1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_IBOE_PACKET_LIFETIME 16 50 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 51 52 static const char * const cma_events[] = { 53 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 54 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 55 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 56 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 57 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 58 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 59 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 60 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 61 [RDMA_CM_EVENT_REJECTED] = "rejected", 62 [RDMA_CM_EVENT_ESTABLISHED] = "established", 63 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 64 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 65 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 66 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 67 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 68 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 69 }; 70 71 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 72 enum ib_gid_type gid_type); 73 74 static void cma_netevent_work_handler(struct work_struct *_work); 75 76 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 77 { 78 size_t index = event; 79 80 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 81 cma_events[index] : "unrecognized event"; 82 } 83 EXPORT_SYMBOL(rdma_event_msg); 84 85 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 86 int reason) 87 { 88 if (rdma_ib_or_roce(id->device, id->port_num)) 89 return ibcm_reject_msg(reason); 90 91 if (rdma_protocol_iwarp(id->device, id->port_num)) 92 return iwcm_reject_msg(reason); 93 94 WARN_ON_ONCE(1); 95 return "unrecognized transport"; 96 } 97 EXPORT_SYMBOL(rdma_reject_msg); 98 99 /** 100 * rdma_is_consumer_reject - return true if the consumer rejected the connect 101 * request. 102 * @id: Communication identifier that received the REJECT event. 103 * @reason: Value returned in the REJECT event status field. 104 */ 105 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 106 { 107 if (rdma_ib_or_roce(id->device, id->port_num)) 108 return reason == IB_CM_REJ_CONSUMER_DEFINED; 109 110 if (rdma_protocol_iwarp(id->device, id->port_num)) 111 return reason == -ECONNREFUSED; 112 113 WARN_ON_ONCE(1); 114 return false; 115 } 116 117 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 118 struct rdma_cm_event *ev, u8 *data_len) 119 { 120 const void *p; 121 122 if (rdma_is_consumer_reject(id, ev->status)) { 123 *data_len = ev->param.conn.private_data_len; 124 p = ev->param.conn.private_data; 125 } else { 126 *data_len = 0; 127 p = NULL; 128 } 129 return p; 130 } 131 EXPORT_SYMBOL(rdma_consumer_reject_data); 132 133 /** 134 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 135 * @id: Communication Identifier 136 */ 137 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 138 { 139 struct rdma_id_private *id_priv; 140 141 id_priv = container_of(id, struct rdma_id_private, id); 142 if (id->device->node_type == RDMA_NODE_RNIC) 143 return id_priv->cm_id.iw; 144 return NULL; 145 } 146 EXPORT_SYMBOL(rdma_iw_cm_id); 147 148 static int cma_add_one(struct ib_device *device); 149 static void cma_remove_one(struct ib_device *device, void *client_data); 150 151 static struct ib_client cma_client = { 152 .name = "cma", 153 .add = cma_add_one, 154 .remove = cma_remove_one 155 }; 156 157 static struct ib_sa_client sa_client; 158 static LIST_HEAD(dev_list); 159 static LIST_HEAD(listen_any_list); 160 static DEFINE_MUTEX(lock); 161 static struct rb_root id_table = RB_ROOT; 162 /* Serialize operations of id_table tree */ 163 static DEFINE_SPINLOCK(id_table_lock); 164 static struct workqueue_struct *cma_wq; 165 static unsigned int cma_pernet_id; 166 167 struct cma_pernet { 168 struct xarray tcp_ps; 169 struct xarray udp_ps; 170 struct xarray ipoib_ps; 171 struct xarray ib_ps; 172 }; 173 174 static struct cma_pernet *cma_pernet(struct net *net) 175 { 176 return net_generic(net, cma_pernet_id); 177 } 178 179 static 180 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 181 { 182 struct cma_pernet *pernet = cma_pernet(net); 183 184 switch (ps) { 185 case RDMA_PS_TCP: 186 return &pernet->tcp_ps; 187 case RDMA_PS_UDP: 188 return &pernet->udp_ps; 189 case RDMA_PS_IPOIB: 190 return &pernet->ipoib_ps; 191 case RDMA_PS_IB: 192 return &pernet->ib_ps; 193 default: 194 return NULL; 195 } 196 } 197 198 struct id_table_entry { 199 struct list_head id_list; 200 struct rb_node rb_node; 201 }; 202 203 struct cma_device { 204 struct list_head list; 205 struct ib_device *device; 206 struct completion comp; 207 refcount_t refcount; 208 struct list_head id_list; 209 enum ib_gid_type *default_gid_type; 210 u8 *default_roce_tos; 211 }; 212 213 struct rdma_bind_list { 214 enum rdma_ucm_port_space ps; 215 struct hlist_head owners; 216 unsigned short port; 217 }; 218 219 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 220 struct rdma_bind_list *bind_list, int snum) 221 { 222 struct xarray *xa = cma_pernet_xa(net, ps); 223 224 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 225 } 226 227 static struct rdma_bind_list *cma_ps_find(struct net *net, 228 enum rdma_ucm_port_space ps, int snum) 229 { 230 struct xarray *xa = cma_pernet_xa(net, ps); 231 232 return xa_load(xa, snum); 233 } 234 235 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 236 int snum) 237 { 238 struct xarray *xa = cma_pernet_xa(net, ps); 239 240 xa_erase(xa, snum); 241 } 242 243 enum { 244 CMA_OPTION_AFONLY, 245 }; 246 247 void cma_dev_get(struct cma_device *cma_dev) 248 { 249 refcount_inc(&cma_dev->refcount); 250 } 251 252 void cma_dev_put(struct cma_device *cma_dev) 253 { 254 if (refcount_dec_and_test(&cma_dev->refcount)) 255 complete(&cma_dev->comp); 256 } 257 258 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 259 void *cookie) 260 { 261 struct cma_device *cma_dev; 262 struct cma_device *found_cma_dev = NULL; 263 264 mutex_lock(&lock); 265 266 list_for_each_entry(cma_dev, &dev_list, list) 267 if (filter(cma_dev->device, cookie)) { 268 found_cma_dev = cma_dev; 269 break; 270 } 271 272 if (found_cma_dev) 273 cma_dev_get(found_cma_dev); 274 mutex_unlock(&lock); 275 return found_cma_dev; 276 } 277 278 int cma_get_default_gid_type(struct cma_device *cma_dev, 279 u32 port) 280 { 281 if (!rdma_is_port_valid(cma_dev->device, port)) 282 return -EINVAL; 283 284 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 285 } 286 287 int cma_set_default_gid_type(struct cma_device *cma_dev, 288 u32 port, 289 enum ib_gid_type default_gid_type) 290 { 291 unsigned long supported_gids; 292 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 if (default_gid_type == IB_GID_TYPE_IB && 297 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 298 default_gid_type = IB_GID_TYPE_ROCE; 299 300 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 301 302 if (!(supported_gids & 1 << default_gid_type)) 303 return -EINVAL; 304 305 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 306 default_gid_type; 307 308 return 0; 309 } 310 311 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 312 { 313 if (!rdma_is_port_valid(cma_dev->device, port)) 314 return -EINVAL; 315 316 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 317 } 318 319 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 320 u8 default_roce_tos) 321 { 322 if (!rdma_is_port_valid(cma_dev->device, port)) 323 return -EINVAL; 324 325 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 326 default_roce_tos; 327 328 return 0; 329 } 330 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 331 { 332 return cma_dev->device; 333 } 334 335 /* 336 * Device removal can occur at anytime, so we need extra handling to 337 * serialize notifying the user of device removal with other callbacks. 338 * We do this by disabling removal notification while a callback is in process, 339 * and reporting it after the callback completes. 340 */ 341 342 struct cma_multicast { 343 struct rdma_id_private *id_priv; 344 union { 345 struct ib_sa_multicast *sa_mc; 346 struct { 347 struct work_struct work; 348 struct rdma_cm_event event; 349 } iboe_join; 350 }; 351 struct list_head list; 352 void *context; 353 struct sockaddr_storage addr; 354 u8 join_state; 355 }; 356 357 struct cma_work { 358 struct work_struct work; 359 struct rdma_id_private *id; 360 enum rdma_cm_state old_state; 361 enum rdma_cm_state new_state; 362 struct rdma_cm_event event; 363 }; 364 365 union cma_ip_addr { 366 struct in6_addr ip6; 367 struct { 368 __be32 pad[3]; 369 __be32 addr; 370 } ip4; 371 }; 372 373 struct cma_hdr { 374 u8 cma_version; 375 u8 ip_version; /* IP version: 7:4 */ 376 __be16 port; 377 union cma_ip_addr src_addr; 378 union cma_ip_addr dst_addr; 379 }; 380 381 #define CMA_VERSION 0x00 382 383 struct cma_req_info { 384 struct sockaddr_storage listen_addr_storage; 385 struct sockaddr_storage src_addr_storage; 386 struct ib_device *device; 387 union ib_gid local_gid; 388 __be64 service_id; 389 int port; 390 bool has_gid; 391 u16 pkey; 392 }; 393 394 static int cma_comp_exch(struct rdma_id_private *id_priv, 395 enum rdma_cm_state comp, enum rdma_cm_state exch) 396 { 397 unsigned long flags; 398 int ret; 399 400 /* 401 * The FSM uses a funny double locking where state is protected by both 402 * the handler_mutex and the spinlock. State is not allowed to change 403 * to/from a handler_mutex protected value without also holding 404 * handler_mutex. 405 */ 406 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 407 lockdep_assert_held(&id_priv->handler_mutex); 408 409 spin_lock_irqsave(&id_priv->lock, flags); 410 if ((ret = (id_priv->state == comp))) 411 id_priv->state = exch; 412 spin_unlock_irqrestore(&id_priv->lock, flags); 413 return ret; 414 } 415 416 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 417 { 418 return hdr->ip_version >> 4; 419 } 420 421 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 422 { 423 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 424 } 425 426 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 427 { 428 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 429 } 430 431 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 432 { 433 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 434 } 435 436 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 437 { 438 struct in_device *in_dev = NULL; 439 440 if (ndev) { 441 rtnl_lock(); 442 in_dev = __in_dev_get_rtnl(ndev); 443 if (in_dev) { 444 if (join) 445 ip_mc_inc_group(in_dev, 446 *(__be32 *)(mgid->raw + 12)); 447 else 448 ip_mc_dec_group(in_dev, 449 *(__be32 *)(mgid->raw + 12)); 450 } 451 rtnl_unlock(); 452 } 453 return (in_dev) ? 0 : -ENODEV; 454 } 455 456 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 457 struct id_table_entry *entry_b) 458 { 459 struct rdma_id_private *id_priv = list_first_entry( 460 &entry_b->id_list, struct rdma_id_private, id_list_entry); 461 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 462 struct sockaddr *sb = cma_dst_addr(id_priv); 463 464 if (ifindex_a != ifindex_b) 465 return (ifindex_a > ifindex_b) ? 1 : -1; 466 467 if (sa->sa_family != sb->sa_family) 468 return sa->sa_family - sb->sa_family; 469 470 if (sa->sa_family == AF_INET && 471 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 472 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 473 &((struct sockaddr_in *)sb)->sin_addr, 474 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 475 } 476 477 if (sa->sa_family == AF_INET6 && 478 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 479 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 480 &((struct sockaddr_in6 *)sb)->sin6_addr); 481 } 482 483 return -1; 484 } 485 486 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 487 { 488 struct rb_node **new, *parent = NULL; 489 struct id_table_entry *this, *node; 490 unsigned long flags; 491 int result; 492 493 node = kzalloc(sizeof(*node), GFP_KERNEL); 494 if (!node) 495 return -ENOMEM; 496 497 spin_lock_irqsave(&id_table_lock, flags); 498 new = &id_table.rb_node; 499 while (*new) { 500 this = container_of(*new, struct id_table_entry, rb_node); 501 result = compare_netdev_and_ip( 502 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 503 cma_dst_addr(node_id_priv), this); 504 505 parent = *new; 506 if (result < 0) 507 new = &((*new)->rb_left); 508 else if (result > 0) 509 new = &((*new)->rb_right); 510 else { 511 list_add_tail(&node_id_priv->id_list_entry, 512 &this->id_list); 513 kfree(node); 514 goto unlock; 515 } 516 } 517 518 INIT_LIST_HEAD(&node->id_list); 519 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 520 521 rb_link_node(&node->rb_node, parent, new); 522 rb_insert_color(&node->rb_node, &id_table); 523 524 unlock: 525 spin_unlock_irqrestore(&id_table_lock, flags); 526 return 0; 527 } 528 529 static struct id_table_entry * 530 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 531 { 532 struct rb_node *node = root->rb_node; 533 struct id_table_entry *data; 534 int result; 535 536 while (node) { 537 data = container_of(node, struct id_table_entry, rb_node); 538 result = compare_netdev_and_ip(ifindex, sa, data); 539 if (result < 0) 540 node = node->rb_left; 541 else if (result > 0) 542 node = node->rb_right; 543 else 544 return data; 545 } 546 547 return NULL; 548 } 549 550 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 551 { 552 struct id_table_entry *data; 553 unsigned long flags; 554 555 spin_lock_irqsave(&id_table_lock, flags); 556 if (list_empty(&id_priv->id_list_entry)) 557 goto out; 558 559 data = node_from_ndev_ip(&id_table, 560 id_priv->id.route.addr.dev_addr.bound_dev_if, 561 cma_dst_addr(id_priv)); 562 if (!data) 563 goto out; 564 565 list_del_init(&id_priv->id_list_entry); 566 if (list_empty(&data->id_list)) { 567 rb_erase(&data->rb_node, &id_table); 568 kfree(data); 569 } 570 out: 571 spin_unlock_irqrestore(&id_table_lock, flags); 572 } 573 574 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 575 struct cma_device *cma_dev) 576 { 577 cma_dev_get(cma_dev); 578 id_priv->cma_dev = cma_dev; 579 id_priv->id.device = cma_dev->device; 580 id_priv->id.route.addr.dev_addr.transport = 581 rdma_node_get_transport(cma_dev->device->node_type); 582 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 583 584 trace_cm_id_attach(id_priv, cma_dev->device); 585 } 586 587 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 588 struct cma_device *cma_dev) 589 { 590 _cma_attach_to_dev(id_priv, cma_dev); 591 id_priv->gid_type = 592 cma_dev->default_gid_type[id_priv->id.port_num - 593 rdma_start_port(cma_dev->device)]; 594 } 595 596 static void cma_release_dev(struct rdma_id_private *id_priv) 597 { 598 mutex_lock(&lock); 599 list_del_init(&id_priv->device_item); 600 cma_dev_put(id_priv->cma_dev); 601 id_priv->cma_dev = NULL; 602 id_priv->id.device = NULL; 603 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 604 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 605 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 606 } 607 mutex_unlock(&lock); 608 } 609 610 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 611 { 612 return id_priv->id.route.addr.src_addr.ss_family; 613 } 614 615 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 616 { 617 struct ib_sa_mcmember_rec rec; 618 int ret = 0; 619 620 switch (id_priv->id.ps) { 621 case RDMA_PS_UDP: 622 case RDMA_PS_IB: 623 id_priv->qkey = RDMA_UDP_QKEY; 624 break; 625 case RDMA_PS_IPOIB: 626 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 627 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 628 id_priv->id.port_num, &rec.mgid, 629 &rec); 630 if (!ret) 631 id_priv->qkey = be32_to_cpu(rec.qkey); 632 break; 633 default: 634 break; 635 } 636 return ret; 637 } 638 639 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 640 { 641 if (!qkey || 642 (id_priv->qkey && (id_priv->qkey != qkey))) 643 return -EINVAL; 644 645 id_priv->qkey = qkey; 646 return 0; 647 } 648 649 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 650 { 651 dev_addr->dev_type = ARPHRD_INFINIBAND; 652 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 653 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 654 } 655 656 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 657 { 658 int ret; 659 660 if (addr->sa_family != AF_IB) { 661 ret = rdma_translate_ip(addr, dev_addr); 662 } else { 663 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 664 ret = 0; 665 } 666 667 return ret; 668 } 669 670 static const struct ib_gid_attr * 671 cma_validate_port(struct ib_device *device, u32 port, 672 enum ib_gid_type gid_type, 673 union ib_gid *gid, 674 struct rdma_id_private *id_priv) 675 { 676 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 677 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 678 int bound_if_index = dev_addr->bound_dev_if; 679 int dev_type = dev_addr->dev_type; 680 struct net_device *ndev = NULL; 681 struct net_device *pdev = NULL; 682 683 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 684 goto out; 685 686 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 687 goto out; 688 689 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 690 goto out; 691 692 /* 693 * For drivers that do not associate more than one net device with 694 * their gid tables, such as iWARP drivers, it is sufficient to 695 * return the first table entry. 696 * 697 * Other driver classes might be included in the future. 698 */ 699 if (rdma_protocol_iwarp(device, port)) { 700 sgid_attr = rdma_get_gid_attr(device, port, 0); 701 if (IS_ERR(sgid_attr)) 702 goto out; 703 704 rcu_read_lock(); 705 ndev = rcu_dereference(sgid_attr->ndev); 706 if (ndev->ifindex != bound_if_index) { 707 pdev = dev_get_by_index_rcu(dev_addr->net, bound_if_index); 708 if (pdev) { 709 if (is_vlan_dev(pdev)) { 710 pdev = vlan_dev_real_dev(pdev); 711 if (ndev->ifindex == pdev->ifindex) 712 bound_if_index = pdev->ifindex; 713 } 714 if (is_vlan_dev(ndev)) { 715 pdev = vlan_dev_real_dev(ndev); 716 if (bound_if_index == pdev->ifindex) 717 bound_if_index = ndev->ifindex; 718 } 719 } 720 } 721 if (!net_eq(dev_net(ndev), dev_addr->net) || 722 ndev->ifindex != bound_if_index) { 723 rdma_put_gid_attr(sgid_attr); 724 sgid_attr = ERR_PTR(-ENODEV); 725 } 726 rcu_read_unlock(); 727 goto out; 728 } 729 730 /* 731 * For a RXE device, it should work with TUN device and normal ethernet 732 * devices. Use driver_id to check if a device is a RXE device or not. 733 * ARPHDR_NONE means a TUN device. 734 */ 735 if (device->ops.driver_id == RDMA_DRIVER_RXE) { 736 if ((dev_type == ARPHRD_NONE || dev_type == ARPHRD_ETHER) 737 && rdma_protocol_roce(device, port)) { 738 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 739 if (!ndev) 740 goto out; 741 } 742 } else { 743 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 744 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 745 if (!ndev) 746 goto out; 747 } else { 748 gid_type = IB_GID_TYPE_IB; 749 } 750 } 751 752 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 753 dev_put(ndev); 754 out: 755 return sgid_attr; 756 } 757 758 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 759 const struct ib_gid_attr *sgid_attr) 760 { 761 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 762 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 763 } 764 765 /** 766 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 767 * based on source ip address. 768 * @id_priv: cm_id which should be bound to cma device 769 * 770 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 771 * based on source IP address. It returns 0 on success or error code otherwise. 772 * It is applicable to active and passive side cm_id. 773 */ 774 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 775 { 776 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 777 const struct ib_gid_attr *sgid_attr; 778 union ib_gid gid, iboe_gid, *gidp; 779 struct cma_device *cma_dev; 780 enum ib_gid_type gid_type; 781 int ret = -ENODEV; 782 u32 port; 783 784 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 785 id_priv->id.ps == RDMA_PS_IPOIB) 786 return -EINVAL; 787 788 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 789 &iboe_gid); 790 791 memcpy(&gid, dev_addr->src_dev_addr + 792 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 793 794 mutex_lock(&lock); 795 list_for_each_entry(cma_dev, &dev_list, list) { 796 rdma_for_each_port (cma_dev->device, port) { 797 gidp = rdma_protocol_roce(cma_dev->device, port) ? 