1 // SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB 2 /* 3 * Copyright (c) 2005 Voltaire Inc. All rights reserved. 4 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. 5 * Copyright (c) 1999-2019, Mellanox Technologies, Inc. All rights reserved. 6 * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. 7 */ 8 9 #include <linux/completion.h> 10 #include <linux/in.h> 11 #include <linux/in6.h> 12 #include <linux/mutex.h> 13 #include <linux/random.h> 14 #include <linux/rbtree.h> 15 #include <linux/igmp.h> 16 #include <linux/xarray.h> 17 #include <linux/inetdevice.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <net/route.h> 21 22 #include <net/net_namespace.h> 23 #include <net/netns/generic.h> 24 #include <net/netevent.h> 25 #include <net/tcp.h> 26 #include <net/ipv6.h> 27 #include <net/ip_fib.h> 28 #include <net/ip6_route.h> 29 30 #include <rdma/rdma_cm.h> 31 #include <rdma/rdma_cm_ib.h> 32 #include <rdma/rdma_netlink.h> 33 #include <rdma/ib.h> 34 #include <rdma/ib_cache.h> 35 #include <rdma/ib_cm.h> 36 #include <rdma/ib_sa.h> 37 #include <rdma/iw_cm.h> 38 39 #include "core_priv.h" 40 #include "cma_priv.h" 41 #include "cma_trace.h" 42 43 MODULE_AUTHOR("Sean Hefty"); 44 MODULE_DESCRIPTION("Generic RDMA CM Agent"); 45 MODULE_LICENSE("Dual BSD/GPL"); 46 47 #define CMA_CM_RESPONSE_TIMEOUT 20 48 #define CMA_MAX_CM_RETRIES 15 49 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) 50 #define CMA_IBOE_PACKET_LIFETIME 16 51 #define CMA_PREFERRED_ROCE_GID_TYPE IB_GID_TYPE_ROCE_UDP_ENCAP 52 53 static const char * const cma_events[] = { 54 [RDMA_CM_EVENT_ADDR_RESOLVED] = "address resolved", 55 [RDMA_CM_EVENT_ADDR_ERROR] = "address error", 56 [RDMA_CM_EVENT_ROUTE_RESOLVED] = "route resolved ", 57 [RDMA_CM_EVENT_ROUTE_ERROR] = "route error", 58 [RDMA_CM_EVENT_CONNECT_REQUEST] = "connect request", 59 [RDMA_CM_EVENT_CONNECT_RESPONSE] = "connect response", 60 [RDMA_CM_EVENT_CONNECT_ERROR] = "connect error", 61 [RDMA_CM_EVENT_UNREACHABLE] = "unreachable", 62 [RDMA_CM_EVENT_REJECTED] = "rejected", 63 [RDMA_CM_EVENT_ESTABLISHED] = "established", 64 [RDMA_CM_EVENT_DISCONNECTED] = "disconnected", 65 [RDMA_CM_EVENT_DEVICE_REMOVAL] = "device removal", 66 [RDMA_CM_EVENT_MULTICAST_JOIN] = "multicast join", 67 [RDMA_CM_EVENT_MULTICAST_ERROR] = "multicast error", 68 [RDMA_CM_EVENT_ADDR_CHANGE] = "address change", 69 [RDMA_CM_EVENT_TIMEWAIT_EXIT] = "timewait exit", 70 }; 71 72 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 73 enum ib_gid_type gid_type); 74 75 const char *__attribute_const__ rdma_event_msg(enum rdma_cm_event_type event) 76 { 77 size_t index = event; 78 79 return (index < ARRAY_SIZE(cma_events) && cma_events[index]) ? 80 cma_events[index] : "unrecognized event"; 81 } 82 EXPORT_SYMBOL(rdma_event_msg); 83 84 const char *__attribute_const__ rdma_reject_msg(struct rdma_cm_id *id, 85 int reason) 86 { 87 if (rdma_ib_or_roce(id->device, id->port_num)) 88 return ibcm_reject_msg(reason); 89 90 if (rdma_protocol_iwarp(id->device, id->port_num)) 91 return iwcm_reject_msg(reason); 92 93 WARN_ON_ONCE(1); 94 return "unrecognized transport"; 95 } 96 EXPORT_SYMBOL(rdma_reject_msg); 97 98 /** 99 * rdma_is_consumer_reject - return true if the consumer rejected the connect 100 * request. 101 * @id: Communication identifier that received the REJECT event. 102 * @reason: Value returned in the REJECT event status field. 103 */ 104 static bool rdma_is_consumer_reject(struct rdma_cm_id *id, int reason) 105 { 106 if (rdma_ib_or_roce(id->device, id->port_num)) 107 return reason == IB_CM_REJ_CONSUMER_DEFINED; 108 109 if (rdma_protocol_iwarp(id->device, id->port_num)) 110 return reason == -ECONNREFUSED; 111 112 WARN_ON_ONCE(1); 113 return false; 114 } 115 116 const void *rdma_consumer_reject_data(struct rdma_cm_id *id, 117 struct rdma_cm_event *ev, u8 *data_len) 118 { 119 const void *p; 120 121 if (rdma_is_consumer_reject(id, ev->status)) { 122 *data_len = ev->param.conn.private_data_len; 123 p = ev->param.conn.private_data; 124 } else { 125 *data_len = 0; 126 p = NULL; 127 } 128 return p; 129 } 130 EXPORT_SYMBOL(rdma_consumer_reject_data); 131 132 /** 133 * rdma_iw_cm_id() - return the iw_cm_id pointer for this cm_id. 134 * @id: Communication Identifier 135 */ 136 struct iw_cm_id *rdma_iw_cm_id(struct rdma_cm_id *id) 137 { 138 struct rdma_id_private *id_priv; 139 140 id_priv = container_of(id, struct rdma_id_private, id); 141 if (id->device->node_type == RDMA_NODE_RNIC) 142 return id_priv->cm_id.iw; 143 return NULL; 144 } 145 EXPORT_SYMBOL(rdma_iw_cm_id); 146 147 /** 148 * rdma_res_to_id() - return the rdma_cm_id pointer for this restrack. 149 * @res: rdma resource tracking entry pointer 150 */ 151 struct rdma_cm_id *rdma_res_to_id(struct rdma_restrack_entry *res) 152 { 153 struct rdma_id_private *id_priv = 154 container_of(res, struct rdma_id_private, res); 155 156 return &id_priv->id; 157 } 158 EXPORT_SYMBOL(rdma_res_to_id); 159 160 static int cma_add_one(struct ib_device *device); 161 static void cma_remove_one(struct ib_device *device, void *client_data); 162 163 static struct ib_client cma_client = { 164 .name = "cma", 165 .add = cma_add_one, 166 .remove = cma_remove_one 167 }; 168 169 static struct ib_sa_client sa_client; 170 static LIST_HEAD(dev_list); 171 static LIST_HEAD(listen_any_list); 172 static DEFINE_MUTEX(lock); 173 static struct rb_root id_table = RB_ROOT; 174 /* Serialize operations of id_table tree */ 175 static DEFINE_SPINLOCK(id_table_lock); 176 static struct workqueue_struct *cma_wq; 177 static unsigned int cma_pernet_id; 178 179 struct cma_pernet { 180 struct xarray tcp_ps; 181 struct xarray udp_ps; 182 struct xarray ipoib_ps; 183 struct xarray ib_ps; 184 }; 185 186 static struct cma_pernet *cma_pernet(struct net *net) 187 { 188 return net_generic(net, cma_pernet_id); 189 } 190 191 static 192 struct xarray *cma_pernet_xa(struct net *net, enum rdma_ucm_port_space ps) 193 { 194 struct cma_pernet *pernet = cma_pernet(net); 195 196 switch (ps) { 197 case RDMA_PS_TCP: 198 return &pernet->tcp_ps; 199 case RDMA_PS_UDP: 200 return &pernet->udp_ps; 201 case RDMA_PS_IPOIB: 202 return &pernet->ipoib_ps; 203 case RDMA_PS_IB: 204 return &pernet->ib_ps; 205 default: 206 return NULL; 207 } 208 } 209 210 struct id_table_entry { 211 struct list_head id_list; 212 struct rb_node rb_node; 213 }; 214 215 struct cma_device { 216 struct list_head list; 217 struct ib_device *device; 218 struct completion comp; 219 refcount_t refcount; 220 struct list_head id_list; 221 enum ib_gid_type *default_gid_type; 222 u8 *default_roce_tos; 223 }; 224 225 struct rdma_bind_list { 226 enum