(&id_priv->id.route.addr.dev_addr);
1973 		break;
1974 	case RDMA_CM_ROUTE_QUERY:
1975 		cma_cancel_route(id_priv);
1976 		break;
1977 	case RDMA_CM_LISTEN:
1978 		if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev)
1979 			cma_cancel_listens(id_priv);
1980 		break;
1981 	default:
1982 		break;
1983 	}
1984 }
1985 
1986 static void cma_release_port(struct rdma_id_private *id_priv)
1987 {
1988 	struct rdma_bind_list *bind_list = id_priv->bind_list;
1989 	struct net *net = id_priv->id.route.addr.dev_addr.net;
1990 
1991 	if (!bind_list)
1992 		return;
1993 
1994 	mutex_lock(&lock);
1995 	hlist_del(&id_priv->node);
1996 	if (hlist_empty(&bind_list->owners)) {
1997 		cma_ps_remove(net, bind_list->ps, bind_list->port);
1998 		kfree(bind_list);
1999 	}
2000 	mutex_unlock(&lock);
2001 }
2002 
2003 static void destroy_mc(struct rdma_id_private *id_priv,
2004 		       struct cma_multicast *mc)
2005 {
2006 	bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
2007 
2008 	if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num))
2009 		ib_sa_free_multicast(mc->sa_mc);
2010 
2011 	if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) {
2012 		struct rdma_dev_addr *dev_addr =
2013 			&id_priv->id.route.addr.dev_addr;
2014 		struct net_device *ndev = NULL;
2015 
2016 		if (dev_addr->bound_dev_if)
2017 			ndev = dev_get_by_index(dev_addr->net,
2018 						dev_addr->bound_dev_if);
2019 		if (ndev && !send_only) {
2020 			enum ib_gid_type gid_type;
2021 			union ib_gid mgid;
2022 
2023 			gid_type = id_priv->cma_dev->default_gid_type
2024 					   [id_priv->id.port_num -
2025 					    rdma_start_port(
2026 						    id_priv->cma_dev->device)];
2027 			cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid,
2028 					  gid_type);
2029 			cma_igmp_send(ndev, &mgid, false);
2030 		}
2031 		dev_put(ndev);
2032 
2033 		cancel_work_sync(&mc->iboe_join.work);
2034 	}
2035 	kfree(mc);
2036 }
2037 
2038 static void cma_leave_mc_groups(struct rdma_id_private *id_priv)
2039 {
2040 	struct cma_multicast *mc;
2041 
2042 	while (!list_empty(&id_priv->mc_list)) {
2043 		mc = list_first_entry(&id_priv->mc_list, struct cma_multicast,
2044 				      list);
2045 		list_del(&mc->list);
2046 		destroy_mc(id_priv, mc);
2047 	}
2048 }
2049 
2050 static void _destroy_id(struct rdma_id_private *id_priv,
2051 			enum rdma_cm_state state)
2052 {
2053 	cma_cancel_operation(id_priv, state);
2054 
2055 	rdma_restrack_del(&id_priv->res);
2056 	cma_remove_id_from_tree(id_priv);
2057 	if (id_priv->cma_dev) {
2058 		if (rdma_cap_ib_cm(id_priv->id.device, 1)) {
2059 			if (id_priv->cm_id.ib)
2060 				ib_destroy_cm_id(id_priv->cm_id.ib);
2061 		} else if (rdma_cap_iw_cm(id_priv->id.device, 1)) {
2062 			if (id_priv->cm_id.iw)
2063 				iw_destroy_cm_id(id_priv->cm_id.iw);
2064 		}
2065 		cma_leave_mc_groups(id_priv);
2066 		cma_release_dev(id_priv);
2067 	}
2068 
2069 	cma_release_port(id_priv);
2070 	cma_id_put(id_priv);
2071 	wait_for_completion(&id_priv->comp);
2072 
2073 	if (id_priv->internal_id)
2074 		cma_id_put(id_priv->id.context);
2075 
2076 	kfree(id_priv->id.route.path_rec);
2077 	kfree(id_priv->id.route.path_rec_inbound);
2078 	kfree(id_priv->id.route.path_rec_outbound);
2079 	kfree(id_priv->id.route.service_recs);
2080 
2081 	put_net(id_priv->id.route.addr.dev_addr.net);
2082 	kfree(id_priv);
2083 }
2084 
2085 /*
2086  * destroy an ID from within the handler_mutex. This ensures that no other
2087  * handlers can start running concurrently.
2088  */
2089 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv)
2090 	__releases(&idprv->handler_mutex)
2091 {
2092 	enum rdma_cm_state state;
2093 	unsigned long flags;
2094 
2095 	trace_cm_id_destroy(id_priv);
2096 
2097 	/*
2098 	 * Setting the state to destroyed under the handler mutex provides a
2099 	 * fence against calling handler callbacks. If this is invoked due to
2100 	 * the failure of a handler callback then it guarentees that no future
2101 	 * handlers will be called.
2102 	 */
2103 	lockdep_assert_held(&id_priv->handler_mutex);
2104 	spin_lock_irqsave(&id_priv->lock, flags);
2105 	state = id_priv->state;
2106 	id_priv->state = RDMA_CM_DESTROYING;
2107 	spin_unlock_irqrestore(&id_priv->lock, flags);
2108 	mutex_unlock(&id_priv->handler_mutex);
2109 	_destroy_id(id_priv, state);
2110 }
2111 
2112 void rdma_destroy_id(struct rdma_cm_id *id)
2113 {
2114 	struct rdma_id_private *id_priv =
2115 		container_of(id, struct rdma_id_private, id);
2116 
2117 	mutex_lock(&id_priv->handler_mutex);
2118 	destroy_id_handler_unlock(id_priv);
2119 }
2120 EXPORT_SYMBOL(rdma_destroy_id);
2121 
2122 static int cma_rep_recv(struct rdma_id_private *id_priv)
2123 {
2124 	int ret;
2125 
2126 	ret = cma_modify_qp_rtr(id_priv, NULL);
2127 	if (ret)
2128 		goto reject;
2129 
2130 	ret = cma_modify_qp_rts(id_priv, NULL);
2131 	if (ret)
2132 		goto reject;
2133 
2134 	trace_cm_send_rtu(id_priv);
2135 	ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0);
2136 	if (ret)
2137 		goto reject;
2138 
2139 	return 0;
2140 reject:
2141 	pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret);
2142 	cma_modify_qp_err(id_priv);
2143 	trace_cm_send_rej(id_priv);
2144 	ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED,
2145 		       NULL, 0, NULL, 0);
2146 	return ret;
2147 }
2148 
2149 static void cma_set_rep_event_data(struct rdma_cm_event *event,
2150 				   const struct ib_cm_rep_event_param *rep_data,
2151 				   void *private_data)
2152 {
2153 	event->param.conn.private_data = private_data;
2154 	event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE;
2155 	event->param.conn.responder_resources = rep_data->responder_resources;
2156 	event->param.conn.initiator_depth = rep_data->initiator_depth;
2157 	event->param.conn.flow_control = rep_data->flow_control;
2158 	event->param.conn.rnr_retry_count = rep_data->rnr_retry_count;
2159 	event->param.conn.srq = rep_data->srq;
2160 	event->param.conn.qp_num = rep_data->remote_qpn;
2161 
2162 	event->ece.vendor_id = rep_data->ece.vendor_id;
2163 	event->ece.attr_mod = rep_data->ece.attr_mod;
2164 }
2165 
2166 static int cma_cm_event_handler(struct rdma_id_private *id_priv,
2167 				struct rdma_cm_event *event)
2168 {
2169 	int ret;
2170 
2171 	lockdep_assert_held(&id_priv->handler_mutex);
2172 
2173 	trace_cm_event_handler(id_priv, event);
2174 	ret = id_priv->id.event_handler(&id_priv->id, event);
2175 	trace_cm_event_done(id_priv, event, ret);
2176 	return ret;
2177 }
2178 
2179 static int cma_ib_handler(struct ib_cm_id *cm_id,
2180 			  const struct ib_cm_event *ib_event)
2181 {
2182 	struct rdma_id_private *id_priv = cm_id->context;
2183 	struct rdma_cm_event event = {};
2184 	enum rdma_cm_state state;
2185 	int ret;
2186 
2187 	mutex_lock(&id_priv->handler_mutex);
2188 	state = READ_ONCE(id_priv->state);
2189 	if ((ib_event->event != IB_CM_TIMEWAIT_EXIT &&
2190 	     state != RDMA_CM_CONNECT) ||
2191 	    (ib_event->event == IB_CM_TIMEWAIT_EXIT &&
2192 	     state != RDMA_CM_DISCONNECT))
2193 		goto out;
2194 
2195 	switch (ib_event->event) {
2196 	case IB_CM_REQ_ERROR:
2197 	case IB_CM_REP_ERROR:
2198 		event.event = RDMA_CM_EVENT_UNREACHABLE;
2199 		event.status = -ETIMEDOUT;
2200 		break;
2201 	case IB_CM_REP_RECEIVED:
2202 		if (state == RDMA_CM_CONNECT &&
2203 		    (id_priv->id.qp_type != IB_QPT_UD)) {
2204 			trace_cm_prepare_mra(id_priv);
2205 			ib_prepare_cm_mra(cm_id);
2206 		}
2207 		if (id_priv->id.qp) {
2208 			event.status = cma_rep_recv(id_priv);
2209 			event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR :
2210 						     RDMA_CM_EVENT_ESTABLISHED;
2211 		} else {
2212 			event.event = RDMA_CM_EVENT_CONNECT_RESPONSE;
2213 		}
2214 		cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd,
2215 				       ib_event->private_data);
2216 		break;
2217 	case IB_CM_RTU_RECEIVED:
2218 	case IB_CM_USER_ESTABLISHED:
2219 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2220 		break;
2221 	case IB_CM_DREQ_ERROR:
2222 		event.status = -ETIMEDOUT;
2223 		fallthrough;
2224 	case IB_CM_DREQ_RECEIVED:
2225 	case IB_CM_DREP_RECEIVED:
2226 		if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT,
2227 				   RDMA_CM_DISCONNECT))
2228 			goto out;
2229 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2230 		break;
2231 	case IB_CM_TIMEWAIT_EXIT:
2232 		event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT;
2233 		break;
2234 	case IB_CM_MRA_RECEIVED:
2235 		/* ignore event */
2236 		goto out;
2237 	case IB_CM_REJ_RECEIVED:
2238 		pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id,
2239 										ib_event->param.rej_rcvd.reason));
2240 		cma_modify_qp_err(id_priv);
2241 		event.status = ib_event->param.rej_rcvd.reason;
2242 		event.event = RDMA_CM_EVENT_REJECTED;
2243 		event.param.conn.private_data = ib_event->private_data;
2244 		event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE;
2245 		break;
2246 	default:
2247 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
2248 		       ib_event->event);
2249 		goto out;
2250 	}
2251 
2252 	ret = cma_cm_event_handler(id_priv, &event);
2253 	if (ret) {
2254 		/* Destroy the CM ID by returning a non-zero value. */
2255 		id_priv->cm_id.ib = NULL;
2256 		destroy_id_handler_unlock(id_priv);
2257 		return ret;
2258 	}
2259 out:
2260 	mutex_unlock(&id_priv->handler_mutex);
2261 	return 0;
2262 }
2263 
2264 static struct rdma_id_private *
2265 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id,
2266 		   const struct ib_cm_event *ib_event,
2267 		   struct net_device *net_dev)
2268 {
2269 	struct rdma_id_private *listen_id_priv;
2270 	struct rdma_id_private *id_priv;
2271 	struct rdma_cm_id *id;
2272 	struct rdma_route *rt;
2273 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2274 	struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path;
2275 	const __be64 service_id =
2276 		ib_event->param.req_rcvd.primary_path->service_id;
2277 	int ret;
2278 
2279 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2280 	id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net,
2281 				   listen_id->event_handler, listen_id->context,
2282 				   listen_id->ps,
2283 				   ib_event->param.req_rcvd.qp_type,
2284 				   listen_id_priv);
2285 	if (IS_ERR(id_priv))
2286 		return NULL;
2287 
2288 	id = &id_priv->id;
2289 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2290 			      (struct sockaddr *)&id->route.addr.dst_addr,
2291 			      listen_id, ib_event, ss_family, service_id))
2292 		goto err;
2293 
2294 	rt = &id->route;
2295 	rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1;
2296 	rt->path_rec = kmalloc_array(rt->num_pri_alt_paths,
2297 				     sizeof(*rt->path_rec), GFP_KERNEL);
2298 	if (!rt->path_rec)
2299 		goto err;
2300 
2301 	rt->path_rec[0] = *path;
2302 	if (rt->num_pri_alt_paths == 2)
2303 		rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path;
2304 
2305 	if (net_dev) {
2306 		rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev);
2307 	} else {
2308 		if (!cma_protocol_roce(listen_id) &&
2309 		    cma_any_addr(cma_src_addr(id_priv))) {
2310 			rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND;
2311 			rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid);
2312 			ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey));
2313 		} else if (!cma_any_addr(cma_src_addr(id_priv))) {
2314 			ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr);
2315 			if (ret)
2316 				goto err;
2317 		}
2318 	}
2319 	rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid);
2320 
2321 	id_priv->state = RDMA_CM_CONNECT;
2322 	return id_priv;
2323 
2324 err:
2325 	rdma_destroy_id(id);
2326 	return NULL;
2327 }
2328 
2329 static struct rdma_id_private *
2330 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id,
2331 		  const struct ib_cm_event *ib_event,
2332 		  struct net_device *net_dev)
2333 {
2334 	const struct rdma_id_private *listen_id_priv;
2335 	struct rdma_id_private *id_priv;
2336 	struct rdma_cm_id *id;
2337 	const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family;
2338 	struct net *net = listen_id->route.addr.dev_addr.net;
2339 	int ret;
2340 
2341 	listen_id_priv = container_of(listen_id, struct rdma_id_private, id);
2342 	id_priv = __rdma_create_id(net, listen_id->event_handler,
2343 				   listen_id->context, listen_id->ps, IB_QPT_UD,
2344 				   listen_id_priv);
2345 	if (IS_ERR(id_priv))
2346 		return NULL;
2347 
2348 	id = &id_priv->id;
2349 	if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr,
2350 			      (struct sockaddr *)&id->route.addr.dst_addr,
2351 			      listen_id, ib_event, ss_family,
2352 			      ib_event->param.sidr_req_rcvd.service_id))
2353 		goto err;
2354 
2355 	if (net_dev) {
2356 		rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev);
2357 	} else {
2358 		if (!cma_any_addr(cma_src_addr(id_priv))) {
2359 			ret = cma_translate_addr(cma_src_addr(id_priv),
2360 						 &id->route.addr.dev_addr);
2361 			if (ret)
2362 				goto err;
2363 		}
2364 	}
2365 
2366 	id_priv->state = RDMA_CM_CONNECT;
2367 	return id_priv;
2368 err:
2369 	rdma_destroy_id(id);
2370 	return NULL;
2371 }
2372 
2373 static void cma_set_req_event_data(struct rdma_cm_event *event,
2374 				   const struct ib_cm_req_event_param *req_data,
2375 				   void *private_data, int offset)
2376 {
2377 	event->param.conn.private_data = private_data + offset;
2378 	event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset;
2379 	event->param.conn.responder_resources = req_data->responder_resources;
2380 	event->param.conn.initiator_depth = req_data->initiator_depth;
2381 	event->param.conn.flow_control = req_data->flow_control;
2382 	event->param.conn.retry_count = req_data->retry_count;
2383 	event->param.conn.rnr_retry_count = req_data->rnr_retry_count;
2384 	event->param.conn.srq = req_data->srq;
2385 	event->param.conn.qp_num = req_data->remote_qpn;
2386 
2387 	event->ece.vendor_id = req_data->ece.vendor_id;
2388 	event->ece.attr_mod = req_data->ece.attr_mod;
2389 }
2390 
2391 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id,
2392 				    const struct ib_cm_event *ib_event)
2393 {
2394 	return (((ib_event->event == IB_CM_REQ_RECEIVED) &&
2395 		 (ib_event->param.req_rcvd.qp_type == id->qp_type)) ||
2396 		((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) &&
2397 		 (id->qp_type == IB_QPT_UD)) ||
2398 		(!id->qp_type));
2399 }
2400 
2401 static int cma_ib_req_handler(struct ib_cm_id *cm_id,
2402 			      const struct ib_cm_event *ib_event)
2403 {
2404 	struct rdma_id_private *listen_id, *conn_id = NULL;