798 &iboe_gid : &gid; 799 gid_type = cma_dev->default_gid_type[port - 1]; 800 sgid_attr = cma_validate_port(cma_dev->device, port, 801 gid_type, gidp, id_priv); 802 if (!IS_ERR(sgid_attr)) { 803 id_priv->id.port_num = port; 804 cma_bind_sgid_attr(id_priv, sgid_attr); 805 cma_attach_to_dev(id_priv, cma_dev); 806 ret = 0; 807 goto out; 808 } 809 } 810 } 811 out: 812 mutex_unlock(&lock); 813 return ret; 814 } 815 816 /** 817 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 818 * @id_priv: cm id to bind to cma device 819 * @listen_id_priv: listener cm id to match against 820 * @req: Pointer to req structure containaining incoming 821 * request information 822 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 823 * rdma device matches for listen_id and incoming request. It also verifies 824 * that a GID table entry is present for the source address. 825 * Returns 0 on success, or returns error code otherwise. 826 */ 827 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 828 const struct rdma_id_private *listen_id_priv, 829 struct cma_req_info *req) 830 { 831 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 832 const struct ib_gid_attr *sgid_attr; 833 enum ib_gid_type gid_type; 834 union ib_gid gid; 835 836 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 837 id_priv->id.ps == RDMA_PS_IPOIB) 838 return -EINVAL; 839 840 if (rdma_protocol_roce(req->device, req->port)) 841 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 842 &gid); 843 else 844 memcpy(&gid, dev_addr->src_dev_addr + 845 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 846 847 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 848 sgid_attr = cma_validate_port(req->device, req->port, 849 gid_type, &gid, id_priv); 850 if (IS_ERR(sgid_attr)) 851 return PTR_ERR(sgid_attr); 852 853 id_priv->id.port_num = req->port; 854 cma_bind_sgid_attr(id_priv, sgid_attr); 855 /* Need to acquire lock to protect against reader 856 * of cma_dev->id_list such as cma_netdev_callback() and 857 * cma_process_remove(). 858 */ 859 mutex_lock(&lock); 860 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 861 mutex_unlock(&lock); 862 rdma_restrack_add(&id_priv->res); 863 return 0; 864 } 865 866 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 867 const struct rdma_id_private *listen_id_priv) 868 { 869 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 870 const struct ib_gid_attr *sgid_attr; 871 struct cma_device *cma_dev; 872 enum ib_gid_type gid_type; 873 int ret = -ENODEV; 874 union ib_gid gid; 875 u32 port; 876 877 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 878 id_priv->id.ps == RDMA_PS_IPOIB) 879 return -EINVAL; 880 881 memcpy(&gid, dev_addr->src_dev_addr + 882 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 883 884 mutex_lock(&lock); 885 886 cma_dev = listen_id_priv->cma_dev; 887 port = listen_id_priv->id.port_num; 888 gid_type = listen_id_priv->gid_type; 889 sgid_attr = cma_validate_port(cma_dev->device, port, 890 gid_type, &gid, id_priv); 891 if (!IS_ERR(sgid_attr)) { 892 id_priv->id.port_num = port; 893 cma_bind_sgid_attr(id_priv, sgid_attr); 894 ret = 0; 895 goto out; 896 } 897 898 list_for_each_entry(cma_dev, &dev_list, list) { 899 rdma_for_each_port (cma_dev->device, port) { 900 if (listen_id_priv->cma_dev == cma_dev && 901 listen_id_priv->id.port_num == port) 902 continue; 903 904 gid_type = cma_dev->default_gid_type[port - 1]; 905 sgid_attr = cma_validate_port(cma_dev->device, port, 906 gid_type, &gid, id_priv); 907 if (!IS_ERR(sgid_attr)) { 908 id_priv->id.port_num = port; 909 cma_bind_sgid_attr(id_priv, sgid_attr); 910 ret = 0; 911 goto out; 912 } 913 } 914 } 915 916 out: 917 if (!ret) { 918 cma_attach_to_dev(id_priv, cma_dev); 919 rdma_restrack_add(&id_priv->res); 920 } 921 922 mutex_unlock(&lock); 923 return ret; 924 } 925 926 /* 927 * Select the source IB device and address to reach the destination IB address. 928 */ 929 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 930 { 931 struct cma_device *cma_dev, *cur_dev; 932 struct sockaddr_ib *addr; 933 union ib_gid gid, sgid, *dgid; 934 unsigned int p; 935 u16 pkey, index; 936 enum ib_port_state port_state; 937 int ret; 938 int i; 939 940 cma_dev = NULL; 941 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 942 dgid = (union ib_gid *) &addr->sib_addr; 943 pkey = ntohs(addr->sib_pkey); 944 945 mutex_lock(&lock); 946 list_for_each_entry(cur_dev, &dev_list, list) { 947 rdma_for_each_port (cur_dev->device, p) { 948 if (!rdma_cap_af_ib(cur_dev->device, p)) 949 continue; 950 951 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 952 continue; 953 954 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 955 continue; 956 957 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 958 ++i) { 959 ret = rdma_query_gid(cur_dev->device, p, i, 960 &gid); 961 if (ret) 962 continue; 963 964 if (!memcmp(&gid, dgid, sizeof(gid))) { 965 cma_dev = cur_dev; 966 sgid = gid; 967 id_priv->id.port_num = p; 968 goto found; 969 } 970 971 if (!cma_dev && (gid.global.subnet_prefix == 972 dgid->global.subnet_prefix) && 973 port_state == IB_PORT_ACTIVE) { 974 cma_dev = cur_dev; 975 sgid = gid; 976 id_priv->id.port_num = p; 977 goto found; 978 } 979 } 980 } 981 } 982 mutex_unlock(&lock); 983 return -ENODEV; 984 985 found: 986 cma_attach_to_dev(id_priv, cma_dev); 987 rdma_restrack_add(&id_priv->res); 988 mutex_unlock(&lock); 989 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 990 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 991 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 992 return 0; 993 } 994 995 static void cma_id_get(struct rdma_id_private *id_priv) 996 { 997 refcount_inc(&id_priv->refcount); 998 } 999 1000 static void cma_id_put(struct rdma_id_private *id_priv) 1001 { 1002 if (refcount_dec_and_test(&id_priv->refcount)) 1003 complete(&id_priv->comp); 1004 } 1005 1006 static struct rdma_id_private * 1007 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 1008 void *context, enum rdma_ucm_port_space ps, 1009 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 1010 { 1011 struct rdma_id_private *id_priv; 1012 1013 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 1014 if (!id_priv) 1015 return ERR_PTR(-ENOMEM); 1016 1017 id_priv->state = RDMA_CM_IDLE; 1018 id_priv->id.context = context; 1019 id_priv->id.event_handler = event_handler; 1020 id_priv->id.ps = ps; 1021 id_priv->id.qp_type = qp_type; 1022 id_priv->tos_set = false; 1023 id_priv->timeout_set = false; 1024 id_priv->min_rnr_timer_set = false; 1025 id_priv->gid_type = IB_GID_TYPE_IB; 1026 spin_lock_init(&id_priv->lock); 1027 mutex_init(&id_priv->qp_mutex); 1028 init_completion(&id_priv->comp); 1029 refcount_set(&id_priv->refcount, 1); 1030 mutex_init(&id_priv->handler_mutex); 1031 INIT_LIST_HEAD(&id_priv->device_item); 1032 INIT_LIST_HEAD(&id_priv->id_list_entry); 1033 INIT_LIST_HEAD(&id_priv->listen_list); 1034 INIT_LIST_HEAD(&id_priv->mc_list); 1035 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1036 id_priv->id.route.addr.dev_addr.net = get_net(net); 1037 id_priv->seq_num &= 0x00ffffff; 1038 INIT_WORK(&id_priv->id.net_work, cma_netevent_work_handler); 1039 1040 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1041 if (parent) 1042 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1043 1044 return id_priv; 1045 } 1046 1047 struct rdma_cm_id * 1048 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1049 void *context, enum rdma_ucm_port_space ps, 1050 enum ib_qp_type qp_type, const char *caller) 1051 { 1052 struct rdma_id_private *ret; 1053 1054 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1055 if (IS_ERR(ret)) 1056 return ERR_CAST(ret); 1057 1058 rdma_restrack_set_name(&ret->res, caller); 1059 return &ret->id; 1060 } 1061 EXPORT_SYMBOL(__rdma_create_kernel_id); 1062 1063 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1064 void *context, 1065 enum rdma_ucm_port_space ps, 1066 enum ib_qp_type qp_type) 1067 { 1068 struct rdma_id_private *ret; 1069 1070 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1071 ps, qp_type, NULL); 1072 if (IS_ERR(ret)) 1073 return ERR_CAST(ret); 1074 1075 rdma_restrack_set_name(&ret->res, NULL); 1076 return &ret->id; 1077 } 1078 EXPORT_SYMBOL(rdma_create_user_id); 1079 1080 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1081 { 1082 struct ib_qp_attr qp_attr; 1083 int qp_attr_mask, ret; 1084 1085 qp_attr.qp_state = IB_QPS_INIT; 1086 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1087 if (ret) 1088 return ret; 1089 1090 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1091 if (ret) 1092 return ret; 1093 1094 qp_attr.qp_state = IB_QPS_RTR; 1095 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1096 if (ret) 1097 return ret; 1098 1099 qp_attr.qp_state = IB_QPS_RTS; 1100 qp_attr.sq_psn = 0; 1101 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1102 1103 return ret; 1104 } 1105 1106 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1107 { 1108 struct ib_qp_attr qp_attr; 1109 int qp_attr_mask, ret; 1110 1111 qp_attr.qp_state = IB_QPS_INIT; 1112 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1113 if (ret) 1114 return ret; 1115 1116 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1117 } 1118 1119 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1120 struct ib_qp_init_attr *qp_init_attr) 1121 { 1122 struct rdma_id_private *id_priv; 1123 struct ib_qp *qp; 1124 int ret; 1125 1126 id_priv = container_of(id, struct rdma_id_private, id); 1127 if (id->device != pd->device) { 1128 ret = -EINVAL; 1129 goto out_err; 1130 } 1131 1132 qp_init_attr->port_num = id->port_num; 1133 qp = ib_create_qp(pd, qp_init_attr); 1134 if (IS_ERR(qp)) { 1135 ret = PTR_ERR(qp); 1136 goto out_err; 1137 } 1138 1139 if (id->qp_type == IB_QPT_UD) 1140 ret = cma_init_ud_qp(id_priv, qp); 1141 else 1142 ret = cma_init_conn_qp(id_priv, qp); 1143 if (ret) 1144 goto out_destroy; 1145 1146 id->qp = qp; 1147 id_priv->qp_num = qp->qp_num; 1148 id_priv->srq = (qp->srq != NULL); 1149 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1150 return 0; 1151 out_destroy: 1152 ib_destroy_qp(qp); 1153 out_err: 1154 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1155 return ret; 1156 } 1157 EXPORT_SYMBOL(rdma_create_qp); 1158 1159 void rdma_destroy_qp(struct rdma_cm_id *id) 1160 { 1161 struct rdma_id_private *id_priv; 1162 1163 id_priv = container_of(id, struct rdma_id_private, id); 1164 trace_cm_qp_destroy(id_priv); 1165 mutex_lock(&id_priv->qp_mutex); 1166 ib_destroy_qp(id_priv->id.qp); 1167 id_priv->id.qp = NULL; 1168 mutex_unlock(&id_priv->qp_mutex); 1169 } 1170 EXPORT_SYMBOL(rdma_destroy_qp); 1171 1172 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1173 struct rdma_conn_param *conn_param) 1174 { 1175 struct ib_qp_attr qp_attr; 1176 int qp_attr_mask, ret; 1177 1178 mutex_lock(&id_priv->qp_mutex); 1179 if (!id_priv->id.qp) { 1180 ret = 0; 1181 goto out; 1182 } 1183 1184 /* Need to update QP attributes from default values. */ 1185 qp_attr.qp_state = IB_QPS_INIT; 1186 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1187 if (ret) 1188 goto out; 1189 1190 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1191 if (ret) 1192 goto out; 1193 1194 qp_attr.qp_state = IB_QPS_RTR; 1195 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1196 if (ret) 1197 goto out; 1198 1199 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1200 1201 if (conn_param) 1202 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1203 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1204 out: 1205 mutex_unlock(&id_priv->qp_mutex); 1206 return ret; 1207 } 1208 1209 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1210 struct rdma_conn_param *conn_param) 1211 { 1212 struct ib_qp_attr qp_attr; 1213 int qp_attr_mask, ret; 1214 1215 mutex_lock(&id_priv->qp_mutex); 1216 if (!id_priv->id.qp) { 1217 ret = 0; 1218 goto out; 1219 } 1220 1221 qp_attr.qp_state = IB_QPS_RTS; 1222 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1223 if (ret) 1224 goto out; 1225 1226 if (conn_param) 1227 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1228 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1229 out: 1230 mutex_unlock(&id_priv->qp_mutex); 1231 return ret; 1232 } 1233 1234 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1235 { 1236 struct ib_qp_attr qp_attr; 1237 int ret; 1238 1239 mutex_lock(&id_priv->qp_mutex); 1240 if (!id_priv->id.qp) { 1241 ret = 0; 1242 goto out; 1243 } 1244 1245 qp_attr.qp_state = IB_QPS_ERR; 1246 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1247 out: 1248 mutex_unlock(&id_priv->qp_mutex); 1249 return ret; 1250 } 1251 1252 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1253 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1254 { 1255 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1256 int ret; 1257 u16 pkey; 1258 1259 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1260 pkey = 0xffff; 1261 else 1262 pkey = ib_addr_get_pkey(dev_addr); 1263 1264 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1265 pkey, &qp_attr->pkey_index); 1266 if (ret) 1267 return ret; 1268 1269 qp_attr->port_num = id_priv->id.port_num; 1270 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1271 1272 if (id_priv->id.qp_type == IB_QPT_UD) { 1273 ret = cma_set_default_qkey(id_priv); 1274 if (ret) 1275 return ret; 1276 1277 qp_attr->qkey = id_priv->qkey; 1278 *qp_attr_mask |= IB_QP_QKEY; 1279 } else { 1280 qp_attr->qp_access_flags = 0; 1281 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1282 } 1283 return 0; 1284 } 1285 1286 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1287 int *qp_attr_mask) 1288 { 1289 struct rdma_id_private *id_priv; 1290 int ret = 0; 1291 1292 id_priv = container_of(id, struct rdma_id_private, id); 1293 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1294 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1295 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1296 else 1297 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1298 qp_attr_mask); 1299 1300 if (qp_attr->qp_state == IB_QPS_RTR) 1301 qp_attr->rq_psn = id_priv->seq_num; 1302 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1303 if (!id_priv->cm_id.iw) { 1304 qp_attr->qp_access_flags = 0; 1305 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1306 } else 1307 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1308 qp_attr_mask); 1309 qp_attr->port_num = id_priv->id.port_num; 1310 *qp_attr_mask |= IB_QP_PORT; 1311 } else { 1312 ret = -ENOSYS; 1313 } 1314 1315 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1316 qp_attr->timeout = id_priv->timeout; 1317 1318 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1319 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1320 1321 return ret; 1322 } 1323 EXPORT_SYMBOL(rdma_init_qp_attr); 1324 1325 static inline bool cma_zero_addr(const struct sockaddr *addr) 1326 { 1327 switch (addr->sa_family) { 1328 case AF_INET: 1329 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1330 case AF_INET6: 1331 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1332 case AF_IB: 1333 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1334 default: 1335 return false; 1336 } 1337 } 1338 1339 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1340 { 1341 switch (addr->sa_family) { 1342 case AF_INET: 1343 return ipv4_is_loopback( 1344 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1345 case AF_INET6: 1346 return ipv6_addr_loopback( 1347 &((struct sockaddr_in6 *)addr)->sin6_addr); 1348 case AF_IB: 1349 return ib_addr_loopback( 1350 &((struct sockaddr_ib *)addr)->sib_addr); 1351 default: 1352 return false; 1353 } 1354 } 1355 1356 static inline bool cma_any_addr(const struct sockaddr *addr) 1357 { 1358 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1359 } 1360 1361 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1362 { 1363 if (src->sa_family != dst->sa_family) 1364 return -1; 1365 1366 switch (src->sa_family) { 1367 case AF_INET: 1368 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1369 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1370 case AF_INET6: { 1371 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1372 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1373 bool link_local; 1374 1375 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1376 &dst_addr6->sin6_addr)) 1377 return 1; 1378 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1379 IPV6_ADDR_LINKLOCAL; 1380 /* Link local must match their scope_ids */ 1381 return link_local ? (src_addr6->sin6_scope_id != 1382 dst_addr6->sin6_scope_id) : 1383 0; 1384 } 1385 1386 default: 1387 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1388 &((struct sockaddr_ib *) dst)->sib_addr); 1389 } 1390 } 1391 1392 static __be16 cma_port(const struct sockaddr *addr) 1393 { 1394 struct sockaddr_ib *sib; 1395 1396 switch (addr->sa_family) { 1397 case AF_INET: 1398 return ((struct sockaddr_in *) addr)->sin_port; 1399 case AF_INET6: 1400 return ((struct sockaddr_in6 *) addr)->sin6_port; 1401 case AF_IB: 1402 sib = (struct sockaddr_ib *) addr; 1403 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1404 be64_to_cpu(sib->sib_sid_mask))); 1405 default: 1406 return 0; 1407 } 1408 } 1409 1410 static inline int cma_any_port(const struct sockaddr *addr) 1411 { 1412 return !cma_port(addr); 1413 } 1414 1415 static void cma_save_ib_info(struct sockaddr *src_addr, 1416 struct sockaddr *dst_addr, 1417 const struct rdma_cm_id *listen_id, 1418 const struct sa_path_rec *path) 1419 { 1420 struct sockaddr_ib *listen_ib, *ib; 1421 1422 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1423 if (src_addr) { 1424 ib = (struct sockaddr_ib *)src_addr; 1425 ib->sib_family = AF_IB; 1426 if (path) { 1427 ib->sib_pkey = path->pkey; 1428 ib->sib_flowinfo = path->flow_label; 1429 memcpy(&ib->sib_addr, &path->sgid, 16); 1430 ib->sib_sid = path->service_id; 1431 ib->sib_scope_id = 0; 1432 } else { 1433 ib->sib_pkey = listen_ib->sib_pkey; 1434 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1435 ib->sib_addr = listen_ib->sib_addr; 1436 ib->sib_sid = listen_ib->sib_sid; 1437 ib->sib_scope_id = listen_ib->sib_scope_id; 1438 } 1439 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1440 } 1441 if (dst_addr) { 1442 ib = (struct sockaddr_ib *)dst_addr; 1443 ib->sib_family = AF_IB; 1444 if (path) { 1445 ib->sib_pkey = path->pkey; 1446 ib->sib_flowinfo = path->flow_label; 1447 memcpy(&ib->sib_addr, &path->dgid, 16); 1448 } 1449 } 1450 } 1451 1452 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1453 struct sockaddr_in *dst_addr, 1454 struct cma_hdr *hdr, 1455 __be16 local_port) 1456 { 1457 if (src_addr) { 1458 *src_addr = (struct sockaddr_in) { 1459 .sin_family = AF_INET, 1460 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1461 .sin_port = local_port, 1462 }; 1463 } 1464 1465 if (dst_addr) { 1466 *dst_addr = (struct sockaddr_in) { 1467 .sin_family = AF_INET, 1468 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1469 .sin_port = hdr->port, 1470 }; 1471 } 1472 } 1473 1474 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1475 struct sockaddr_in6 *dst_addr, 1476 struct cma_hdr *hdr, 1477 __be16 local_port) 1478 { 1479 if (src_addr) { 1480 *src_addr = (struct sockaddr_in6) { 1481 .sin6_family = AF_INET6, 1482 .sin6_addr = hdr->dst_addr.ip6, 1483 .sin6_port = local_port, 1484 }; 1485 } 1486 1487 if (dst_addr) { 1488 *dst_addr = (struct sockaddr_in6) { 1489 .sin6_family = AF_INET6, 1490 .sin6_addr = hdr->src_addr.ip6, 1491 .sin6_port = hdr->port, 1492 }; 1493 } 1494 } 1495 1496 static u16 cma_port_from_service_id(__be64 service_id) 1497 { 1498 return (u16)be64_to_cpu(service_id); 1499 } 1500 1501 static int cma_save_ip_info(struct sockaddr *src_addr, 1502 struct sockaddr *dst_addr, 1503 const struct ib_cm_event *ib_event, 1504 __be64 service_id) 1505 { 1506 struct cma_hdr *hdr; 1507 __be16 port; 1508 1509 hdr = ib_event->private_data; 1510 if (hdr->cma_version != CMA_VERSION) 1511 return -EINVAL; 1512 1513 port = htons(cma_port_from_service_id(service_id)); 1514 1515 switch (cma_get_ip_ver(hdr)) { 1516 case 4: 1517 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1518 (struct sockaddr_in *)dst_addr, hdr, port); 1519 break; 1520 case 6: 1521 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1522 (struct sockaddr_in6 *)dst_addr, hdr, port); 1523 break; 1524 default: 1525 return -EAFNOSUPPORT; 1526 } 1527 