rdma_ucm_port_space ps; 227 struct hlist_head owners; 228 unsigned short port; 229 }; 230 231 static int cma_ps_alloc(struct net *net, enum rdma_ucm_port_space ps, 232 struct rdma_bind_list *bind_list, int snum) 233 { 234 struct xarray *xa = cma_pernet_xa(net, ps); 235 236 return xa_insert(xa, snum, bind_list, GFP_KERNEL); 237 } 238 239 static struct rdma_bind_list *cma_ps_find(struct net *net, 240 enum rdma_ucm_port_space ps, int snum) 241 { 242 struct xarray *xa = cma_pernet_xa(net, ps); 243 244 return xa_load(xa, snum); 245 } 246 247 static void cma_ps_remove(struct net *net, enum rdma_ucm_port_space ps, 248 int snum) 249 { 250 struct xarray *xa = cma_pernet_xa(net, ps); 251 252 xa_erase(xa, snum); 253 } 254 255 enum { 256 CMA_OPTION_AFONLY, 257 }; 258 259 void cma_dev_get(struct cma_device *cma_dev) 260 { 261 refcount_inc(&cma_dev->refcount); 262 } 263 264 void cma_dev_put(struct cma_device *cma_dev) 265 { 266 if (refcount_dec_and_test(&cma_dev->refcount)) 267 complete(&cma_dev->comp); 268 } 269 270 struct cma_device *cma_enum_devices_by_ibdev(cma_device_filter filter, 271 void *cookie) 272 { 273 struct cma_device *cma_dev; 274 struct cma_device *found_cma_dev = NULL; 275 276 mutex_lock(&lock); 277 278 list_for_each_entry(cma_dev, &dev_list, list) 279 if (filter(cma_dev->device, cookie)) { 280 found_cma_dev = cma_dev; 281 break; 282 } 283 284 if (found_cma_dev) 285 cma_dev_get(found_cma_dev); 286 mutex_unlock(&lock); 287 return found_cma_dev; 288 } 289 290 int cma_get_default_gid_type(struct cma_device *cma_dev, 291 u32 port) 292 { 293 if (!rdma_is_port_valid(cma_dev->device, port)) 294 return -EINVAL; 295 296 return cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)]; 297 } 298 299 int cma_set_default_gid_type(struct cma_device *cma_dev, 300 u32 port, 301 enum ib_gid_type default_gid_type) 302 { 303 unsigned long supported_gids; 304 305 if (!rdma_is_port_valid(cma_dev->device, port)) 306 return -EINVAL; 307 308 if (default_gid_type == IB_GID_TYPE_IB && 309 rdma_protocol_roce_eth_encap(cma_dev->device, port)) 310 default_gid_type = IB_GID_TYPE_ROCE; 311 312 supported_gids = roce_gid_type_mask_support(cma_dev->device, port); 313 314 if (!(supported_gids & 1 << default_gid_type)) 315 return -EINVAL; 316 317 cma_dev->default_gid_type[port - rdma_start_port(cma_dev->device)] = 318 default_gid_type; 319 320 return 0; 321 } 322 323 int cma_get_default_roce_tos(struct cma_device *cma_dev, u32 port) 324 { 325 if (!rdma_is_port_valid(cma_dev->device, port)) 326 return -EINVAL; 327 328 return cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)]; 329 } 330 331 int cma_set_default_roce_tos(struct cma_device *cma_dev, u32 port, 332 u8 default_roce_tos) 333 { 334 if (!rdma_is_port_valid(cma_dev->device, port)) 335 return -EINVAL; 336 337 cma_dev->default_roce_tos[port - rdma_start_port(cma_dev->device)] = 338 default_roce_tos; 339 340 return 0; 341 } 342 struct ib_device *cma_get_ib_dev(struct cma_device *cma_dev) 343 { 344 return cma_dev->device; 345 } 346 347 /* 348 * Device removal can occur at anytime, so we need extra handling to 349 * serialize notifying the user of device removal with other callbacks. 350 * We do this by disabling removal notification while a callback is in process, 351 * and reporting it after the callback completes. 352 */ 353 354 struct cma_multicast { 355 struct rdma_id_private *id_priv; 356 union { 357 struct ib_sa_multicast *sa_mc; 358 struct { 359 struct work_struct work; 360 struct rdma_cm_event event; 361 } iboe_join; 362 }; 363 struct list_head list; 364 void *context; 365 struct sockaddr_storage addr; 366 u8 join_state; 367 }; 368 369 struct cma_work { 370 struct work_struct work; 371 struct rdma_id_private *id; 372 enum rdma_cm_state old_state; 373 enum rdma_cm_state new_state; 374 struct rdma_cm_event event; 375 }; 376 377 union cma_ip_addr { 378 struct in6_addr ip6; 379 struct { 380 __be32 pad[3]; 381 __be32 addr; 382 } ip4; 383 }; 384 385 struct cma_hdr { 386 u8 cma_version; 387 u8 ip_version; /* IP version: 7:4 */ 388 __be16 port; 389 union cma_ip_addr src_addr; 390 union cma_ip_addr dst_addr; 391 }; 392 393 #define CMA_VERSION 0x00 394 395 struct cma_req_info { 396 struct sockaddr_storage listen_addr_storage; 397 struct sockaddr_storage src_addr_storage; 398 struct ib_device *device; 399 union ib_gid local_gid; 400 __be64 service_id; 401 int port; 402 bool has_gid; 403 u16 pkey; 404 }; 405 406 static int cma_comp_exch(struct rdma_id_private *id_priv, 407 enum rdma_cm_state comp, enum rdma_cm_state exch) 408 { 409 unsigned long flags; 410 int ret; 411 412 /* 413 * The FSM uses a funny double locking where state is protected by both 414 * the handler_mutex and the spinlock. State is not allowed to change 415 * to/from a handler_mutex protected value without also holding 416 * handler_mutex. 417 */ 418 if (comp == RDMA_CM_CONNECT || exch == RDMA_CM_CONNECT) 419 lockdep_assert_held(&id_priv->handler_mutex); 420 421 spin_lock_irqsave(&id_priv->lock, flags); 422 if ((ret = (id_priv->state == comp))) 423 id_priv->state = exch; 424 spin_unlock_irqrestore(&id_priv->lock, flags); 425 return ret; 426 } 427 428 static inline u8 cma_get_ip_ver(const struct cma_hdr *hdr) 429 { 430 return hdr->ip_version >> 4; 431 } 432 433 static void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) 434 { 435 hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); 436 } 437 438 static struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) 439 { 440 return (struct sockaddr *)&id_priv->id.route.addr.src_addr; 441 } 442 443 static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) 444 { 445 return (struct sockaddr *)&id_priv->id.route.addr.dst_addr; 446 } 447 448 static int cma_igmp_send(struct net_device *ndev, union ib_gid *mgid, bool join) 449 { 450 struct in_device *in_dev = NULL; 451 452 if (ndev) { 453 rtnl_lock(); 454 in_dev = __in_dev_get_rtnl(ndev); 455 if (in_dev) { 456 if (join) 457 ip_mc_inc_group(in_dev, 458 *(__be32 *)(mgid->raw + 12)); 459 else 460 ip_mc_dec_group(in_dev, 461 *(__be32 *)(mgid->raw + 12)); 462 } 463 rtnl_unlock(); 464 } 465 return (in_dev) ? 0 : -ENODEV; 466 } 467 468 static int compare_netdev_and_ip(int ifindex_a, struct sockaddr *sa, 469 struct id_table_entry *entry_b) 470 { 471 struct rdma_id_private *id_priv = list_first_entry( 472 &entry_b->id_list, struct rdma_id_private, id_list_entry); 473 int ifindex_b = id_priv->id.route.addr.dev_addr.bound_dev_if; 474 struct sockaddr *sb = cma_dst_addr(id_priv); 475 476 if (ifindex_a != ifindex_b) 477 return (ifindex_a > ifindex_b) ? 