2405 	struct rdma_cm_event event = {};
2406 	struct cma_req_info req = {};
2407 	struct net_device *net_dev;
2408 	u8 offset;
2409 	int ret;
2410 
2411 	listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev);
2412 	if (IS_ERR(listen_id))
2413 		return PTR_ERR(listen_id);
2414 
2415 	trace_cm_req_handler(listen_id, ib_event->event);
2416 	if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) {
2417 		ret = -EINVAL;
2418 		goto net_dev_put;
2419 	}
2420 
2421 	mutex_lock(&listen_id->handler_mutex);
2422 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) {
2423 		ret = -ECONNABORTED;
2424 		goto err_unlock;
2425 	}
2426 
2427 	offset = cma_user_data_offset(listen_id);
2428 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2429 	if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) {
2430 		conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev);
2431 		event.param.ud.private_data = ib_event->private_data + offset;
2432 		event.param.ud.private_data_len =
2433 				IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset;
2434 	} else {
2435 		conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev);
2436 		cma_set_req_event_data(&event, &ib_event->param.req_rcvd,
2437 				       ib_event->private_data, offset);
2438 	}
2439 	if (!conn_id) {
2440 		ret = -ENOMEM;
2441 		goto err_unlock;
2442 	}
2443 
2444 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2445 	ret = cma_ib_acquire_dev(conn_id, listen_id, &req);
2446 	if (ret) {
2447 		destroy_id_handler_unlock(conn_id);
2448 		goto err_unlock;
2449 	}
2450 
2451 	conn_id->cm_id.ib = cm_id;
2452 	cm_id->context = conn_id;
2453 	cm_id->cm_handler = cma_ib_handler;
2454 
2455 	ret = cma_cm_event_handler(conn_id, &event);
2456 	if (ret) {
2457 		/* Destroy the CM ID by returning a non-zero value. */
2458 		conn_id->cm_id.ib = NULL;
2459 		mutex_unlock(&listen_id->handler_mutex);
2460 		destroy_id_handler_unlock(conn_id);
2461 		goto net_dev_put;
2462 	}
2463 
2464 	if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT &&
2465 	    conn_id->id.qp_type != IB_QPT_UD) {
2466 		trace_cm_prepare_mra(cm_id->context);
2467 		ib_prepare_cm_mra(cm_id);
2468 	}
2469 	mutex_unlock(&conn_id->handler_mutex);
2470 
2471 err_unlock:
2472 	mutex_unlock(&listen_id->handler_mutex);
2473 
2474 net_dev_put:
2475 	dev_put(net_dev);
2476 
2477 	return ret;
2478 }
2479 
2480 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr)
2481 {
2482 	if (addr->sa_family == AF_IB)
2483 		return ((struct sockaddr_ib *) addr)->sib_sid;
2484 
2485 	return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr)));
2486 }
2487 EXPORT_SYMBOL(rdma_get_service_id);
2488 
2489 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid,
2490 		    union ib_gid *dgid)
2491 {
2492 	struct rdma_addr *addr = &cm_id->route.addr;
2493 
2494 	if (!cm_id->device) {
2495 		if (sgid)
2496 			memset(sgid, 0, sizeof(*sgid));
2497 		if (dgid)
2498 			memset(dgid, 0, sizeof(*dgid));
2499 		return;
2500 	}
2501 
2502 	if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) {
2503 		if (sgid)
2504 			rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid);
2505 		if (dgid)
2506 			rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid);
2507 	} else {
2508 		if (sgid)
2509 			rdma_addr_get_sgid(&addr->dev_addr, sgid);
2510 		if (dgid)
2511 			rdma_addr_get_dgid(&addr->dev_addr, dgid);
2512 	}
2513 }
2514 EXPORT_SYMBOL(rdma_read_gids);
2515 
2516 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event)
2517 {
2518 	struct rdma_id_private *id_priv = iw_id->context;
2519 	struct rdma_cm_event event = {};
2520 	int ret = 0;
2521 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2522 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2523 
2524 	mutex_lock(&id_priv->handler_mutex);
2525 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
2526 		goto out;
2527 
2528 	switch (iw_event->event) {
2529 	case IW_CM_EVENT_CLOSE:
2530 		event.event = RDMA_CM_EVENT_DISCONNECTED;
2531 		break;
2532 	case IW_CM_EVENT_CONNECT_REPLY:
2533 		memcpy(cma_src_addr(id_priv), laddr,
2534 		       rdma_addr_size(laddr));
2535 		memcpy(cma_dst_addr(id_priv), raddr,
2536 		       rdma_addr_size(raddr));
2537 		switch (iw_event->status) {
2538 		case 0:
2539 			event.event = RDMA_CM_EVENT_ESTABLISHED;
2540 			event.param.conn.initiator_depth = iw_event->ird;
2541 			event.param.conn.responder_resources = iw_event->ord;
2542 			break;
2543 		case -ECONNRESET:
2544 		case -ECONNREFUSED:
2545 			event.event = RDMA_CM_EVENT_REJECTED;
2546 			break;
2547 		case -ETIMEDOUT:
2548 			event.event = RDMA_CM_EVENT_UNREACHABLE;
2549 			break;
2550 		default:
2551 			event.event = RDMA_CM_EVENT_CONNECT_ERROR;
2552 			break;
2553 		}
2554 		break;
2555 	case IW_CM_EVENT_ESTABLISHED:
2556 		event.event = RDMA_CM_EVENT_ESTABLISHED;
2557 		event.param.conn.initiator_depth = iw_event->ird;
2558 		event.param.conn.responder_resources = iw_event->ord;
2559 		break;
2560 	default:
2561 		goto out;
2562 	}
2563 
2564 	event.status = iw_event->status;
2565 	event.param.conn.private_data = iw_event->private_data;
2566 	event.param.conn.private_data_len = iw_event->private_data_len;
2567 	ret = cma_cm_event_handler(id_priv, &event);
2568 	if (ret) {
2569 		/* Destroy the CM ID by returning a non-zero value. */
2570 		id_priv->cm_id.iw = NULL;
2571 		destroy_id_handler_unlock(id_priv);
2572 		return ret;
2573 	}
2574 
2575 out:
2576 	mutex_unlock(&id_priv->handler_mutex);
2577 	return ret;
2578 }
2579 
2580 static int iw_conn_req_handler(struct iw_cm_id *cm_id,
2581 			       struct iw_cm_event *iw_event)
2582 {
2583 	struct rdma_id_private *listen_id, *conn_id;
2584 	struct rdma_cm_event event = {};
2585 	int ret = -ECONNABORTED;
2586 	struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr;
2587 	struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr;
2588 
2589 	event.event = RDMA_CM_EVENT_CONNECT_REQUEST;
2590 	event.param.conn.private_data = iw_event->private_data;
2591 	event.param.conn.private_data_len = iw_event->private_data_len;
2592 	event.param.conn.initiator_depth = iw_event->ird;
2593 	event.param.conn.responder_resources = iw_event->ord;
2594 
2595 	listen_id = cm_id->context;
2596 
2597 	mutex_lock(&listen_id->handler_mutex);
2598 	if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN)
2599 		goto out;
2600 
2601 	/* Create a new RDMA id for the new IW CM ID */
2602 	conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net,
2603 				   listen_id->id.event_handler,
2604 				   listen_id->id.context, RDMA_PS_TCP,
2605 				   IB_QPT_RC, listen_id);
2606 	if (IS_ERR(conn_id)) {
2607 		ret = -ENOMEM;
2608 		goto out;
2609 	}
2610 	mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING);
2611 	conn_id->state = RDMA_CM_CONNECT;
2612 
2613 	ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr);
2614 	if (ret) {
2615 		mutex_unlock(&listen_id->handler_mutex);
2616 		destroy_id_handler_unlock(conn_id);
2617 		return ret;
2618 	}
2619 
2620 	ret = cma_iw_acquire_dev(conn_id, listen_id);
2621 	if (ret) {
2622 		mutex_unlock(&listen_id->handler_mutex);
2623 		destroy_id_handler_unlock(conn_id);
2624 		return ret;
2625 	}
2626 
2627 	conn_id->cm_id.iw = cm_id;
2628 	cm_id->context = conn_id;
2629 	cm_id->cm_handler = cma_iw_handler;
2630 
2631 	memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr));
2632 	memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr));
2633 
2634 	ret = cma_cm_event_handler(conn_id, &event);
2635 	if (ret) {
2636 		/* User wants to destroy the CM ID */
2637 		conn_id->cm_id.iw = NULL;
2638 		mutex_unlock(&listen_id->handler_mutex);
2639 		destroy_id_handler_unlock(conn_id);
2640 		return ret;
2641 	}
2642 
2643 	mutex_unlock(&conn_id->handler_mutex);
2644 
2645 out:
2646 	mutex_unlock(&listen_id->handler_mutex);
2647 	return ret;
2648 }
2649 
2650 static int cma_ib_listen(struct rdma_id_private *id_priv)
2651 {
2652 	struct sockaddr *addr;
2653 	struct ib_cm_id	*id;
2654 	__be64 svc_id;
2655 
2656 	addr = cma_src_addr(id_priv);
2657 	svc_id = rdma_get_service_id(&id_priv->id, addr);
2658 	id = ib_cm_insert_listen(id_priv->id.device,
2659 				 cma_ib_req_handler, svc_id);
2660 	if (IS_ERR(id))
2661 		return PTR_ERR(id);
2662 	id_priv->cm_id.ib = id;
2663 
2664 	return 0;
2665 }
2666 
2667 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog)
2668 {
2669 	int ret;
2670 	struct iw_cm_id	*id;
2671 
2672 	id = iw_create_cm_id(id_priv->id.device,
2673 			     iw_conn_req_handler,
2674 			     id_priv);
2675 	if (IS_ERR(id))
2676 		return PTR_ERR(id);
2677 
2678 	mutex_lock(&id_priv->qp_mutex);
2679 	id->tos = id_priv->tos;
2680 	id->tos_set = id_priv->tos_set;
2681 	mutex_unlock(&id_priv->qp_mutex);
2682 	id->afonly = id_priv->afonly;
2683 	id_priv->cm_id.iw = id;
2684 
2685 	memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv),
2686 	       rdma_addr_size(cma_src_addr(id_priv)));
2687 
2688 	ret = iw_cm_listen(id_priv->cm_id.iw, backlog);
2689 
2690 	if (ret) {
2691 		iw_destroy_cm_id(id_priv->cm_id.iw);
2692 		id_priv->cm_id.iw = NULL;
2693 	}
2694 
2695 	return ret;
2696 }
2697 
2698 static int cma_listen_handler(struct rdma_cm_id *id,
2699 			      struct rdma_cm_event *event)
2700 {
2701 	struct rdma_id_private *id_priv = id->context;
2702 
2703 	/* Listening IDs are always destroyed on removal */
2704 	if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL)
2705 		return -1;
2706 
2707 	id->context = id_priv->id.context;
2708 	id->event_handler = id_priv->id.event_handler;
2709 	trace_cm_event_handler(id_priv, event);
2710 	return id_priv->id.event_handler(id, event);
2711 }
2712 
2713 static int cma_listen_on_dev(struct rdma_id_private *id_priv,
2714 			     struct cma_device *cma_dev,
2715 			     struct rdma_id_private **to_destroy)
2716 {
2717 	struct rdma_id_private *dev_id_priv;
2718 	struct net *net = id_priv->id.route.addr.dev_addr.net;
2719 	int ret;
2720 
2721 	lockdep_assert_held(&lock);
2722 
2723 	*to_destroy = NULL;
2724 	if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1))
2725 		return 0;
2726 
2727 	dev_id_priv =
2728 		__rdma_create_id(net, cma_listen_handler, id_priv,
2729 				 id_priv->id.ps, id_priv->id.qp_type, id_priv);
2730 	if (IS_ERR(dev_id_priv))
2731 		return PTR_ERR(dev_id_priv);
2732 
2733 	dev_id_priv->state = RDMA_CM_ADDR_BOUND;
2734 	memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv),
2735 	       rdma_addr_size(cma_src_addr(id_priv)));
2736 
2737 	_cma_attach_to_dev(dev_id_priv, cma_dev);
2738 	rdma_restrack_add(&dev_id_priv->res);
2739 	cma_id_get(id_priv);
2740 	dev_id_priv->internal_id = 1;
2741 	dev_id_priv->afonly = id_priv->afonly;
2742 	mutex_lock(&id_priv->qp_mutex);
2743 	dev_id_priv->tos_set = id_priv->tos_set;
2744 	dev_id_priv->tos = id_priv->tos;
2745 	mutex_unlock(&id_priv->qp_mutex);
2746 
2747 	ret = rdma_listen(&dev_id_priv->id, id_priv->backlog);
2748 	if (ret)
2749 		goto err_listen;
2750 	list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list);
2751 	return 0;
2752 err_listen:
2753 	/* Caller must destroy this after releasing lock */
2754 	*to_destroy = dev_id_priv;
2755 	dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret);
2756 	return ret;
2757 }
2758 
2759 static int cma_listen_on_all(struct rdma_id_private *id_priv)
2760 {
2761 	struct rdma_id_private *to_destroy;
2762 	struct cma_device *cma_dev;
2763 	int ret;
2764 
2765 	mutex_lock(&lock);
2766 	list_add_tail(&id_priv->listen_any_item, &listen_any_list);
2767 	list_for_each_entry(cma_dev, &dev_list, list) {
2768 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
2769 		if (ret) {
2770 			/* Prevent racing with cma_process_remove() */
2771 			if (to_destroy)
2772 				list_del_init(&to_destroy->device_item);
2773 			goto err_listen;
2774 		}
2775 	}
2776 	mutex_unlock(&lock);
2777 	return 0;
2778 
2779 err_listen:
2780 	_cma_cancel_listens(id_priv);
2781 	mutex_unlock(&lock);
2782 	if (to_destroy)
2783 		rdma_destroy_id(&to_destroy->id);
2784 	return ret;
2785 }
2786 
2787 void rdma_set_service_type(struct rdma_cm_id *id, int tos)
2788 {
2789 	struct rdma_id_private *id_priv;
2790 
2791 	id_priv = container_of(id, struct rdma_id_private, id);
2792 	mutex_lock(&id_priv->qp_mutex);
2793 	id_priv->tos = (u8) tos;
2794 	id_priv->tos_set = true;
2795 	mutex_unlock(&id_priv->qp_mutex);
2796 }
2797 EXPORT_SYMBOL(rdma_set_service_type);
2798 
2799 /**
2800  * rdma_set_ack_timeout() - Set the ack timeout of QP associated
2801  *                          with a connection identifier.
2802  * @id: Communication identifier to associated with service type.
2803  * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec.
2804  *
2805  * This function should be called before rdma_connect() on active side,
2806  * and on passive side before rdma_accept(). It is applicable to primary
2807  * path only. The timeout will affect the local side of the QP, it is not
2808  * negotiated with remote side and zero disables the timer. In case it is
2809  * set before rdma_resolve_route, the value will also be used to determine
2810  * PacketLifeTime for RoCE.
2811  *
2812  * Return: 0 for success
2813  */
2814 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout)
2815 {
2816 	struct rdma_id_private *id_priv;
2817 
2818 	if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI)
2819 		return -EINVAL;
2820 
2821 	id_priv = container_of(id, struct rdma_id_private, id);
2822 	mutex_lock(&id_priv->qp_mutex);
2823 	id_priv->timeout = timeout;
2824 	id_priv->timeout_set = true;
2825 	mutex_unlock(&id_priv->qp_mutex);
2826 
2827 	return 0;
2828 }
2829 EXPORT_SYMBOL(rdma_set_ack_timeout);
2830 
2831 /**
2832  * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the
2833  *			      QP associated with a connection identifier.
2834  * @id: Communication identifier to associated with service type.
2835  * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK
2836  *		   Timer Field" in the IBTA specification.
2837  *
2838  * This function should be called before rdma_connect() on active
2839  * side, and on passive side before rdma_accept(). The timer value
2840  * will be associated with the local QP. When it receives a send it is
2841  * not read to handle, typically if the receive queue is empty, an RNR
2842  * Retry NAK is returned to the requester with the min_rnr_timer
2843  * encoded. The requester will then wait at least the time specified
2844  * in the NAK before retrying. The default is zero, which translates
2845  * to a minimum RNR Timer value of 655 ms.