1528 return 0; 1529 } 1530 1531 static int cma_save_net_info(struct sockaddr *src_addr, 1532 struct sockaddr *dst_addr, 1533 const struct rdma_cm_id *listen_id, 1534 const struct ib_cm_event *ib_event, 1535 sa_family_t sa_family, __be64 service_id) 1536 { 1537 if (sa_family == AF_IB) { 1538 if (ib_event->event == IB_CM_REQ_RECEIVED) 1539 cma_save_ib_info(src_addr, dst_addr, listen_id, 1540 ib_event->param.req_rcvd.primary_path); 1541 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1542 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1543 return 0; 1544 } 1545 1546 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1547 } 1548 1549 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1550 struct cma_req_info *req) 1551 { 1552 const struct ib_cm_req_event_param *req_param = 1553 &ib_event->param.req_rcvd; 1554 const struct ib_cm_sidr_req_event_param *sidr_param = 1555 &ib_event->param.sidr_req_rcvd; 1556 1557 switch (ib_event->event) { 1558 case IB_CM_REQ_RECEIVED: 1559 req->device = req_param->listen_id->device; 1560 req->port = req_param->port; 1561 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1562 sizeof(req->local_gid)); 1563 req->has_gid = true; 1564 req->service_id = req_param->primary_path->service_id; 1565 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1566 if (req->pkey != req_param->bth_pkey) 1567 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1568 "RDMA CMA: in the future this may cause the request to be dropped\n", 1569 req_param->bth_pkey, req->pkey); 1570 break; 1571 case IB_CM_SIDR_REQ_RECEIVED: 1572 req->device = sidr_param->listen_id->device; 1573 req->port = sidr_param->port; 1574 req->has_gid = false; 1575 req->service_id = sidr_param->service_id; 1576 req->pkey = sidr_param->pkey; 1577 if (req->pkey != sidr_param->bth_pkey) 1578 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1579 "RDMA CMA: in the future this may cause the request to be dropped\n", 1580 sidr_param->bth_pkey, req->pkey); 1581 break; 1582 default: 1583 return -EINVAL; 1584 } 1585 1586 return 0; 1587 } 1588 1589 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1590 const struct sockaddr_in *dst_addr, 1591 const struct sockaddr_in *src_addr) 1592 { 1593 __be32 daddr = dst_addr->sin_addr.s_addr, 1594 saddr = src_addr->sin_addr.s_addr; 1595 struct fib_result res; 1596 struct flowi4 fl4; 1597 int err; 1598 bool ret; 1599 1600 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1601 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1602 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1603 ipv4_is_loopback(saddr)) 1604 return false; 1605 1606 memset(&fl4, 0, sizeof(fl4)); 1607 fl4.flowi4_oif = net_dev->ifindex; 1608 fl4.daddr = daddr; 1609 fl4.saddr = saddr; 1610 1611 rcu_read_lock(); 1612 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1613 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1614 rcu_read_unlock(); 1615 1616 return ret; 1617 } 1618 1619 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1620 const struct sockaddr_in6 *dst_addr, 1621 const struct sockaddr_in6 *src_addr) 1622 { 1623 #if IS_ENABLED(CONFIG_IPV6) 1624 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1625 IPV6_ADDR_LINKLOCAL; 1626 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1627 &src_addr->sin6_addr, net_dev->ifindex, 1628 NULL, strict); 1629 bool ret; 1630 1631 if (!rt) 1632 return false; 1633 1634 ret = rt->rt6i_idev->dev == net_dev; 1635 ip6_rt_put(rt); 1636 1637 return ret; 1638 #else 1639 return false; 1640 #endif 1641 } 1642 1643 static bool validate_net_dev(struct net_device *net_dev, 1644 const struct sockaddr *daddr, 1645 const struct sockaddr *saddr) 1646 { 1647 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1648 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1649 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1650 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1651 1652 switch (daddr->sa_family) { 1653 case AF_INET: 1654 return saddr->sa_family == AF_INET && 1655 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1656 1657 case AF_INET6: 1658 return saddr->sa_family == AF_INET6 && 1659 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1660 1661 default: 1662 return false; 1663 } 1664 } 1665 1666 static struct net_device * 1667 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1668 { 1669 const struct ib_gid_attr *sgid_attr = NULL; 1670 struct net_device *ndev; 1671 1672 if (ib_event->event == IB_CM_REQ_RECEIVED) 1673 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1674 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1675 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1676 1677 if (!sgid_attr) 1678 return NULL; 1679 1680 rcu_read_lock(); 1681 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1682 if (IS_ERR(ndev)) 1683 ndev = NULL; 1684 else 1685 dev_hold(ndev); 1686 rcu_read_unlock(); 1687 return ndev; 1688 } 1689 1690 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1691 struct cma_req_info *req) 1692 { 1693 struct sockaddr *listen_addr = 1694 (struct sockaddr *)&req->listen_addr_storage; 1695 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1696 struct net_device *net_dev; 1697 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1698 int err; 1699 1700 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1701 req->service_id); 1702 if (err) 1703 return ERR_PTR(err); 1704 1705 if (rdma_protocol_roce(req->device, req->port)) 1706 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1707 else 1708 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1709 req->pkey, 1710 gid, listen_addr); 1711 if (!net_dev) 1712 return ERR_PTR(-ENODEV); 1713 1714 return net_dev; 1715 } 1716 1717 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1718 { 1719 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1720 } 1721 1722 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1723 const struct cma_hdr *hdr) 1724 { 1725 struct sockaddr *addr = cma_src_addr(id_priv); 1726 __be32 ip4_addr; 1727 struct in6_addr ip6_addr; 1728 1729 if (cma_any_addr(addr) && !id_priv->afonly) 1730 return true; 1731 1732 switch (addr->sa_family) { 1733 case AF_INET: 1734 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1735 if (cma_get_ip_ver(hdr) != 4) 1736 return false; 1737 if (!cma_any_addr(addr) && 1738 hdr->dst_addr.ip4.addr != ip4_addr) 1739 return false; 1740 break; 1741 case AF_INET6: 1742 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1743 if (cma_get_ip_ver(hdr) != 6) 1744 return false; 1745 if (!cma_any_addr(addr) && 1746 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1747 return false; 1748 break; 1749 case AF_IB: 1750 return true; 1751 default: 1752 return false; 1753 } 1754 1755 return true; 1756 } 1757 1758 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1759 { 1760 struct ib_device *device = id->device; 1761 const u32 port_num = id->port_num ?: rdma_start_port(device); 1762 1763 return rdma_protocol_roce(device, port_num); 1764 } 1765 1766 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1767 { 1768 const struct sockaddr *daddr = 1769 (const struct sockaddr *)&req->listen_addr_storage; 1770 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1771 1772 /* Returns true if the req is for IPv6 link local */ 1773 return (daddr->sa_family == AF_INET6 && 1774 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1775 } 1776 1777 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1778 const struct net_device *net_dev, 1779 const struct cma_req_info *req) 1780 { 1781 const struct rdma_addr *addr = &id->route.addr; 1782 1783 if (!net_dev) 1784 /* This request is an AF_IB request */ 1785 return (!id->port_num || id->port_num == req->port) && 1786 (addr->src_addr.ss_family == AF_IB); 1787 1788 /* 1789 * If the request is not for IPv6 link local, allow matching 1790 * request to any netdevice of the one or multiport rdma device. 1791 */ 1792 if (!cma_is_req_ipv6_ll(req)) 1793 return true; 1794 /* 1795 * Net namespaces must match, and if the listner is listening 1796 * on a specific netdevice than netdevice must match as well. 1797 */ 1798 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1799 (!!addr->dev_addr.bound_dev_if == 1800 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1801 return true; 1802 else 1803 return false; 1804 } 1805 1806 static struct rdma_id_private *cma_find_listener( 1807 const struct rdma_bind_list *bind_list, 1808 const struct ib_cm_id *cm_id, 1809 const struct ib_cm_event *ib_event, 1810 const struct cma_req_info *req, 1811 const struct net_device *net_dev) 1812 { 1813 struct rdma_id_private *id_priv, *id_priv_dev; 1814 1815 lockdep_assert_held(&lock); 1816 1817 if (!bind_list) 1818 return ERR_PTR(-EINVAL); 1819 1820 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1821 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1822 if (id_priv->id.device == cm_id->device && 1823 cma_match_net_dev(&id_priv->id, net_dev, req)) 1824 return id_priv; 1825 list_for_each_entry(id_priv_dev, 1826 &id_priv->listen_list, 1827 listen_item) { 1828 if (id_priv_dev->id.device == cm_id->device && 1829 cma_match_net_dev(&id_priv_dev->id, 1830 net_dev, req)) 1831 return id_priv_dev; 1832 } 1833 } 1834 } 1835 1836 return ERR_PTR(-EINVAL); 1837 } 1838 1839 static struct rdma_id_private * 1840 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1841 const struct ib_cm_event *ib_event, 1842 struct cma_req_info *req, 1843 struct net_device **net_dev) 1844 { 1845 struct rdma_bind_list *bind_list; 1846 struct rdma_id_private *id_priv; 1847 int err; 1848 1849 err = cma_save_req_info(ib_event, req); 1850 if (err) 1851 return ERR_PTR(err); 1852 1853 *net_dev = cma_get_net_dev(ib_event, req); 1854 if (IS_ERR(*net_dev)) { 1855 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1856 /* Assuming the protocol is AF_IB */ 1857 *net_dev = NULL; 1858 } else { 1859 return ERR_CAST(*net_dev); 1860 } 1861 } 1862 1863 mutex_lock(&lock); 1864 /* 1865 * Net namespace might be getting deleted while route lookup, 1866 * cm_id lookup is in progress. Therefore, perform netdevice 1867 * validation, cm_id lookup under rcu lock. 1868 * RCU lock along with netdevice state check, synchronizes with 1869 * netdevice migrating to different net namespace and also avoids 1870 * case where net namespace doesn't get deleted while lookup is in 1871 * progress. 1872 * If the device state is not IFF_UP, its properties such as ifindex 1873 * and nd_net cannot be trusted to remain valid without rcu lock. 1874 * net/core/dev.c change_net_namespace() ensures to synchronize with 1875 * ongoing operations on net device after device is closed using 1876 * synchronize_net(). 1877 */ 1878 rcu_read_lock(); 1879 if (*net_dev) { 1880 /* 1881 * If netdevice is down, it is likely that it is administratively 1882 * down or it might be migrating to different namespace. 1883 * In that case avoid further processing, as the net namespace 1884 * or ifindex may change. 1885 */ 1886 if (((*net_dev)->flags & IFF_UP) == 0) { 1887 id_priv = ERR_PTR(-EHOSTUNREACH); 1888 goto err; 1889 } 1890 1891 if (!validate_net_dev(*net_dev, 1892 (struct sockaddr *)&req->src_addr_storage, 1893 (struct sockaddr *)&req->listen_addr_storage)) { 1894 id_priv = ERR_PTR(-EHOSTUNREACH); 1895 goto err; 1896 } 1897 } 1898 1899 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1900 rdma_ps_from_service_id(req->service_id), 1901 cma_port_from_service_id(req->service_id)); 1902 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1903 err: 1904 rcu_read_unlock(); 1905 mutex_unlock(&lock); 1906 if (IS_ERR(id_priv) && *net_dev) { 1907 dev_put(*net_dev); 1908 *net_dev = NULL; 1909 } 1910 return id_priv; 1911 } 1912 1913 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1914 { 1915 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1916 } 1917 1918 static void cma_cancel_route(struct rdma_id_private *id_priv) 1919 { 1920 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1921 if (id_priv->query) 1922 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1923 } 1924 } 1925 1926 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1927 { 1928 struct rdma_id_private *dev_id_priv; 1929 1930 lockdep_assert_held(&lock); 1931 1932 /* 1933 * Remove from listen_any_list to prevent added devices from spawning 1934 * additional listen requests. 1935 */ 1936 list_del_init(&id_priv->listen_any_item); 1937 1938 while (!list_empty(&id_priv->listen_list)) { 1939 dev_id_priv = 1940 list_first_entry(&id_priv->listen_list, 1941 struct rdma_id_private, listen_item); 1942 /* sync with device removal to avoid duplicate destruction */ 1943 list_del_init(&dev_id_priv->device_item); 1944 list_del_init(&dev_id_priv->listen_item); 1945 mutex_unlock(&lock); 1946 1947 rdma_destroy_id(&dev_id_priv->id); 1948 mutex_lock(&lock); 1949 } 1950 } 1951 1952 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1953 { 1954 mutex_lock(&lock); 1955 _cma_cancel_listens(id_priv); 1956 mutex_unlock(&lock); 1957 } 1958 1959 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1960 enum rdma_cm_state state) 1961 { 1962 switch (state) { 1963 case RDMA_CM_ADDR_QUERY: 1964 /* 1965 * We can avoid doing the rdma_addr_cancel() based on state, 1966 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1967 * Notice that the addr_handler work could still be exiting 1968 * outside this state, however due to the interaction with the 1969 * handler_mutex the work is guaranteed not to touch id_priv 1970 * during exit. 1971 */ 1972 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1973 break; 1974 case RDMA_CM_ROUTE_QUERY: 1975 cma_cancel_route(id_priv); 1976 break; 1977 case RDMA_CM_LISTEN: 1978 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1979 cma_cancel_listens(id_priv); 1980 break; 1981 default: 1982 break; 1983 } 1984 } 1985 1986 static void cma_release_port(struct rdma_id_private *id_priv) 1987 { 1988 struct rdma_bind_list *bind_list = id_priv->bind_list; 1989 struct net *net = id_priv->id.route.addr.dev_addr.net; 1990 1991 if (!bind_list) 1992 return; 1993 1994 mutex_lock(&lock); 1995 hlist_del(&id_priv->node); 1996 if (hlist_empty(&bind_list->owners)) { 1997 cma_ps_remove(net, bind_list->ps, bind_list->port); 1998 kfree(bind_list); 1999 } 2000 mutex_unlock(&lock); 2001 } 2002 2003 static void destroy_mc(struct rdma_id_private *id_priv, 2004 struct cma_multicast *mc) 2005 { 2006 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 2007 2008 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 2009 ib_sa_free_multicast(mc->sa_mc); 2010 2011 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 2012 struct rdma_dev_addr *dev_addr = 2013 &id_priv->id.route.addr.dev_addr; 2014 struct net_device *ndev = NULL; 2015 2016 if (dev_addr->bound_dev_if) 2017 ndev = dev_get_by_index(dev_addr->net, 2018 dev_addr->bound_dev_if); 2019 if (ndev && !send_only) { 2020 enum ib_gid_type gid_type; 2021 union ib_gid mgid; 2022 2023 gid_type = id_priv->cma_dev->default_gid_type 2024 [id_priv->id.port_num - 2025 rdma_start_port( 2026 id_priv->cma_dev->device)]; 2027 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2028 gid_type); 2029 cma_igmp_send(ndev, &mgid, false); 2030 } 2031 dev_put(ndev); 2032 2033 cancel_work_sync(&mc->iboe_join.work); 2034 } 2035 kfree(mc); 2036 } 2037 2038 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2039 { 2040 struct cma_multicast *mc; 2041 2042 while (!list_empty(&id_priv->mc_list)) { 2043 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2044 list); 2045 list_del(&mc->list); 2046 destroy_mc(id_priv, mc); 2047 } 2048 } 2049 2050 static void _destroy_id(struct rdma_id_private *id_priv, 2051 enum rdma_cm_state state) 2052 { 2053 cma_cancel_operation(id_priv, state); 2054 2055 rdma_restrack_del(&id_priv->res); 2056 cma_remove_id_from_tree(id_priv); 2057 if (id_priv->cma_dev) { 2058 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2059 if (id_priv->cm_id.ib) 2060 ib_destroy_cm_id(id_priv->cm_id.ib); 2061 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2062 if (id_priv->cm_id.iw) 2063 iw_destroy_cm_id(id_priv->cm_id.iw); 2064 } 2065 cma_leave_mc_groups(id_priv); 2066 cma_release_dev(id_priv); 2067 } 2068 2069 cma_release_port(id_priv); 2070 cma_id_put(id_priv); 2071 wait_for_completion(&id_priv->comp); 2072 2073 if (id_priv->internal_id) 2074 cma_id_put(id_priv->id.context); 2075 2076 kfree(id_priv->id.route.path_rec); 2077 kfree(id_priv->id.route.path_rec_inbound); 2078 kfree(id_priv->id.route.path_rec_outbound); 2079 kfree(id_priv->id.route.service_recs); 2080 2081 put_net(id_priv->id.route.addr.dev_addr.net); 2082 kfree(id_priv); 2083 } 2084 2085 /* 2086 * destroy an ID from within the handler_mutex. This ensures that no other 2087 * handlers can start running concurrently. 2088 */ 2089 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2090 __releases(&idprv->handler_mutex) 2091 { 2092 enum rdma_cm_state state; 2093 unsigned long flags; 2094 2095 trace_cm_id_destroy(id_priv); 2096 2097 /* 2098 * Setting the state to destroyed under the handler mutex provides a 2099 * fence against calling handler callbacks. If this is invoked due to 2100 * the failure of a handler callback then it guarentees that no future 2101 * handlers will be called. 2102 */ 2103 lockdep_assert_held(&id_priv->handler_mutex); 2104 spin_lock_irqsave(&id_priv->lock, flags); 2105 state = id_priv->state; 2106 id_priv->state = RDMA_CM_DESTROYING; 2107 spin_unlock_irqrestore(&id_priv->lock, flags); 2108 mutex_unlock(&id_priv->handler_mutex); 2109 _destroy_id(id_priv, state); 2110 } 2111 2112 void rdma_destroy_id(struct rdma_cm_id *id) 2113 { 2114 struct rdma_id_private *id_priv = 2115 container_of(id, struct rdma_id_private, id); 2116 2117 mutex_lock(&id_priv->handler_mutex); 2118 destroy_id_handler_unlock(id_priv); 2119 } 2120 EXPORT_SYMBOL(rdma_destroy_id); 2121 2122 static int cma_rep_recv(struct rdma_id_private *id_priv) 2123 { 2124 int ret; 2125 2126 ret = cma_modify_qp_rtr(id_priv, NULL); 2127 if (ret) 2128 goto reject; 2129 2130 ret = cma_modify_qp_rts(id_priv, NULL); 2131 if (ret) 2132 goto reject; 2133 2134 trace_cm_send_rtu(id_priv); 2135 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2136 if (ret) 2137 goto reject; 2138 2139 return 0; 2140 reject: 2141 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2142 cma_modify_qp_err(id_priv); 2143 trace_cm_send_rej(id_priv); 2144 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2145 NULL, 0, NULL, 0); 2146 return ret; 2147 } 2148 2149 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2150 const struct ib_cm_rep_event_param *rep_data, 2151 void *private_data) 2152 { 2153 event->param.conn.private_data = private_data; 2154 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2155 event->param.conn.responder_resources = rep_data->responder_resources; 2156 event->param.conn.initiator_depth = rep_data->initiator_depth; 2157 event->param.conn.flow_control = rep_data->flow_control; 2158 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2159 event->param.conn.srq = rep_data->srq; 2160 event->param.conn.qp_num = rep_data->remote_qpn; 2161 2162 event->ece.vendor_id = rep_data->ece.vendor_id; 2163 event->ece.attr_mod = rep_data->ece.attr_mod; 2164 } 2165 2166 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2167 struct rdma_cm_event *event) 2168 { 2169 int ret; 2170 2171 lockdep_assert_held(&id_priv->handler_mutex); 2172 2173 trace_cm_event_handler(id_priv, event); 2174 ret = id_priv->id.event_handler(&id_priv->id, event); 2175 trace_cm_event_done(id_priv, event, ret); 2176 return ret; 2177 } 2178 2179 static int cma_ib_handler(struct ib_cm_id *cm_id, 2180 const struct ib_cm_event *ib_event) 2181 { 2182 struct rdma_id_private *id_priv = cm_id->context; 2183 struct rdma_cm_event event = {}; 2184 enum rdma_cm_state state; 2185 int ret; 2186 2187 mutex_lock(&id_priv->handler_mutex); 2188 state = READ_ONCE(id_priv->state); 2189 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2190 state != RDMA_CM_CONNECT) || 2191 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2192 state != RDMA_CM_DISCONNECT)) 2193 goto out; 2194 2195 switch (ib_event->event) { 2196 case IB_CM_REQ_ERROR: 2197 case IB_CM_REP_ERROR: 2198 event.event = RDMA_CM_EVENT_UNREACHABLE; 2199 event.status = -ETIMEDOUT; 2200 break; 2201 case IB_CM_REP_RECEIVED: 2202 if (state == RDMA_CM_CONNECT && 2203 (id_priv->id.qp_type != IB_QPT_UD)) { 2204 trace_cm_prepare_mra(id_priv); 