1 : -1; 478 479 if (sa->sa_family != sb->sa_family) 480 return sa->sa_family - sb->sa_family; 481 482 if (sa->sa_family == AF_INET && 483 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in)) { 484 return memcmp(&((struct sockaddr_in *)sa)->sin_addr, 485 &((struct sockaddr_in *)sb)->sin_addr, 486 sizeof(((struct sockaddr_in *)sa)->sin_addr)); 487 } 488 489 if (sa->sa_family == AF_INET6 && 490 __builtin_object_size(sa, 0) >= sizeof(struct sockaddr_in6)) { 491 return ipv6_addr_cmp(&((struct sockaddr_in6 *)sa)->sin6_addr, 492 &((struct sockaddr_in6 *)sb)->sin6_addr); 493 } 494 495 return -1; 496 } 497 498 static int cma_add_id_to_tree(struct rdma_id_private *node_id_priv) 499 { 500 struct rb_node **new, *parent = NULL; 501 struct id_table_entry *this, *node; 502 unsigned long flags; 503 int result; 504 505 node = kzalloc(sizeof(*node), GFP_KERNEL); 506 if (!node) 507 return -ENOMEM; 508 509 spin_lock_irqsave(&id_table_lock, flags); 510 new = &id_table.rb_node; 511 while (*new) { 512 this = container_of(*new, struct id_table_entry, rb_node); 513 result = compare_netdev_and_ip( 514 node_id_priv->id.route.addr.dev_addr.bound_dev_if, 515 cma_dst_addr(node_id_priv), this); 516 517 parent = *new; 518 if (result < 0) 519 new = &((*new)->rb_left); 520 else if (result > 0) 521 new = &((*new)->rb_right); 522 else { 523 list_add_tail(&node_id_priv->id_list_entry, 524 &this->id_list); 525 kfree(node); 526 goto unlock; 527 } 528 } 529 530 INIT_LIST_HEAD(&node->id_list); 531 list_add_tail(&node_id_priv->id_list_entry, &node->id_list); 532 533 rb_link_node(&node->rb_node, parent, new); 534 rb_insert_color(&node->rb_node, &id_table); 535 536 unlock: 537 spin_unlock_irqrestore(&id_table_lock, flags); 538 return 0; 539 } 540 541 static struct id_table_entry * 542 node_from_ndev_ip(struct rb_root *root, int ifindex, struct sockaddr *sa) 543 { 544 struct rb_node *node = root->rb_node; 545 struct id_table_entry *data; 546 int result; 547 548 while (node) { 549 data = container_of(node, struct id_table_entry, rb_node); 550 result = compare_netdev_and_ip(ifindex, sa, data); 551 if (result < 0) 552 node = node->rb_left; 553 else if (result > 0) 554 node = node->rb_right; 555 else 556 return data; 557 } 558 559 return NULL; 560 } 561 562 static void cma_remove_id_from_tree(struct rdma_id_private *id_priv) 563 { 564 struct id_table_entry *data; 565 unsigned long flags; 566 567 spin_lock_irqsave(&id_table_lock, flags); 568 if (list_empty(&id_priv->id_list_entry)) 569 goto out; 570 571 data = node_from_ndev_ip(&id_table, 572 id_priv->id.route.addr.dev_addr.bound_dev_if, 573 cma_dst_addr(id_priv)); 574 if (!data) 575 goto out; 576 577 list_del_init(&id_priv->id_list_entry); 578 if (list_empty(&data->id_list)) { 579 rb_erase(&data->rb_node, &id_table); 580 kfree(data); 581 } 582 out: 583 spin_unlock_irqrestore(&id_table_lock, flags); 584 } 585 586 static void _cma_attach_to_dev(struct rdma_id_private *id_priv, 587 struct cma_device *cma_dev) 588 { 589 cma_dev_get(cma_dev); 590 id_priv->cma_dev = cma_dev; 591 id_priv->id.device = cma_dev->device; 592 id_priv->id.route.addr.dev_addr.transport = 593 rdma_node_get_transport(cma_dev->device->node_type); 594 list_add_tail(&id_priv->device_item, &cma_dev->id_list); 595 596 trace_cm_id_attach(id_priv, cma_dev->device); 597 } 598 599 static void cma_attach_to_dev(struct rdma_id_private *id_priv, 600 struct cma_device *cma_dev) 601 { 602 _cma_attach_to_dev(id_priv, cma_dev); 603 id_priv->gid_type = 604 cma_dev->default_gid_type[id_priv->id.port_num - 605 rdma_start_port(cma_dev->device)]; 606 } 607 608 static void cma_release_dev(struct rdma_id_private *id_priv) 609 { 610 mutex_lock(&lock); 611 list_del_init(&id_priv->device_item); 612 cma_dev_put(id_priv->cma_dev); 613 id_priv->cma_dev = NULL; 614 id_priv->id.device = NULL; 615 if (id_priv->id.route.addr.dev_addr.sgid_attr) { 616 rdma_put_gid_attr(id_priv->id.route.addr.dev_addr.sgid_attr); 617 id_priv->id.route.addr.dev_addr.sgid_attr = NULL; 618 } 619 mutex_unlock(&lock); 620 } 621 622 static inline unsigned short cma_family(struct rdma_id_private *id_priv) 623 { 624 return id_priv->id.route.addr.src_addr.ss_family; 625 } 626 627 static int cma_set_default_qkey(struct rdma_id_private *id_priv) 628 { 629 struct ib_sa_mcmember_rec rec; 630 int ret = 0; 631 632 switch (id_priv->id.ps) { 633 case RDMA_PS_UDP: 634 case RDMA_PS_IB: 635 id_priv->qkey = RDMA_UDP_QKEY; 636 break; 637 case RDMA_PS_IPOIB: 638 ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); 639 ret = ib_sa_get_mcmember_rec(id_priv->id.device, 640 id_priv->id.port_num, &rec.mgid, 641 &rec); 642 if (!ret) 643 id_priv->qkey = be32_to_cpu(rec.qkey); 644 break; 645 default: 646 break; 647 } 648 return ret; 649 } 650 651 static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) 652 { 653 if (!qkey || 654 (id_priv->qkey && (id_priv->qkey != qkey))) 655 return -EINVAL; 656 657 id_priv->qkey = qkey; 658 return 0; 659 } 660 661 static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) 662 { 663 dev_addr->dev_type = ARPHRD_INFINIBAND; 664 rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); 665 ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); 666 } 667 668 static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) 669 { 670 int ret; 671 672 if (addr->sa_family != AF_IB) { 673 ret = rdma_translate_ip(addr, dev_addr); 674 } else { 675 cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); 676 ret = 0; 677 } 678 679 return ret; 680 } 681 682 static const struct ib_gid_attr * 683 cma_validate_port(struct ib_device *device, u32 port, 684 enum ib_gid_type gid_type, 685 union ib_gid *gid, 686 struct rdma_id_private *id_priv) 687 { 688 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 689 const struct ib_gid_attr *sgid_attr = ERR_PTR(-ENODEV); 690 int bound_if_index = dev_addr->bound_dev_if; 691 int dev_type = dev_addr->dev_type; 692 struct net_device *ndev = NULL; 693 694 if (!rdma_dev_access_netns(device, id_priv->id.route.addr.dev_addr.net)) 695 goto out; 696 697 if ((dev_type == ARPHRD_INFINIBAND) && !rdma_protocol_ib(device, port)) 698 goto out; 699 700 if ((dev_type != ARPHRD_INFINIBAND) && rdma_protocol_ib(device, port)) 701 goto out; 702 703 /* 704 * For drivers that do not associate more than one net device with 705 * their gid tables, such as iWARP drivers, it is sufficient to 706 * return the first table entry. 707 * 708 * Other driver classes might be included in the future. 