2846  *
2847  * Return: 0 for success
2848  */
2849 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer)
2850 {
2851 	struct rdma_id_private *id_priv;
2852 
2853 	/* It is a five-bit value */
2854 	if (min_rnr_timer & 0xe0)
2855 		return -EINVAL;
2856 
2857 	if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT))
2858 		return -EINVAL;
2859 
2860 	id_priv = container_of(id, struct rdma_id_private, id);
2861 	mutex_lock(&id_priv->qp_mutex);
2862 	id_priv->min_rnr_timer = min_rnr_timer;
2863 	id_priv->min_rnr_timer_set = true;
2864 	mutex_unlock(&id_priv->qp_mutex);
2865 
2866 	return 0;
2867 }
2868 EXPORT_SYMBOL(rdma_set_min_rnr_timer);
2869 
2870 static int route_set_path_rec_inbound(struct cma_work *work,
2871 				      struct sa_path_rec *path_rec)
2872 {
2873 	struct rdma_route *route = &work->id->id.route;
2874 
2875 	if (!route->path_rec_inbound) {
2876 		route->path_rec_inbound =
2877 			kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL);
2878 		if (!route->path_rec_inbound)
2879 			return -ENOMEM;
2880 	}
2881 
2882 	*route->path_rec_inbound = *path_rec;
2883 	return 0;
2884 }
2885 
2886 static int route_set_path_rec_outbound(struct cma_work *work,
2887 				       struct sa_path_rec *path_rec)
2888 {
2889 	struct rdma_route *route = &work->id->id.route;
2890 
2891 	if (!route->path_rec_outbound) {
2892 		route->path_rec_outbound =
2893 			kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL);
2894 		if (!route->path_rec_outbound)
2895 			return -ENOMEM;
2896 	}
2897 
2898 	*route->path_rec_outbound = *path_rec;
2899 	return 0;
2900 }
2901 
2902 static void cma_query_handler(int status, struct sa_path_rec *path_rec,
2903 			      unsigned int num_prs, void *context)
2904 {
2905 	struct cma_work *work = context;
2906 	struct rdma_route *route;
2907 	int i;
2908 
2909 	route = &work->id->id.route;
2910 
2911 	if (status)
2912 		goto fail;
2913 
2914 	for (i = 0; i < num_prs; i++) {
2915 		if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP))
2916 			*route->path_rec = path_rec[i];
2917 		else if (path_rec[i].flags & IB_PATH_INBOUND)
2918 			status = route_set_path_rec_inbound(work, &path_rec[i]);
2919 		else if (path_rec[i].flags & IB_PATH_OUTBOUND)
2920 			status = route_set_path_rec_outbound(work,
2921 							     &path_rec[i]);
2922 		else
2923 			status = -EINVAL;
2924 
2925 		if (status)
2926 			goto fail;
2927 	}
2928 
2929 	route->num_pri_alt_paths = 1;
2930 	queue_work(cma_wq, &work->work);
2931 	return;
2932 
2933 fail:
2934 	work->old_state = RDMA_CM_ROUTE_QUERY;
2935 	work->new_state = RDMA_CM_ADDR_RESOLVED;
2936 	work->event.event = RDMA_CM_EVENT_ROUTE_ERROR;
2937 	work->event.status = status;
2938 	pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n",
2939 			     status);
2940 	queue_work(cma_wq, &work->work);
2941 }
2942 
2943 static int cma_query_ib_route(struct rdma_id_private *id_priv,
2944 			      unsigned long timeout_ms, struct cma_work *work)
2945 {
2946 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
2947 	struct sa_path_rec path_rec;
2948 	ib_sa_comp_mask comp_mask;
2949 	struct sockaddr_in6 *sin6;
2950 	struct sockaddr_ib *sib;
2951 
2952 	memset(&path_rec, 0, sizeof path_rec);
2953 
2954 	if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num))
2955 		path_rec.rec_type = SA_PATH_REC_TYPE_OPA;
2956 	else
2957 		path_rec.rec_type = SA_PATH_REC_TYPE_IB;
2958 	rdma_addr_get_sgid(dev_addr, &path_rec.sgid);
2959 	rdma_addr_get_dgid(dev_addr, &path_rec.dgid);
2960 	path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
2961 	path_rec.numb_path = 1;
2962 	path_rec.reversible = 1;
2963 	path_rec.service_id = rdma_get_service_id(&id_priv->id,
2964 						  cma_dst_addr(id_priv));
2965 
2966 	comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID |
2967 		    IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH |
2968 		    IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID;
2969 
2970 	switch (cma_family(id_priv)) {
2971 	case AF_INET:
2972 		path_rec.qos_class = cpu_to_be16((u16) id_priv->tos);
2973 		comp_mask |= IB_SA_PATH_REC_QOS_CLASS;
2974 		break;
2975 	case AF_INET6:
2976 		sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
2977 		path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20);
2978 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2979 		break;
2980 	case AF_IB:
2981 		sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
2982 		path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20);
2983 		comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS;
2984 		break;
2985 	}
2986 
2987 	id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device,
2988 					       id_priv->id.port_num, &path_rec,
2989 					       comp_mask, timeout_ms,
2990 					       GFP_KERNEL, cma_query_handler,
2991 					       work, &id_priv->query);
2992 
2993 	return (id_priv->query_id < 0) ? id_priv->query_id : 0;
2994 }
2995 
2996 static void cma_iboe_join_work_handler(struct work_struct *work)
2997 {
2998 	struct cma_multicast *mc =
2999 		container_of(work, struct cma_multicast, iboe_join.work);
3000 	struct rdma_cm_event *event = &mc->iboe_join.event;
3001 	struct rdma_id_private *id_priv = mc->id_priv;
3002 	int ret;
3003 
3004 	mutex_lock(&id_priv->handler_mutex);
3005 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3006 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3007 		goto out_unlock;
3008 
3009 	ret = cma_cm_event_handler(id_priv, event);
3010 	WARN_ON(ret);
3011 
3012 out_unlock:
3013 	mutex_unlock(&id_priv->handler_mutex);
3014 	if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN)
3015 		rdma_destroy_ah_attr(&event->param.ud.ah_attr);
3016 }
3017 
3018 static void cma_work_handler(struct work_struct *_work)
3019 {
3020 	struct cma_work *work = container_of(_work, struct cma_work, work);
3021 	struct rdma_id_private *id_priv = work->id;
3022 
3023 	mutex_lock(&id_priv->handler_mutex);
3024 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
3025 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
3026 		goto out_unlock;
3027 	if (work->old_state != 0 || work->new_state != 0) {
3028 		if (!cma_comp_exch(id_priv, work->old_state, work->new_state))
3029 			goto out_unlock;
3030 	}
3031 
3032 	if (cma_cm_event_handler(id_priv, &work->event)) {
3033 		cma_id_put(id_priv);
3034 		destroy_id_handler_unlock(id_priv);
3035 		goto out_free;
3036 	}
3037 
3038 out_unlock:
3039 	mutex_unlock(&id_priv->handler_mutex);
3040 	cma_id_put(id_priv);
3041 out_free:
3042 	if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN)
3043 		rdma_destroy_ah_attr(&work->event.param.ud.ah_attr);
3044 	kfree(work);
3045 }
3046 
3047 static void cma_init_resolve_route_work(struct cma_work *work,
3048 					struct rdma_id_private *id_priv)
3049 {
3050 	work->id = id_priv;
3051 	INIT_WORK(&work->work, cma_work_handler);
3052 	work->old_state = RDMA_CM_ROUTE_QUERY;
3053 	work->new_state = RDMA_CM_ROUTE_RESOLVED;
3054 	work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED;
3055 }
3056 
3057 static void enqueue_resolve_addr_work(struct cma_work *work,
3058 				      struct rdma_id_private *id_priv)
3059 {
3060 	/* Balances with cma_id_put() in cma_work_handler */
3061 	cma_id_get(id_priv);
3062 
3063 	work->id = id_priv;
3064 	INIT_WORK(&work->work, cma_work_handler);
3065 	work->old_state = RDMA_CM_ADDR_QUERY;
3066 	work->new_state = RDMA_CM_ADDR_RESOLVED;
3067 	work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3068 
3069 	queue_work(cma_wq, &work->work);
3070 }
3071 
3072 static int cma_resolve_ib_route(struct rdma_id_private *id_priv,
3073 				unsigned long timeout_ms)
3074 {
3075 	struct rdma_route *route = &id_priv->id.route;
3076 	struct cma_work *work;
3077 	int ret;
3078 
3079 	work = kzalloc(sizeof *work, GFP_KERNEL);
3080 	if (!work)
3081 		return -ENOMEM;
3082 
3083 	cma_init_resolve_route_work(work, id_priv);
3084 
3085 	if (!route->path_rec)
3086 		route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL);
3087 	if (!route->path_rec) {
3088 		ret = -ENOMEM;
3089 		goto err1;
3090 	}
3091 
3092 	ret = cma_query_ib_route(id_priv, timeout_ms, work);
3093 	if (ret)
3094 		goto err2;
3095 
3096 	return 0;
3097 err2:
3098 	kfree(route->path_rec);
3099 	route->path_rec = NULL;
3100 err1:
3101 	kfree(work);
3102 	return ret;
3103 }
3104 
3105 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type,
3106 					   unsigned long supported_gids,
3107 					   enum ib_gid_type default_gid)
3108 {
3109 	if ((network_type == RDMA_NETWORK_IPV4 ||
3110 	     network_type == RDMA_NETWORK_IPV6) &&
3111 	    test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids))
3112 		return IB_GID_TYPE_ROCE_UDP_ENCAP;
3113 
3114 	return default_gid;
3115 }
3116 
3117 /*
3118  * cma_iboe_set_path_rec_l2_fields() is helper function which sets
3119  * path record type based on GID type.
3120  * It also sets up other L2 fields which includes destination mac address
3121  * netdev ifindex, of the path record.
3122  * It returns the netdev of the bound interface for this path record entry.
3123  */
3124 static struct net_device *
3125 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv)
3126 {
3127 	struct rdma_route *route = &id_priv->id.route;
3128 	enum ib_gid_type gid_type = IB_GID_TYPE_ROCE;
3129 	struct rdma_addr *addr = &route->addr;
3130 	unsigned long supported_gids;
3131 	struct net_device *ndev;
3132 
3133 	if (!addr->dev_addr.bound_dev_if)
3134 		return NULL;
3135 
3136 	ndev = dev_get_by_index(addr->dev_addr.net,
3137 				addr->dev_addr.bound_dev_if);
3138 	if (!ndev)
3139 		return NULL;
3140 
3141 	supported_gids = roce_gid_type_mask_support(id_priv->id.device,
3142 						    id_priv->id.port_num);
3143 	gid_type = cma_route_gid_type(addr->dev_addr.network,
3144 				      supported_gids,
3145 				      id_priv->gid_type);
3146 	/* Use the hint from IP Stack to select GID Type */
3147 	if (gid_type < ib_network_to_gid_type(addr->dev_addr.network))
3148 		gid_type = ib_network_to_gid_type(addr->dev_addr.network);
3149 	route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type);
3150 
3151 	route->path_rec->roce.route_resolved = true;
3152 	sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr);
3153 	return ndev;
3154 }
3155 
3156 int rdma_set_ib_path(struct rdma_cm_id *id,
3157 		     struct sa_path_rec *path_rec)
3158 {
3159 	struct rdma_id_private *id_priv;
3160 	struct net_device *ndev;
3161 	int ret;
3162 
3163 	id_priv = container_of(id, struct rdma_id_private, id);
3164 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3165 			   RDMA_CM_ROUTE_RESOLVED))
3166 		return -EINVAL;
3167 
3168 	id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec),
3169 				     GFP_KERNEL);
3170 	if (!id->route.path_rec) {
3171 		ret = -ENOMEM;
3172 		goto err;
3173 	}
3174 
3175 	if (rdma_protocol_roce(id->device, id->port_num)) {
3176 		ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3177 		if (!ndev) {
3178 			ret = -ENODEV;
3179 			goto err_free;
3180 		}
3181 		dev_put(ndev);
3182 	}
3183 
3184 	id->route.num_pri_alt_paths = 1;
3185 	return 0;
3186 
3187 err_free:
3188 	kfree(id->route.path_rec);
3189 	id->route.path_rec = NULL;
3190 err:
3191 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED);
3192 	return ret;
3193 }
3194 EXPORT_SYMBOL(rdma_set_ib_path);
3195 
3196 static int cma_resolve_iw_route(struct rdma_id_private *id_priv)
3197 {
3198 	struct cma_work *work;
3199 
3200 	work = kzalloc(sizeof *work, GFP_KERNEL);
3201 	if (!work)
3202 		return -ENOMEM;
3203 
3204 	cma_init_resolve_route_work(work, id_priv);
3205 	queue_work(cma_wq, &work->work);
3206 	return 0;
3207 }
3208 
3209 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio)
3210 {
3211 	struct net_device *dev;
3212 
3213 	dev = vlan_dev_real_dev(vlan_ndev);
3214 	if (dev->num_tc)
3215 		return netdev_get_prio_tc_map(dev, prio);
3216 
3217 	return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) &
3218 		VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
3219 }
3220 
3221 struct iboe_prio_tc_map {
3222 	int input_prio;
3223 	int output_tc;
3224 	bool found;
3225 };
3226 
3227 static int get_lower_vlan_dev_tc(struct net_device *dev,
3228 				 struct netdev_nested_priv *priv)
3229 {
3230 	struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data;
3231 
3232 	if (is_vlan_dev(dev))
3233 		map->output_tc = get_vlan_ndev_tc(dev, map->input_prio);
3234 	else if (dev->num_tc)
3235 		map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio);
3236 	else
3237 		map->output_tc = 0;
3238 	/* We are interested only in first level VLAN device, so always
3239 	 * return 1 to stop iterating over next level devices.
3240 	 */
3241 	map->found = true;
3242 	return 1;
3243 }
3244 
3245 static int iboe_tos_to_sl(struct net_device *ndev, int tos)
3246 {
3247 	struct iboe_prio_tc_map prio_tc_map = {};
3248 	int prio = rt_tos2priority(tos);
3249 	struct netdev_nested_priv priv;
3250 
3251 	/* If VLAN device, get it directly from the VLAN netdev */
3252 	if (is_vlan_dev(ndev))
3253 		return get_vlan_ndev_tc(ndev, prio);
3254 
3255 	prio_tc_map.input_prio = prio;
3256 	priv.data = (void *)&prio_tc_map;
3257 	rcu_read_lock();
3258 	netdev_walk_all_lower_dev_rcu(ndev,
3259 				      get_lower_vlan_dev_tc,
3260 				      &priv);
3261 	rcu_read_unlock();
3262 	/* If map is found from lower device, use it; Otherwise
3263 	 * continue with the current netdevice to get priority to tc map.
3264 	 */
3265 	if (prio_tc_map.found)
3266 		return prio_tc_map.output_tc;
3267 	else if (ndev->num_tc)
3268 		return netdev_get_prio_tc_map(ndev, prio);
3269 	else
3270 		return 0;
3271 }
3272 
3273 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv)
3274 {
3275 	struct sockaddr_in6 *addr6;
3276 	u16 dport, sport;
3277 	u32 hash, fl;
3278 
3279 	addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv);
3280 	fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK;
3281 	if ((cma_family(id_priv) != AF_INET6) || !fl) {
3282 		dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv)));
3283 		sport = be16_to_cpu(cma_port(cma_src_addr(id_priv)));
3284 		hash = (u32)sport * 31 + dport;
3285 		fl = hash & IB_GRH_FLOWLABEL_MASK;
3286 	}
3287 
3288 	return cpu_to_be32(fl);
3289 }
3290 
3291 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv)
3292 {
3293 	struct rdma_route *route = &id_priv->id.route;
3294 	struct rdma_addr *addr = &route->addr;
3295 	struct cma_work *work;
3296 	int ret;
3297 	struct net_device *ndev;
3298 
3299 	u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num -
3300 					rdma_start_port(id_priv->cma_dev->device)];
3301 	u8 tos;
3302 
3303 	mutex_lock(&id_priv->qp_mutex);
3304 	tos = id_priv->tos_set ? id_priv->tos : default_roce_tos;
3305 	mutex_unlock(&id_priv->qp_mutex);
3306 
3307 	work = kzalloc(sizeof *work, GFP_KERNEL);
3308 	if (!work)
3309 		return -ENOMEM;
3310 
3311 	route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL);
3312 	if (!route->path_rec) {
3313 		ret = -ENOMEM;
3314 		goto err1;
3315 	}
3316 
3317 	route->num_pri_alt_paths = 1;
3318 
3319 	ndev = cma_iboe_set_path_rec_l2_fields(id_priv);
3320 	if (!ndev) {
3321 		ret = -ENODEV;
3322 		goto err2;
3323 	}
3324 
3325 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
3326 		    &route->path_rec->sgid);
3327 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr,
3328 		    &route->path_rec->dgid);
3329 
3330 	if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB)
3331 		/* TODO: get the hoplimit from the inet/inet6 device */
3332 		route->path_rec->hop_limit = addr->dev_addr.hoplimit;
3333 	else
3334 		route->path_rec->hop_limit = 1;
3335 	route->path_rec->reversible = 1;
3336 	route->path_rec->pkey = cpu_to_be16(0xffff);
3337 	route->path_rec->mtu_selector = IB_SA_EQ;
3338 	route->path_rec->sl = iboe_tos_to_sl(ndev, tos);
3339 	route->path_rec->traffic_class = tos;
3340 	route->path_rec->mtu = iboe_get_mtu(ndev->mtu);
3341 	route->path_rec->rate_selector = IB_SA_EQ;
3342 	route->path_rec->rate = IB_RATE_PORT_CURRENT;
3343 	dev_put(ndev);
3344 	route->path_rec->packet_life_time_selector = IB_SA_EQ;
3345 	/* In case ACK timeout is set, use this value to calculate
3346 	 * PacketLifeTime.  As per IBTA 12.7.34,
3347 	 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay).