2205 ib_prepare_cm_mra(cm_id); 2206 } 2207 if (id_priv->id.qp) { 2208 event.status = cma_rep_recv(id_priv); 2209 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2210 RDMA_CM_EVENT_ESTABLISHED; 2211 } else { 2212 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2213 } 2214 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2215 ib_event->private_data); 2216 break; 2217 case IB_CM_RTU_RECEIVED: 2218 case IB_CM_USER_ESTABLISHED: 2219 event.event = RDMA_CM_EVENT_ESTABLISHED; 2220 break; 2221 case IB_CM_DREQ_ERROR: 2222 event.status = -ETIMEDOUT; 2223 fallthrough; 2224 case IB_CM_DREQ_RECEIVED: 2225 case IB_CM_DREP_RECEIVED: 2226 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2227 RDMA_CM_DISCONNECT)) 2228 goto out; 2229 event.event = RDMA_CM_EVENT_DISCONNECTED; 2230 break; 2231 case IB_CM_TIMEWAIT_EXIT: 2232 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2233 break; 2234 case IB_CM_MRA_RECEIVED: 2235 /* ignore event */ 2236 goto out; 2237 case IB_CM_REJ_RECEIVED: 2238 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2239 ib_event->param.rej_rcvd.reason)); 2240 cma_modify_qp_err(id_priv); 2241 event.status = ib_event->param.rej_rcvd.reason; 2242 event.event = RDMA_CM_EVENT_REJECTED; 2243 event.param.conn.private_data = ib_event->private_data; 2244 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2245 break; 2246 default: 2247 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2248 ib_event->event); 2249 goto out; 2250 } 2251 2252 ret = cma_cm_event_handler(id_priv, &event); 2253 if (ret) { 2254 /* Destroy the CM ID by returning a non-zero value. */ 2255 id_priv->cm_id.ib = NULL; 2256 destroy_id_handler_unlock(id_priv); 2257 return ret; 2258 } 2259 out: 2260 mutex_unlock(&id_priv->handler_mutex); 2261 return 0; 2262 } 2263 2264 static struct rdma_id_private * 2265 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2266 const struct ib_cm_event *ib_event, 2267 struct net_device *net_dev) 2268 { 2269 struct rdma_id_private *listen_id_priv; 2270 struct rdma_id_private *id_priv; 2271 struct rdma_cm_id *id; 2272 struct rdma_route *rt; 2273 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2274 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2275 const __be64 service_id = 2276 ib_event->param.req_rcvd.primary_path->service_id; 2277 int ret; 2278 2279 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2280 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2281 listen_id->event_handler, listen_id->context, 2282 listen_id->ps, 2283 ib_event->param.req_rcvd.qp_type, 2284 listen_id_priv); 2285 if (IS_ERR(id_priv)) 2286 return NULL; 2287 2288 id = &id_priv->id; 2289 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2290 (struct sockaddr *)&id->route.addr.dst_addr, 2291 listen_id, ib_event, ss_family, service_id)) 2292 goto err; 2293 2294 rt = &id->route; 2295 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2296 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2297 sizeof(*rt->path_rec), GFP_KERNEL); 2298 if (!rt->path_rec) 2299 goto err; 2300 2301 rt->path_rec[0] = *path; 2302 if (rt->num_pri_alt_paths == 2) 2303 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2304 2305 if (net_dev) { 2306 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2307 } else { 2308 if (!cma_protocol_roce(listen_id) && 2309 cma_any_addr(cma_src_addr(id_priv))) { 2310 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2311 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2312 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2313 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2314 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2315 if (ret) 2316 goto err; 2317 } 2318 } 2319 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2320 2321 id_priv->state = RDMA_CM_CONNECT; 2322 return id_priv; 2323 2324 err: 2325 rdma_destroy_id(id); 2326 return NULL; 2327 } 2328 2329 static struct rdma_id_private * 2330 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2331 const struct ib_cm_event *ib_event, 2332 struct net_device *net_dev) 2333 { 2334 const struct rdma_id_private *listen_id_priv; 2335 struct rdma_id_private *id_priv; 2336 struct rdma_cm_id *id; 2337 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2338 struct net *net = listen_id->route.addr.dev_addr.net; 2339 int ret; 2340 2341 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2342 id_priv = __rdma_create_id(net, listen_id->event_handler, 2343 listen_id->context, listen_id->ps, IB_QPT_UD, 2344 listen_id_priv); 2345 if (IS_ERR(id_priv)) 2346 return NULL; 2347 2348 id = &id_priv->id; 2349 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2350 (struct sockaddr *)&id->route.addr.dst_addr, 2351 listen_id, ib_event, ss_family, 2352 ib_event->param.sidr_req_rcvd.service_id)) 2353 goto err; 2354 2355 if (net_dev) { 2356 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2357 } else { 2358 if (!cma_any_addr(cma_src_addr(id_priv))) { 2359 ret = cma_translate_addr(cma_src_addr(id_priv), 2360 &id->route.addr.dev_addr); 2361 if (ret) 2362 goto err; 2363 } 2364 } 2365 2366 id_priv->state = RDMA_CM_CONNECT; 2367 return id_priv; 2368 err: 2369 rdma_destroy_id(id); 2370 return NULL; 2371 } 2372 2373 static void cma_set_req_event_data(struct rdma_cm_event *event, 2374 const struct ib_cm_req_event_param *req_data, 2375 void *private_data, int offset) 2376 { 2377 event->param.conn.private_data = private_data + offset; 2378 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2379 event->param.conn.responder_resources = req_data->responder_resources; 2380 event->param.conn.initiator_depth = req_data->initiator_depth; 2381 event->param.conn.flow_control = req_data->flow_control; 2382 event->param.conn.retry_count = req_data->retry_count; 2383 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2384 event->param.conn.srq = req_data->srq; 2385 event->param.conn.qp_num = req_data->remote_qpn; 2386 2387 event->ece.vendor_id = req_data->ece.vendor_id; 2388 event->ece.attr_mod = req_data->ece.attr_mod; 2389 } 2390 2391 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2392 const struct ib_cm_event *ib_event) 2393 { 2394 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2395 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2396 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2397 (id->qp_type == IB_QPT_UD)) || 2398 (!id->qp_type)); 2399 } 2400 2401 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2402 const struct ib_cm_event *ib_event) 2403 { 2404 struct rdma_id_private *listen_id, *conn_id = NULL; 2405 struct rdma_cm_event event = {}; 2406 struct cma_req_info req = {}; 2407 struct net_device *net_dev; 2408 u8 offset; 2409 int ret; 2410 2411 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2412 if (IS_ERR(listen_id)) 2413 return PTR_ERR(listen_id); 2414 2415 trace_cm_req_handler(listen_id, ib_event->event); 2416 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2417 ret = -EINVAL; 2418 goto net_dev_put; 2419 } 2420 2421 mutex_lock(&listen_id->handler_mutex); 2422 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2423 ret = -ECONNABORTED; 2424 goto err_unlock; 2425 } 2426 2427 offset = cma_user_data_offset(listen_id); 2428 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2429 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2430 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2431 event.param.ud.private_data = ib_event->private_data + offset; 2432 event.param.ud.private_data_len = 2433 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2434 } else { 2435 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2436 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2437 ib_event->private_data, offset); 2438 } 2439 if (!conn_id) { 2440 ret = -ENOMEM; 2441 goto err_unlock; 2442 } 2443 2444 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2445 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2446 if (ret) { 2447 destroy_id_handler_unlock(conn_id); 2448 goto err_unlock; 2449 } 2450 2451 conn_id->cm_id.ib = cm_id; 2452 cm_id->context = conn_id; 2453 cm_id->cm_handler = cma_ib_handler; 2454 2455 ret = cma_cm_event_handler(conn_id, &event); 2456 if (ret) { 2457 /* Destroy the CM ID by returning a non-zero value. */ 2458 conn_id->cm_id.ib = NULL; 2459 mutex_unlock(&listen_id->handler_mutex); 2460 destroy_id_handler_unlock(conn_id); 2461 goto net_dev_put; 2462 } 2463 2464 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2465 conn_id->id.qp_type != IB_QPT_UD) { 2466 trace_cm_prepare_mra(cm_id->context); 2467 ib_prepare_cm_mra(cm_id); 2468 } 2469 mutex_unlock(&conn_id->handler_mutex); 2470 2471 err_unlock: 2472 mutex_unlock(&listen_id->handler_mutex); 2473 2474 net_dev_put: 2475 dev_put(net_dev); 2476 2477 return ret; 2478 } 2479 2480 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2481 { 2482 if (addr->sa_family == AF_IB) 2483 return ((struct sockaddr_ib *) addr)->sib_sid; 2484 2485 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2486 } 2487 EXPORT_SYMBOL(rdma_get_service_id); 2488 2489 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2490 union ib_gid *dgid) 2491 { 2492 struct rdma_addr *addr = &cm_id->route.addr; 2493 2494 if (!cm_id->device) { 2495 if (sgid) 2496 memset(sgid, 0, sizeof(*sgid)); 2497 if (dgid) 2498 memset(dgid, 0, sizeof(*dgid)); 2499 return; 2500 } 2501 2502 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2503 if (sgid) 2504 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2505 if (dgid) 2506 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2507 } else { 2508 if (sgid) 2509 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2510 if (dgid) 2511 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2512 } 2513 } 2514 EXPORT_SYMBOL(rdma_read_gids); 2515 2516 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2517 { 2518 struct rdma_id_private *id_priv = iw_id->context; 2519 struct rdma_cm_event event = {}; 2520 int ret = 0; 2521 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2522 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2523 2524 mutex_lock(&id_priv->handler_mutex); 2525 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2526 goto out; 2527 2528 switch (iw_event->event) { 2529 case IW_CM_EVENT_CLOSE: 2530 event.event = RDMA_CM_EVENT_DISCONNECTED; 2531 break; 2532 case IW_CM_EVENT_CONNECT_REPLY: 2533 memcpy(cma_src_addr(id_priv), laddr, 2534 rdma_addr_size(laddr)); 2535 memcpy(cma_dst_addr(id_priv), raddr, 2536 rdma_addr_size(raddr)); 2537 switch (iw_event->status) { 2538 case 0: 2539 event.event = RDMA_CM_EVENT_ESTABLISHED; 2540 event.param.conn.initiator_depth = iw_event->ird; 2541 event.param.conn.responder_resources = iw_event->ord; 2542 break; 2543 case -ECONNRESET: 2544 case -ECONNREFUSED: 2545 event.event = RDMA_CM_EVENT_REJECTED; 2546 break; 2547 case -ETIMEDOUT: 2548 event.event = RDMA_CM_EVENT_UNREACHABLE; 2549 break; 2550 default: 2551 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2552 break; 2553 } 2554 break; 2555 case IW_CM_EVENT_ESTABLISHED: 2556 event.event = RDMA_CM_EVENT_ESTABLISHED; 2557 event.param.conn.initiator_depth = iw_event->ird; 2558 event.param.conn.responder_resources = iw_event->ord; 2559 break; 2560 default: 2561 goto out; 2562 } 2563 2564 event.status = iw_event->status; 2565 event.param.conn.private_data = iw_event->private_data; 2566 event.param.conn.private_data_len = iw_event->private_data_len; 2567 ret = cma_cm_event_handler(id_priv, &event); 2568 if (ret) { 2569 /* Destroy the CM ID by returning a non-zero value. */ 2570 id_priv->cm_id.iw = NULL; 2571 destroy_id_handler_unlock(id_priv); 2572 return ret; 2573 } 2574 2575 out: 2576 mutex_unlock(&id_priv->handler_mutex); 2577 return ret; 2578 } 2579 2580 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2581 struct iw_cm_event *iw_event) 2582 { 2583 struct rdma_id_private *listen_id, *conn_id; 2584 struct rdma_cm_event event = {}; 2585 int ret = -ECONNABORTED; 2586 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2587 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2588 2589 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2590 event.param.conn.private_data = iw_event->private_data; 2591 event.param.conn.private_data_len = iw_event->private_data_len; 2592 event.param.conn.initiator_depth = iw_event->ird; 2593 event.param.conn.responder_resources = iw_event->ord; 2594 2595 listen_id = cm_id->context; 2596 2597 mutex_lock(&listen_id->handler_mutex); 2598 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2599 goto out; 2600 2601 /* Create a new RDMA id for the new IW CM ID */ 2602 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2603 listen_id->id.event_handler, 2604 listen_id->id.context, RDMA_PS_TCP, 2605 IB_QPT_RC, listen_id); 2606 if (IS_ERR(conn_id)) { 2607 ret = -ENOMEM; 2608 goto out; 2609 } 2610 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2611 conn_id->state = RDMA_CM_CONNECT; 2612 2613 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2614 if (ret) { 2615 mutex_unlock(&listen_id->handler_mutex); 2616 destroy_id_handler_unlock(conn_id); 2617 return ret; 2618 } 2619 2620 ret = cma_iw_acquire_dev(conn_id, listen_id); 2621 if (ret) { 2622 mutex_unlock(&listen_id->handler_mutex); 2623 destroy_id_handler_unlock(conn_id); 2624 return ret; 2625 } 2626 2627 conn_id->cm_id.iw = cm_id; 2628 cm_id->context = conn_id; 2629 cm_id->cm_handler = cma_iw_handler; 2630 2631 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2632 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2633 2634 ret = cma_cm_event_handler(conn_id, &event); 2635 if (ret) { 2636 /* User wants to destroy the CM ID */ 2637 conn_id->cm_id.iw = NULL; 2638 mutex_unlock(&listen_id->handler_mutex); 2639 destroy_id_handler_unlock(conn_id); 2640 return ret; 2641 } 2642 2643 mutex_unlock(&conn_id->handler_mutex); 2644 2645 out: 2646 mutex_unlock(&listen_id->handler_mutex); 2647 return ret; 2648 } 2649 2650 static int cma_ib_listen(struct rdma_id_private *id_priv) 2651 { 2652 struct sockaddr *addr; 2653 struct ib_cm_id *id; 2654 __be64 svc_id; 2655 2656 addr = cma_src_addr(id_priv); 2657 svc_id = rdma_get_service_id(&id_priv->id, addr); 2658 id = ib_cm_insert_listen(id_priv->id.device, 2659 cma_ib_req_handler, svc_id); 2660 if (IS_ERR(id)) 2661 return PTR_ERR(id); 2662 id_priv->cm_id.ib = id; 2663 2664 return 0; 2665 } 2666 2667 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2668 { 2669 int ret; 2670 struct iw_cm_id *id; 2671 2672 id = iw_create_cm_id(id_priv->id.device, 2673 iw_conn_req_handler, 2674 id_priv); 2675 if (IS_ERR(id)) 2676 return PTR_ERR(id); 2677 2678 mutex_lock(&id_priv->qp_mutex); 2679 id->tos = id_priv->tos; 2680 id->tos_set = id_priv->tos_set; 2681 mutex_unlock(&id_priv->qp_mutex); 2682 id->afonly = id_priv->afonly; 2683 id_priv->cm_id.iw = id; 2684 2685 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2686 rdma_addr_size(cma_src_addr(id_priv))); 2687 2688 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2689 2690 if (ret) { 2691 iw_destroy_cm_id(id_priv->cm_id.iw); 2692 id_priv->cm_id.iw = NULL; 2693 } 2694 2695 return ret; 2696 } 2697 2698 static int cma_listen_handler(struct rdma_cm_id *id, 2699 struct rdma_cm_event *event) 2700 { 2701 struct rdma_id_private *id_priv = id->context; 2702 2703 /* Listening IDs are always destroyed on removal */ 2704 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2705 return -1; 2706 2707 id->context = id_priv->id.context; 2708 id->event_handler = id_priv->id.event_handler; 2709 trace_cm_event_handler(id_priv, event); 2710 return id_priv->id.event_handler(id, event); 2711 } 2712 2713 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2714 struct cma_device *cma_dev, 2715 struct rdma_id_private **to_destroy) 2716 { 2717 struct rdma_id_private *dev_id_priv; 2718 struct net *net = id_priv->id.route.addr.dev_addr.net; 2719 int ret; 2720 2721 lockdep_assert_held(&lock); 2722 2723 *to_destroy = NULL; 2724 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2725 return 0; 2726 2727 dev_id_priv = 2728 __rdma_create_id(net, cma_listen_handler, id_priv, 2729 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2730 if (IS_ERR(dev_id_priv)) 2731 return PTR_ERR(dev_id_priv); 2732 2733 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2734 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2735 rdma_addr_size(cma_src_addr(id_priv))); 2736 2737 _cma_attach_to_dev(dev_id_priv, cma_dev); 2738 rdma_restrack_add(&dev_id_priv->res); 2739 cma_id_get(id_priv); 2740 dev_id_priv->internal_id = 1; 2741 dev_id_priv->afonly = id_priv->afonly; 2742 mutex_lock(&id_priv->qp_mutex); 2743 dev_id_priv->tos_set = id_priv->tos_set; 2744 dev_id_priv->tos = id_priv->tos; 2745 mutex_unlock(&id_priv->qp_mutex); 2746 2747 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2748 if (ret) 2749 goto err_listen; 2750 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2751 return 0; 2752 err_listen: 2753 /* Caller must destroy this after releasing lock */ 2754 *to_destroy = dev_id_priv; 2755 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2756 return ret; 2757 } 2758 2759 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2760 { 2761 struct rdma_id_private *to_destroy; 2762 struct cma_device *cma_dev; 2763 int ret; 2764 2765 mutex_lock(&lock); 2766 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2767 list_for_each_entry(cma_dev, &dev_list, list) { 2768 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2769 if (ret) { 2770 /* Prevent racing with cma_process_remove() */ 2771 if (to_destroy) 2772 list_del_init(&to_destroy->device_item); 2773 goto err_listen; 2774 } 2775 } 2776 mutex_unlock(&lock); 2777 return 0; 2778 2779 err_listen: 2780 _cma_cancel_listens(id_priv); 2781 mutex_unlock(&lock); 2782 if (to_destroy) 2783 rdma_destroy_id(&to_destroy->id); 2784 return ret; 2785 } 2786 2787 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2788 { 2789 struct rdma_id_private *id_priv; 2790 2791 id_priv = container_of(id, struct rdma_id_private, id); 2792 mutex_lock(&id_priv->qp_mutex); 2793 id_priv->tos = (u8) tos; 2794 id_priv->tos_set = true; 2795 mutex_unlock(&id_priv->qp_mutex); 2796 } 2797 EXPORT_SYMBOL(rdma_set_service_type); 2798 2799 /** 2800 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2801 * with a connection identifier. 2802 * @id: Communication identifier to associated with service type. 2803 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2804 * 2805 * This function should be called before rdma_connect() on active side, 2806 * and on passive side before rdma_accept(). It is applicable to primary 2807 * path only. The timeout will affect the local side of the QP, it is not 2808 * negotiated with remote side and zero disables the timer. In case it is 2809 * set before rdma_resolve_route, the value will also be used to determine 2810 * PacketLifeTime for RoCE. 2811 * 2812 * Return: 0 for success 2813 */ 2814 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2815 { 2816 struct rdma_id_private *id_priv; 2817 2818 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2819 return -EINVAL; 2820 2821 id_priv = container_of(id, struct rdma_id_private, id); 2822 mutex_lock(&id_priv->qp_mutex); 2823 id_priv->timeout = timeout; 2824 id_priv->timeout_set = true; 2825 mutex_unlock(&id_priv->qp_mutex); 2826 2827 return 0; 2828 } 2829 EXPORT_SYMBOL(rdma_set_ack_timeout); 2830 2831 /** 2832 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2833 * QP associated with a connection identifier. 2834 * @id: Communication identifier to associated with service type. 2835 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2836 * Timer Field" in the IBTA specification. 