709 */ 710 if (rdma_protocol_iwarp(device, port)) { 711 sgid_attr = rdma_get_gid_attr(device, port, 0); 712 if (IS_ERR(sgid_attr)) 713 goto out; 714 715 rcu_read_lock(); 716 ndev = rcu_dereference(sgid_attr->ndev); 717 if (!net_eq(dev_net(ndev), dev_addr->net) || 718 ndev->ifindex != bound_if_index) { 719 rdma_put_gid_attr(sgid_attr); 720 sgid_attr = ERR_PTR(-ENODEV); 721 } 722 rcu_read_unlock(); 723 goto out; 724 } 725 726 if (dev_type == ARPHRD_ETHER && rdma_protocol_roce(device, port)) { 727 ndev = dev_get_by_index(dev_addr->net, bound_if_index); 728 if (!ndev) 729 goto out; 730 } else { 731 gid_type = IB_GID_TYPE_IB; 732 } 733 734 sgid_attr = rdma_find_gid_by_port(device, gid, gid_type, port, ndev); 735 dev_put(ndev); 736 out: 737 return sgid_attr; 738 } 739 740 static void cma_bind_sgid_attr(struct rdma_id_private *id_priv, 741 const struct ib_gid_attr *sgid_attr) 742 { 743 WARN_ON(id_priv->id.route.addr.dev_addr.sgid_attr); 744 id_priv->id.route.addr.dev_addr.sgid_attr = sgid_attr; 745 } 746 747 /** 748 * cma_acquire_dev_by_src_ip - Acquire cma device, port, gid attribute 749 * based on source ip address. 750 * @id_priv: cm_id which should be bound to cma device 751 * 752 * cma_acquire_dev_by_src_ip() binds cm id to cma device, port and GID attribute 753 * based on source IP address. It returns 0 on success or error code otherwise. 754 * It is applicable to active and passive side cm_id. 755 */ 756 static int cma_acquire_dev_by_src_ip(struct rdma_id_private *id_priv) 757 { 758 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 759 const struct ib_gid_attr *sgid_attr; 760 union ib_gid gid, iboe_gid, *gidp; 761 struct cma_device *cma_dev; 762 enum ib_gid_type gid_type; 763 int ret = -ENODEV; 764 u32 port; 765 766 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 767 id_priv->id.ps == RDMA_PS_IPOIB) 768 return -EINVAL; 769 770 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 771 &iboe_gid); 772 773 memcpy(&gid, dev_addr->src_dev_addr + 774 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 775 776 mutex_lock(&lock); 777 list_for_each_entry(cma_dev, &dev_list, list) { 778 rdma_for_each_port (cma_dev->device, port) { 779 gidp = rdma_protocol_roce(cma_dev->device, port) ? 780 &iboe_gid : &gid; 781 gid_type = cma_dev->default_gid_type[port - 1]; 782 sgid_attr = cma_validate_port(cma_dev->device, port, 783 gid_type, gidp, id_priv); 784 if (!IS_ERR(sgid_attr)) { 785 id_priv->id.port_num = port; 786 cma_bind_sgid_attr(id_priv, sgid_attr); 787 cma_attach_to_dev(id_priv, cma_dev); 788 ret = 0; 789 goto out; 790 } 791 } 792 } 793 out: 794 mutex_unlock(&lock); 795 return ret; 796 } 797 798 /** 799 * cma_ib_acquire_dev - Acquire cma device, port and SGID attribute 800 * @id_priv: cm id to bind to cma device 801 * @listen_id_priv: listener cm id to match against 802 * @req: Pointer to req structure containaining incoming 803 * request information 804 * cma_ib_acquire_dev() acquires cma device, port and SGID attribute when 805 * rdma device matches for listen_id and incoming request. It also verifies 806 * that a GID table entry is present for the source address. 807 * Returns 0 on success, or returns error code otherwise. 808 */ 809 static int cma_ib_acquire_dev(struct rdma_id_private *id_priv, 810 const struct rdma_id_private *listen_id_priv, 811 struct cma_req_info *req) 812 { 813 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 814 const struct ib_gid_attr *sgid_attr; 815 enum ib_gid_type gid_type; 816 union ib_gid gid; 817 818 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 819 id_priv->id.ps == RDMA_PS_IPOIB) 820 return -EINVAL; 821 822 if (rdma_protocol_roce(req->device, req->port)) 823 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 824 &gid); 825 else 826 memcpy(&gid, dev_addr->src_dev_addr + 827 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 828 829 gid_type = listen_id_priv->cma_dev->default_gid_type[req->port - 1]; 830 sgid_attr = cma_validate_port(req->device, req->port, 831 gid_type, &gid, id_priv); 832 if (IS_ERR(sgid_attr)) 833 return PTR_ERR(sgid_attr); 834 835 id_priv->id.port_num = req->port; 836 cma_bind_sgid_attr(id_priv, sgid_attr); 837 /* Need to acquire lock to protect against reader 838 * of cma_dev->id_list such as cma_netdev_callback() and 839 * cma_process_remove(). 840 */ 841 mutex_lock(&lock); 842 cma_attach_to_dev(id_priv, listen_id_priv->cma_dev); 843 mutex_unlock(&lock); 844 rdma_restrack_add(&id_priv->res); 845 return 0; 846 } 847 848 static int cma_iw_acquire_dev(struct rdma_id_private *id_priv, 849 const struct rdma_id_private *listen_id_priv) 850 { 851 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 852 const struct ib_gid_attr *sgid_attr; 853 struct cma_device *cma_dev; 854 enum ib_gid_type gid_type; 855 int ret = -ENODEV; 856 union ib_gid gid; 857 u32 port; 858 859 if (dev_addr->dev_type != ARPHRD_INFINIBAND && 860 id_priv->id.ps == RDMA_PS_IPOIB) 861 return -EINVAL; 862 863 memcpy(&gid, dev_addr->src_dev_addr + 864 rdma_addr_gid_offset(dev_addr), sizeof(gid)); 865 866 mutex_lock(&lock); 867 868 cma_dev = listen_id_priv->cma_dev; 869 port = listen_id_priv->id.port_num; 870 gid_type = listen_id_priv->gid_type; 871 sgid_attr = cma_validate_port(cma_dev->device, port, 872 gid_type, &gid, id_priv); 873 if (!IS_ERR(sgid_attr)) { 874 id_priv->id.port_num = port; 875 cma_bind_sgid_attr(id_priv, sgid_attr); 876 ret = 0; 877 goto out; 878 } 879 880 list_for_each_entry(cma_dev, &dev_list, list) { 881 rdma_for_each_port (cma_dev->device, port) { 882 if (listen_id_priv->cma_dev == cma_dev && 883 listen_id_priv->id.port_num == port) 884 continue; 885 886 gid_type = cma_dev->default_gid_type[port - 1]; 887 sgid_attr = cma_validate_port(cma_dev->device, port, 888 gid_type, &gid, id_priv); 889 if (!IS_ERR(sgid_attr)) { 890 id_priv->id.port_num = port; 891 cma_bind_sgid_attr(id_priv, sgid_attr); 892 ret = 0; 893 goto out; 894 } 895 } 896 } 897 898 out: 899 if (!ret) { 900 cma_attach_to_dev(id_priv, cma_dev); 901 rdma_restrack_add(&id_priv->res); 902 } 903 904 mutex_unlock(&lock); 905 return ret; 906 } 907 908 /* 909 * Select the source IB device and address to reach the destination IB address. 