3348 	 * Assuming a negligible local ACK delay, we can use
3349 	 * PacketLifeTime = local ACK timeout/2
3350 	 * as a reasonable approximation for RoCE networks.
3351 	 */
3352 	mutex_lock(&id_priv->qp_mutex);
3353 	if (id_priv->timeout_set && id_priv->timeout)
3354 		route->path_rec->packet_life_time = id_priv->timeout - 1;
3355 	else
3356 		route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME;
3357 	mutex_unlock(&id_priv->qp_mutex);
3358 
3359 	if (!route->path_rec->mtu) {
3360 		ret = -EINVAL;
3361 		goto err2;
3362 	}
3363 
3364 	if (rdma_protocol_roce_udp_encap(id_priv->id.device,
3365 					 id_priv->id.port_num))
3366 		route->path_rec->flow_label =
3367 			cma_get_roce_udp_flow_label(id_priv);
3368 
3369 	cma_init_resolve_route_work(work, id_priv);
3370 	queue_work(cma_wq, &work->work);
3371 
3372 	return 0;
3373 
3374 err2:
3375 	kfree(route->path_rec);
3376 	route->path_rec = NULL;
3377 	route->num_pri_alt_paths = 0;
3378 err1:
3379 	kfree(work);
3380 	return ret;
3381 }
3382 
3383 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms)
3384 {
3385 	struct rdma_id_private *id_priv;
3386 	enum rdma_cm_state state;
3387 	int ret;
3388 
3389 	if (!timeout_ms)
3390 		return -EINVAL;
3391 
3392 	id_priv = container_of(id, struct rdma_id_private, id);
3393 	state = id_priv->state;
3394 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3395 			   RDMA_CM_ROUTE_QUERY) &&
3396 	    !cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_RESOLVED,
3397 			   RDMA_CM_ROUTE_QUERY))
3398 		return -EINVAL;
3399 
3400 	cma_id_get(id_priv);
3401 	if (rdma_cap_ib_sa(id->device, id->port_num))
3402 		ret = cma_resolve_ib_route(id_priv, timeout_ms);
3403 	else if (rdma_protocol_roce(id->device, id->port_num)) {
3404 		ret = cma_resolve_iboe_route(id_priv);
3405 		if (!ret)
3406 			cma_add_id_to_tree(id_priv);
3407 	}
3408 	else if (rdma_protocol_iwarp(id->device, id->port_num))
3409 		ret = cma_resolve_iw_route(id_priv);
3410 	else
3411 		ret = -ENOSYS;
3412 
3413 	if (ret)
3414 		goto err;
3415 
3416 	return 0;
3417 err:
3418 	cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, state);
3419 	cma_id_put(id_priv);
3420 	return ret;
3421 }
3422 EXPORT_SYMBOL(rdma_resolve_route);
3423 
3424 static void cma_set_loopback(struct sockaddr *addr)
3425 {
3426 	switch (addr->sa_family) {
3427 	case AF_INET:
3428 		((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK);
3429 		break;
3430 	case AF_INET6:
3431 		ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr,
3432 			      0, 0, 0, htonl(1));
3433 		break;
3434 	default:
3435 		ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr,
3436 			    0, 0, 0, htonl(1));
3437 		break;
3438 	}
3439 }
3440 
3441 static int cma_bind_loopback(struct rdma_id_private *id_priv)
3442 {
3443 	struct cma_device *cma_dev, *cur_dev;
3444 	union ib_gid gid;
3445 	enum ib_port_state port_state;
3446 	unsigned int p;
3447 	u16 pkey;
3448 	int ret;
3449 
3450 	cma_dev = NULL;
3451 	mutex_lock(&lock);
3452 	list_for_each_entry(cur_dev, &dev_list, list) {
3453 		if (cma_family(id_priv) == AF_IB &&
3454 		    !rdma_cap_ib_cm(cur_dev->device, 1))
3455 			continue;
3456 
3457 		if (!cma_dev)
3458 			cma_dev = cur_dev;
3459 
3460 		rdma_for_each_port (cur_dev->device, p) {
3461 			if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) &&
3462 			    port_state == IB_PORT_ACTIVE) {
3463 				cma_dev = cur_dev;
3464 				goto port_found;
3465 			}
3466 		}
3467 	}
3468 
3469 	if (!cma_dev) {
3470 		ret = -ENODEV;
3471 		goto out;
3472 	}
3473 
3474 	p = 1;
3475 
3476 port_found:
3477 	ret = rdma_query_gid(cma_dev->device, p, 0, &gid);
3478 	if (ret)
3479 		goto out;
3480 
3481 	ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey);
3482 	if (ret)
3483 		goto out;
3484 
3485 	id_priv->id.route.addr.dev_addr.dev_type =
3486 		(rdma_protocol_ib(cma_dev->device, p)) ?
3487 		ARPHRD_INFINIBAND : ARPHRD_ETHER;
3488 
3489 	rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3490 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey);
3491 	id_priv->id.port_num = p;
3492 	cma_attach_to_dev(id_priv, cma_dev);
3493 	rdma_restrack_add(&id_priv->res);
3494 	cma_set_loopback(cma_src_addr(id_priv));
3495 out:
3496 	mutex_unlock(&lock);
3497 	return ret;
3498 }
3499 
3500 static void addr_handler(int status, struct sockaddr *src_addr,
3501 			 struct rdma_dev_addr *dev_addr, void *context)
3502 {
3503 	struct rdma_id_private *id_priv = context;
3504 	struct rdma_cm_event event = {};
3505 	struct sockaddr *addr;
3506 	struct sockaddr_storage old_addr;
3507 
3508 	mutex_lock(&id_priv->handler_mutex);
3509 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY,
3510 			   RDMA_CM_ADDR_RESOLVED))
3511 		goto out;
3512 
3513 	/*
3514 	 * Store the previous src address, so that if we fail to acquire
3515 	 * matching rdma device, old address can be restored back, which helps
3516 	 * to cancel the cma listen operation correctly.
3517 	 */
3518 	addr = cma_src_addr(id_priv);
3519 	memcpy(&old_addr, addr, rdma_addr_size(addr));
3520 	memcpy(addr, src_addr, rdma_addr_size(src_addr));
3521 	if (!status && !id_priv->cma_dev) {
3522 		status = cma_acquire_dev_by_src_ip(id_priv);
3523 		if (status)
3524 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n",
3525 					     status);
3526 		rdma_restrack_add(&id_priv->res);
3527 	} else if (status) {
3528 		pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status);
3529 	}
3530 
3531 	if (status) {
3532 		memcpy(addr, &old_addr,
3533 		       rdma_addr_size((struct sockaddr *)&old_addr));
3534 		if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED,
3535 				   RDMA_CM_ADDR_BOUND))
3536 			goto out;
3537 		event.event = RDMA_CM_EVENT_ADDR_ERROR;
3538 		event.status = status;
3539 	} else
3540 		event.event = RDMA_CM_EVENT_ADDR_RESOLVED;
3541 
3542 	if (cma_cm_event_handler(id_priv, &event)) {
3543 		destroy_id_handler_unlock(id_priv);
3544 		return;
3545 	}
3546 out:
3547 	mutex_unlock(&id_priv->handler_mutex);
3548 }
3549 
3550 static int cma_resolve_loopback(struct rdma_id_private *id_priv)
3551 {
3552 	struct cma_work *work;
3553 	union ib_gid gid;
3554 	int ret;
3555 
3556 	work = kzalloc(sizeof *work, GFP_KERNEL);
3557 	if (!work)
3558 		return -ENOMEM;
3559 
3560 	if (!id_priv->cma_dev) {
3561 		ret = cma_bind_loopback(id_priv);
3562 		if (ret)
3563 			goto err;
3564 	}
3565 
3566 	rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid);
3567 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid);
3568 
3569 	enqueue_resolve_addr_work(work, id_priv);
3570 	return 0;
3571 err:
3572 	kfree(work);
3573 	return ret;
3574 }
3575 
3576 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv)
3577 {
3578 	struct cma_work *work;
3579 	int ret;
3580 
3581 	work = kzalloc(sizeof *work, GFP_KERNEL);
3582 	if (!work)
3583 		return -ENOMEM;
3584 
3585 	if (!id_priv->cma_dev) {
3586 		ret = cma_resolve_ib_dev(id_priv);
3587 		if (ret)
3588 			goto err;
3589 	}
3590 
3591 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *)
3592 		&(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr));
3593 
3594 	enqueue_resolve_addr_work(work, id_priv);
3595 	return 0;
3596 err:
3597 	kfree(work);
3598 	return ret;
3599 }
3600 
3601 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse)
3602 {
3603 	struct rdma_id_private *id_priv;
3604 	unsigned long flags;
3605 	int ret;
3606 
3607 	id_priv = container_of(id, struct rdma_id_private, id);
3608 	spin_lock_irqsave(&id_priv->lock, flags);
3609 	if ((reuse && id_priv->state != RDMA_CM_LISTEN) ||
3610 	    id_priv->state == RDMA_CM_IDLE) {
3611 		id_priv->reuseaddr = reuse;
3612 		ret = 0;
3613 	} else {
3614 		ret = -EINVAL;
3615 	}
3616 	spin_unlock_irqrestore(&id_priv->lock, flags);
3617 	return ret;
3618 }
3619 EXPORT_SYMBOL(rdma_set_reuseaddr);
3620 
3621 int rdma_set_afonly(struct rdma_cm_id *id, int afonly)
3622 {
3623 	struct rdma_id_private *id_priv;
3624 	unsigned long flags;
3625 	int ret;
3626 
3627 	id_priv = container_of(id, struct rdma_id_private, id);
3628 	spin_lock_irqsave(&id_priv->lock, flags);
3629 	if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) {
3630 		id_priv->options |= (1 << CMA_OPTION_AFONLY);
3631 		id_priv->afonly = afonly;
3632 		ret = 0;
3633 	} else {
3634 		ret = -EINVAL;
3635 	}
3636 	spin_unlock_irqrestore(&id_priv->lock, flags);
3637 	return ret;
3638 }
3639 EXPORT_SYMBOL(rdma_set_afonly);
3640 
3641 static void cma_bind_port(struct rdma_bind_list *bind_list,
3642 			  struct rdma_id_private *id_priv)
3643 {
3644 	struct sockaddr *addr;
3645 	struct sockaddr_ib *sib;
3646 	u64 sid, mask;
3647 	__be16 port;
3648 
3649 	lockdep_assert_held(&lock);
3650 
3651 	addr = cma_src_addr(id_priv);
3652 	port = htons(bind_list->port);
3653 
3654 	switch (addr->sa_family) {
3655 	case AF_INET:
3656 		((struct sockaddr_in *) addr)->sin_port = port;
3657 		break;
3658 	case AF_INET6:
3659 		((struct sockaddr_in6 *) addr)->sin6_port = port;
3660 		break;
3661 	case AF_IB:
3662 		sib = (struct sockaddr_ib *) addr;
3663 		sid = be64_to_cpu(sib->sib_sid);
3664 		mask = be64_to_cpu(sib->sib_sid_mask);
3665 		sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port));
3666 		sib->sib_sid_mask = cpu_to_be64(~0ULL);
3667 		break;
3668 	}
3669 	id_priv->bind_list = bind_list;
3670 	hlist_add_head(&id_priv->node, &bind_list->owners);
3671 }
3672 
3673 static int cma_alloc_port(enum rdma_ucm_port_space ps,
3674 			  struct rdma_id_private *id_priv, unsigned short snum)
3675 {
3676 	struct rdma_bind_list *bind_list;
3677 	int ret;
3678 
3679 	lockdep_assert_held(&lock);
3680 
3681 	bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL);
3682 	if (!bind_list)
3683 		return -ENOMEM;
3684 
3685 	ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list,
3686 			   snum);
3687 	if (ret < 0)
3688 		goto err;
3689 
3690 	bind_list->ps = ps;
3691 	bind_list->port = snum;
3692 	cma_bind_port(bind_list, id_priv);
3693 	return 0;
3694 err:
3695 	kfree(bind_list);
3696 	return ret == -ENOSPC ? -EADDRNOTAVAIL : ret;
3697 }
3698 
3699 static int cma_port_is_unique(struct rdma_bind_list *bind_list,
3700 			      struct rdma_id_private *id_priv)
3701 {
3702 	struct rdma_id_private *cur_id;
3703 	struct sockaddr  *daddr = cma_dst_addr(id_priv);
3704 	struct sockaddr  *saddr = cma_src_addr(id_priv);
3705 	__be16 dport = cma_port(daddr);
3706 
3707 	lockdep_assert_held(&lock);
3708 
3709 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3710 		struct sockaddr  *cur_daddr = cma_dst_addr(cur_id);
3711 		struct sockaddr  *cur_saddr = cma_src_addr(cur_id);
3712 		__be16 cur_dport = cma_port(cur_daddr);
3713 
3714 		if (id_priv == cur_id)
3715 			continue;
3716 
3717 		/* different dest port -> unique */
3718 		if (!cma_any_port(daddr) &&
3719 		    !cma_any_port(cur_daddr) &&
3720 		    (dport != cur_dport))
3721 			continue;
3722 
3723 		/* different src address -> unique */
3724 		if (!cma_any_addr(saddr) &&
3725 		    !cma_any_addr(cur_saddr) &&
3726 		    cma_addr_cmp(saddr, cur_saddr))
3727 			continue;
3728 
3729 		/* different dst address -> unique */
3730 		if (!cma_any_addr(daddr) &&
3731 		    !cma_any_addr(cur_daddr) &&
3732 		    cma_addr_cmp(daddr, cur_daddr))
3733 			continue;
3734 
3735 		return -EADDRNOTAVAIL;
3736 	}
3737 	return 0;
3738 }
3739 
3740 static int cma_alloc_any_port(enum rdma_ucm_port_space ps,
3741 			      struct rdma_id_private *id_priv)
3742 {
3743 	static unsigned int last_used_port;
3744 	int low, high, remaining;
3745 	unsigned int rover;
3746 	struct net *net = id_priv->id.route.addr.dev_addr.net;
3747 
3748 	lockdep_assert_held(&lock);
3749 
3750 	inet_get_local_port_range(net, &low, &high);
3751 	remaining = (high - low) + 1;
3752 	rover = get_random_u32_inclusive(low, remaining + low - 1);
3753 retry:
3754 	if (last_used_port != rover) {
3755 		struct rdma_bind_list *bind_list;
3756 		int ret;
3757 
3758 		bind_list = cma_ps_find(net, ps, (unsigned short)rover);
3759 
3760 		if (!bind_list) {
3761 			ret = cma_alloc_port(ps, id_priv, rover);
3762 		} else {
3763 			ret = cma_port_is_unique(bind_list, id_priv);
3764 			if (!ret)
3765 				cma_bind_port(bind_list, id_priv);
3766 		}
3767 		/*
3768 		 * Remember previously used port number in order to avoid
3769 		 * re-using same port immediately after it is closed.
3770 		 */
3771 		if (!ret)
3772 			last_used_port = rover;
3773 		if (ret != -EADDRNOTAVAIL)
3774 			return ret;
3775 	}
3776 	if (--remaining) {
3777 		rover++;
3778 		if ((rover < low) || (rover > high))
3779 			rover = low;
3780 		goto retry;
3781 	}
3782 	return -EADDRNOTAVAIL;
3783 }
3784 
3785 /*
3786  * Check that the requested port is available.  This is called when trying to
3787  * bind to a specific port, or when trying to listen on a bound port.  In
3788  * the latter case, the provided id_priv may already be on the bind_list, but
3789  * we still need to check that it's okay to start listening.