2837 * 2838 * This function should be called before rdma_connect() on active 2839 * side, and on passive side before rdma_accept(). The timer value 2840 * will be associated with the local QP. When it receives a send it is 2841 * not read to handle, typically if the receive queue is empty, an RNR 2842 * Retry NAK is returned to the requester with the min_rnr_timer 2843 * encoded. The requester will then wait at least the time specified 2844 * in the NAK before retrying. The default is zero, which translates 2845 * to a minimum RNR Timer value of 655 ms. 2846 * 2847 * Return: 0 for success 2848 */ 2849 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2850 { 2851 struct rdma_id_private *id_priv; 2852 2853 /* It is a five-bit value */ 2854 if (min_rnr_timer & 0xe0) 2855 return -EINVAL; 2856 2857 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2858 return -EINVAL; 2859 2860 id_priv = container_of(id, struct rdma_id_private, id); 2861 mutex_lock(&id_priv->qp_mutex); 2862 id_priv->min_rnr_timer = min_rnr_timer; 2863 id_priv->min_rnr_timer_set = true; 2864 mutex_unlock(&id_priv->qp_mutex); 2865 2866 return 0; 2867 } 2868 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2869 2870 static int route_set_path_rec_inbound(struct cma_work *work, 2871 struct sa_path_rec *path_rec) 2872 { 2873 struct rdma_route *route = &work->id->id.route; 2874 2875 if (!route->path_rec_inbound) { 2876 route->path_rec_inbound = 2877 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2878 if (!route->path_rec_inbound) 2879 return -ENOMEM; 2880 } 2881 2882 *route->path_rec_inbound = *path_rec; 2883 return 0; 2884 } 2885 2886 static int route_set_path_rec_outbound(struct cma_work *work, 2887 struct sa_path_rec *path_rec) 2888 { 2889 struct rdma_route *route = &work->id->id.route; 2890 2891 if (!route->path_rec_outbound) { 2892 route->path_rec_outbound = 2893 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2894 if (!route->path_rec_outbound) 2895 return -ENOMEM; 2896 } 2897 2898 *route->path_rec_outbound = *path_rec; 2899 return 0; 2900 } 2901 2902 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2903 unsigned int num_prs, void *context) 2904 { 2905 struct cma_work *work = context; 2906 struct rdma_route *route; 2907 int i; 2908 2909 route = &work->id->id.route; 2910 2911 if (status) 2912 goto fail; 2913 2914 for (i = 0; i < num_prs; i++) { 2915 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2916 *route->path_rec = path_rec[i]; 2917 else if (path_rec[i].flags & IB_PATH_INBOUND) 2918 status = route_set_path_rec_inbound(work, &path_rec[i]); 2919 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2920 status = route_set_path_rec_outbound(work, 2921 &path_rec[i]); 2922 else 2923 status = -EINVAL; 2924 2925 if (status) 2926 goto fail; 2927 } 2928 2929 route->num_pri_alt_paths = 1; 2930 queue_work(cma_wq, &work->work); 2931 return; 2932 2933 fail: 2934 work->old_state = RDMA_CM_ROUTE_QUERY; 2935 work->new_state = RDMA_CM_ADDR_RESOLVED; 2936 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2937 work->event.status = status; 2938 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2939 status); 2940 queue_work(cma_wq, &work->work); 2941 } 2942 2943 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2944 unsigned long timeout_ms, struct cma_work *work) 2945 { 2946 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2947 struct sa_path_rec path_rec; 2948 ib_sa_comp_mask comp_mask; 2949 struct sockaddr_in6 *sin6; 2950 struct sockaddr_ib *sib; 2951 2952 memset(&path_rec, 0, sizeof path_rec); 2953 2954 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2955 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2956 else 2957 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2958 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2959 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2960 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2961 path_rec.numb_path = 1; 2962 path_rec.reversible = 1; 2963 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2964 cma_dst_addr(id_priv)); 2965 2966 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2967 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2968 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2969 2970 switch (cma_family(id_priv)) { 2971 case AF_INET: 2972 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2973 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2974 break; 2975 case AF_INET6: 2976 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2977 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2978 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2979 break; 2980 case AF_IB: 2981 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2982 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2983 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2984 break; 2985 } 2986 2987 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2988 id_priv->id.port_num, &path_rec, 2989 comp_mask, timeout_ms, 2990 GFP_KERNEL, cma_query_handler, 2991 work, &id_priv->query); 2992 2993 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2994 } 2995 2996 static void cma_iboe_join_work_handler(struct work_struct *work) 2997 { 2998 struct cma_multicast *mc = 2999 container_of(work, struct cma_multicast, iboe_join.work); 3000 struct rdma_cm_event *event = &mc->iboe_join.event; 3001 struct rdma_id_private *id_priv = mc->id_priv; 3002 int ret; 3003 3004 mutex_lock(&id_priv->handler_mutex); 3005 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3006 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3007 goto out_unlock; 3008 3009 ret = cma_cm_event_handler(id_priv, event); 3010 WARN_ON(ret); 3011 3012 out_unlock: 3013 mutex_unlock(&id_priv->handler_mutex); 3014 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 3015 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 3016 } 3017 3018 static void cma_work_handler(struct work_struct *_work) 3019 { 3020 struct cma_work *work = container_of(_work, struct cma_work, work); 3021 struct rdma_id_private *id_priv = work->id; 3022 3023 mutex_lock(&id_priv->handler_mutex); 3024 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3025 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3026 goto out_unlock; 3027 if (work->old_state != 0 || work->new_state != 0) { 3028 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3029 goto out_unlock; 3030 } 3031 3032 if (cma_cm_event_handler(id_priv, &work->event)) { 3033 cma_id_put(id_priv); 3034 destroy_id_handler_unlock(id_priv); 3035 goto out_free; 3036 } 3037 3038 out_unlock: 3039 mutex_unlock(&id_priv->handler_mutex); 3040 cma_id_put(id_priv); 3041 out_free: 3042 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3043 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3044 kfree(work); 3045 } 3046 3047 static void cma_init_resolve_route_work(struct cma_work *work, 3048 struct rdma_id_private *id_priv) 3049 { 3050 work->id = id_priv; 3051 INIT_WORK(&work->work, cma_work_handler); 3052 work->old_state = RDMA_CM_ROUTE_QUERY; 3053 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3054 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3055 } 3056 3057 static void enqueue_resolve_addr_work(struct cma_work *work, 3058 struct rdma_id_private *id_priv) 3059 { 3060 /* Balances with cma_id_put() in cma_work_handler */ 3061 cma_id_get(id_priv); 3062 3063 work->id = id_priv; 3064 INIT_WORK(&work->work, cma_work_handler); 3065 work->old_state = RDMA_CM_ADDR_QUERY; 3066 work->new_state = RDMA_CM_ADDR_RESOLVED; 3067 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3068 3069 queue_work(cma_wq, &work->work); 3070 } 3071 3072 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3073 unsigned long timeout_ms) 3074 { 3075 struct rdma_route *route = &id_priv->id.route; 3076 struct cma_work *work; 3077 int ret; 3078 3079 work = kzalloc(sizeof *work, GFP_KERNEL); 3080 if (!work) 3081 return -ENOMEM; 3082 3083 cma_init_resolve_route_work(work, id_priv); 3084 3085 if (!route->path_rec) 3086 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3087 if (!route->path_rec) { 3088 ret = -ENOMEM; 3089 goto err1; 3090 } 3091 3092 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3093 if (ret) 3094 goto err2; 3095 3096 return 0; 3097 err2: 3098 kfree(route->path_rec); 3099 route->path_rec = NULL; 3100 err1: 3101 kfree(work); 3102 return ret; 3103 } 3104 3105 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3106 unsigned long supported_gids, 3107 enum ib_gid_type default_gid) 3108 { 3109 if ((network_type == RDMA_NETWORK_IPV4 || 3110 network_type == RDMA_NETWORK_IPV6) && 3111 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3112 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3113 3114 return default_gid; 3115 } 3116 3117 /* 3118 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3119 * path record type based on GID type. 3120 * It also sets up other L2 fields which includes destination mac address 3121 * netdev ifindex, of the path record. 3122 * It returns the netdev of the bound interface for this path record entry. 3123 */ 3124 static struct net_device * 3125 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3126 { 3127 struct rdma_route *route = &id_priv->id.route; 3128 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3129 struct rdma_addr *addr = &route->addr; 3130 unsigned long supported_gids; 3131 struct net_device *ndev; 3132 3133 if (!addr->dev_addr.bound_dev_if) 3134 return NULL; 3135 3136 ndev = dev_get_by_index(addr->dev_addr.net, 3137 addr->dev_addr.bound_dev_if); 3138 if (!ndev) 3139 return NULL; 3140 3141 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3142 id_priv->id.port_num); 3143 gid_type = cma_route_gid_type(addr->dev_addr.network, 3144 supported_gids, 3145 id_priv->gid_type); 3146 /* Use the hint from IP Stack to select GID Type */ 3147 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3148 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3149 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3150 3151 route->path_rec->roce.route_resolved = true; 3152 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3153 return ndev; 3154 } 3155 3156 int rdma_set_ib_path(struct rdma_cm_id *id, 3157 struct sa_path_rec *path_rec) 3158 { 3159 struct rdma_id_private *id_priv; 3160 struct net_device *ndev; 3161 int ret; 3162 3163 id_priv = container_of(id, struct rdma_id_private, id); 3164 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3165 RDMA_CM_ROUTE_RESOLVED)) 3166 return -EINVAL; 3167 3168 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3169 GFP_KERNEL); 3170 if (!id->route.path_rec) { 3171 ret = -ENOMEM; 3172 goto err; 3173 } 3174 3175 if (rdma_protocol_roce(id->device, id->port_num)) { 3176 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3177 if (!ndev) { 3178 ret = -ENODEV; 3179 goto err_free; 3180 } 3181 dev_put(ndev); 3182 } 3183 3184 id->route.num_pri_alt_paths = 1; 3185 return 0; 3186 3187 err_free: 3188 kfree(id->route.path_rec); 3189 id->route.path_rec = NULL; 3190 err: 3191 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3192 return ret; 3193 } 3194 EXPORT_SYMBOL(rdma_set_ib_path); 3195 3196 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3197 { 3198 struct cma_work *work; 3199 3200 work = kzalloc(sizeof *work, GFP_KERNEL); 3201 if (!work) 3202 return -ENOMEM; 3203 3204 cma_init_resolve_route_work(work, id_priv); 3205 queue_work(cma_wq, &work->work); 3206 return 0; 3207 } 3208 3209 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3210 { 3211 struct net_device *dev; 3212 3213 dev = vlan_dev_real_dev(vlan_ndev); 3214 if (dev->num_tc) 3215 return netdev_get_prio_tc_map(dev, prio); 3216 3217 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3218 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3219 } 3220 3221 struct iboe_prio_tc_map { 3222 int input_prio; 3223 int output_tc; 3224 bool found; 3225 }; 3226 3227 static int get_lower_vlan_dev_tc(struct net_device *dev, 3228 struct netdev_nested_priv *priv) 3229 { 3230 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3231 3232 if (is_vlan_dev(dev)) 3233 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3234 else if (dev->num_tc) 3235 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3236 else 3237 map->output_tc = 0; 3238 /* We are interested only in first level VLAN device, so always 3239 * return 1 to stop iterating over next level devices. 3240 */ 3241 map->found = true; 3242 return 1; 3243 } 3244 3245 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3246 { 3247 struct iboe_prio_tc_map prio_tc_map = {}; 3248 int prio = rt_tos2priority(tos); 3249 struct netdev_nested_priv priv; 3250 3251 /* If VLAN device, get it directly from the VLAN netdev */ 3252 if (is_vlan_dev(ndev)) 3253 return get_vlan_ndev_tc(ndev, prio); 3254 3255 prio_tc_map.input_prio = prio; 3256 priv.data = (void *)&prio_tc_map; 3257 rcu_read_lock(); 3258 netdev_walk_all_lower_dev_rcu(ndev, 3259 get_lower_vlan_dev_tc, 3260 &priv); 3261 rcu_read_unlock(); 3262 /* If map is found from lower device, use it; Otherwise 3263 * continue with the current netdevice to get priority to tc map. 3264 */ 3265 if (prio_tc_map.found) 3266 return prio_tc_map.output_tc; 3267 else if (ndev->num_tc) 3268 return netdev_get_prio_tc_map(ndev, prio); 3269 else 3270 return 0; 3271 } 3272 3273 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3274 { 3275 struct sockaddr_in6 *addr6; 3276 u16 dport, sport; 3277 u32 hash, fl; 3278 3279 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3280 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3281 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3282 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3283 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3284 hash = (u32)sport * 31 + dport; 3285 fl = hash & IB_GRH_FLOWLABEL_MASK; 3286 } 3287 3288 return cpu_to_be32(fl); 3289 } 3290 3291 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3292 { 3293 struct rdma_route *route = &id_priv->id.route; 3294 struct rdma_addr *addr = &route->addr; 3295 struct cma_work *work; 3296 int ret; 3297 struct net_device *ndev; 3298 3299 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3300 rdma_start_port(id_priv->cma_dev->device)]; 3301 u8 tos; 3302 3303 mutex_lock(&id_priv->qp_mutex); 3304 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3305 mutex_unlock(&id_priv->qp_mutex); 3306 3307 work = kzalloc(sizeof *work, GFP_KERNEL); 3308 if (!work) 3309 return -ENOMEM; 3310 3311 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3312 if (!route->path_rec) { 3313 ret = -ENOMEM; 3314 goto err1; 3315 } 3316 3317 route->num_pri_alt_paths = 1; 3318 3319 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3320 if (!ndev) { 3321 ret = -ENODEV; 3322 goto err2; 3323 } 3324 3325 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3326 &route->path_rec->sgid); 3327 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3328 &route->path_rec->dgid); 3329 3330 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3331 /* TODO: get the hoplimit from the inet/inet6 device */ 3332 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3333 else 3334 route->path_rec->hop_limit = 1; 3335 route->path_rec->reversible = 1; 3336 route->path_rec->pkey = cpu_to_be16(0xffff); 3337 route->path_rec->mtu_selector = IB_SA_EQ; 3338 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3339 route->path_rec->traffic_class = tos; 3340 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3341 route->path_rec->rate_selector = IB_SA_EQ; 3342 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3343 dev_put(ndev); 3344 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3345 /* In case ACK timeout is set, use this value to calculate 3346 * PacketLifeTime. As per IBTA 12.7.34, 3347 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3348 * Assuming a negligible local ACK delay, we can use 3349 * PacketLifeTime = local ACK timeout/2 3350 * as a reasonable approximation for RoCE networks. 3351 */ 3352 mutex_lock(&id_priv->qp_mutex); 3353 if (id_priv->timeout_set && id_priv->timeout) 3354 route->path_rec->packet_life_time = id_priv->timeout - 1; 3355 else 3356 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3357 mutex_unlock(&id_priv->qp_mutex); 3358 3359 if (!route->path_rec->mtu) { 3360 ret = -EINVAL; 3361 goto err2; 3362 } 3363 3364 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3365 id_priv->id.port_num)) 3366 route->path_rec->flow_label = 3367 cma_get_roce_udp_flow_label(id_priv); 3368 3369 cma_init_resolve_route_work(work, id_priv); 3370 queue_work(cma_wq, &work->work); 3371 3372 return 0; 3373 3374 err2: 3375 kfree(route->path_rec); 3376 route->path_rec = NULL; 3377 route->num_pri_alt_paths = 0; 3378 err1: 3379 kfree(work); 3380 return ret; 3381 } 3382 3383 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3384 { 3385 struct rdma_id_private *id_priv; 3386 enum rdma_cm_state state; 3387 int ret; 3388 3389 if (!timeout_ms) 3390 return -EINVAL; 3391 3392 id_priv = container_of(id, struct rdma_id_private, id); 3393 state = id_priv->state; 3394 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3395 RDMA_CM_ROUTE_QUERY) && 3396 !cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_RESOLVED, 3397 RDMA_CM_ROUTE_QUERY)) 3398 return -EINVAL; 3399 3400 cma_id_get(id_priv); 3401 if (rdma_cap_ib_sa(id->device, id->port_num)) 3402 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3403 else if (rdma_protocol_roce(id->device, id->port_num)) { 3404 ret = cma_resolve_iboe_route(id_priv); 3405 if (!ret) 3406 cma_add_id_to_tree(id_priv); 3407 } 3408 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3409 ret = cma_resolve_iw_route(id_priv); 3410 else 3411 ret = -ENOSYS; 3412 3413 if (ret) 3414 goto err; 3415 3416 return 0; 3417 err: 3418 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, state); 3419 cma_id_put(id_priv); 3420 return ret; 3421 } 3422 EXPORT_SYMBOL(rdma_resolve_route); 3423 3424 static void cma_set_loopback(struct sockaddr *addr) 3425 { 3426 switch (addr->sa_family) { 3427 case AF_INET: 3428 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3429 break; 3430 case AF_INET6: 3431 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3432 0, 0, 0, htonl(1)); 3433 break; 3434 default: 3435 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3436 0, 0, 0, htonl(1)); 3437 break; 3438 } 3439 } 3440 3441 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3442 { 3443 struct cma_device *cma_dev, *cur_dev; 3444 union ib_gid gid; 3445 enum ib_port_state port_state; 3446 unsigned int p; 3447 u16 pkey; 3448 int ret; 3449 3450 cma_dev = NULL; 3451 mutex_lock(&lock); 3452 list_for_each_entry(cur_dev, &dev_list, list) { 3453 if (cma_family(id_priv) == AF_IB && 3454 !rdma_cap_ib_cm(cur_dev->device, 1)) 3455 continue; 3456 3457 if (!cma_dev) 3458 cma_dev = cur_dev; 3459 3460 rdma_for_each_port (cur_dev->device, p) { 3461 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3462 port_state == IB_PORT_ACTIVE) { 3463 cma_dev = cur_dev; 3464 goto port_found; 3465 } 3466 } 3467 } 3468 3469 if (!cma_dev) { 3470 ret = -ENODEV; 3471 goto out; 3472 } 3473 3474 p = 1; 3475 3476 port_found: 3477 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3478 if (ret) 3479 goto out; 3480 3481 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3482 if (ret) 3483 goto out; 3484 3485 id_priv->id.route.addr.dev_addr.dev_type = 3486 (rdma_protocol_ib(cma_dev->device, p)) ? 3487 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3488 3489 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3490 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3491 id_priv->id.port_num = p; 3492 cma_attach_to_dev(id_priv, cma_dev); 3493 rdma_restrack_add(&id_priv->res); 3494 cma_set_loopback(cma_src_addr(id_priv)); 3495 out: 3496 mutex_unlock(&lock); 3497 return ret; 3498 } 3499 3500 static void addr_handler(int status, struct sockaddr *src_addr, 3501 struct rdma_dev_addr *dev_addr, void *context) 3502 { 3503 struct rdma_id_private *id_priv = context; 3504 struct rdma_cm_event event = {}; 3505 struct sockaddr *addr; 3506 struct sockaddr_storage old_addr; 3507 3508 mutex_lock(&id_priv->handler_mutex); 3509 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3510 RDMA_CM_ADDR_RESOLVED)) 3511 goto out; 3512 3513 /* 3514 * Store the previous src address, so that if we fail to acquire 3515 * matching rdma device, old address can be restored back, which helps 3516 * to cancel the cma listen operation correctly. 