910 */ 911 static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) 912 { 913 struct cma_device *cma_dev, *cur_dev; 914 struct sockaddr_ib *addr; 915 union ib_gid gid, sgid, *dgid; 916 unsigned int p; 917 u16 pkey, index; 918 enum ib_port_state port_state; 919 int ret; 920 int i; 921 922 cma_dev = NULL; 923 addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); 924 dgid = (union ib_gid *) &addr->sib_addr; 925 pkey = ntohs(addr->sib_pkey); 926 927 mutex_lock(&lock); 928 list_for_each_entry(cur_dev, &dev_list, list) { 929 rdma_for_each_port (cur_dev->device, p) { 930 if (!rdma_cap_af_ib(cur_dev->device, p)) 931 continue; 932 933 if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) 934 continue; 935 936 if (ib_get_cached_port_state(cur_dev->device, p, &port_state)) 937 continue; 938 939 for (i = 0; i < cur_dev->device->port_data[p].immutable.gid_tbl_len; 940 ++i) { 941 ret = rdma_query_gid(cur_dev->device, p, i, 942 &gid); 943 if (ret) 944 continue; 945 946 if (!memcmp(&gid, dgid, sizeof(gid))) { 947 cma_dev = cur_dev; 948 sgid = gid; 949 id_priv->id.port_num = p; 950 goto found; 951 } 952 953 if (!cma_dev && (gid.global.subnet_prefix == 954 dgid->global.subnet_prefix) && 955 port_state == IB_PORT_ACTIVE) { 956 cma_dev = cur_dev; 957 sgid = gid; 958 id_priv->id.port_num = p; 959 goto found; 960 } 961 } 962 } 963 } 964 mutex_unlock(&lock); 965 return -ENODEV; 966 967 found: 968 cma_attach_to_dev(id_priv, cma_dev); 969 rdma_restrack_add(&id_priv->res); 970 mutex_unlock(&lock); 971 addr = (struct sockaddr_ib *)cma_src_addr(id_priv); 972 memcpy(&addr->sib_addr, &sgid, sizeof(sgid)); 973 cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); 974 return 0; 975 } 976 977 static void cma_id_get(struct rdma_id_private *id_priv) 978 { 979 refcount_inc(&id_priv->refcount); 980 } 981 982 static void cma_id_put(struct rdma_id_private *id_priv) 983 { 984 if (refcount_dec_and_test(&id_priv->refcount)) 985 complete(&id_priv->comp); 986 } 987 988 static struct rdma_id_private * 989 __rdma_create_id(struct net *net, rdma_cm_event_handler event_handler, 990 void *context, enum rdma_ucm_port_space ps, 991 enum ib_qp_type qp_type, const struct rdma_id_private *parent) 992 { 993 struct rdma_id_private *id_priv; 994 995 id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); 996 if (!id_priv) 997 return ERR_PTR(-ENOMEM); 998 999 id_priv->state = RDMA_CM_IDLE; 1000 id_priv->id.context = context; 1001 id_priv->id.event_handler = event_handler; 1002 id_priv->id.ps = ps; 1003 id_priv->id.qp_type = qp_type; 1004 id_priv->tos_set = false; 1005 id_priv->timeout_set = false; 1006 id_priv->min_rnr_timer_set = false; 1007 id_priv->gid_type = IB_GID_TYPE_IB; 1008 spin_lock_init(&id_priv->lock); 1009 mutex_init(&id_priv->qp_mutex); 1010 init_completion(&id_priv->comp); 1011 refcount_set(&id_priv->refcount, 1); 1012 mutex_init(&id_priv->handler_mutex); 1013 INIT_LIST_HEAD(&id_priv->device_item); 1014 INIT_LIST_HEAD(&id_priv->id_list_entry); 1015 INIT_LIST_HEAD(&id_priv->listen_list); 1016 INIT_LIST_HEAD(&id_priv->mc_list); 1017 get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); 1018 id_priv->id.route.addr.dev_addr.net = get_net(net); 1019 id_priv->seq_num &= 0x00ffffff; 1020 1021 rdma_restrack_new(&id_priv->res, RDMA_RESTRACK_CM_ID); 1022 if (parent) 1023 rdma_restrack_parent_name(&id_priv->res, &parent->res); 1024 1025 return id_priv; 1026 } 1027 1028 struct rdma_cm_id * 1029 __rdma_create_kernel_id(struct net *net, rdma_cm_event_handler event_handler, 1030 void *context, enum rdma_ucm_port_space ps, 1031 enum ib_qp_type qp_type, const char *caller) 1032 { 1033 struct rdma_id_private *ret; 1034 1035 ret = __rdma_create_id(net, event_handler, context, ps, qp_type, NULL); 1036 if (IS_ERR(ret)) 1037 return ERR_CAST(ret); 1038 1039 rdma_restrack_set_name(&ret->res, caller); 1040 return &ret->id; 1041 } 1042 EXPORT_SYMBOL(__rdma_create_kernel_id); 1043 1044 struct rdma_cm_id *rdma_create_user_id(rdma_cm_event_handler event_handler, 1045 void *context, 1046 enum rdma_ucm_port_space ps, 1047 enum ib_qp_type qp_type) 1048 { 1049 struct rdma_id_private *ret; 1050 1051 ret = __rdma_create_id(current->nsproxy->net_ns, event_handler, context, 1052 ps, qp_type, NULL); 1053 if (IS_ERR(ret)) 1054 return ERR_CAST(ret); 1055 1056 rdma_restrack_set_name(&ret->res, NULL); 1057 return &ret->id; 1058 } 1059 EXPORT_SYMBOL(rdma_create_user_id); 1060 1061 static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1062 { 1063 struct ib_qp_attr qp_attr; 1064 int qp_attr_mask, ret; 1065 1066 qp_attr.qp_state = IB_QPS_INIT; 1067 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1068 if (ret) 1069 return ret; 1070 1071 ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1072 if (ret) 1073 return ret; 1074 1075 qp_attr.qp_state = IB_QPS_RTR; 1076 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); 1077 if (ret) 1078 return ret; 1079 1080 qp_attr.qp_state = IB_QPS_RTS; 1081 qp_attr.sq_psn = 0; 1082 ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); 1083 1084 return ret; 1085 } 1086 1087 static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) 1088 { 1089 struct ib_qp_attr qp_attr; 1090 int qp_attr_mask, ret; 1091 1092 qp_attr.qp_state = IB_QPS_INIT; 1093 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1094 if (ret) 1095 return ret; 1096 1097 return ib_modify_qp(qp, &qp_attr, qp_attr_mask); 1098 } 1099 1100 int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, 1101 struct ib_qp_init_attr *qp_init_attr) 1102 { 1103 struct rdma_id_private *id_priv; 1104 struct ib_qp *qp; 1105 int ret; 1106 1107 id_priv = container_of(id, struct rdma_id_private, id); 1108 if (id->device != pd->device) { 1109 ret = -EINVAL; 1110 goto out_err; 1111 } 1112 1113 qp_init_attr->port_num = id->port_num; 1114 qp = ib_create_qp(pd, qp_init_attr); 1115 if (IS_ERR(qp)) { 1116 ret = PTR_ERR(qp); 1117 goto out_err; 1118 } 1119 1120 if (id->qp_type == IB_QPT_UD) 1121 ret = cma_init_ud_qp(id_priv, qp); 1122 else 1123 ret = cma_init_conn_qp(id_priv, qp); 1124 if (ret) 1125 goto out_destroy; 1126 1127 id->qp = qp; 1128 id_priv->qp_num = qp->qp_num; 1129 id_priv->srq = (qp->srq != NULL); 1130 trace_cm_qp_create(id_priv, pd, qp_init_attr, 0); 1131 return 0; 1132 out_destroy: 1133 ib_destroy_qp(qp); 1134 out_err: 1135 trace_cm_qp_create(id_priv, pd, qp_init_attr, ret); 1136 return ret; 1137 } 1138 EXPORT_SYMBOL(rdma_create_qp); 1139 1140 void rdma_destroy_qp(struct rdma_cm_id *id) 1141 { 1142 struct rdma_id_private *id_priv; 1143 1144 id_priv = container_of(id, struct rdma_id_private, id); 1145 trace_cm_qp_destroy(id_priv); 1146 mutex_lock(&id_priv->qp_mutex); 1147 ib_destroy_qp(id_priv->id.qp); 1148 id_priv->id.qp = NULL; 1149 mutex_unlock(&id_priv->qp_mutex); 1150 } 1151 EXPORT_SYMBOL(rdma_destroy_qp); 1152 1153 static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, 1154 struct rdma_conn_param *conn_param) 1155 { 1156 struct ib_qp_attr qp_attr; 1157 int qp_attr_mask, ret; 1158 1159 mutex_lock(&id_priv->qp_mutex); 1160 if (!id_priv->id.qp) { 1161 ret = 0; 1162 goto out; 1163 } 1164 1165 /* Need to update QP attributes from default values. */ 1166 qp_attr.qp_state = IB_QPS_INIT; 1167 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1168 