3790  */
3791 static int cma_check_port(struct rdma_bind_list *bind_list,
3792 			  struct rdma_id_private *id_priv, uint8_t reuseaddr)
3793 {
3794 	struct rdma_id_private *cur_id;
3795 	struct sockaddr *addr, *cur_addr;
3796 
3797 	lockdep_assert_held(&lock);
3798 
3799 	addr = cma_src_addr(id_priv);
3800 	hlist_for_each_entry(cur_id, &bind_list->owners, node) {
3801 		if (id_priv == cur_id)
3802 			continue;
3803 
3804 		if (reuseaddr && cur_id->reuseaddr)
3805 			continue;
3806 
3807 		cur_addr = cma_src_addr(cur_id);
3808 		if (id_priv->afonly && cur_id->afonly &&
3809 		    (addr->sa_family != cur_addr->sa_family))
3810 			continue;
3811 
3812 		if (cma_any_addr(addr) || cma_any_addr(cur_addr))
3813 			return -EADDRNOTAVAIL;
3814 
3815 		if (!cma_addr_cmp(addr, cur_addr))
3816 			return -EADDRINUSE;
3817 	}
3818 	return 0;
3819 }
3820 
3821 static int cma_use_port(enum rdma_ucm_port_space ps,
3822 			struct rdma_id_private *id_priv)
3823 {
3824 	struct rdma_bind_list *bind_list;
3825 	unsigned short snum;
3826 	int ret;
3827 
3828 	lockdep_assert_held(&lock);
3829 
3830 	snum = ntohs(cma_port(cma_src_addr(id_priv)));
3831 	if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
3832 		return -EACCES;
3833 
3834 	bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum);
3835 	if (!bind_list) {
3836 		ret = cma_alloc_port(ps, id_priv, snum);
3837 	} else {
3838 		ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr);
3839 		if (!ret)
3840 			cma_bind_port(bind_list, id_priv);
3841 	}
3842 	return ret;
3843 }
3844 
3845 static enum rdma_ucm_port_space
3846 cma_select_inet_ps(struct rdma_id_private *id_priv)
3847 {
3848 	switch (id_priv->id.ps) {
3849 	case RDMA_PS_TCP:
3850 	case RDMA_PS_UDP:
3851 	case RDMA_PS_IPOIB:
3852 	case RDMA_PS_IB:
3853 		return id_priv->id.ps;
3854 	default:
3855 
3856 		return 0;
3857 	}
3858 }
3859 
3860 static enum rdma_ucm_port_space
3861 cma_select_ib_ps(struct rdma_id_private *id_priv)
3862 {
3863 	enum rdma_ucm_port_space ps = 0;
3864 	struct sockaddr_ib *sib;
3865 	u64 sid_ps, mask, sid;
3866 
3867 	sib = (struct sockaddr_ib *) cma_src_addr(id_priv);
3868 	mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK;
3869 	sid = be64_to_cpu(sib->sib_sid) & mask;
3870 
3871 	if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) {
3872 		sid_ps = RDMA_IB_IP_PS_IB;
3873 		ps = RDMA_PS_IB;
3874 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) &&
3875 		   (sid == (RDMA_IB_IP_PS_TCP & mask))) {
3876 		sid_ps = RDMA_IB_IP_PS_TCP;
3877 		ps = RDMA_PS_TCP;
3878 	} else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) &&
3879 		   (sid == (RDMA_IB_IP_PS_UDP & mask))) {
3880 		sid_ps = RDMA_IB_IP_PS_UDP;
3881 		ps = RDMA_PS_UDP;
3882 	}
3883 
3884 	if (ps) {
3885 		sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib)));
3886 		sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK |
3887 						be64_to_cpu(sib->sib_sid_mask));
3888 	}
3889 	return ps;
3890 }
3891 
3892 static int cma_get_port(struct rdma_id_private *id_priv)
3893 {
3894 	enum rdma_ucm_port_space ps;
3895 	int ret;
3896 
3897 	if (cma_family(id_priv) != AF_IB)
3898 		ps = cma_select_inet_ps(id_priv);
3899 	else
3900 		ps = cma_select_ib_ps(id_priv);
3901 	if (!ps)
3902 		return -EPROTONOSUPPORT;
3903 
3904 	mutex_lock(&lock);
3905 	if (cma_any_port(cma_src_addr(id_priv)))
3906 		ret = cma_alloc_any_port(ps, id_priv);
3907 	else
3908 		ret = cma_use_port(ps, id_priv);
3909 	mutex_unlock(&lock);
3910 
3911 	return ret;
3912 }
3913 
3914 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr,
3915 			       struct sockaddr *addr)
3916 {
3917 #if IS_ENABLED(CONFIG_IPV6)
3918 	struct sockaddr_in6 *sin6;
3919 
3920 	if (addr->sa_family != AF_INET6)
3921 		return 0;
3922 
3923 	sin6 = (struct sockaddr_in6 *) addr;
3924 
3925 	if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL))
3926 		return 0;
3927 
3928 	if (!sin6->sin6_scope_id)
3929 			return -EINVAL;
3930 
3931 	dev_addr->bound_dev_if = sin6->sin6_scope_id;
3932 #endif
3933 	return 0;
3934 }
3935 
3936 int rdma_listen(struct rdma_cm_id *id, int backlog)
3937 {
3938 	struct rdma_id_private *id_priv =
3939 		container_of(id, struct rdma_id_private, id);
3940 	int ret;
3941 
3942 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) {
3943 		struct sockaddr_in any_in = {
3944 			.sin_family = AF_INET,
3945 			.sin_addr.s_addr = htonl(INADDR_ANY),
3946 		};
3947 
3948 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
3949 		ret = rdma_bind_addr(id, (struct sockaddr *)&any_in);
3950 		if (ret)
3951 			return ret;
3952 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
3953 					   RDMA_CM_LISTEN)))
3954 			return -EINVAL;
3955 	}
3956 
3957 	/*
3958 	 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable
3959 	 * any more, and has to be unique in the bind list.
3960 	 */
3961 	if (id_priv->reuseaddr) {
3962 		mutex_lock(&lock);
3963 		ret = cma_check_port(id_priv->bind_list, id_priv, 0);
3964 		if (!ret)
3965 			id_priv->reuseaddr = 0;
3966 		mutex_unlock(&lock);
3967 		if (ret)
3968 			goto err;
3969 	}
3970 
3971 	id_priv->backlog = backlog;
3972 	if (id_priv->cma_dev) {
3973 		if (rdma_cap_ib_cm(id->device, 1)) {
3974 			ret = cma_ib_listen(id_priv);
3975 			if (ret)
3976 				goto err;
3977 		} else if (rdma_cap_iw_cm(id->device, 1)) {
3978 			ret = cma_iw_listen(id_priv, backlog);
3979 			if (ret)
3980 				goto err;
3981 		} else {
3982 			ret = -ENOSYS;
3983 			goto err;
3984 		}
3985 	} else {
3986 		ret = cma_listen_on_all(id_priv);
3987 		if (ret)
3988 			goto err;
3989 	}
3990 
3991 	return 0;
3992 err:
3993 	id_priv->backlog = 0;
3994 	/*
3995 	 * All the failure paths that lead here will not allow the req_handler's
3996 	 * to have run.
3997 	 */
3998 	cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND);
3999 	return ret;
4000 }
4001 EXPORT_SYMBOL(rdma_listen);
4002 
4003 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv,
4004 			      struct sockaddr *addr, const struct sockaddr *daddr)
4005 {
4006 	struct sockaddr *id_daddr;
4007 	int ret;
4008 
4009 	if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 &&
4010 	    addr->sa_family != AF_IB)
4011 		return -EAFNOSUPPORT;
4012 
4013 	if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND))
4014 		return -EINVAL;
4015 
4016 	ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr);
4017 	if (ret)
4018 		goto err1;
4019 
4020 	memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr));
4021 	if (!cma_any_addr(addr)) {
4022 		ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr);
4023 		if (ret)
4024 			goto err1;
4025 
4026 		ret = cma_acquire_dev_by_src_ip(id_priv);
4027 		if (ret)
4028 			goto err1;
4029 	}
4030 
4031 	if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) {
4032 		if (addr->sa_family == AF_INET)
4033 			id_priv->afonly = 1;
4034 #if IS_ENABLED(CONFIG_IPV6)
4035 		else if (addr->sa_family == AF_INET6) {
4036 			struct net *net = id_priv->id.route.addr.dev_addr.net;
4037 
4038 			id_priv->afonly = net->ipv6.sysctl.bindv6only;
4039 		}
4040 #endif
4041 	}
4042 	id_daddr = cma_dst_addr(id_priv);
4043 	if (daddr != id_daddr)
4044 		memcpy(id_daddr, daddr, rdma_addr_size(addr));
4045 	id_daddr->sa_family = addr->sa_family;
4046 
4047 	ret = cma_get_port(id_priv);
4048 	if (ret)
4049 		goto err2;
4050 
4051 	if (!cma_any_addr(addr))
4052 		rdma_restrack_add(&id_priv->res);
4053 	return 0;
4054 err2:
4055 	if (id_priv->cma_dev)
4056 		cma_release_dev(id_priv);
4057 err1:
4058 	cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE);
4059 	return ret;
4060 }
4061 
4062 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4063 			 const struct sockaddr *dst_addr)
4064 {
4065 	struct rdma_id_private *id_priv =
4066 		container_of(id, struct rdma_id_private, id);
4067 	struct sockaddr_storage zero_sock = {};
4068 
4069 	if (src_addr && src_addr->sa_family)
4070 		return rdma_bind_addr_dst(id_priv, src_addr, dst_addr);
4071 
4072 	/*
4073 	 * When the src_addr is not specified, automatically supply an any addr
4074 	 */
4075 	zero_sock.ss_family = dst_addr->sa_family;
4076 	if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) {
4077 		struct sockaddr_in6 *src_addr6 =
4078 			(struct sockaddr_in6 *)&zero_sock;
4079 		struct sockaddr_in6 *dst_addr6 =
4080 			(struct sockaddr_in6 *)dst_addr;
4081 
4082 		src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id;
4083 		if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
4084 			id->route.addr.dev_addr.bound_dev_if =
4085 				dst_addr6->sin6_scope_id;
4086 	} else if (dst_addr->sa_family == AF_IB) {
4087 		((struct sockaddr_ib *)&zero_sock)->sib_pkey =
4088 			((struct sockaddr_ib *)dst_addr)->sib_pkey;
4089 	}
4090 	return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr);
4091 }
4092 
4093 /*
4094  * If required, resolve the source address for bind and leave the id_priv in
4095  * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior
4096  * calls made by ULP, a previously bound ID will not be re-bound and src_addr is
4097  * ignored.
4098  */
4099 static int resolve_prepare_src(struct rdma_id_private *id_priv,
4100 			       struct sockaddr *src_addr,
4101 			       const struct sockaddr *dst_addr)
4102 {
4103 	int ret;
4104 
4105 	if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) {
4106 		/* For a well behaved ULP state will be RDMA_CM_IDLE */
4107 		ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr);
4108 		if (ret)
4109 			return ret;
4110 		if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND,
4111 					   RDMA_CM_ADDR_QUERY)))
4112 			return -EINVAL;
4113 
4114 	} else {
4115 		memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr));
4116 	}
4117 
4118 	if (cma_family(id_priv) != dst_addr->sa_family) {
4119 		ret = -EINVAL;
4120 		goto err_state;
4121 	}
4122 	return 0;
4123 
4124 err_state:
4125 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4126 	return ret;
4127 }
4128 
4129 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr,
4130 		      const struct sockaddr *dst_addr, unsigned long timeout_ms)
4131 {
4132 	struct rdma_id_private *id_priv =
4133 		container_of(id, struct rdma_id_private, id);
4134 	int ret;
4135 
4136 	ret = resolve_prepare_src(id_priv, src_addr, dst_addr);
4137 	if (ret)
4138 		return ret;
4139 
4140 	if (cma_any_addr(dst_addr)) {
4141 		ret = cma_resolve_loopback(id_priv);
4142 	} else {
4143 		if (dst_addr->sa_family == AF_IB) {
4144 			ret = cma_resolve_ib_addr(id_priv);
4145 		} else {
4146 			/*
4147 			 * The FSM can return back to RDMA_CM_ADDR_BOUND after
4148 			 * rdma_resolve_ip() is called, eg through the error
4149 			 * path in addr_handler(). If this happens the existing
4150 			 * request must be canceled before issuing a new one.
4151 			 * Since canceling a request is a bit slow and this
4152 			 * oddball path is rare, keep track once a request has
4153 			 * been issued. The track turns out to be a permanent
4154 			 * state since this is the only cancel as it is
4155 			 * immediately before rdma_resolve_ip().