3517 */ 3518 addr = cma_src_addr(id_priv); 3519 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3520 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3521 if (!status && !id_priv->cma_dev) { 3522 status = cma_acquire_dev_by_src_ip(id_priv); 3523 if (status) 3524 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3525 status); 3526 rdma_restrack_add(&id_priv->res); 3527 } else if (status) { 3528 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3529 } 3530 3531 if (status) { 3532 memcpy(addr, &old_addr, 3533 rdma_addr_size((struct sockaddr *)&old_addr)); 3534 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3535 RDMA_CM_ADDR_BOUND)) 3536 goto out; 3537 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3538 event.status = status; 3539 } else 3540 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3541 3542 if (cma_cm_event_handler(id_priv, &event)) { 3543 destroy_id_handler_unlock(id_priv); 3544 return; 3545 } 3546 out: 3547 mutex_unlock(&id_priv->handler_mutex); 3548 } 3549 3550 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3551 { 3552 struct cma_work *work; 3553 union ib_gid gid; 3554 int ret; 3555 3556 work = kzalloc(sizeof *work, GFP_KERNEL); 3557 if (!work) 3558 return -ENOMEM; 3559 3560 if (!id_priv->cma_dev) { 3561 ret = cma_bind_loopback(id_priv); 3562 if (ret) 3563 goto err; 3564 } 3565 3566 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3567 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3568 3569 enqueue_resolve_addr_work(work, id_priv); 3570 return 0; 3571 err: 3572 kfree(work); 3573 return ret; 3574 } 3575 3576 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3577 { 3578 struct cma_work *work; 3579 int ret; 3580 3581 work = kzalloc(sizeof *work, GFP_KERNEL); 3582 if (!work) 3583 return -ENOMEM; 3584 3585 if (!id_priv->cma_dev) { 3586 ret = cma_resolve_ib_dev(id_priv); 3587 if (ret) 3588 goto err; 3589 } 3590 3591 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3592 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3593 3594 enqueue_resolve_addr_work(work, id_priv); 3595 return 0; 3596 err: 3597 kfree(work); 3598 return ret; 3599 } 3600 3601 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3602 { 3603 struct rdma_id_private *id_priv; 3604 unsigned long flags; 3605 int ret; 3606 3607 id_priv = container_of(id, struct rdma_id_private, id); 3608 spin_lock_irqsave(&id_priv->lock, flags); 3609 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3610 id_priv->state == RDMA_CM_IDLE) { 3611 id_priv->reuseaddr = reuse; 3612 ret = 0; 3613 } else { 3614 ret = -EINVAL; 3615 } 3616 spin_unlock_irqrestore(&id_priv->lock, flags); 3617 return ret; 3618 } 3619 EXPORT_SYMBOL(rdma_set_reuseaddr); 3620 3621 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3622 { 3623 struct rdma_id_private *id_priv; 3624 unsigned long flags; 3625 int ret; 3626 3627 id_priv = container_of(id, struct rdma_id_private, id); 3628 spin_lock_irqsave(&id_priv->lock, flags); 3629 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3630 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3631 id_priv->afonly = afonly; 3632 ret = 0; 3633 } else { 3634 ret = -EINVAL; 3635 } 3636 spin_unlock_irqrestore(&id_priv->lock, flags); 3637 return ret; 3638 } 3639 EXPORT_SYMBOL(rdma_set_afonly); 3640 3641 static void cma_bind_port(struct rdma_bind_list *bind_list, 3642 struct rdma_id_private *id_priv) 3643 { 3644 struct sockaddr *addr; 3645 struct sockaddr_ib *sib; 3646 u64 sid, mask; 3647 __be16 port; 3648 3649 lockdep_assert_held(&lock); 3650 3651 addr = cma_src_addr(id_priv); 3652 port = htons(bind_list->port); 3653 3654 switch (addr->sa_family) { 3655 case AF_INET: 3656 ((struct sockaddr_in *) addr)->sin_port = port; 3657 break; 3658 case AF_INET6: 3659 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3660 break; 3661 case AF_IB: 3662 sib = (struct sockaddr_ib *) addr; 3663 sid = be64_to_cpu(sib->sib_sid); 3664 mask = be64_to_cpu(sib->sib_sid_mask); 3665 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3666 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3667 break; 3668 } 3669 id_priv->bind_list = bind_list; 3670 hlist_add_head(&id_priv->node, &bind_list->owners); 3671 } 3672 3673 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3674 struct rdma_id_private *id_priv, unsigned short snum) 3675 { 3676 struct rdma_bind_list *bind_list; 3677 int ret; 3678 3679 lockdep_assert_held(&lock); 3680 3681 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3682 if (!bind_list) 3683 return -ENOMEM; 3684 3685 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3686 snum); 3687 if (ret < 0) 3688 goto err; 3689 3690 bind_list->ps = ps; 3691 bind_list->port = snum; 3692 cma_bind_port(bind_list, id_priv); 3693 return 0; 3694 err: 3695 kfree(bind_list); 3696 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3697 } 3698 3699 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3700 struct rdma_id_private *id_priv) 3701 { 3702 struct rdma_id_private *cur_id; 3703 struct sockaddr *daddr = cma_dst_addr(id_priv); 3704 struct sockaddr *saddr = cma_src_addr(id_priv); 3705 __be16 dport = cma_port(daddr); 3706 3707 lockdep_assert_held(&lock); 3708 3709 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3710 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3711 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3712 __be16 cur_dport = cma_port(cur_daddr); 3713 3714 if (id_priv == cur_id) 3715 continue; 3716 3717 /* different dest port -> unique */ 3718 if (!cma_any_port(daddr) && 3719 !cma_any_port(cur_daddr) && 3720 (dport != cur_dport)) 3721 continue; 3722 3723 /* different src address -> unique */ 3724 if (!cma_any_addr(saddr) && 3725 !cma_any_addr(cur_saddr) && 3726 cma_addr_cmp(saddr, cur_saddr)) 3727 continue; 3728 3729 /* different dst address -> unique */ 3730 if (!cma_any_addr(daddr) && 3731 !cma_any_addr(cur_daddr) && 3732 cma_addr_cmp(daddr, cur_daddr)) 3733 continue; 3734 3735 return -EADDRNOTAVAIL; 3736 } 3737 return 0; 3738 } 3739 3740 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3741 struct rdma_id_private *id_priv) 3742 { 3743 static unsigned int last_used_port; 3744 int low, high, remaining; 3745 unsigned int rover; 3746 struct net *net = id_priv->id.route.addr.dev_addr.net; 3747 3748 lockdep_assert_held(&lock); 3749 3750 inet_get_local_port_range(net, &low, &high); 3751 remaining = (high - low) + 1; 3752 rover = get_random_u32_inclusive(low, remaining + low - 1); 3753 retry: 3754 if (last_used_port != rover) { 3755 struct rdma_bind_list *bind_list; 3756 int ret; 3757 3758 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3759 3760 if (!bind_list) { 3761 ret = cma_alloc_port(ps, id_priv, rover); 3762 } else { 3763 ret = cma_port_is_unique(bind_list, id_priv); 3764 if (!ret) 3765 cma_bind_port(bind_list, id_priv); 3766 } 3767 /* 3768 * Remember previously used port number in order to avoid 3769 * re-using same port immediately after it is closed. 3770 */ 3771 if (!ret) 3772 last_used_port = rover; 3773 if (ret != -EADDRNOTAVAIL) 3774 return ret; 3775 } 3776 if (--remaining) { 3777 rover++; 3778 if ((rover < low) || (rover > high)) 3779 rover = low; 3780 goto retry; 3781 } 3782 return -EADDRNOTAVAIL; 3783 } 3784 3785 /* 3786 * Check that the requested port is available. This is called when trying to 3787 * bind to a specific port, or when trying to listen on a bound port. In 3788 * the latter case, the provided id_priv may already be on the bind_list, but 3789 * we still need to check that it's okay to start listening. 3790 */ 3791 static int cma_check_port(struct rdma_bind_list *bind_list, 3792 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3793 { 3794 struct rdma_id_private *cur_id; 3795 struct sockaddr *addr, *cur_addr; 3796 3797 lockdep_assert_held(&lock); 3798 3799 addr = cma_src_addr(id_priv); 3800 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3801 if (id_priv == cur_id) 3802 continue; 3803 3804 if (reuseaddr && cur_id->reuseaddr) 3805 continue; 3806 3807 cur_addr = cma_src_addr(cur_id); 3808 if (id_priv->afonly && cur_id->afonly && 3809 (addr->sa_family != cur_addr->sa_family)) 3810 continue; 3811 3812 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3813 return -EADDRNOTAVAIL; 3814 3815 if (!cma_addr_cmp(addr, cur_addr)) 3816 return -EADDRINUSE; 3817 } 3818 return 0; 3819 } 3820 3821 static int cma_use_port(enum rdma_ucm_port_space ps, 3822 struct rdma_id_private *id_priv) 3823 { 3824 struct rdma_bind_list *bind_list; 3825 unsigned short snum; 3826 int ret; 3827 3828 lockdep_assert_held(&lock); 3829 3830 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3831 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3832 return -EACCES; 3833 3834 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3835 if (!bind_list) { 3836 ret = cma_alloc_port(ps, id_priv, snum); 3837 } else { 3838 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3839 if (!ret) 3840 cma_bind_port(bind_list, id_priv); 3841 } 3842 return ret; 3843 } 3844 3845 static enum rdma_ucm_port_space 3846 cma_select_inet_ps(struct rdma_id_private *id_priv) 3847 { 3848 switch (id_priv->id.ps) { 3849 case RDMA_PS_TCP: 3850 case RDMA_PS_UDP: 3851 case RDMA_PS_IPOIB: 3852 case RDMA_PS_IB: 3853 return id_priv->id.ps; 3854 default: 3855 3856 return 0; 3857 } 3858 } 3859 3860 static enum rdma_ucm_port_space 3861 cma_select_ib_ps(struct rdma_id_private *id_priv) 3862 { 3863 enum rdma_ucm_port_space ps = 0; 3864 struct sockaddr_ib *sib; 3865 u64 sid_ps, mask, sid; 3866 3867 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3868 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3869 sid = be64_to_cpu(sib->sib_sid) & mask; 3870 3871 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3872 sid_ps = RDMA_IB_IP_PS_IB; 3873 ps = RDMA_PS_IB; 3874 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3875 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3876 sid_ps = RDMA_IB_IP_PS_TCP; 3877 ps = RDMA_PS_TCP; 3878 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3879 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3880 sid_ps = RDMA_IB_IP_PS_UDP; 3881 ps = RDMA_PS_UDP; 3882 } 3883 3884 if (ps) { 3885 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3886 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3887 be64_to_cpu(sib->sib_sid_mask)); 3888 } 3889 return ps; 3890 } 3891 3892 static int cma_get_port(struct rdma_id_private *id_priv) 3893 { 3894 enum rdma_ucm_port_space ps; 3895 int ret; 3896 3897 if (cma_family(id_priv) != AF_IB) 3898 ps = cma_select_inet_ps(id_priv); 3899 else 3900 ps = cma_select_ib_ps(id_priv); 3901 if (!ps) 3902 return -EPROTONOSUPPORT; 3903 3904 mutex_lock(&lock); 3905 if (cma_any_port(cma_src_addr(id_priv))) 3906 ret = cma_alloc_any_port(ps, id_priv); 3907 else 3908 ret = cma_use_port(ps, id_priv); 3909 mutex_unlock(&lock); 3910 3911 return ret; 3912 } 3913 3914 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3915 struct sockaddr *addr) 3916 { 3917 #if IS_ENABLED(CONFIG_IPV6) 3918 struct sockaddr_in6 *sin6; 3919 3920 if (addr->sa_family != AF_INET6) 3921 return 0; 3922 3923 sin6 = (struct sockaddr_in6 *) addr; 3924 3925 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3926 return 0; 3927 3928 if (!sin6->sin6_scope_id) 3929 return -EINVAL; 3930 3931 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3932 #endif 3933 return 0; 3934 } 3935 3936 int rdma_listen(struct rdma_cm_id *id, int backlog) 3937 { 3938 struct rdma_id_private *id_priv = 3939 container_of(id, struct rdma_id_private, id); 3940 int ret; 3941 3942 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3943 struct sockaddr_in any_in = { 3944 .sin_family = AF_INET, 3945 .sin_addr.s_addr = htonl(INADDR_ANY), 3946 }; 3947 3948 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3949 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3950 if (ret) 3951 return ret; 3952 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3953 RDMA_CM_LISTEN))) 3954 return -EINVAL; 3955 } 3956 3957 /* 3958 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3959 * any more, and has to be unique in the bind list. 3960 */ 3961 if (id_priv->reuseaddr) { 3962 mutex_lock(&lock); 3963 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3964 if (!ret) 3965 id_priv->reuseaddr = 0; 3966 mutex_unlock(&lock); 3967 if (ret) 3968 goto err; 3969 } 3970 3971 id_priv->backlog = backlog; 3972 if (id_priv->cma_dev) { 3973 if (rdma_cap_ib_cm(id->device, 1)) { 3974 ret = cma_ib_listen(id_priv); 3975 if (ret) 3976 goto err; 3977 } else if (rdma_cap_iw_cm(id->device, 1)) { 3978 ret = cma_iw_listen(id_priv, backlog); 3979 if (ret) 3980 goto err; 3981 } else { 3982 ret = -ENOSYS; 3983 goto err; 3984 } 3985 } else { 3986 ret = cma_listen_on_all(id_priv); 3987 if (ret) 3988 goto err; 3989 } 3990 3991 return 0; 3992 err: 3993 id_priv->backlog = 0; 3994 /* 3995 * All the failure paths that lead here will not allow the req_handler's 3996 * to have run. 3997 */ 3998 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3999 return ret; 4000 } 4001 EXPORT_SYMBOL(rdma_listen); 4002 4003 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 4004 struct sockaddr *addr, const struct sockaddr *daddr) 4005 { 4006 struct sockaddr *id_daddr; 4007 int ret; 4008 4009 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 4010 addr->sa_family != AF_IB) 4011 return -EAFNOSUPPORT; 4012 4013 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 4014 return -EINVAL; 4015 4016 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 4017 if (ret) 4018 goto err1; 4019 4020 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 4021 if (!cma_any_addr(addr)) { 4022 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 4023 if (ret) 4024 goto err1; 4025 4026 ret = cma_acquire_dev_by_src_ip(id_priv); 4027 if (ret) 4028 goto err1; 4029 } 4030 4031 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4032 if (addr->sa_family == AF_INET) 4033 id_priv->afonly = 1; 4034 #if IS_ENABLED(CONFIG_IPV6) 4035 else if (addr->sa_family == AF_INET6) { 4036 struct net *net = id_priv->id.route.addr.dev_addr.net; 4037 4038 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4039 } 4040 #endif 4041 } 4042 id_daddr = cma_dst_addr(id_priv); 4043 if (daddr != id_daddr) 4044 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4045 id_daddr->sa_family = addr->sa_family; 4046 4047 ret = cma_get_port(id_priv); 4048 if (ret) 4049 goto err2; 4050 4051 if (!cma_any_addr(addr)) 4052 rdma_restrack_add(&id_priv->res); 4053 return 0; 4054 err2: 4055 if (id_priv->cma_dev) 4056 cma_release_dev(id_priv); 4057 err1: 4058 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4059 return ret; 4060 } 4061 4062 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4063 const struct sockaddr *dst_addr) 4064 { 4065 struct rdma_id_private *id_priv = 4066 container_of(id, struct rdma_id_private, id); 4067 struct sockaddr_storage zero_sock = {}; 4068 4069 if (src_addr && src_addr->sa_family) 4070 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4071 4072 /* 4073 * When the src_addr is not specified, automatically supply an any addr 4074 */ 4075 zero_sock.ss_family = dst_addr->sa_family; 4076 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4077 struct sockaddr_in6 *src_addr6 = 4078 (struct sockaddr_in6 *)&zero_sock; 4079 struct sockaddr_in6 *dst_addr6 = 4080 (struct sockaddr_in6 *)dst_addr; 4081 4082 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4083 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4084 id->route.addr.dev_addr.bound_dev_if = 4085 dst_addr6->sin6_scope_id; 4086 } else if (dst_addr->sa_family == AF_IB) { 4087 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4088 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4089 } 4090 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4091 } 4092 4093 /* 4094 * If required, resolve the source address for bind and leave the id_priv in 4095 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4096 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4097 * ignored. 4098 */ 4099 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4100 struct sockaddr *src_addr, 4101 const struct sockaddr *dst_addr) 4102 { 4103 int ret; 4104 4105 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4106 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4107 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4108 if (ret) 4109 return ret; 4110 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4111 RDMA_CM_ADDR_QUERY))) 4112 return -EINVAL; 4113 4114 } else { 4115 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4116 } 4117 4118 if (cma_family(id_priv) != dst_addr->sa_family) { 4119 ret = -EINVAL; 4120 goto err_state; 4121 } 4122 return 0; 4123 4124 err_state: 4125 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4126 return ret; 4127 } 4128 4129 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4130 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4131 { 4132 struct rdma_id_private *id_priv = 4133 container_of(id, struct rdma_id_private, id); 4134 int ret; 4135 4136 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4137 if (ret) 4138 return ret; 4139 4140 if (cma_any_addr(dst_addr)) { 4141 ret = cma_resolve_loopback(id_priv); 4142 } else { 4143 if (dst_addr->sa_family == AF_IB) { 4144 ret = cma_resolve_ib_addr(id_priv); 4145 } else { 4146 /* 4147 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4148 * rdma_resolve_ip() is called, eg through the error 4149 * path in addr_handler(). If this happens the existing 4150 * request must be canceled before issuing a new one. 4151 * Since canceling a request is a bit slow and this 4152 * oddball path is rare, keep track once a request has 4153 * been issued. The track turns out to be a permanent 4154 * state since this is the only cancel as it is 4155 * immediately before rdma_resolve_ip(). 4156 */ 4157 if (id_priv->used_resolve_ip) 4158 rdma_addr_cancel(&id->route.addr.dev_addr); 4159 else 4160 id_priv->used_resolve_ip = 1; 4161 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4162 &id->route.addr.dev_addr, 4163 timeout_ms, addr_handler, 4164 false, id_priv); 4165 } 4166 } 4167 if (ret) 4168 goto err; 4169 4170 return 0; 4171 err: 4172 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4173 return ret; 4174 } 4175 EXPORT_SYMBOL(rdma_resolve_addr); 4176 4177 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4178 { 4179 struct rdma_id_private *id_priv = 4180 container_of(id, struct rdma_id_private, id); 4181 4182 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4183 } 4184 EXPORT_SYMBOL(rdma_bind_addr); 4185 4186 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4187 { 4188 struct cma_hdr *cma_hdr; 4189 4190 cma_hdr = hdr; 4191 cma_hdr->cma_version = CMA_VERSION; 4192 if (cma_family(id_priv) == AF_INET) { 4193 struct sockaddr_in *src4, *dst4; 4194 4195 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4196 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4197 4198 cma_set_ip_ver(cma_hdr, 4); 4199 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4200 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4201 cma_hdr->port = src4->sin_port; 4202 } else if (cma_family(id_priv) == AF_INET6) { 4203 struct sockaddr_in6 *src6, *dst6; 4204 4205 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4206 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4207 4208 cma_set_ip_ver(cma_hdr, 6); 4209 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4210 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4211 cma_hdr->port = src6->sin6_port; 4212 } 4213 return 0; 4214 } 4215 4216 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4217 const struct ib_cm_event *ib_event) 4218 { 4219 struct rdma_id_private *id_priv = cm_id->context; 4220 struct rdma_cm_event event = {}; 4221 const struct ib_cm_sidr_rep_event_param *rep = 4222 &ib_event->param.sidr_rep_rcvd; 4223 int ret; 4224 4225 mutex_lock(&id_priv->handler_mutex); 4226 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4227 goto out; 4228 4229 switch (ib_event->event) { 4230 case IB_CM_SIDR_REQ_ERROR: 4231 event.event = RDMA_CM_EVENT_UNREACHABLE; 4232 event.status = -ETIMEDOUT; 4233 break; 4234 case IB_CM_SIDR_REP_RECEIVED: 4235 event.param.ud.private_data = ib_event->private_data; 4236 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4237 if (rep->status != IB_SIDR_SUCCESS) { 4238 event.event = RDMA_CM_EVENT_UNREACHABLE; 4239 event.status = ib_event->param.sidr_rep_rcvd.status; 4240 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4241 event.status); 4242 break; 4243 } 4244 ret = cma_set_qkey(id_priv, rep->qkey); 4245 if (ret) { 4246 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4247 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4248 event.status = ret; 4249 break; 4250 } 4251 ib_init_ah_attr_from_path(id_priv->id.device, 4252 id_priv->id.port_num, 4253 id_priv->id.route.path_rec, 4254 &event.param.ud.ah_attr, 4255 rep->sgid_attr); 4256 event.param.ud.qp_num = rep->qpn; 4257 event.param.ud.qkey = rep->qkey; 4258 event.event = RDMA_CM_EVENT_ESTABLISHED; 4259 event.status = 0; 4260 break; 4261 default: 4262 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4263 