if (ret) 1169 goto out; 1170 1171 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1172 if (ret) 1173 goto out; 1174 1175 qp_attr.qp_state = IB_QPS_RTR; 1176 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1177 if (ret) 1178 goto out; 1179 1180 BUG_ON(id_priv->cma_dev->device != id_priv->id.device); 1181 1182 if (conn_param) 1183 qp_attr.max_dest_rd_atomic = conn_param->responder_resources; 1184 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1185 out: 1186 mutex_unlock(&id_priv->qp_mutex); 1187 return ret; 1188 } 1189 1190 static int cma_modify_qp_rts(struct rdma_id_private *id_priv, 1191 struct rdma_conn_param *conn_param) 1192 { 1193 struct ib_qp_attr qp_attr; 1194 int qp_attr_mask, ret; 1195 1196 mutex_lock(&id_priv->qp_mutex); 1197 if (!id_priv->id.qp) { 1198 ret = 0; 1199 goto out; 1200 } 1201 1202 qp_attr.qp_state = IB_QPS_RTS; 1203 ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); 1204 if (ret) 1205 goto out; 1206 1207 if (conn_param) 1208 qp_attr.max_rd_atomic = conn_param->initiator_depth; 1209 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); 1210 out: 1211 mutex_unlock(&id_priv->qp_mutex); 1212 return ret; 1213 } 1214 1215 static int cma_modify_qp_err(struct rdma_id_private *id_priv) 1216 { 1217 struct ib_qp_attr qp_attr; 1218 int ret; 1219 1220 mutex_lock(&id_priv->qp_mutex); 1221 if (!id_priv->id.qp) { 1222 ret = 0; 1223 goto out; 1224 } 1225 1226 qp_attr.qp_state = IB_QPS_ERR; 1227 ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); 1228 out: 1229 mutex_unlock(&id_priv->qp_mutex); 1230 return ret; 1231 } 1232 1233 static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, 1234 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 1235 { 1236 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 1237 int ret; 1238 u16 pkey; 1239 1240 if (rdma_cap_eth_ah(id_priv->id.device, id_priv->id.port_num)) 1241 pkey = 0xffff; 1242 else 1243 pkey = ib_addr_get_pkey(dev_addr); 1244 1245 ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, 1246 pkey, &qp_attr->pkey_index); 1247 if (ret) 1248 return ret; 1249 1250 qp_attr->port_num = id_priv->id.port_num; 1251 *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; 1252 1253 if (id_priv->id.qp_type == IB_QPT_UD) { 1254 ret = cma_set_default_qkey(id_priv); 1255 if (ret) 1256 return ret; 1257 1258 qp_attr->qkey = id_priv->qkey; 1259 *qp_attr_mask |= IB_QP_QKEY; 1260 } else { 1261 qp_attr->qp_access_flags = 0; 1262 *qp_attr_mask |= IB_QP_ACCESS_FLAGS; 1263 } 1264 return 0; 1265 } 1266 1267 int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, 1268 int *qp_attr_mask) 1269 { 1270 struct rdma_id_private *id_priv; 1271 int ret = 0; 1272 1273 id_priv = container_of(id, struct rdma_id_private, id); 1274 if (rdma_cap_ib_cm(id->device, id->port_num)) { 1275 if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) 1276 ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); 1277 else 1278 ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, 1279 qp_attr_mask); 1280 1281 if (qp_attr->qp_state == IB_QPS_RTR) 1282 qp_attr->rq_psn = id_priv->seq_num; 1283 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 1284 if (!id_priv->cm_id.iw) { 1285 qp_attr->qp_access_flags = 0; 1286 *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; 1287 } else 1288 ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, 1289 qp_attr_mask); 1290 qp_attr->port_num = id_priv->id.port_num; 1291 *qp_attr_mask |= IB_QP_PORT; 1292 } else { 1293 ret = -ENOSYS; 1294 } 1295 1296 if ((*qp_attr_mask & IB_QP_TIMEOUT) && id_priv->timeout_set) 1297 qp_attr->timeout = id_priv->timeout; 1298 1299 if ((*qp_attr_mask & IB_QP_MIN_RNR_TIMER) && id_priv->min_rnr_timer_set) 1300 qp_attr->min_rnr_timer = id_priv->min_rnr_timer; 1301 1302 return ret; 1303 } 1304 EXPORT_SYMBOL(rdma_init_qp_attr); 1305 1306 static inline bool cma_zero_addr(const struct sockaddr *addr) 1307 { 1308 switch (addr->sa_family) { 1309 case AF_INET: 1310 return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); 1311 case AF_INET6: 1312 return ipv6_addr_any(&((struct sockaddr_in6 *)addr)->sin6_addr); 1313 case AF_IB: 1314 return ib_addr_any(&((struct sockaddr_ib *)addr)->sib_addr); 1315 default: 1316 return false; 1317 } 1318 } 1319 1320 static inline bool cma_loopback_addr(const struct sockaddr *addr) 1321 { 1322 switch (addr->sa_family) { 1323 case AF_INET: 1324 return ipv4_is_loopback( 1325 ((struct sockaddr_in *)addr)->sin_addr.s_addr); 1326 case AF_INET6: 1327 return ipv6_addr_loopback( 1328 &((struct sockaddr_in6 *)addr)->sin6_addr); 1329 case AF_IB: 1330 return ib_addr_loopback( 1331 &((struct sockaddr_ib *)addr)->sib_addr); 1332 default: 1333 return false; 1334 } 1335 } 1336 1337 static inline bool cma_any_addr(const struct sockaddr *addr) 1338 { 1339 return cma_zero_addr(addr) || cma_loopback_addr(addr); 1340 } 1341 1342 static int cma_addr_cmp(const struct sockaddr *src, const struct sockaddr *dst) 1343 { 1344 if (src->sa_family != dst->sa_family) 1345 return -1; 1346 1347 switch (src->sa_family) { 1348 case AF_INET: 1349 return ((struct sockaddr_in *)src)->sin_addr.s_addr != 1350 ((struct sockaddr_in *)dst)->sin_addr.s_addr; 1351 case AF_INET6: { 1352 struct sockaddr_in6 *src_addr6 = (struct sockaddr_in6 *)src; 1353 struct sockaddr_in6 *dst_addr6 = (struct sockaddr_in6 *)dst; 1354 bool link_local; 1355 1356 if (ipv6_addr_cmp(&src_addr6->sin6_addr, 1357 &dst_addr6->sin6_addr)) 1358 return 1; 1359 link_local = ipv6_addr_type(&dst_addr6->sin6_addr) & 1360 IPV6_ADDR_LINKLOCAL; 1361 /* Link local must match their scope_ids */ 1362 return link_local ? (src_addr6->sin6_scope_id != 1363 dst_addr6->sin6_scope_id) : 1364 0; 1365 } 1366 1367 default: 1368 return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, 1369 &((struct sockaddr_ib *) dst)->sib_addr); 1370 } 1371 } 1372 1373 static __be16 cma_port(const struct sockaddr *addr) 1374 { 1375 struct sockaddr_ib *sib; 1376 1377 switch (addr->sa_family) { 1378 case AF_INET: 1379 return ((struct sockaddr_in *) addr)->sin_port; 1380 case AF_INET6: 1381 return ((struct sockaddr_in6 *) addr)->sin6_port; 1382 case AF_IB: 1383 sib = (struct sockaddr_ib *) addr; 1384 return htons((u16) (be64_to_cpu(sib->sib_sid) & 1385 be64_to_cpu(sib->sib_sid_mask))); 1386 default: 1387 return 0; 1388 } 1389 } 1390 1391 static inline int cma_any_port(const struct sockaddr *addr) 1392 { 1393 return !cma_port(addr); 1394 } 1395 1396 static void cma_save_ib_info(struct sockaddr *src_addr, 1397 struct sockaddr *dst_addr, 1398 const struct rdma_cm_id *listen_id, 1399 const struct sa_path_rec *path) 1400 { 1401 struct sockaddr_ib *listen_ib, *ib; 1402 1403 listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; 1404 if (src_addr) { 1405 ib = (struct sockaddr_ib *)src_addr; 1406 ib->sib_family = AF_IB; 1407 if (path) { 1408 ib->sib_pkey = path->pkey; 1409 ib->sib_flowinfo = path->flow_label; 1410 memcpy(&ib->sib_addr, &path->sgid, 16); 1411 ib->sib_sid = path->service_id; 1412 ib->sib_scope_id = 0; 1413 } else { 1414 ib->sib_pkey = listen_ib->sib_pkey; 1415 ib->sib_flowinfo = listen_ib->sib_flowinfo; 1416 ib->sib_addr = listen_ib->sib_addr; 1417 ib->sib_sid = listen_ib->sib_sid; 1418 ib->sib_scope_id = listen_ib->sib_scope_id; 1419 } 1420 ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); 1421 } 1422 if (dst_addr) { 1423 ib = (struct sockaddr_ib *)dst_addr; 1424 ib->sib_family = AF_IB; 1425 if (path) { 1426 ib->sib_pkey = path->pkey; 1427 ib->sib_flowinfo = path->flow_label; 1428 memcpy(&ib->sib_addr, &path->dgid, 16); 1429 } 1430 } 1431 } 1432 1433 static void cma_save_ip4_info(struct sockaddr_in *src_addr, 1434 struct sockaddr_in *dst_addr, 1435 struct cma_hdr *hdr, 1436 __be16 local_port) 1437 { 1438 if (src_addr) { 1439 *src_addr = (struct sockaddr_in) { 1440 .sin_family = AF_INET, 1441 .sin_addr.s_addr = hdr->dst_addr.ip4.addr, 1442 .sin_port = local_port, 1443 }; 1444 } 1445 1446 if (dst_addr) { 1447 *dst_addr = (struct sockaddr_in) { 1448 .sin_family = AF_INET, 1449 .sin_addr.s_addr = hdr->src_addr.ip4.addr, 1450 .sin_port = hdr->port, 1451 }; 1452 } 1453 } 1454 1455 static void cma_save_ip6_info(struct sockaddr_in6 *src_addr, 1456 struct sockaddr_in6 *dst_addr, 1457 struct cma_hdr *hdr, 1458 __be16 local_port) 1459 { 1460 if (src_addr) { 1461 *src_addr = (struct sockaddr_in6) { 1462 .sin6_family = AF_INET6, 1463 .sin6_addr = hdr->dst_addr.ip6, 1464 .sin6_port = local_port, 1465 }; 1466 } 1467 1468 if (dst_addr) { 1469 *dst_addr = (struct sockaddr_in6) { 1470 .sin6_family = AF_INET6, 1471 .sin6_addr = hdr->src_addr.ip6, 1472 .sin6_port = hdr->port, 1473 }; 1474 } 1475 } 1476 1477 static u16 cma_port_from_service_id(__be64 service_id) 1478 { 1479 return (u16)be64_to_cpu(service_id); 1480 } 1481 1482 static int cma_save_ip_info(struct sockaddr *src_addr, 1483 struct sockaddr *dst_addr, 1484 const struct ib_cm_event *ib_event, 1485 __be64 service_id) 1486 { 1487 struct cma_hdr *hdr; 1488 __be16 port; 1489 1490 hdr = ib_event->private_data; 1491 if (hdr->cma_version != CMA_VERSION) 1492 return -EINVAL; 1493 1494 port = htons(cma_port_from_service_id(service_id)); 1495 1496 switch (cma_get_ip_ver(hdr)) { 1497 case 4: 1498 cma_save_ip4_info((struct sockaddr_in *)src_addr, 1499 (struct sockaddr_in *)dst_addr, hdr, port); 1500 break; 1501 case 6: 1502 cma_save_ip6_info((struct sockaddr_in6 *)src_addr, 1503 (struct sockaddr_in6 *)dst_addr, hdr, port); 1504 break; 1505 default: 1506 return -EAFNOSUPPORT; 1507 } 1508 1509 return 0; 1510 } 1511 1512 static int cma_save_net_info(struct sockaddr *src_addr, 1513 struct sockaddr *dst_addr, 1514 const struct rdma_cm_id *listen_id, 1515 const struct ib_cm_event *ib_event, 1516 sa_family_t sa_family, __be64 service_id) 1517 { 1518 if (sa_family == AF_IB) { 1519 if (ib_event->event == IB_CM_REQ_RECEIVED) 1520 cma_save_ib_info(src_addr, dst_addr, listen_id, 1521 ib_event->param.req_rcvd.primary_path); 1522 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1523 cma_save_ib_info(src_addr, dst_addr, listen_id, NULL); 1524 return 0; 1525 } 1526 1527 return cma_save_ip_info(src_addr, dst_addr, ib_event, service_id); 1528 } 1529 1530 static int cma_save_req_info(const struct ib_cm_event *ib_event, 1531 struct cma_req_info *req) 1532 { 1533 const struct ib_cm_req_event_param *req_param = 1534 &ib_event->param.req_rcvd; 1535 const struct ib_cm_sidr_req_event_param *sidr_param = 1536 &ib_event->param.sidr_req_rcvd; 1537 1538 switch (ib_event->event) { 1539 case IB_CM_REQ_RECEIVED: 1540 req->device = req_param->listen_id->device; 1541 req->port = req_param->port; 1542 memcpy(&req->local_gid, &req_param->primary_path->sgid, 1543 sizeof(req->local_gid)); 1544 req->has_gid = true; 1545 req->service_id = req_param->primary_path->service_id; 1546 req->pkey = be16_to_cpu(req_param->primary_path->pkey); 1547 if (req->pkey != req_param->bth_pkey) 1548 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and primary path P_Key (0x%x)\n" 1549 "RDMA CMA: in the future this may cause the request to be dropped\n", 1550 req_param->bth_pkey, req->pkey); 1551 break; 1552 case IB_CM_SIDR_REQ_RECEIVED: 1553 req->device = sidr_param->listen_id->device; 1554 req->port = sidr_param->port; 1555 req->has_gid = false; 1556 req->service_id = sidr_param->service_id; 1557 req->pkey = sidr_param->pkey; 1558 if (req->pkey != sidr_param->bth_pkey) 1559 pr_warn_ratelimited("RDMA CMA: got different BTH P_Key (0x%x) and SIDR request payload P_Key (0x%x)\n" 1560 "RDMA CMA: in the future this may cause the request to be dropped\n", 1561 sidr_param->bth_pkey, req->pkey); 1562 break; 1563 default: 1564 return -EINVAL; 1565 } 1566 1567 return 0; 1568 } 1569 1570 static bool validate_ipv4_net_dev(struct net_device *net_dev, 1571 const struct sockaddr_in *dst_addr, 1572 const struct sockaddr_in *src_addr) 1573 { 1574 __be32 daddr = dst_addr->sin_addr.s_addr, 1575 saddr = src_addr->sin_addr.s_addr; 1576 struct fib_result res; 1577 struct flowi4 fl4; 1578 int err; 1579 bool ret; 1580 1581 if (ipv4_is_multicast(saddr) || ipv4_is_lbcast(saddr) || 1582 ipv4_is_lbcast(daddr) || ipv4_is_zeronet(saddr) || 1583 ipv4_is_zeronet(daddr) || ipv4_is_loopback(daddr) || 1584 ipv4_is_loopback(saddr)) 1585 return false; 1586 1587 memset(&fl4, 0, sizeof(fl4)); 1588 fl4.flowi4_oif = net_dev->ifindex; 1589 fl4.daddr = daddr; 1590 fl4.saddr = saddr; 1591 1592 rcu_read_lock(); 1593 err = fib_lookup(dev_net(net_dev), &fl4, &res, 0); 1594 ret = err == 0 && FIB_RES_DEV(res) == net_dev; 1595 rcu_read_unlock(); 1596 1597 return ret; 1598 } 1599 1600 static bool validate_ipv6_net_dev(struct net_device *net_dev, 1601 const struct sockaddr_in6 *dst_addr, 1602 const struct sockaddr_in6 *src_addr) 1603 { 1604 #if IS_ENABLED(CONFIG_IPV6) 1605 const int strict = ipv6_addr_type(&dst_addr->sin6_addr) & 1606 IPV6_ADDR_LINKLOCAL; 1607 struct rt6_info *rt = rt6_lookup(dev_net(net_dev), &dst_addr->sin6_addr, 1608 &src_addr->sin6_addr, net_dev->ifindex, 1609 NULL, strict); 1610 bool ret; 1611 1612 if (!rt) 1613 return false; 1614 1615 ret = rt->rt6i_idev->dev == net_dev; 1616 ip6_rt_put(rt); 1617 1618 return ret; 1619 #else 1620 return false; 1621 #endif 1622 } 1623 1624 static bool validate_net_dev(struct net_device *net_dev, 1625 const struct