4156 			 */
4157 			if (id_priv->used_resolve_ip)
4158 				rdma_addr_cancel(&id->route.addr.dev_addr);
4159 			else
4160 				id_priv->used_resolve_ip = 1;
4161 			ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr,
4162 					      &id->route.addr.dev_addr,
4163 					      timeout_ms, addr_handler,
4164 					      false, id_priv);
4165 		}
4166 	}
4167 	if (ret)
4168 		goto err;
4169 
4170 	return 0;
4171 err:
4172 	cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND);
4173 	return ret;
4174 }
4175 EXPORT_SYMBOL(rdma_resolve_addr);
4176 
4177 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr)
4178 {
4179 	struct rdma_id_private *id_priv =
4180 		container_of(id, struct rdma_id_private, id);
4181 
4182 	return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv));
4183 }
4184 EXPORT_SYMBOL(rdma_bind_addr);
4185 
4186 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv)
4187 {
4188 	struct cma_hdr *cma_hdr;
4189 
4190 	cma_hdr = hdr;
4191 	cma_hdr->cma_version = CMA_VERSION;
4192 	if (cma_family(id_priv) == AF_INET) {
4193 		struct sockaddr_in *src4, *dst4;
4194 
4195 		src4 = (struct sockaddr_in *) cma_src_addr(id_priv);
4196 		dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv);
4197 
4198 		cma_set_ip_ver(cma_hdr, 4);
4199 		cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr;
4200 		cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr;
4201 		cma_hdr->port = src4->sin_port;
4202 	} else if (cma_family(id_priv) == AF_INET6) {
4203 		struct sockaddr_in6 *src6, *dst6;
4204 
4205 		src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv);
4206 		dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv);
4207 
4208 		cma_set_ip_ver(cma_hdr, 6);
4209 		cma_hdr->src_addr.ip6 = src6->sin6_addr;
4210 		cma_hdr->dst_addr.ip6 = dst6->sin6_addr;
4211 		cma_hdr->port = src6->sin6_port;
4212 	}
4213 	return 0;
4214 }
4215 
4216 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id,
4217 				const struct ib_cm_event *ib_event)
4218 {
4219 	struct rdma_id_private *id_priv = cm_id->context;
4220 	struct rdma_cm_event event = {};
4221 	const struct ib_cm_sidr_rep_event_param *rep =
4222 				&ib_event->param.sidr_rep_rcvd;
4223 	int ret;
4224 
4225 	mutex_lock(&id_priv->handler_mutex);
4226 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4227 		goto out;
4228 
4229 	switch (ib_event->event) {
4230 	case IB_CM_SIDR_REQ_ERROR:
4231 		event.event = RDMA_CM_EVENT_UNREACHABLE;
4232 		event.status = -ETIMEDOUT;
4233 		break;
4234 	case IB_CM_SIDR_REP_RECEIVED:
4235 		event.param.ud.private_data = ib_event->private_data;
4236 		event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE;
4237 		if (rep->status != IB_SIDR_SUCCESS) {
4238 			event.event = RDMA_CM_EVENT_UNREACHABLE;
4239 			event.status = ib_event->param.sidr_rep_rcvd.status;
4240 			pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n",
4241 					     event.status);
4242 			break;
4243 		}
4244 		ret = cma_set_qkey(id_priv, rep->qkey);
4245 		if (ret) {
4246 			pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret);
4247 			event.event = RDMA_CM_EVENT_ADDR_ERROR;
4248 			event.status = ret;
4249 			break;
4250 		}
4251 		ib_init_ah_attr_from_path(id_priv->id.device,
4252 					  id_priv->id.port_num,
4253 					  id_priv->id.route.path_rec,
4254 					  &event.param.ud.ah_attr,
4255 					  rep->sgid_attr);
4256 		event.param.ud.qp_num = rep->qpn;
4257 		event.param.ud.qkey = rep->qkey;
4258 		event.event = RDMA_CM_EVENT_ESTABLISHED;
4259 		event.status = 0;
4260 		break;
4261 	default:
4262 		pr_err("RDMA CMA: unexpected IB CM event: %d\n",
4263 		       ib_event->event);
4264 		goto out;
4265 	}
4266 
4267 	ret = cma_cm_event_handler(id_priv, &event);
4268 
4269 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4270 	if (ret) {
4271 		/* Destroy the CM ID by returning a non-zero value. */
4272 		id_priv->cm_id.ib = NULL;
4273 		destroy_id_handler_unlock(id_priv);
4274 		return ret;
4275 	}
4276 out:
4277 	mutex_unlock(&id_priv->handler_mutex);
4278 	return 0;
4279 }
4280 
4281 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv,
4282 			      struct rdma_conn_param *conn_param)
4283 {
4284 	struct ib_cm_sidr_req_param req;
4285 	struct ib_cm_id	*id;
4286 	void *private_data;
4287 	u8 offset;
4288 	int ret;
4289 
4290 	memset(&req, 0, sizeof req);
4291 	offset = cma_user_data_offset(id_priv);
4292 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4293 		return -EINVAL;
4294 
4295 	if (req.private_data_len) {
4296 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4297 		if (!private_data)
4298 			return -ENOMEM;
4299 	} else {
4300 		private_data = NULL;
4301 	}
4302 
4303 	if (conn_param->private_data && conn_param->private_data_len)
4304 		memcpy(private_data + offset, conn_param->private_data,
4305 		       conn_param->private_data_len);
4306 
4307 	if (private_data) {
4308 		ret = cma_format_hdr(private_data, id_priv);
4309 		if (ret)
4310 			goto out;
4311 		req.private_data = private_data;
4312 	}
4313 
4314 	id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler,
4315 			     id_priv);
4316 	if (IS_ERR(id)) {
4317 		ret = PTR_ERR(id);
4318 		goto out;
4319 	}
4320 	id_priv->cm_id.ib = id;
4321 
4322 	req.path = id_priv->id.route.path_rec;
4323 	req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4324 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4325 	req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8);
4326 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4327 
4328 	trace_cm_send_sidr_req(id_priv);
4329 	ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req);
4330 	if (ret) {
4331 		ib_destroy_cm_id(id_priv->cm_id.ib);
4332 		id_priv->cm_id.ib = NULL;
4333 	}
4334 out:
4335 	kfree(private_data);
4336 	return ret;
4337 }
4338 
4339 static int cma_connect_ib(struct rdma_id_private *id_priv,
4340 			  struct rdma_conn_param *conn_param)
4341 {
4342 	struct ib_cm_req_param req;
4343 	struct rdma_route *route;
4344 	void *private_data;
4345 	struct ib_cm_id	*id;
4346 	u8 offset;
4347 	int ret;
4348 
4349 	memset(&req, 0, sizeof req);
4350 	offset = cma_user_data_offset(id_priv);
4351 	if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len))
4352 		return -EINVAL;
4353 
4354 	if (req.private_data_len) {
4355 		private_data = kzalloc(req.private_data_len, GFP_ATOMIC);
4356 		if (!private_data)
4357 			return -ENOMEM;
4358 	} else {
4359 		private_data = NULL;
4360 	}
4361 
4362 	if (conn_param->private_data && conn_param->private_data_len)
4363 		memcpy(private_data + offset, conn_param->private_data,
4364 		       conn_param->private_data_len);
4365 
4366 	id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv);
4367 	if (IS_ERR(id)) {
4368 		ret = PTR_ERR(id);
4369 		goto out;
4370 	}
4371 	id_priv->cm_id.ib = id;
4372 
4373 	route = &id_priv->id.route;
4374 	if (private_data) {
4375 		ret = cma_format_hdr(private_data, id_priv);
4376 		if (ret)
4377 			goto out;
4378 		req.private_data = private_data;
4379 	}
4380 
4381 	req.primary_path = &route->path_rec[0];
4382 	req.primary_path_inbound = route->path_rec_inbound;
4383 	req.primary_path_outbound = route->path_rec_outbound;
4384 	if (route->num_pri_alt_paths == 2)
4385 		req.alternate_path = &route->path_rec[1];
4386 
4387 	req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr;
4388 	/* Alternate path SGID attribute currently unsupported */
4389 	req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv));
4390 	req.qp_num = id_priv->qp_num;
4391 	req.qp_type = id_priv->id.qp_type;
4392 	req.starting_psn = id_priv->seq_num;
4393 	req.responder_resources = conn_param->responder_resources;
4394 	req.initiator_depth = conn_param->initiator_depth;
4395 	req.flow_control = conn_param->flow_control;
4396 	req.retry_count = min_t(u8, 7, conn_param->retry_count);
4397 	req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4398 	req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4399 	req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT;
4400 	req.max_cm_retries = CMA_MAX_CM_RETRIES;
4401 	req.srq = id_priv->srq ? 1 : 0;
4402 	req.ece.vendor_id = id_priv->ece.vendor_id;
4403 	req.ece.attr_mod = id_priv->ece.attr_mod;
4404 
4405 	trace_cm_send_req(id_priv);
4406 	ret = ib_send_cm_req(id_priv->cm_id.ib, &req);
4407 out:
4408 	if (ret && !IS_ERR(id)) {
4409 		ib_destroy_cm_id(id);
4410 		id_priv->cm_id.ib = NULL;
4411 	}
4412 
4413 	kfree(private_data);
4414 	return ret;
4415 }
4416 
4417 static int cma_connect_iw(struct rdma_id_private *id_priv,
4418 			  struct rdma_conn_param *conn_param)
4419 {
4420 	struct iw_cm_id *cm_id;
4421 	int ret;
4422 	struct iw_cm_conn_param iw_param;
4423 
4424 	cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv);
4425 	if (IS_ERR(cm_id))
4426 		return PTR_ERR(cm_id);
4427 
4428 	mutex_lock(&id_priv->qp_mutex);
4429 	cm_id->tos = id_priv->tos;
4430 	cm_id->tos_set = id_priv->tos_set;
4431 	mutex_unlock(&id_priv->qp_mutex);
4432 
4433 	id_priv->cm_id.iw = cm_id;
4434 
4435 	memcpy(&cm_id->local_addr, cma_src_addr(id_priv),
4436 	       rdma_addr_size(cma_src_addr(id_priv)));
4437 	memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv),
4438 	       rdma_addr_size(cma_dst_addr(id_priv)));
4439 
4440 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4441 	if (ret)
4442 		goto out;
4443 
4444 	if (conn_param) {
4445 		iw_param.ord = conn_param->initiator_depth;
4446 		iw_param.ird = conn_param->responder_resources;
4447 		iw_param.private_data = conn_param->private_data;
4448 		iw_param.private_data_len = conn_param->private_data_len;
4449 		iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num;
4450 	} else {
4451 		memset(&iw_param, 0, sizeof iw_param);
4452 		iw_param.qpn = id_priv->qp_num;
4453 	}
4454 	ret = iw_cm_connect(cm_id, &iw_param);
4455 out:
4456 	if (ret) {
4457 		iw_destroy_cm_id(cm_id);
4458 		id_priv->cm_id.iw = NULL;
4459 	}
4460 	return ret;
4461 }
4462 
4463 /**
4464  * rdma_connect_locked - Initiate an active connection request.
4465  * @id: Connection identifier to connect.
4466  * @conn_param: Connection information used for connected QPs.
4467  *
4468  * Same as rdma_connect() but can only be called from the
4469  * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback.
4470  */
4471 int rdma_connect_locked(struct rdma_cm_id *id,
4472 			struct rdma_conn_param *conn_param)
4473 {
4474 	struct rdma_id_private *id_priv =
4475 		container_of(id, struct rdma_id_private, id);
4476 	int ret;
4477 
4478 	if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT))
4479 		return -EINVAL;
4480 
4481 	if (!id->qp) {
4482 		id_priv->qp_num = conn_param->qp_num;
4483 		id_priv->srq = conn_param->srq;
4484 	}
4485 
4486 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4487 		if (id->qp_type == IB_QPT_UD)
4488 			ret = cma_resolve_ib_udp(id_priv, conn_param);
4489 		else
4490 			ret = cma_connect_ib(id_priv, conn_param);
4491 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4492 		ret = cma_connect_iw(id_priv, conn_param);
4493 	} else {
4494 		ret = -ENOSYS;
4495 	}
4496 	if (ret)
4497 		goto err_state;
4498 	return 0;
4499 err_state:
4500 	cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED);
4501 	return ret;
4502 }
4503 EXPORT_SYMBOL(rdma_connect_locked);
4504 
4505 /**
4506  * rdma_connect - Initiate an active connection request.
4507  * @id: Connection identifier to connect.
4508  * @conn_param: Connection information used for connected QPs.
4509  *
4510  * Users must have resolved a route for the rdma_cm_id to connect with by having
4511  * called rdma_resolve_route before calling this routine.
4512  *
4513  * This call will either connect to a remote QP or obtain remote QP information
4514  * for unconnected rdma_cm_id's.  The actual operation is based on the
4515  * rdma_cm_id's port space.
4516  */
4517 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4518 {
4519 	struct rdma_id_private *id_priv =
4520 		container_of(id, struct rdma_id_private, id);
4521 	int ret;
4522 
4523 	mutex_lock(&id_priv->handler_mutex);
4524 	ret = rdma_connect_locked(id, conn_param);
4525 	mutex_unlock(&id_priv->handler_mutex);
4526 	return ret;
4527 }
4528 EXPORT_SYMBOL(rdma_connect);
4529 
4530 /**
4531  * rdma_connect_ece - Initiate an active connection request with ECE data.
4532  * @id: Connection identifier to connect.
4533  * @conn_param: Connection information used for connected QPs.
4534  * @ece: ECE parameters
4535  *
4536  * See rdma_connect() explanation.
4537  */
4538 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4539 		     struct rdma_ucm_ece *ece)
4540 {
4541 	struct rdma_id_private *id_priv =
4542 		container_of(id, struct rdma_id_private, id);
4543 
4544 	id_priv->ece.vendor_id = ece->vendor_id;
4545 	id_priv->ece.attr_mod = ece->attr_mod;
4546 
4547 	return rdma_connect(id, conn_param);
4548 }
4549 EXPORT_SYMBOL(rdma_connect_ece);
4550 
4551 static int cma_accept_ib(struct rdma_id_private *id_priv,
4552 			 struct rdma_conn_param *conn_param)
4553 {
4554 	struct ib_cm_rep_param rep;
4555 	int ret;
4556 
4557 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4558 	if (ret)
4559 		goto out;
4560 
4561 	ret = cma_modify_qp_rts(id_priv, conn_param);
4562 	if (ret)
4563 		goto out;
4564 
4565 	memset(&rep, 0, sizeof rep);
4566 	rep.qp_num = id_priv->qp_num;
4567 	rep.starting_psn = id_priv->seq_num;
4568 	rep.private_data = conn_param->private_data;
4569 	rep.private_data_len = conn_param->private_data_len;
4570 	rep.responder_resources = conn_param->responder_resources;
4571 	rep.initiator_depth = conn_param->initiator_depth;
4572 	rep.failover_accepted = 0;
4573 	rep.flow_control = conn_param->flow_control;
4574 	rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count);
4575 	rep.srq = id_priv->srq ? 1 : 0;
4576 	rep.ece.vendor_id = id_priv->ece.vendor_id;
4577 	rep.ece.attr_mod = id_priv->ece.attr_mod;
4578 
4579 	trace_cm_send_rep(id_priv);
4580 	ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep);
4581 out:
4582 	return ret;
4583 }
4584 
4585 static int cma_accept_iw(struct rdma_id_private *id_priv,
4586 		  struct rdma_conn_param *conn_param)
4587 {
4588 	struct iw_cm_conn_param iw_param;
4589 	int ret;
4590 
4591 	if (!conn_param)
4592 		return -EINVAL;
4593 
4594 	ret = cma_modify_qp_rtr(id_priv, conn_param);
4595 	if (ret)
4596 		return ret;
4597 
4598 	iw_param.ord = conn_param->initiator_depth;
4599 	iw_param.ird = conn_param->responder_resources;
4600 	iw_param.private_data = conn_param->private_data;
4601 	iw_param.private_data_len = conn_param->private_data_len;
4602 	if (id_priv->id.qp)
4603 		iw_param.qpn = id_priv->qp_num;
4604 	else
4605 		iw_param.qpn = conn_param->qp_num;
4606 
4607 	return iw_cm_accept(id_priv->cm_id.iw, &iw_param);
4608 }
4609 
4610 static int cma_send_sidr_rep(struct rdma_id_private *id_priv,
4611 			     enum ib_cm_sidr_status status, u32 qkey,
4612 			     const void *private_data, int private_data_len)
4613 {
4614 	struct ib_cm_sidr_rep_param rep;
4615 	int ret;
4616 
4617 	memset(&rep, 0, sizeof rep);
4618 	rep.status = status;
4619 	if (status == IB_SIDR_SUCCESS) {
4620 		if (qkey)
4621 			ret = cma_set_qkey(id_priv, qkey);
4622 		else
4623 			ret = cma_set_default_qkey(id_priv);
4624 		if (ret)
4625 			return ret;
4626 		rep.qp_num = id_priv->qp_num;
4627 		rep.qkey = id_priv->qkey;
4628 
4629 		rep.ece.vendor_id = id_priv->ece.vendor_id;
4630 		rep.ece.attr_mod = id_priv->ece.attr_mod;
4631 	}
4632 
4633 	rep.private_data = private_data;
4634 	rep.private_data_len = private_data_len;
4635 
4636 	trace_cm_send_sidr_rep(id_priv);
4637 	return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep);
4638 }
4639 
4640 /**
4641  * rdma_accept - Called to accept a connection request or response.
4642  * @id: Connection identifier associated with the request.
4643  * @conn_param: Information needed to establish the connection.  This must be
4644  *   provided if accepting a connection request.  If accepting a connection
4645  *   response, this parameter must be NULL.
4646  *
4647  * Typically, this routine is only called by the listener to accept a connection
4648  * request.  It must also be called on the active side of a connection if the
4649  * user is performing their own QP transitions.
4650  *
4651  * In the case of error, a reject message is sent to the remote side and the
4652  * state of the qp associated with the id is modified to error, such that any
4653  * previously posted receive buffers would be flushed.
4654  *
4655  * This function is for use by kernel ULPs and must be called from under the
4656  * handler callback.