ib_event->event); 4264 goto out; 4265 } 4266 4267 ret = cma_cm_event_handler(id_priv, &event); 4268 4269 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4270 if (ret) { 4271 /* Destroy the CM ID by returning a non-zero value. */ 4272 id_priv->cm_id.ib = NULL; 4273 destroy_id_handler_unlock(id_priv); 4274 return ret; 4275 } 4276 out: 4277 mutex_unlock(&id_priv->handler_mutex); 4278 return 0; 4279 } 4280 4281 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4282 struct rdma_conn_param *conn_param) 4283 { 4284 struct ib_cm_sidr_req_param req; 4285 struct ib_cm_id *id; 4286 void *private_data; 4287 u8 offset; 4288 int ret; 4289 4290 memset(&req, 0, sizeof req); 4291 offset = cma_user_data_offset(id_priv); 4292 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4293 return -EINVAL; 4294 4295 if (req.private_data_len) { 4296 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4297 if (!private_data) 4298 return -ENOMEM; 4299 } else { 4300 private_data = NULL; 4301 } 4302 4303 if (conn_param->private_data && conn_param->private_data_len) 4304 memcpy(private_data + offset, conn_param->private_data, 4305 conn_param->private_data_len); 4306 4307 if (private_data) { 4308 ret = cma_format_hdr(private_data, id_priv); 4309 if (ret) 4310 goto out; 4311 req.private_data = private_data; 4312 } 4313 4314 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4315 id_priv); 4316 if (IS_ERR(id)) { 4317 ret = PTR_ERR(id); 4318 goto out; 4319 } 4320 id_priv->cm_id.ib = id; 4321 4322 req.path = id_priv->id.route.path_rec; 4323 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4324 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4325 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4326 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4327 4328 trace_cm_send_sidr_req(id_priv); 4329 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4330 if (ret) { 4331 ib_destroy_cm_id(id_priv->cm_id.ib); 4332 id_priv->cm_id.ib = NULL; 4333 } 4334 out: 4335 kfree(private_data); 4336 return ret; 4337 } 4338 4339 static int cma_connect_ib(struct rdma_id_private *id_priv, 4340 struct rdma_conn_param *conn_param) 4341 { 4342 struct ib_cm_req_param req; 4343 struct rdma_route *route; 4344 void *private_data; 4345 struct ib_cm_id *id; 4346 u8 offset; 4347 int ret; 4348 4349 memset(&req, 0, sizeof req); 4350 offset = cma_user_data_offset(id_priv); 4351 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4352 return -EINVAL; 4353 4354 if (req.private_data_len) { 4355 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4356 if (!private_data) 4357 return -ENOMEM; 4358 } else { 4359 private_data = NULL; 4360 } 4361 4362 if (conn_param->private_data && conn_param->private_data_len) 4363 memcpy(private_data + offset, conn_param->private_data, 4364 conn_param->private_data_len); 4365 4366 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4367 if (IS_ERR(id)) { 4368 ret = PTR_ERR(id); 4369 goto out; 4370 } 4371 id_priv->cm_id.ib = id; 4372 4373 route = &id_priv->id.route; 4374 if (private_data) { 4375 ret = cma_format_hdr(private_data, id_priv); 4376 if (ret) 4377 goto out; 4378 req.private_data = private_data; 4379 } 4380 4381 req.primary_path = &route->path_rec[0]; 4382 req.primary_path_inbound = route->path_rec_inbound; 4383 req.primary_path_outbound = route->path_rec_outbound; 4384 if (route->num_pri_alt_paths == 2) 4385 req.alternate_path = &route->path_rec[1]; 4386 4387 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4388 /* Alternate path SGID attribute currently unsupported */ 4389 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4390 req.qp_num = id_priv->qp_num; 4391 req.qp_type = id_priv->id.qp_type; 4392 req.starting_psn = id_priv->seq_num; 4393 req.responder_resources = conn_param->responder_resources; 4394 req.initiator_depth = conn_param->initiator_depth; 4395 req.flow_control = conn_param->flow_control; 4396 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4397 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4398 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4399 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4400 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4401 req.srq = id_priv->srq ? 1 : 0; 4402 req.ece.vendor_id = id_priv->ece.vendor_id; 4403 req.ece.attr_mod = id_priv->ece.attr_mod; 4404 4405 trace_cm_send_req(id_priv); 4406 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4407 out: 4408 if (ret && !IS_ERR(id)) { 4409 ib_destroy_cm_id(id); 4410 id_priv->cm_id.ib = NULL; 4411 } 4412 4413 kfree(private_data); 4414 return ret; 4415 } 4416 4417 static int cma_connect_iw(struct rdma_id_private *id_priv, 4418 struct rdma_conn_param *conn_param) 4419 { 4420 struct iw_cm_id *cm_id; 4421 int ret; 4422 struct iw_cm_conn_param iw_param; 4423 4424 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4425 if (IS_ERR(cm_id)) 4426 return PTR_ERR(cm_id); 4427 4428 mutex_lock(&id_priv->qp_mutex); 4429 cm_id->tos = id_priv->tos; 4430 cm_id->tos_set = id_priv->tos_set; 4431 mutex_unlock(&id_priv->qp_mutex); 4432 4433 id_priv->cm_id.iw = cm_id; 4434 4435 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4436 rdma_addr_size(cma_src_addr(id_priv))); 4437 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4438 rdma_addr_size(cma_dst_addr(id_priv))); 4439 4440 ret = cma_modify_qp_rtr(id_priv, conn_param); 4441 if (ret) 4442 goto out; 4443 4444 if (conn_param) { 4445 iw_param.ord = conn_param->initiator_depth; 4446 iw_param.ird = conn_param->responder_resources; 4447 iw_param.private_data = conn_param->private_data; 4448 iw_param.private_data_len = conn_param->private_data_len; 4449 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4450 } else { 4451 memset(&iw_param, 0, sizeof iw_param); 4452 iw_param.qpn = id_priv->qp_num; 4453 } 4454 ret = iw_cm_connect(cm_id, &iw_param); 4455 out: 4456 if (ret) { 4457 iw_destroy_cm_id(cm_id); 4458 id_priv->cm_id.iw = NULL; 4459 } 4460 return ret; 4461 } 4462 4463 /** 4464 * rdma_connect_locked - Initiate an active connection request. 4465 * @id: Connection identifier to connect. 4466 * @conn_param: Connection information used for connected QPs. 4467 * 4468 * Same as rdma_connect() but can only be called from the 4469 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4470 */ 4471 int rdma_connect_locked(struct rdma_cm_id *id, 4472 struct rdma_conn_param *conn_param) 4473 { 4474 struct rdma_id_private *id_priv = 4475 container_of(id, struct rdma_id_private, id); 4476 int ret; 4477 4478 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4479 return -EINVAL; 4480 4481 if (!id->qp) { 4482 id_priv->qp_num = conn_param->qp_num; 4483 id_priv->srq = conn_param->srq; 4484 } 4485 4486 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4487 if (id->qp_type == IB_QPT_UD) 4488 ret = cma_resolve_ib_udp(id_priv, conn_param); 4489 else 4490 ret = cma_connect_ib(id_priv, conn_param); 4491 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4492 ret = cma_connect_iw(id_priv, conn_param); 4493 } else { 4494 ret = -ENOSYS; 4495 } 4496 if (ret) 4497 goto err_state; 4498 return 0; 4499 err_state: 4500 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4501 return ret; 4502 } 4503 EXPORT_SYMBOL(rdma_connect_locked); 4504 4505 /** 4506 * rdma_connect - Initiate an active connection request. 4507 * @id: Connection identifier to connect. 4508 * @conn_param: Connection information used for connected QPs. 4509 * 4510 * Users must have resolved a route for the rdma_cm_id to connect with by having 4511 * called rdma_resolve_route before calling this routine. 4512 * 4513 * This call will either connect to a remote QP or obtain remote QP information 4514 * for unconnected rdma_cm_id's. The actual operation is based on the 4515 * rdma_cm_id's port space. 4516 */ 4517 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4518 { 4519 struct rdma_id_private *id_priv = 4520 container_of(id, struct rdma_id_private, id); 4521 int ret; 4522 4523 mutex_lock(&id_priv->handler_mutex); 4524 ret = rdma_connect_locked(id, conn_param); 4525 mutex_unlock(&id_priv->handler_mutex); 4526 return ret; 4527 } 4528 EXPORT_SYMBOL(rdma_connect); 4529 4530 /** 4531 * rdma_connect_ece - Initiate an active connection request with ECE data. 4532 * @id: Connection identifier to connect. 4533 * @conn_param: Connection information used for connected QPs. 4534 * @ece: ECE parameters 4535 * 4536 * See rdma_connect() explanation. 4537 */ 4538 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4539 struct rdma_ucm_ece *ece) 4540 { 4541 struct rdma_id_private *id_priv = 4542 container_of(id, struct rdma_id_private, id); 4543 4544 id_priv->ece.vendor_id = ece->vendor_id; 4545 id_priv->ece.attr_mod = ece->attr_mod; 4546 4547 return rdma_connect(id, conn_param); 4548 } 4549 EXPORT_SYMBOL(rdma_connect_ece); 4550 4551 static int cma_accept_ib(struct rdma_id_private *id_priv, 4552 struct rdma_conn_param *conn_param) 4553 { 4554 struct ib_cm_rep_param rep; 4555 int ret; 4556 4557 ret = cma_modify_qp_rtr(id_priv, conn_param); 4558 if (ret) 4559 goto out; 4560 4561 ret = cma_modify_qp_rts(id_priv, conn_param); 4562 if (ret) 4563 goto out; 4564 4565 memset(&rep, 0, sizeof rep); 4566 rep.qp_num = id_priv->qp_num; 4567 rep.starting_psn = id_priv->seq_num; 4568 rep.private_data = conn_param->private_data; 4569 rep.private_data_len = conn_param->private_data_len; 4570 rep.responder_resources = conn_param->responder_resources; 4571 rep.initiator_depth = conn_param->initiator_depth; 4572 rep.failover_accepted = 0; 4573 rep.flow_control = conn_param->flow_control; 4574 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4575 rep.srq = id_priv->srq ? 1 : 0; 4576 rep.ece.vendor_id = id_priv->ece.vendor_id; 4577 rep.ece.attr_mod = id_priv->ece.attr_mod; 4578 4579 trace_cm_send_rep(id_priv); 4580 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4581 out: 4582 return ret; 4583 } 4584 4585 static int cma_accept_iw(struct rdma_id_private *id_priv, 4586 struct rdma_conn_param *conn_param) 4587 { 4588 struct iw_cm_conn_param iw_param; 4589 int ret; 4590 4591 if (!conn_param) 4592 return -EINVAL; 4593 4594 ret = cma_modify_qp_rtr(id_priv, conn_param); 4595 if (ret) 4596 return ret; 4597 4598 iw_param.ord = conn_param->initiator_depth; 4599 iw_param.ird = conn_param->responder_resources; 4600 iw_param.private_data = conn_param->private_data; 4601 iw_param.private_data_len = conn_param->private_data_len; 4602 if (id_priv->id.qp) 4603 iw_param.qpn = id_priv->qp_num; 4604 else 4605 iw_param.qpn = conn_param->qp_num; 4606 4607 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4608 } 4609 4610 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4611 enum ib_cm_sidr_status status, u32 qkey, 4612 const void *private_data, int private_data_len) 4613 { 4614 struct ib_cm_sidr_rep_param rep; 4615 int ret; 4616 4617 memset(&rep, 0, sizeof rep); 4618 rep.status = status; 4619 if (status == IB_SIDR_SUCCESS) { 4620 if (qkey) 4621 ret = cma_set_qkey(id_priv, qkey); 4622 else 4623 ret = cma_set_default_qkey(id_priv); 4624 if (ret) 4625 return ret; 4626 rep.qp_num = id_priv->qp_num; 4627 rep.qkey = id_priv->qkey; 4628 4629 rep.ece.vendor_id = id_priv->ece.vendor_id; 4630 rep.ece.attr_mod = id_priv->ece.attr_mod; 4631 } 4632 4633 rep.private_data = private_data; 4634 rep.private_data_len = private_data_len; 4635 4636 trace_cm_send_sidr_rep(id_priv); 4637 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4638 } 4639 4640 /** 4641 * rdma_accept - Called to accept a connection request or response. 4642 * @id: Connection identifier associated with the request. 4643 * @conn_param: Information needed to establish the connection. This must be 4644 * provided if accepting a connection request. If accepting a connection 4645 * response, this parameter must be NULL. 4646 * 4647 * Typically, this routine is only called by the listener to accept a connection 4648 * request. It must also be called on the active side of a connection if the 4649 * user is performing their own QP transitions. 4650 * 4651 * In the case of error, a reject message is sent to the remote side and the 4652 * state of the qp associated with the id is modified to error, such that any 4653 * previously posted receive buffers would be flushed. 4654 * 4655 * This function is for use by kernel ULPs and must be called from under the 4656 * handler callback. 4657 */ 4658 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4659 { 4660 struct rdma_id_private *id_priv = 4661 container_of(id, struct rdma_id_private, id); 4662 int ret; 4663 4664 lockdep_assert_held(&id_priv->handler_mutex); 4665 4666 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4667 return -EINVAL; 4668 4669 if (!id->qp && conn_param) { 4670 id_priv->qp_num = conn_param->qp_num; 4671 id_priv->srq = conn_param->srq; 4672 } 4673 4674 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4675 if (id->qp_type == IB_QPT_UD) { 4676 if (conn_param) 4677 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4678 conn_param->qkey, 4679 conn_param->private_data, 4680 conn_param->private_data_len); 4681 else 4682 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4683 0, NULL, 0); 4684 } else { 4685 if (conn_param) 4686 ret = cma_accept_ib(id_priv, conn_param); 4687 else 4688 ret = cma_rep_recv(id_priv); 4689 } 4690 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4691 ret = cma_accept_iw(id_priv, conn_param); 4692 } else { 4693 ret = -ENOSYS; 4694 } 4695 if (ret) 4696 goto reject; 4697 4698 return 0; 4699 reject: 4700 cma_modify_qp_err(id_priv); 4701 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4702 return ret; 4703 } 4704 EXPORT_SYMBOL(rdma_accept); 4705 4706 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4707 struct rdma_ucm_ece *ece) 4708 { 4709 struct rdma_id_private *id_priv = 4710 container_of(id, struct rdma_id_private, id); 4711 4712 id_priv->ece.vendor_id = ece->vendor_id; 4713 id_priv->ece.attr_mod = ece->attr_mod; 4714 4715 return rdma_accept(id, conn_param); 4716 } 4717 EXPORT_SYMBOL(rdma_accept_ece); 4718 4719 void rdma_lock_handler(struct rdma_cm_id *id) 4720 { 4721 struct rdma_id_private *id_priv = 4722 container_of(id, struct rdma_id_private, id); 4723 4724 mutex_lock(&id_priv->handler_mutex); 4725 } 4726 EXPORT_SYMBOL(rdma_lock_handler); 4727 4728 void rdma_unlock_handler(struct rdma_cm_id *id) 4729 { 4730 struct rdma_id_private *id_priv = 4731 container_of(id, struct rdma_id_private, id); 4732 4733 mutex_unlock(&id_priv->handler_mutex); 4734 } 4735 EXPORT_SYMBOL(rdma_unlock_handler); 4736 4737 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4738 { 4739 struct rdma_id_private *id_priv; 4740 int ret; 4741 4742 id_priv = container_of(id, struct rdma_id_private, id); 4743 if (!id_priv->cm_id.ib) 4744 return -EINVAL; 4745 4746 switch (id->device->node_type) { 4747 case RDMA_NODE_IB_CA: 4748 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4749 break; 4750 default: 4751 ret = 0; 4752 break; 4753 } 4754 return ret; 4755 } 4756 EXPORT_SYMBOL(rdma_notify); 4757 4758 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4759 u8 private_data_len, u8 reason) 4760 { 4761 struct rdma_id_private *id_priv; 4762 int ret; 4763 4764 id_priv = container_of(id, struct rdma_id_private, id); 4765 if (!id_priv->cm_id.ib) 4766 return -EINVAL; 4767 4768 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4769 if (id->qp_type == IB_QPT_UD) { 4770 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4771 private_data, private_data_len); 4772 } else { 4773 trace_cm_send_rej(id_priv); 4774 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4775 private_data, private_data_len); 4776 } 4777 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4778 ret = iw_cm_reject(id_priv->cm_id.iw, 4779 private_data, private_data_len); 4780 } else { 4781 ret = -ENOSYS; 4782 } 4783 4784 return ret; 4785 } 4786 EXPORT_SYMBOL(rdma_reject); 4787 4788 int rdma_disconnect(struct rdma_cm_id *id) 4789 { 4790 struct rdma_id_private *id_priv; 4791 int ret; 4792 4793 id_priv = container_of(id, struct rdma_id_private, id); 4794 if (!id_priv->cm_id.ib) 4795 return -EINVAL; 4796 4797 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4798 ret = cma_modify_qp_err(id_priv); 4799 if (ret) 4800 goto out; 4801 /* Initiate or respond to a disconnect. */ 4802 trace_cm_disconnect(id_priv); 4803 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4804 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4805 trace_cm_sent_drep(id_priv); 4806 } else { 4807 trace_cm_sent_dreq(id_priv); 4808 } 4809 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4810 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4811 } else 4812 ret = -EINVAL; 4813 4814 out: 4815 return ret; 4816 } 4817 EXPORT_SYMBOL(rdma_disconnect); 4818 4819 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4820 struct ib_sa_multicast *multicast, 4821 struct rdma_cm_event *event, 4822 struct cma_multicast *mc) 4823 { 4824 struct rdma_dev_addr *dev_addr; 4825 enum ib_gid_type gid_type; 4826 struct net_device *ndev; 4827 4828 if (status) 4829 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4830 status); 4831 4832 event->status = status; 4833 event->param.ud.private_data = mc->context; 4834 if (status) { 4835 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4836 return; 4837 } 4838 4839 dev_addr = &id_priv->id.route.addr.dev_addr; 4840 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4841 gid_type = 4842 id_priv->cma_dev 4843 ->default_gid_type[id_priv->id.port_num - 4844 rdma_start_port( 4845 id_priv->cma_dev->device)]; 4846 4847 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4848 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4849 &multicast->rec, ndev, gid_type, 4850 &event->param.ud.ah_attr)) { 4851 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4852 goto out; 4853 } 4854 4855 event->param.ud.qp_num = 0xFFFFFF; 4856 event->param.ud.qkey = id_priv->qkey; 4857 4858 out: 4859 dev_put(ndev); 4860 } 4861 4862 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4863 { 4864 struct cma_multicast *mc = multicast->context; 4865 struct rdma_id_private *id_priv = mc->id_priv; 4866 struct rdma_cm_event event = {}; 4867 int ret = 0; 4868 4869 mutex_lock(&id_priv->handler_mutex); 4870 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4871 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4872 goto out; 4873 4874 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4875 if (!ret) { 4876 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4877 ret = cma_cm_event_handler(id_priv, &event); 4878 } 4879 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4880 WARN_ON(ret); 4881 4882 out: 4883 mutex_unlock(&id_priv->handler_mutex); 4884 return 0; 4885 } 4886 4887 static void cma_set_mgid(struct rdma_id_private *id_priv, 4888 struct sockaddr *addr, union ib_gid *mgid) 4889 { 4890 unsigned char mc_map[MAX_ADDR_LEN]; 4891 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4892 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4893 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4894 4895 if (cma_any_addr(addr)) { 4896 memset(mgid, 0, sizeof *mgid); 4897 } else if ((addr->sa_family == AF_INET6) && 4898 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4899 0xFF10A01B)) { 4900 /* IPv6 address is an SA assigned MGID. */ 4901 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4902 } else if (addr->sa_family == AF_IB) { 4903 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4904 } else if (addr->sa_family == AF_INET6) { 4905 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4906 if (id_priv->id.ps == RDMA_PS_UDP) 4907 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4908 *mgid = *(union ib_gid *) (mc_map + 4); 4909 } else { 4910 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4911 if (id_priv->id.ps == RDMA_PS_UDP) 4912 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4913 *mgid = *(union ib_gid *) (mc_map + 4); 4914 } 4915 } 4916 4917 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4918 struct cma_multicast *mc) 4919 { 4920 struct ib_sa_mcmember_rec rec; 4921 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4922 ib_sa_comp_mask comp_mask; 4923 int ret; 4924 4925 ib_addr_get_mgid(dev_addr, &rec.mgid); 4926 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4927 &rec.mgid, &rec); 4928 if (ret) 4929 return ret; 4930 4931 if (!id_priv->qkey) { 4932 ret = cma_set_default_qkey(id_priv); 4933 if (ret) 4934 return ret; 4935 } 4936 4937 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4938 rec.qkey = cpu_to_be32(id_priv->qkey); 4939 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4940 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4941 rec.join_state = mc->join_state; 4942 4943 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4944 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4945 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4946 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4947 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4948 4949 if (id_priv->id.ps == RDMA_PS_IPOIB) 4950 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4951 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4952 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4953 IB_SA_MCMEMBER_REC_MTU | 4954 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4955 4956 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4957 id_priv->id.port_num, &rec, comp_mask, 4958 GFP_KERNEL, cma_ib_mc_handler, mc); 4959 return PTR_ERR_OR_ZERO(mc->sa_mc); 4960 } 4961 4962 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4963 enum ib_gid_type gid_type) 4964 { 4965 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4966 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4967 4968 if (cma_any_addr(addr)) { 4969 memset(mgid, 0, sizeof *mgid); 4970 } else if (addr->sa_family == AF_INET6) { 4971 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4972 } else { 4973 mgid->raw[0] = 4974 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4975 mgid->raw[1] = 4976 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4977 mgid->raw[2] = 0; 4978 mgid->raw[3] = 0; 4979 mgid->raw[4] = 0; 4980 mgid->raw[5] = 0; 4981 mgid->raw[6] = 0; 4982 mgid->raw[7] = 0; 4983 mgid->raw[8] = 0; 4984 mgid->raw[9] = 0; 4985 mgid->raw[10] = 0xff; 4986 mgid->raw[11] = 0xff; 4987 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4988 } 4989 } 4990 4991 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4992 struct cma_multicast *mc) 4993 { 4994 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4995 int err = 0; 4996 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4997 struct net_device *ndev = NULL; 4998 struct ib_sa_multicast ib = {}; 4999 enum ib_gid_type gid_type; 5000 bool send_only; 5001 5002 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 5003 5004 if (cma_zero_addr(addr)) 5005 return -EINVAL; 5006 5007 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 5008 rdma_start_port(id_priv->cma_dev->device)]; 5009 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 5010 5011 ib.rec.pkey = cpu_to_be16(0xffff); 5012 if (dev_addr->bound_dev_if) 5013 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 5014 if (!ndev) 5015 return -ENODEV; 5016 5017 ib.rec.rate = IB_RATE_PORT_CURRENT; 5018 ib.rec.hop_limit = 1; 5019 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 5020 5021 if (addr->sa_family == AF_INET) { 5022 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 5023 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 5024 if (!send_only) { 5025 err = cma_igmp_send(ndev, &ib.rec.mgid, 5026 true); 5027 } 5028 } 5029 } else { 5030 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5031 err = -ENOTSUPP; 5032 } 5033 dev_put(ndev); 5034 if (err || !ib.rec.mtu) 5035 return err ?: -EINVAL; 5036 5037 if (!id_priv->qkey) 5038 cma_set_default_qkey(id_priv); 5039 5040 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5041 &ib.rec.port_gid); 5042 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5043 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5044 queue_work(cma_wq, &mc->iboe_join.work); 5045 return 0; 5046 } 5047 5048 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5049 u8 join_state, void *context) 5050 { 5051 struct rdma_id_private *id_priv = 5052 container_of(id, struct rdma_id_private, id); 5053 struct cma_multicast *mc; 5054 int ret; 5055 5056 /* Not supported for kernel QPs */ 5057 if (WARN_ON(id->qp)) 5058 return -EINVAL; 5059 5060 /* ULP is calling this wrong. */ 5061 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5062 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5063 return -EINVAL; 5064 5065 if (id_priv->id.qp_type != IB_QPT_UD) 5066 return -EINVAL; 5067 5068 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5069 if (!mc) 5070 return -ENOMEM; 5071 5072 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5073 mc->context = context; 5074 mc->id_priv = id_priv; 5075 mc->join_state = join_state; 5076 5077 if (rdma_protocol_roce(id->device, id->port_num)) { 5078 ret = cma_iboe_join_multicast(id_priv, mc); 5079 if (ret) 5080 goto out_err; 5081 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5082 ret = cma_join_ib_multicast(id_priv, mc); 5083 if (ret) 5084 goto out_err; 5085 } else { 5086 ret = -ENOSYS; 5087 goto out_err; 5088 } 5089 5090 spin_lock(&id_priv->lock); 5091 list_add(&mc->list, &id_priv->mc_list); 5092 spin_unlock(&id_priv->lock); 5093 5094 return 0; 5095 out_err: 5096 kfree(mc); 5097 return ret; 5098 } 5099 EXPORT_SYMBOL(rdma_join_multicast); 5100 5101 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5102 { 5103 struct rdma_id_private *id_priv; 5104 struct cma_multicast *mc; 5105 5106 id_priv = container_of(id, struct rdma_id_private, id); 5107 spin_lock_irq(&id_priv->lock); 5108 list_for_each_entry(mc, &id_priv->mc_list, list) { 5109 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5110 continue; 5111 list_del(&mc->list); 5112 spin_unlock_irq(&id_priv->lock); 5113 5114 WARN_ON(id_priv->cma_dev->device != id->device); 5115 destroy_mc(id_priv, mc); 5116 return; 5117 } 5118 spin_unlock_irq(&id_priv->lock); 5119 } 5120 EXPORT_SYMBOL(rdma_leave_multicast); 5121 5122 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5123 { 5124 struct rdma_dev_addr *dev_addr; 5125 struct cma_work *work; 5126 5127 dev_addr = &id_priv->id.route.addr.dev_addr; 5128 5129 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5130 (net_eq(dev_net(ndev), dev_addr->net)) && 5131 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5132 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5133 ndev->name, &id_priv->id); 5134 work = kzalloc(sizeof *work, GFP_KERNEL); 5135 if (!work) 5136 return -ENOMEM; 5137 5138 INIT_WORK(&work->work, cma_work_handler); 5139 work->id = id_priv; 5140 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5141 cma_id_get(id_priv); 5142 queue_work(cma_wq, &work->work); 5143 } 5144 5145 return 0; 5146 } 5147 5148 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5149 void *ptr) 5150 { 5151 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5152 struct cma_device *cma_dev; 5153 struct rdma_id_private *id_priv; 5154 int ret = NOTIFY_DONE; 5155 5156 if (event != NETDEV_BONDING_FAILOVER) 5157 return NOTIFY_DONE; 5158 5159 if (!netif_is_bond_master(ndev)) 5160 return NOTIFY_DONE; 5161 5162 mutex_lock(&lock); 5163 list_for_each_entry(cma_dev, &dev_list, list) 5164 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5165 ret = cma_netdev_change(ndev, id_priv); 5166 if (ret) 5167 goto out; 5168 } 5169 5170 out: 5171 mutex_unlock(&lock); 5172 return ret; 5173 } 5174 5175 static void cma_netevent_work_handler(struct work_struct *_work) 5176 { 5177 struct rdma_id_private *id_priv = 5178 container_of(_work, struct rdma_id_private, id.net_work); 5179 struct rdma_cm_event event = {}; 5180 5181 mutex_lock(&id_priv->handler_mutex); 5182 5183 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5184 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5185 goto out_unlock; 5186 5187 event.event = RDMA_CM_EVENT_UNREACHABLE; 5188 event.status = -ETIMEDOUT; 5189 5190 if (cma_cm_event_handler(id_priv, &event)) { 5191 __acquire(&id_priv->handler_mutex); 5192 id_priv->cm_id.ib = NULL; 5193 cma_id_put(id_priv); 5194 destroy_id_handler_unlock(id_priv); 5195 return; 5196 } 5197 5198 out_unlock: 5199 mutex_unlock(&id_priv->handler_mutex); 5200 cma_id_put(id_priv); 5201 } 5202 5203 static int cma_netevent_callback(struct notifier_block *self, 5204 unsigned long event, void *ctx) 5205 { 5206 struct id_table_entry *ips_node = NULL; 5207 struct rdma_id_private *current_id; 5208 struct neighbour *neigh = ctx; 5209 unsigned long flags; 5210 5211 if (event != NETEVENT_NEIGH_UPDATE) 5212 return NOTIFY_DONE; 5213 5214 spin_lock_irqsave(&id_table_lock, flags); 5215 if (neigh->tbl->family == AF_INET6) { 5216 struct sockaddr_in6 neigh_sock_6; 5217 5218 neigh_sock_6.sin6_family = AF_INET6; 5219 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5220 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5221 (struct sockaddr *)&neigh_sock_6); 5222 } else if (neigh->tbl->family == AF_INET) { 5223 struct sockaddr_in neigh_sock_4; 5224 5225 neigh_sock_4.sin_family = AF_INET; 5226 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5227 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5228 (struct sockaddr *)&neigh_sock_4); 5229 } else 5230 goto out; 5231 5232 if (!ips_node) 5233 goto out; 5234 5235 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5236 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5237 neigh->ha, ETH_ALEN)) 5238 continue; 5239 cma_id_get(current_id); 5240 if (!queue_work(cma_wq, ¤t_id->id.net_work)) 5241 cma_id_put(current_id); 5242 } 5243 out: 5244 spin_unlock_irqrestore(&id_table_lock, flags); 5245 return NOTIFY_DONE; 5246 } 5247 5248 static struct notifier_block cma_nb = { 5249 .notifier_call = cma_netdev_callback 5250 }; 5251 5252 static struct notifier_block cma_netevent_cb = { 5253 .notifier_call = cma_netevent_callback 5254 }; 5255 5256 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5257 { 5258 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5259 enum rdma_cm_state state; 5260 unsigned long flags; 5261 5262 mutex_lock(&id_priv->handler_mutex); 5263 /* Record that we want to remove the device */ 5264 spin_lock_irqsave(&id_priv->lock, flags); 5265 state = id_priv->state; 5266 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5267 spin_unlock_irqrestore(&id_priv->lock, flags); 5268 mutex_unlock(&id_priv->handler_mutex); 5269 cma_id_put(id_priv); 5270 return; 5271 } 5272 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5273 spin_unlock_irqrestore(&id_priv->lock, flags); 5274 5275 if (cma_cm_event_handler(id_priv, &event)) { 5276 /* 5277 * At this point the ULP promises it won't call 5278 * rdma_destroy_id() concurrently 5279 */ 5280 cma_id_put(id_priv); 5281 mutex_unlock(&id_priv->handler_mutex); 5282 trace_cm_id_destroy(id_priv); 5283 _destroy_id(id_priv, state); 5284 return; 5285 } 5286 mutex_unlock(&id_priv->handler_mutex); 5287 5288 /* 5289 * If this races with destroy then the thread that first assigns state 5290 * to a destroying does the cancel. 5291 */ 5292 cma_cancel_operation(id_priv, state); 5293 cma_id_put(id_priv); 5294 } 5295 5296 static void cma_process_remove(struct cma_device *cma_dev) 5297 { 5298 mutex_lock(&lock); 5299 while (!list_empty(&cma_dev->id_list)) { 5300 struct rdma_id_private *id_priv = list_first_entry( 5301 &cma_dev->id_list, struct rdma_id_private, device_item); 5302 5303 list_del_init(&id_priv->listen_item); 5304 list_del_init(&id_priv->device_item); 5305 cma_id_get(id_priv); 5306 mutex_unlock(&lock); 5307 5308 cma_send_device_removal_put(id_priv); 5309 5310 mutex_lock(&lock); 5311 } 5312 mutex_unlock(&lock); 5313 5314 cma_dev_put(cma_dev); 5315 wait_for_completion(&cma_dev->comp); 5316 } 5317 5318 static bool cma_supported(struct ib_device *device) 5319 { 5320 u32 i; 5321 5322 rdma_for_each_port(device, i) { 5323 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5324 return true; 5325 } 5326 return false; 5327 } 5328 5329 static int cma_add_one(struct ib_device *device) 5330 { 5331 struct rdma_id_private *to_destroy; 5332 struct cma_device *cma_dev; 5333 struct rdma_id_private *id_priv; 5334 unsigned long supported_gids = 0; 5335 int ret; 5336 u32 i; 5337 5338 if (!cma_supported(device)) 5339 return -EOPNOTSUPP; 5340 5341 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5342 if (!cma_dev) 5343 return -ENOMEM; 5344 5345 cma_dev->device = device; 5346 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5347 sizeof(*cma_dev->default_gid_type), 5348 GFP_KERNEL); 5349 if (!cma_dev->default_gid_type) { 5350 ret = -ENOMEM; 5351 goto free_cma_dev; 5352 } 5353 5354 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5355 sizeof(*cma_dev->default_roce_tos), 5356 GFP_KERNEL); 5357 if (!cma_dev->default_roce_tos) { 5358 ret = -ENOMEM; 5359 goto free_gid_type; 5360 } 5361 5362 rdma_for_each_port (device, i) { 5363 supported_gids = roce_gid_type_mask_support(device, i); 5364 WARN_ON(!supported_gids); 5365 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5366 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5367 CMA_PREFERRED_ROCE_GID_TYPE; 5368 else 5369 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5370 find_first_bit(&supported_gids, BITS_PER_LONG); 5371 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5372 } 5373 5374 init_completion(&cma_dev->comp); 5375 refcount_set(&cma_dev->refcount, 1); 5376 INIT_LIST_HEAD(&cma_dev->id_list); 5377 ib_set_client_data(device, &cma_client, cma_dev); 5378 5379 mutex_lock(&lock); 5380 list_add_tail(&cma_dev->list, &dev_list); 5381 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5382 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5383 if (ret) 5384 goto free_listen; 5385 } 5386 mutex_unlock(&lock); 5387 5388 trace_cm_add_one(device); 5389 return 0; 5390 5391 free_listen: 5392 list_del(&cma_dev->list); 5393 mutex_unlock(&lock); 5394 5395 /* cma_process_remove() will delete to_destroy */ 5396 cma_process_remove(cma_dev); 5397 kfree(cma_dev->default_roce_tos); 5398 free_gid_type: 5399 kfree(cma_dev->default_gid_type); 5400 5401 free_cma_dev: 5402 kfree(cma_dev); 5403 return ret; 5404 } 5405 5406 static void cma_remove_one(struct ib_device *device, void *client_data) 5407 { 5408 struct cma_device *cma_dev = client_data; 5409 5410 trace_cm_remove_one(device); 5411 5412 mutex_lock(&lock); 5413 list_del(&cma_dev->list); 5414 mutex_unlock(&lock); 5415 5416 cma_process_remove(cma_dev); 5417 kfree(cma_dev->default_roce_tos); 5418 kfree(cma_dev->default_gid_type); 5419 kfree(cma_dev); 5420 } 5421 5422 static int cma_init_net(struct net *net) 5423 { 5424 struct cma_pernet *pernet = cma_pernet(net); 5425 5426 xa_init(&pernet->tcp_ps); 5427 xa_init(&pernet->udp_ps); 5428 xa_init(&pernet->ipoib_ps); 5429 xa_init(&pernet->ib_ps); 5430 5431 return 0; 5432 } 5433 5434 static void cma_exit_net(struct net *net) 5435 { 5436 struct cma_pernet *pernet = cma_pernet(net); 5437 5438 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5439 WARN_ON(!xa_empty(&pernet->udp_ps)); 5440 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5441 WARN_ON(!xa_empty(&pernet->ib_ps)); 5442 } 5443 5444 static struct pernet_operations cma_pernet_operations = { 5445 .init = cma_init_net, 5446 .exit = cma_exit_net, 5447 .id = &cma_pernet_id, 5448 .size = sizeof(struct cma_pernet), 5449 }; 5450 5451 static int __init cma_init(void) 5452 { 5453 int ret; 5454 5455 /* 5456 * There is a rare lock ordering dependency in cma_netdev_callback() 5457 * that only happens when bonding is enabled. Teach lockdep that rtnl 5458 * must never be nested under lock so it can find these without having 5459 * to test with bonding. 5460 */ 5461 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5462 rtnl_lock(); 5463 mutex_lock(&lock); 5464 mutex_unlock(&lock); 5465 rtnl_unlock(); 5466 } 5467 5468 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5469 if (!cma_wq) 5470 return -ENOMEM; 5471 5472 ret = register_pernet_subsys(&cma_pernet_operations); 5473 if (ret) 5474 goto err_wq; 5475 5476 ib_sa_register_client(&sa_client); 5477 register_netdevice_notifier(&cma_nb); 5478 register_netevent_notifier(&cma_netevent_cb); 5479 5480 ret = ib_register_client(&cma_client); 5481 if (ret) 5482 goto err; 5483 5484 ret = cma_configfs_init(); 5485 if (ret) 5486 goto err_ib; 5487 5488 return 0; 5489 5490 err_ib: 5491 ib_unregister_client(&cma_client); 5492 err: 5493 unregister_netevent_notifier(&cma_netevent_cb); 5494 unregister_netdevice_notifier(&cma_nb); 5495 ib_sa_unregister_client(&sa_client); 5496 unregister_pernet_subsys(&cma_pernet_operations); 5497 err_wq: 5498 destroy_workqueue(cma_wq); 5499 return ret; 5500 } 5501 5502 static void __exit cma_cleanup(void) 5503 { 5504 cma_configfs_exit(); 5505 ib_unregister_client(&cma_client); 5506 unregister_netevent_notifier(&cma_netevent_cb); 5507 unregister_netdevice_notifier(&cma_nb); 5508 ib_sa_unregister_client(&sa_client); 5509 unregister_pernet_subsys(&cma_pernet_operations); 5510 destroy_workqueue(cma_wq); 5511 } 5512 5513 module_init(cma_init); 5514 module_exit(cma_cleanup); 5515 5516 static void cma_query_ib_service_handler(int status, 5517 struct sa_service_rec *recs, 5518 unsigned int num_recs, void *context) 5519 { 5520 struct cma_work *work = context; 5521 struct rdma_id_private *id_priv = work->id; 5522 struct sockaddr_ib *addr; 5523 5524 if (status) 5525 goto fail; 5526 5527 if (!num_recs) { 5528 status = -ENOENT; 5529 goto fail; 5530 } 5531 5532 if (id_priv->id.route.service_recs) { 5533 status = -EALREADY; 5534 goto fail; 5535 } 5536 5537 id_priv->id.route.service_recs = 5538 kmalloc_array(num_recs, sizeof(*recs), GFP_KERNEL); 5539 if (!id_priv->id.route.service_recs) { 5540 status = -ENOMEM; 5541 goto fail; 5542 } 5543 5544 id_priv->id.route.num_service_recs = num_recs; 5545 memcpy(id_priv->id.route.service_recs, recs, sizeof(*recs) * num_recs); 5546 5547 addr = (struct sockaddr_ib *)&id_priv->id.route.addr.dst_addr; 5548 addr->sib_family = AF_IB; 5549 addr->sib_addr = *(struct ib_addr *)&recs->gid; 5550 addr->sib_pkey = recs->pkey; 5551 addr->sib_sid = recs->id; 5552 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, 5553 (union ib_gid *)&addr->sib_addr); 5554 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, 5555 ntohs(addr->sib_pkey)); 5556 5557 queue_work(cma_wq, &work->work); 5558 return; 5559 5560 fail: 5561 work->old_state = RDMA_CM_ADDRINFO_QUERY; 5562 work->new_state = RDMA_CM_ADDR_BOUND; 5563 work->event.event = RDMA_CM_EVENT_ADDRINFO_ERROR; 5564 work->event.status = status; 5565 pr_debug_ratelimited( 5566 "RDMA CM: SERVICE_ERROR: failed to query service record. status %d\n", 5567 status); 5568 queue_work(cma_wq, &work->work); 5569 } 5570 5571 static int cma_resolve_ib_service(struct rdma_id_private *id_priv, 5572 struct rdma_ucm_ib_service *ibs) 5573 { 5574 struct sa_service_rec sr = {}; 5575 ib_sa_comp_mask mask = 0; 5576 struct cma_work *work; 5577 5578 work = kzalloc(sizeof(*work), GFP_KERNEL); 5579 if (!work) 5580 return -ENOMEM; 5581 5582 cma_id_get(id_priv); 5583 5584 work->id = id_priv; 5585 INIT_WORK(&work->work, cma_work_handler); 5586 work->old_state = RDMA_CM_ADDRINFO_QUERY; 5587 work->new_state = RDMA_CM_ADDRINFO_RESOLVED; 5588 work->event.event = RDMA_CM_EVENT_ADDRINFO_RESOLVED; 5589 5590 if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_ID) { 5591 sr.id = cpu_to_be64(ibs->service_id); 5592 mask |= IB_SA_SERVICE_REC_SERVICE_ID; 5593 } 5594 if (ibs->flags & RDMA_USER_CM_IB_SERVICE_FLAG_NAME) { 5595 strscpy(sr.name, ibs->service_name, sizeof(sr.name)); 5596 mask |= IB_SA_SERVICE_REC_SERVICE_NAME; 5597 } 5598 5599 id_priv->query_id = ib_sa_service_rec_get(&sa_client, 5600 id_priv->id.device, 5601 id_priv->id.port_num, 5602 &sr, mask, 5603 2000, GFP_KERNEL, 5604 cma_query_ib_service_handler, 5605 work, &id_priv->query); 5606 5607 if (id_priv->query_id < 0) { 5608 cma_id_put(id_priv); 5609 kfree(work); 5610 return id_priv->query_id; 5611 } 5612 5613 return 0; 5614 } 5615 5616 int rdma_resolve_ib_service(struct rdma_cm_id *id, 5617 struct rdma_ucm_ib_service *ibs) 5618 { 5619 struct rdma_id_private *id_priv; 5620 int ret; 5621 5622 id_priv = container_of(id, struct rdma_id_private, id); 5623 if (!id_priv->cma_dev || 5624 !cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDRINFO_QUERY)) 5625 return -EINVAL; 5626 5627 if (rdma_cap_ib_sa(id->device, id->port_num)) 5628 ret = cma_resolve_ib_service(id_priv, ibs); 5629 else 5630 ret = -EOPNOTSUPP; 5631 5632 if (ret) 5633 goto err; 5634 5635 return 0; 5636 err: 5637 cma_comp_exch(id_priv, RDMA_CM_ADDRINFO_QUERY, RDMA_CM_ADDR_BOUND); 5638 return ret; 5639 } 5640 EXPORT_SYMBOL(rdma_resolve_ib_service); 5641