4657  */
4658 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param)
4659 {
4660 	struct rdma_id_private *id_priv =
4661 		container_of(id, struct rdma_id_private, id);
4662 	int ret;
4663 
4664 	lockdep_assert_held(&id_priv->handler_mutex);
4665 
4666 	if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT)
4667 		return -EINVAL;
4668 
4669 	if (!id->qp && conn_param) {
4670 		id_priv->qp_num = conn_param->qp_num;
4671 		id_priv->srq = conn_param->srq;
4672 	}
4673 
4674 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4675 		if (id->qp_type == IB_QPT_UD) {
4676 			if (conn_param)
4677 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4678 							conn_param->qkey,
4679 							conn_param->private_data,
4680 							conn_param->private_data_len);
4681 			else
4682 				ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS,
4683 							0, NULL, 0);
4684 		} else {
4685 			if (conn_param)
4686 				ret = cma_accept_ib(id_priv, conn_param);
4687 			else
4688 				ret = cma_rep_recv(id_priv);
4689 		}
4690 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4691 		ret = cma_accept_iw(id_priv, conn_param);
4692 	} else {
4693 		ret = -ENOSYS;
4694 	}
4695 	if (ret)
4696 		goto reject;
4697 
4698 	return 0;
4699 reject:
4700 	cma_modify_qp_err(id_priv);
4701 	rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED);
4702 	return ret;
4703 }
4704 EXPORT_SYMBOL(rdma_accept);
4705 
4706 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param,
4707 		    struct rdma_ucm_ece *ece)
4708 {
4709 	struct rdma_id_private *id_priv =
4710 		container_of(id, struct rdma_id_private, id);
4711 
4712 	id_priv->ece.vendor_id = ece->vendor_id;
4713 	id_priv->ece.attr_mod = ece->attr_mod;
4714 
4715 	return rdma_accept(id, conn_param);
4716 }
4717 EXPORT_SYMBOL(rdma_accept_ece);
4718 
4719 void rdma_lock_handler(struct rdma_cm_id *id)
4720 {
4721 	struct rdma_id_private *id_priv =
4722 		container_of(id, struct rdma_id_private, id);
4723 
4724 	mutex_lock(&id_priv->handler_mutex);
4725 }
4726 EXPORT_SYMBOL(rdma_lock_handler);
4727 
4728 void rdma_unlock_handler(struct rdma_cm_id *id)
4729 {
4730 	struct rdma_id_private *id_priv =
4731 		container_of(id, struct rdma_id_private, id);
4732 
4733 	mutex_unlock(&id_priv->handler_mutex);
4734 }
4735 EXPORT_SYMBOL(rdma_unlock_handler);
4736 
4737 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event)
4738 {
4739 	struct rdma_id_private *id_priv;
4740 	int ret;
4741 
4742 	id_priv = container_of(id, struct rdma_id_private, id);
4743 	if (!id_priv->cm_id.ib)
4744 		return -EINVAL;
4745 
4746 	switch (id->device->node_type) {
4747 	case RDMA_NODE_IB_CA:
4748 		ret = ib_cm_notify(id_priv->cm_id.ib, event);
4749 		break;
4750 	default:
4751 		ret = 0;
4752 		break;
4753 	}
4754 	return ret;
4755 }
4756 EXPORT_SYMBOL(rdma_notify);
4757 
4758 int rdma_reject(struct rdma_cm_id *id, const void *private_data,
4759 		u8 private_data_len, u8 reason)
4760 {
4761 	struct rdma_id_private *id_priv;
4762 	int ret;
4763 
4764 	id_priv = container_of(id, struct rdma_id_private, id);
4765 	if (!id_priv->cm_id.ib)
4766 		return -EINVAL;
4767 
4768 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4769 		if (id->qp_type == IB_QPT_UD) {
4770 			ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0,
4771 						private_data, private_data_len);
4772 		} else {
4773 			trace_cm_send_rej(id_priv);
4774 			ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0,
4775 					     private_data, private_data_len);
4776 		}
4777 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4778 		ret = iw_cm_reject(id_priv->cm_id.iw,
4779 				   private_data, private_data_len);
4780 	} else {
4781 		ret = -ENOSYS;
4782 	}
4783 
4784 	return ret;
4785 }
4786 EXPORT_SYMBOL(rdma_reject);
4787 
4788 int rdma_disconnect(struct rdma_cm_id *id)
4789 {
4790 	struct rdma_id_private *id_priv;
4791 	int ret;
4792 
4793 	id_priv = container_of(id, struct rdma_id_private, id);
4794 	if (!id_priv->cm_id.ib)
4795 		return -EINVAL;
4796 
4797 	if (rdma_cap_ib_cm(id->device, id->port_num)) {
4798 		ret = cma_modify_qp_err(id_priv);
4799 		if (ret)
4800 			goto out;
4801 		/* Initiate or respond to a disconnect. */
4802 		trace_cm_disconnect(id_priv);
4803 		if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) {
4804 			if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0))
4805 				trace_cm_sent_drep(id_priv);
4806 		} else {
4807 			trace_cm_sent_dreq(id_priv);
4808 		}
4809 	} else if (rdma_cap_iw_cm(id->device, id->port_num)) {
4810 		ret = iw_cm_disconnect(id_priv->cm_id.iw, 0);
4811 	} else
4812 		ret = -EINVAL;
4813 
4814 out:
4815 	return ret;
4816 }
4817 EXPORT_SYMBOL(rdma_disconnect);
4818 
4819 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv,
4820 			      struct ib_sa_multicast *multicast,
4821 			      struct rdma_cm_event *event,
4822 			      struct cma_multicast *mc)
4823 {
4824 	struct rdma_dev_addr *dev_addr;
4825 	enum ib_gid_type gid_type;
4826 	struct net_device *ndev;
4827 
4828 	if (status)
4829 		pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n",
4830 				     status);
4831 
4832 	event->status = status;
4833 	event->param.ud.private_data = mc->context;
4834 	if (status) {
4835 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4836 		return;
4837 	}
4838 
4839 	dev_addr = &id_priv->id.route.addr.dev_addr;
4840 	ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
4841 	gid_type =
4842 		id_priv->cma_dev
4843 			->default_gid_type[id_priv->id.port_num -
4844 					   rdma_start_port(
4845 						   id_priv->cma_dev->device)];
4846 
4847 	event->event = RDMA_CM_EVENT_MULTICAST_JOIN;
4848 	if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num,
4849 				     &multicast->rec, ndev, gid_type,
4850 				     &event->param.ud.ah_attr)) {
4851 		event->event = RDMA_CM_EVENT_MULTICAST_ERROR;
4852 		goto out;
4853 	}
4854 
4855 	event->param.ud.qp_num = 0xFFFFFF;
4856 	event->param.ud.qkey = id_priv->qkey;
4857 
4858 out:
4859 	dev_put(ndev);
4860 }
4861 
4862 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast)
4863 {
4864 	struct cma_multicast *mc = multicast->context;
4865 	struct rdma_id_private *id_priv = mc->id_priv;
4866 	struct rdma_cm_event event = {};
4867 	int ret = 0;
4868 
4869 	mutex_lock(&id_priv->handler_mutex);
4870 	if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL ||
4871 	    READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING)
4872 		goto out;
4873 
4874 	ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey));
4875 	if (!ret) {
4876 		cma_make_mc_event(status, id_priv, multicast, &event, mc);
4877 		ret = cma_cm_event_handler(id_priv, &event);
4878 	}
4879 	rdma_destroy_ah_attr(&event.param.ud.ah_attr);
4880 	WARN_ON(ret);
4881 
4882 out:
4883 	mutex_unlock(&id_priv->handler_mutex);
4884 	return 0;
4885 }
4886 
4887 static void cma_set_mgid(struct rdma_id_private *id_priv,
4888 			 struct sockaddr *addr, union ib_gid *mgid)
4889 {
4890 	unsigned char mc_map[MAX_ADDR_LEN];
4891 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4892 	struct sockaddr_in *sin = (struct sockaddr_in *) addr;
4893 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr;
4894 
4895 	if (cma_any_addr(addr)) {
4896 		memset(mgid, 0, sizeof *mgid);
4897 	} else if ((addr->sa_family == AF_INET6) &&
4898 		   ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) ==
4899 								 0xFF10A01B)) {
4900 		/* IPv6 address is an SA assigned MGID. */
4901 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4902 	} else if (addr->sa_family == AF_IB) {
4903 		memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid);
4904 	} else if (addr->sa_family == AF_INET6) {
4905 		ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map);
4906 		if (id_priv->id.ps == RDMA_PS_UDP)
4907 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4908 		*mgid = *(union ib_gid *) (mc_map + 4);
4909 	} else {
4910 		ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map);
4911 		if (id_priv->id.ps == RDMA_PS_UDP)
4912 			mc_map[7] = 0x01;	/* Use RDMA CM signature */
4913 		*mgid = *(union ib_gid *) (mc_map + 4);
4914 	}
4915 }
4916 
4917 static int cma_join_ib_multicast(struct rdma_id_private *id_priv,
4918 				 struct cma_multicast *mc)
4919 {
4920 	struct ib_sa_mcmember_rec rec;
4921 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4922 	ib_sa_comp_mask comp_mask;
4923 	int ret;
4924 
4925 	ib_addr_get_mgid(dev_addr, &rec.mgid);
4926 	ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num,
4927 				     &rec.mgid, &rec);
4928 	if (ret)
4929 		return ret;
4930 
4931 	if (!id_priv->qkey) {
4932 		ret = cma_set_default_qkey(id_priv);
4933 		if (ret)
4934 			return ret;
4935 	}
4936 
4937 	cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid);
4938 	rec.qkey = cpu_to_be32(id_priv->qkey);
4939 	rdma_addr_get_sgid(dev_addr, &rec.port_gid);
4940 	rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr));
4941 	rec.join_state = mc->join_state;
4942 
4943 	comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID |
4944 		    IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE |
4945 		    IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL |
4946 		    IB_SA_MCMEMBER_REC_FLOW_LABEL |
4947 		    IB_SA_MCMEMBER_REC_TRAFFIC_CLASS;
4948 
4949 	if (id_priv->id.ps == RDMA_PS_IPOIB)
4950 		comp_mask |= IB_SA_MCMEMBER_REC_RATE |
4951 			     IB_SA_MCMEMBER_REC_RATE_SELECTOR |
4952 			     IB_SA_MCMEMBER_REC_MTU_SELECTOR |
4953 			     IB_SA_MCMEMBER_REC_MTU |
4954 			     IB_SA_MCMEMBER_REC_HOP_LIMIT;
4955 
4956 	mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device,
4957 					 id_priv->id.port_num, &rec, comp_mask,
4958 					 GFP_KERNEL, cma_ib_mc_handler, mc);
4959 	return PTR_ERR_OR_ZERO(mc->sa_mc);
4960 }
4961 
4962 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid,
4963 			      enum ib_gid_type gid_type)
4964 {
4965 	struct sockaddr_in *sin = (struct sockaddr_in *)addr;
4966 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr;
4967 
4968 	if (cma_any_addr(addr)) {
4969 		memset(mgid, 0, sizeof *mgid);
4970 	} else if (addr->sa_family == AF_INET6) {
4971 		memcpy(mgid, &sin6->sin6_addr, sizeof *mgid);
4972 	} else {
4973 		mgid->raw[0] =
4974 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff;
4975 		mgid->raw[1] =
4976 			(gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e;
4977 		mgid->raw[2] = 0;
4978 		mgid->raw[3] = 0;
4979 		mgid->raw[4] = 0;
4980 		mgid->raw[5] = 0;
4981 		mgid->raw[6] = 0;
4982 		mgid->raw[7] = 0;
4983 		mgid->raw[8] = 0;
4984 		mgid->raw[9] = 0;
4985 		mgid->raw[10] = 0xff;
4986 		mgid->raw[11] = 0xff;
4987 		*(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr;
4988 	}
4989 }
4990 
4991 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv,
4992 				   struct cma_multicast *mc)
4993 {
4994 	struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr;
4995 	int err = 0;
4996 	struct sockaddr *addr = (struct sockaddr *)&mc->addr;
4997 	struct net_device *ndev = NULL;
4998 	struct ib_sa_multicast ib = {};
4999 	enum ib_gid_type gid_type;
5000 	bool send_only;
5001 
5002 	send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN);
5003 
5004 	if (cma_zero_addr(addr))
5005 		return -EINVAL;
5006 
5007 	gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num -
5008 		   rdma_start_port(id_priv->cma_dev->device)];
5009 	cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type);
5010 
5011 	ib.rec.pkey = cpu_to_be16(0xffff);
5012 	if (dev_addr->bound_dev_if)
5013 		ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
5014 	if (!ndev)
5015 		return -ENODEV;
5016 
5017 	ib.rec.rate = IB_RATE_PORT_CURRENT;
5018 	ib.rec.hop_limit = 1;
5019 	ib.rec.mtu = iboe_get_mtu(ndev->mtu);
5020 
5021 	if (addr->sa_family == AF_INET) {
5022 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) {
5023 			ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT;
5024 			if (!send_only) {
5025 				err = cma_igmp_send(ndev, &ib.rec.mgid,
5026 						    true);
5027 			}
5028 		}
5029 	} else {
5030 		if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP)
5031 			err = -ENOTSUPP;
5032 	}
5033 	dev_put(ndev);
5034 	if (err || !ib.rec.mtu)
5035 		return err ?: -EINVAL;
5036 
5037 	if (!id_priv->qkey)
5038 		cma_set_default_qkey(id_priv);
5039 
5040 	rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr,
5041 		    &ib.rec.port_gid);
5042 	INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler);
5043 	cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc);
5044 	queue_work(cma_wq, &mc->iboe_join.work);
5045 	return 0;
5046 }
5047 
5048 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr,
5049 			u8 join_state, void *context)
5050 {
5051 	struct rdma_id_private *id_priv =
5052 		container_of(id, struct rdma_id_private, id);
5053 	struct cma_multicast *mc;
5054 	int ret;
5055 
5056 	/* Not supported for kernel QPs */
5057 	if (WARN_ON(id->qp))
5058 		return -EINVAL;
5059 
5060 	/* ULP is calling this wrong. */
5061 	if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND &&
5062 			    READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED))
5063 		return -EINVAL;
5064 
5065 	if (id_priv->id.qp_type != IB_QPT_UD)
5066 		return -EINVAL;
5067 
5068 	mc = kzalloc(sizeof(*mc), GFP_KERNEL);
5069 	if (!mc)
5070 		return -ENOMEM;
5071 
5072 	memcpy(&mc->addr, addr, rdma_addr_size(addr));
5073 	mc->context = context;
5074 	mc->id_priv = id_priv;
5075 	mc->join_state = join_state;
5076 
5077 	if (rdma_protocol_roce(id->device, id->port_num)) {
5078 		ret = cma_iboe_join_multicast(id_priv, mc);
5079 		if (ret)
5080 			goto out_err;
5081 	} else if (rdma_cap_ib_mcast(id->device, id->port_num)) {
5082 		ret = cma_join_ib_multicast(id_priv, mc);
5083 		if (ret)
5084 			goto out_err;
5085 	} else {
5086 		ret = -ENOSYS;
5087 		goto out_err;
5088 	}
5089 
5090 	spin_lock(&id_priv->lock);
5091 	list_add(&mc->list, &id_priv->mc_list);
5092 	spin_unlock(&id_priv->lock);
5093 
5094 	return 0;
5095 out_err:
5096 	kfree(mc);
5097 	return ret;
5098 }
5099 EXPORT_SYMBOL(rdma_join_multicast);
5100 
5101 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr)
5102 {
5103 	struct rdma_id_private *id_priv;
5104 	struct cma_multicast *mc;
5105 
5106 	id_priv = container_of(id, struct rdma_id_private, id);
5107 	spin_lock_irq(&id_priv->lock);
5108 	list_for_each_entry(mc, &id_priv->mc_list, list) {
5109 		if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0)
5110 			continue;
5111 		list_del(&mc->list);
5112 		spin_unlock_irq(&id_priv->lock);
5113 
5114 		WARN_ON(id_priv->cma_dev->device != id->device);
5115 		destroy_mc(id_priv, mc);
5116 		return;
5117 	}
5118 	spin_unlock_irq(&id_priv->lock);
5119 }
5120 EXPORT_SYMBOL(rdma_leave_multicast);
5121 
5122 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv)
5123 {
5124 	struct rdma_dev_addr *dev_addr;
5125 	struct cma_work *work;
5126 
5127 	dev_addr = &id_priv->id.route.addr.dev_addr;
5128 
5129 	if ((dev_addr->bound_dev_if == ndev->ifindex) &&
5130 	    (net_eq(dev_net(ndev), dev_addr->net)) &&
5131 	    memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) {
5132 		pr_info("RDMA CM addr change for ndev %s used by id %p\n",
5133 			ndev->name, &id_priv->id);
5134 		work = kzalloc(sizeof *work, GFP_KERNEL);
5135 		if (!work)
5136 			return -ENOMEM;
5137 
5138 		INIT_WORK(&work->work, cma_work_handler);
5139 		work->id = id_priv;
5140 		work->event.event = RDMA_CM_EVENT_ADDR_CHANGE;
5141 		cma_id_get(id_priv);
5142 		queue_work(cma_wq, &work->work);
5143 	}
5144 
5145 	return 0;
5146 }
5147 
5148 static int cma_netdev_callback(struct notifier_block *self, unsigned long event,
5149 			       void *ptr)
5150 {
5151 	struct net_device *ndev = netdev_notifier_info_to_dev(ptr);
5152 	struct cma_device *cma_dev;
5153 	struct rdma_id_private *id_priv;
5154 	int ret = NOTIFY_DONE;
5155 
5156 	if (event != NETDEV_BONDING_FAILOVER)
5157 		return NOTIFY_DONE;
5158 
5159 	if (!netif_is_bond_master(ndev))
5160 		return NOTIFY_DONE;
5161 
5162 	mutex_lock(&lock);
5163 	list_for_each_entry(cma_dev, &dev_list, list)
5164 		list_for_each_entry(id_priv, &cma_dev->id_list, device_item) {
5165 			ret = cma_netdev_change(ndev, id_priv);
5166 			if (ret)
5167 				goto out;
5168 		}
5169 
5170 out:
5171 	mutex_unlock(&lock);
5172 	return ret;
5173 }
5174 
5175 static void cma_netevent_work_handler(struct work_struct *_work)
5176 {
5177 	struct rdma_id_private *id_priv =
5178 		container_of(_work, struct rdma_id_private, id.net_work);
5179 	struct rdma_cm_event event = {};
5180 
5181 	mutex_lock(&id_priv->handler_mutex);
5182 
5183 	if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING ||
5184 	    READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL)
5185 		goto out_unlock;
5186 
5187 	event.event = RDMA_CM_EVENT_UNREACHABLE;
5188 	event.status = -ETIMEDOUT;
5189 
5190 	if (cma_cm_event_handler(id_priv, &event)) {
5191 		__acquire(&id_priv->handler_mutex);
5192 		id_priv->cm_id.ib = NULL;
5193 		cma_id_put(id_priv);
5194 		destroy_id_handler_unlock(id_priv);
5195 		return;
5196 	}
5197 
5198 out_unlock:
5199 	mutex_unlock(&id_priv->handler_mutex);
5200 	cma_id_put(id_priv);
5201 }
5202 
5203 static int cma_netevent_callback(struct notifier_block *self,
5204 				 unsigned long event, void *ctx)
5205 {
5206 	struct id_table_entry *ips_node = NULL;
5207 	struct rdma_id_private *current_id;
5208 	struct neighbour *neigh = ctx;
5209 	unsigned long flags;
5210 
5211 	if (event != NETEVENT_NEIGH_UPDATE)
5212 		return NOTIFY_DONE;
5213 
5214 	spin_lock_irqsave(&id_table_lock, flags);
5215 	if (neigh->tbl->family == AF_INET6) {
5216 		struct sockaddr_in6 neigh_sock_6;
5217 
5218 		neigh_sock_6.sin6_family = AF_INET6;
5219 		neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key;
5220 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5221 					     (struct sockaddr *)&neigh_sock_6);
5222 	} else if (neigh->tbl->family == AF_INET) {
5223 		struct sockaddr_in neigh_sock_4;
5224 
5225 		neigh_sock_4.sin_family = AF_INET;
5226 		neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key);
5227 		ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex,
5228 					     (struct sockaddr *)&neigh_sock_4);
5229 	} else
5230 		goto out;
5231 
5232 	if (!ips_node)
5233 		goto out;
5234 
5235 	list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) {
5236 		if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr,
5237 			   neigh->ha, ETH_ALEN))
5238 			continue;
5239 		cma_id_get(current_id);
5240 		if (!queue_work(cma_wq, &current_id->id.net_work))
5241 			cma_id_put(current_id);
5242 	}
5243 out:
5244 	spin_unlock_irqrestore(&id_table_lock, flags);
5245 	return NOTIFY_DONE;
5246 }
5247 
5248 static struct notifier_block cma_nb = {
5249 	.notifier_call = cma_netdev_callback
5250 };
5251 
5252 static struct notifier_block cma_netevent_cb = {
5253 	.notifier_call = cma_netevent_callback
5254 };
5255 
5256 static void cma_send_device_removal_put(struct rdma_id_private *id_priv)
5257 {
5258 	struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL };
5259 	enum rdma_cm_state state;
5260 	unsigned long flags;
5261 
5262 	mutex_lock(&id_priv->handler_mutex);
5263 	/* Record that we want to remove the device */
5264 	spin_lock_irqsave(&id_priv->lock, flags);
5265 	state = id_priv->state;
5266 	if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) {
5267 		spin_unlock_irqrestore(&id_priv->lock, flags);
5268 		mutex_unlock(&id_priv->handler_mutex);
5269 		cma_id_put(id_priv);
5270 		return;
5271 	}
5272 	id_priv->state = RDMA_CM_DEVICE_REMOVAL;
5273 	spin_unlock_irqrestore(&id_priv->lock, flags);
5274 
5275 	if (cma_cm_event_handler(id_priv, &event)) {
5276 		/*
5277 		 * At this point the ULP promises it won't call
5278 		 * rdma_destroy_id() concurrently
5279 		 */
5280 		cma_id_put(id_priv);
5281 		mutex_unlock(&id_priv->handler_mutex);
5282 		trace_cm_id_destroy(id_priv);
5283 		_destroy_id(id_priv, state);
5284 		return;
5285 	}
5286 	mutex_unlock(&id_priv->handler_mutex);
5287 
5288 	/*
5289 	 * If this races with destroy then the thread that first assigns state
5290 	 * to a destroying does the cancel.
5291 	 */
5292 	cma_cancel_operation(id_priv, state);
5293 	cma_id_put(id_priv);
5294 }
5295 
5296 static void cma_process_remove(struct cma_device *cma_dev)
5297 {
5298 	mutex_lock(&lock);
5299 	while (!list_empty(&cma_dev->id_list)) {
5300 		struct rdma_id_private *id_priv = list_first_entry(
5301 			&cma_dev->id_list, struct rdma_id_private, device_item);
5302 
5303 		list_del_init(&id_priv->listen_item);
5304 		list_del_init(&id_priv->device_item);
5305 		cma_id_get(id_priv);
5306 		mutex_unlock(&lock);
5307 
5308 		cma_send_device_removal_put(id_priv);
5309 
5310 		mutex_lock(&lock);
5311 	}
5312 	mutex_unlock(&lock);
5313 
5314 	cma_dev_put(cma_dev);
5315 	wait_for_completion(&cma_dev->comp);
5316 }
5317 
5318 static bool cma_supported(struct ib_device *device)
5319 {
5320 	u32 i;
5321 
5322 	rdma_for_each_port(device, i) {
5323 		if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i))
5324 			return true;
5325 	}
5326 	return false;
5327 }
5328 
5329 static int cma_add_one(struct ib_device *device)
5330 {
5331 	struct rdma_id_private *to_destroy;
5332 	struct cma_device *cma_dev;
5333 	struct rdma_id_private *id_priv;
5334 	unsigned long supported_gids = 0;
5335 	int ret;
5336 	u32 i;
5337 
5338 	if (!cma_supported(device))
5339 		return -EOPNOTSUPP;
5340 
5341 	cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL);
5342 	if (!cma_dev)
5343 		return -ENOMEM;
5344 
5345 	cma_dev->device = device;
5346 	cma_dev->default_gid_type = kcalloc(device->phys_port_cnt,
5347 					    sizeof(*cma_dev->default_gid_type),
5348 					    GFP_KERNEL);
5349 	if (!cma_dev->default_gid_type) {
5350 		ret = -ENOMEM;
5351 		goto free_cma_dev;
5352 	}
5353 
5354 	cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt,
5355 					    sizeof(*cma_dev->default_roce_tos),
5356 					    GFP_KERNEL);
5357 	if (!cma_dev->default_roce_tos) {
5358 		ret = -ENOMEM;
5359 		goto free_gid_type;
5360 	}
5361 
5362 	rdma_for_each_port (device, i) {
5363 		supported_gids = roce_gid_type_mask_support(device, i);
5364 		WARN_ON(!supported_gids);
5365 		if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE))
5366 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5367 				CMA_PREFERRED_ROCE_GID_TYPE;
5368 		else
5369 			cma_dev->default_gid_type[i - rdma_start_port(device)] =
5370 				find_first_bit(&supported_gids, BITS_PER_LONG);
5371 		cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0;
5372 	}
5373 
5374 	init_completion(&cma_dev->comp);
5375 	refcount_set(&cma_dev->refcount, 1);
5376 	INIT_LIST_HEAD(&cma_dev->id_list);
5377 	ib_set_client_data(device, &cma_client, cma_dev);
5378 
5379 	mutex_lock(&lock);
5380 	list_add_tail(&cma_dev->list, &dev_list);
5381 	list_for_each_entry(id_priv, &listen_any_list, listen_any_item) {
5382 		ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy);
5383 		if (ret)
5384 			goto free_listen;
5385 	}
5386 	mutex_unlock(&lock);
5387 
5388 	trace_cm_add_one(device);
5389 	return 0;
5390 
5391 free_listen:
5392 	list_del(&cma_dev->list);
5393 	mutex_unlock(&lock);
5394 
5395 	/* cma_process_remove() will delete to_destroy */
5396 	cma_process_remove(cma_dev);
5397 	kfree(cma_dev->default_roce_tos);
5398 free_gid_type:
5399 	kfree(cma_dev->default_gid_type);
5400 
5401 free_cma_dev:
5402 	kfree(cma_dev);
5403 	return ret;
5404 }
5405 
5406 static void cma_remove_one(struct ib_device *device, void *client_data)
5407 {
5408 	struct cma_device *cma_dev = client_data;
5409 
5410 	trace_cm_remove_one(device);
5411 
5412 	mutex_lock(&lock);
5413 	list_del(&cma_dev->list);
5414 	mutex_unlock(&lock);
5415 
5416 	cma_process_remove(cma_dev);
5417 	kfree(cma_dev->default_roce_tos);
5418 	kfree(cma_dev->default_gid_type);
5419 	kfree(cma_dev);
5420 }
5421 
5422 static int cma_init_net(struct net *net)
5423 {
5424 	struct cma_pernet *pernet = cma_pernet(net);
5425 
5426 	xa_init(&pernet->tcp_ps);
5427 	xa_init(&pernet->udp_ps);
5428 	xa_init(&pernet->ipoib_ps);
5429 	xa_init(&pernet->ib_ps);
5430 
5431 	return 0;
5432 }
5433 
5434 static void cma_exit_net(struct net *net)
5435 {
5436 	struct cma_pernet *pernet = cma_pernet(net);
5437 
5438 	WARN_ON(!xa_empty(&pernet->tcp_ps));
5439 	WARN_ON(!xa_empty(&pernet->udp_ps));
5440 	WARN_ON(!xa_empty(&pernet->ipoib_ps));
5441 	WARN_ON(!xa_empty(&pernet->ib_ps));
5442 }
5443 
5444 static struct pernet_operations cma_pernet_operations = {
5445 	.init = cma_init_net,
5446 	.exit = cma_exit_net,
5447 	.id = &cma_pernet_id,
5448 	.size = sizeof(struct cma_pernet),
5449 };
5450 
5451 static int __init cma_init(void)
5452 {
5453 	int ret;
5454 
5455 	/*
5456 	 * There is a rare lock ordering dependency in cma_netdev_callback()
5457 	 * that only happens when bonding is enabled. Teach lockdep that rtnl
5458 	 * must never be nested under lock so it can find these without having
5459 	 * to test with bonding.
5460 	 */
5461 	if (IS_ENABLED(CONFIG_LOCKDEP)) {
5462 		rtnl_lock();
5463 		mutex_lock(&lock);
5464 		mutex_unlock(&lock);
5465 		rtnl_unlock();
5466 	}
5467 
5468 	cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM);
5469 	if (!cma_wq)
5470 		return -ENOMEM;
5471 
5472 	ret = register_pernet_subsys(&cma_pernet_operations);
5473 	if (ret)
5474 		goto err_wq;
5475 
5476 	ib_sa_register_client(&sa_client);
5477 	register_netdevice_notifier(&cma_nb);
5478 	register_netevent_notifier(&cma_netevent_cb);
5479 
5480 	ret = ib_register_client(&cma_client);
5481 	if (ret)
5482 		goto err;
5483 
5484 	ret = cma_configfs_init();
5485 	if (ret)
5486 		goto err_ib;
5487 
5488 	return 0;
5489 
5490 err_ib:
5491 	ib_unregister_client(&cma_client);
5492 err:
5493 	unregister_netevent_notifier(&cma_netevent_cb);
5494 	unregister_netdevice_notifier(&cma_nb);
5495 	ib_sa_unregister_client(&sa_client);
5496 	unregister_pernet_subsys(&cma_pernet_operations);
5497 err_wq:
5498 	destroy_workqueue(cma_wq);
5499 	return ret;
5500 }
5501 
5502 static void __exit cma_cleanup(void)
5503 {
5504 	cma_configfs_exit();
5505 	ib_unregister_client(&cma_client);
5506 	unregister_netevent_notifier(&cma_netevent_cb);
5507 	unregister_netdevice_notifier(&cma_nb);
5508 	ib_sa_unregister_client(&sa_client);
5509 	unregister_pernet_subsys(&cma_pernet_operations);
5510 	destroy_workqueue(cma_wq);
5511 }
5512 
5513 module_init(cma_init);
5514 module_exit(cma_cleanup);
5515 
5516 static void cma_query_ib_service_handler(int status,
5517 					 struct sa_service_rec *recs,
5518 					 unsigned int num_recs, void *context)
5519 {
5520 	struct cma_work *work = context;
5521 	struct rdma_id_private *id_priv = work->id;
5522 	struct sockaddr_ib *addr;
5523 
5524 	if (status)
5525 		goto fail;
5526 
5527 	if (!num_recs) {
5528 		status = -ENOENT;
5529 		goto fail;
5530 	}
5531 
5532 	if (id_priv->id.route.service_recs) {
5533 		status = -EALREADY;
5534 		goto fail;
5535 	}
5536 
5537 	id_priv->id.route.service_recs =
5538 		kmalloc_array(num_recs, sizeof(*recs), GFP_KERNEL);
5539 	if (!id_priv->id.route.service_recs) {
5540 		status = -ENOMEM;
5541 		goto fail;
5542 	}
5543 
5544 	id_priv->id.route.num_service_recs = num_recs;
5545 	memcpy(id_priv->id.route.service_recs, recs, sizeof(*recs) * num_recs);
5546 
5547 	addr = (struct sockaddr_ib *)&id_priv->id.route.addr.dst_addr;
5548 	addr->sib_family = AF_IB;
5549 	addr->sib_addr = *(struct ib_addr *)&recs->gid;
5550 	addr->sib_pkey = recs->pkey;
5551 	addr->sib_sid = recs->id;
5552 	rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr,
5553 			   (union ib_gid *)&addr->sib_addr);
5554 	ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr,
5555 			 ntohs(addr->sib_pkey));
5556 
5557 	queue_work(cma_wq, &work->work);
5558 	return;
5559 
5560 fail:
5561 	work->old_state = RDMA_CM_ADDRINFO_QUERY;
5562 	work->new_state = RDMA_CM_ADDR_BOUND;
5563 	work->event.event = RDMA_CM_EVENT_ADDRINFO_ERROR;
5564 	work->event.status = status;
5565 	pr_debug_ratelimited(
5566 		"RDMA CM: SERVICE_ERROR: failed to query service record. status %d\n",
5567 		status);
5568 	queue_work(cma_wq, &work->work);
5569 }
5570 
5571 static int cma_resolve_ib_service(struct rdma_id_private *id_priv,
5572 				  struct rdma_ucm_ib_service *ibs)
5573 {
5574 	struct sa_service_rec sr = {};
5575 	ib_sa_comp_mask mask = 0;
5576 	struct cma_work *work;
5577 
5578 	work = kzalloc(sizeof(*work), GFP_KERNEL);
5579 	if (!work)
5580 		return -ENOMEM;
5581 
5582 	cma_id_get(id_priv);
5583 
5584 	work->id = id_priv;
5585 	INIT_WORK(&work->work, cma_work_handler);
5586 	work->old_state = RDMA_CM_ADDRINFO_QUERY;
5587 	work->new_state = RDMA_CM_ADDRINFO_RESOLVED;
5588 	work->event.event = RDMA_CM_EVENT_ADDRINFO_RESOLVED;
5589 
5590 	if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_ID) {
5591 		sr.id = cpu_to_be64(ibs->service_id);
5592 		mask |= IB_SA_SERVICE_REC_SERVICE_ID;
5593 	}
5594 	if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_NAME) {
5595 		strscpy(sr.name, ibs->service_name, sizeof(sr.name));
5596 		mask |= IB_SA_SERVICE_REC_SERVICE_NAME;
5597 	}
5598 
5599 	id_priv->query_id = ib_sa_service_rec_get(&sa_client,
5600 						  id_priv->id.device,
5601 						  id_priv->id.port_num,
5602 						  &sr, mask,
5603 						  2000, GFP_KERNEL,
5604 						  cma_query_ib_service_handler,
5605 						  work, &id_priv->query);
5606 
5607 	if (id_priv->query_id < 0) {
5608 		cma_id_put(id_priv);
5609 		kfree(work);
5610 		return id_priv->query_id;
5611 	}
5612 
5613 	return 0;
5614 }
5615 
5616 int rdma_resolve_ib_service(struct rdma_cm_id *id,
5617 			    struct rdma_ucm_ib_service *ibs)
5618 {
5619 	struct rdma_id_private *id_priv;
5620 	int ret;
5621 
5622 	id_priv = container_of(id, struct rdma_id_private, id);
5623 	if (!id_priv->cma_dev ||
5624 	    !cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDRINFO_QUERY))
5625 		return -EINVAL;
5626 
5627 	if (rdma_cap_ib_sa(id->device, id->port_num))
5628 		ret = cma_resolve_ib_service(id_priv, ibs);
5629 	else
5630 		ret = -EOPNOTSUPP;
5631 
5632 	if (ret)
5633 		goto err;
5634 
5635 	return 0;
5636 err:
5637 	cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_QUERY, RDMA_CM_ADDR_BOUND);
5638 	return ret;
5639 }
5640 EXPORT_SYMBOL(rdma_resolve_ib_service);
5641