sockaddr *daddr, 1626 const struct sockaddr *saddr) 1627 { 1628 const struct sockaddr_in *daddr4 = (const struct sockaddr_in *)daddr; 1629 const struct sockaddr_in *saddr4 = (const struct sockaddr_in *)saddr; 1630 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1631 const struct sockaddr_in6 *saddr6 = (const struct sockaddr_in6 *)saddr; 1632 1633 switch (daddr->sa_family) { 1634 case AF_INET: 1635 return saddr->sa_family == AF_INET && 1636 validate_ipv4_net_dev(net_dev, daddr4, saddr4); 1637 1638 case AF_INET6: 1639 return saddr->sa_family == AF_INET6 && 1640 validate_ipv6_net_dev(net_dev, daddr6, saddr6); 1641 1642 default: 1643 return false; 1644 } 1645 } 1646 1647 static struct net_device * 1648 roce_get_net_dev_by_cm_event(const struct ib_cm_event *ib_event) 1649 { 1650 const struct ib_gid_attr *sgid_attr = NULL; 1651 struct net_device *ndev; 1652 1653 if (ib_event->event == IB_CM_REQ_RECEIVED) 1654 sgid_attr = ib_event->param.req_rcvd.ppath_sgid_attr; 1655 else if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) 1656 sgid_attr = ib_event->param.sidr_req_rcvd.sgid_attr; 1657 1658 if (!sgid_attr) 1659 return NULL; 1660 1661 rcu_read_lock(); 1662 ndev = rdma_read_gid_attr_ndev_rcu(sgid_attr); 1663 if (IS_ERR(ndev)) 1664 ndev = NULL; 1665 else 1666 dev_hold(ndev); 1667 rcu_read_unlock(); 1668 return ndev; 1669 } 1670 1671 static struct net_device *cma_get_net_dev(const struct ib_cm_event *ib_event, 1672 struct cma_req_info *req) 1673 { 1674 struct sockaddr *listen_addr = 1675 (struct sockaddr *)&req->listen_addr_storage; 1676 struct sockaddr *src_addr = (struct sockaddr *)&req->src_addr_storage; 1677 struct net_device *net_dev; 1678 const union ib_gid *gid = req->has_gid ? &req->local_gid : NULL; 1679 int err; 1680 1681 err = cma_save_ip_info(listen_addr, src_addr, ib_event, 1682 req->service_id); 1683 if (err) 1684 return ERR_PTR(err); 1685 1686 if (rdma_protocol_roce(req->device, req->port)) 1687 net_dev = roce_get_net_dev_by_cm_event(ib_event); 1688 else 1689 net_dev = ib_get_net_dev_by_params(req->device, req->port, 1690 req->pkey, 1691 gid, listen_addr); 1692 if (!net_dev) 1693 return ERR_PTR(-ENODEV); 1694 1695 return net_dev; 1696 } 1697 1698 static enum rdma_ucm_port_space rdma_ps_from_service_id(__be64 service_id) 1699 { 1700 return (be64_to_cpu(service_id) >> 16) & 0xffff; 1701 } 1702 1703 static bool cma_match_private_data(struct rdma_id_private *id_priv, 1704 const struct cma_hdr *hdr) 1705 { 1706 struct sockaddr *addr = cma_src_addr(id_priv); 1707 __be32 ip4_addr; 1708 struct in6_addr ip6_addr; 1709 1710 if (cma_any_addr(addr) && !id_priv->afonly) 1711 return true; 1712 1713 switch (addr->sa_family) { 1714 case AF_INET: 1715 ip4_addr = ((struct sockaddr_in *)addr)->sin_addr.s_addr; 1716 if (cma_get_ip_ver(hdr) != 4) 1717 return false; 1718 if (!cma_any_addr(addr) && 1719 hdr->dst_addr.ip4.addr != ip4_addr) 1720 return false; 1721 break; 1722 case AF_INET6: 1723 ip6_addr = ((struct sockaddr_in6 *)addr)->sin6_addr; 1724 if (cma_get_ip_ver(hdr) != 6) 1725 return false; 1726 if (!cma_any_addr(addr) && 1727 memcmp(&hdr->dst_addr.ip6, &ip6_addr, sizeof(ip6_addr))) 1728 return false; 1729 break; 1730 case AF_IB: 1731 return true; 1732 default: 1733 return false; 1734 } 1735 1736 return true; 1737 } 1738 1739 static bool cma_protocol_roce(const struct rdma_cm_id *id) 1740 { 1741 struct ib_device *device = id->device; 1742 const u32 port_num = id->port_num ?: rdma_start_port(device); 1743 1744 return rdma_protocol_roce(device, port_num); 1745 } 1746 1747 static bool cma_is_req_ipv6_ll(const struct cma_req_info *req) 1748 { 1749 const struct sockaddr *daddr = 1750 (const struct sockaddr *)&req->listen_addr_storage; 1751 const struct sockaddr_in6 *daddr6 = (const struct sockaddr_in6 *)daddr; 1752 1753 /* Returns true if the req is for IPv6 link local */ 1754 return (daddr->sa_family == AF_INET6 && 1755 (ipv6_addr_type(&daddr6->sin6_addr) & IPV6_ADDR_LINKLOCAL)); 1756 } 1757 1758 static bool cma_match_net_dev(const struct rdma_cm_id *id, 1759 const struct net_device *net_dev, 1760 const struct cma_req_info *req) 1761 { 1762 const struct rdma_addr *addr = &id->route.addr; 1763 1764 if (!net_dev) 1765 /* This request is an AF_IB request */ 1766 return (!id->port_num || id->port_num == req->port) && 1767 (addr->src_addr.ss_family == AF_IB); 1768 1769 /* 1770 * If the request is not for IPv6 link local, allow matching 1771 * request to any netdevice of the one or multiport rdma device. 1772 */ 1773 if (!cma_is_req_ipv6_ll(req)) 1774 return true; 1775 /* 1776 * Net namespaces must match, and if the listner is listening 1777 * on a specific netdevice than netdevice must match as well. 1778 */ 1779 if (net_eq(dev_net(net_dev), addr->dev_addr.net) && 1780 (!!addr->dev_addr.bound_dev_if == 1781 (addr->dev_addr.bound_dev_if == net_dev->ifindex))) 1782 return true; 1783 else 1784 return false; 1785 } 1786 1787 static struct rdma_id_private *cma_find_listener( 1788 const struct rdma_bind_list *bind_list, 1789 const struct ib_cm_id *cm_id, 1790 const struct ib_cm_event *ib_event, 1791 const struct cma_req_info *req, 1792 const struct net_device *net_dev) 1793 { 1794 struct rdma_id_private *id_priv, *id_priv_dev; 1795 1796 lockdep_assert_held(&lock); 1797 1798 if (!bind_list) 1799 return ERR_PTR(-EINVAL); 1800 1801 hlist_for_each_entry(id_priv, &bind_list->owners, node) { 1802 if (cma_match_private_data(id_priv, ib_event->private_data)) { 1803 if (id_priv->id.device == cm_id->device && 1804 cma_match_net_dev(&id_priv->id, net_dev, req)) 1805 return id_priv; 1806 list_for_each_entry(id_priv_dev, 1807 &id_priv->listen_list, 1808 listen_item) { 1809 if (id_priv_dev->id.device == cm_id->device && 1810 cma_match_net_dev(&id_priv_dev->id, 1811 net_dev, req)) 1812 return id_priv_dev; 1813 } 1814 } 1815 } 1816 1817 return ERR_PTR(-EINVAL); 1818 } 1819 1820 static struct rdma_id_private * 1821 cma_ib_id_from_event(struct ib_cm_id *cm_id, 1822 const struct ib_cm_event *ib_event, 1823 struct cma_req_info *req, 1824 struct net_device **net_dev) 1825 { 1826 struct rdma_bind_list *bind_list; 1827 struct rdma_id_private *id_priv; 1828 int err; 1829 1830 err = cma_save_req_info(ib_event, req); 1831 if (err) 1832 return ERR_PTR(err); 1833 1834 *net_dev = cma_get_net_dev(ib_event, req); 1835 if (IS_ERR(*net_dev)) { 1836 if (PTR_ERR(*net_dev) == -EAFNOSUPPORT) { 1837 /* Assuming the protocol is AF_IB */ 1838 *net_dev = NULL; 1839 } else { 1840 return ERR_CAST(*net_dev); 1841 } 1842 } 1843 1844 mutex_lock(&lock); 1845 /* 1846 * Net namespace might be getting deleted while route lookup, 1847 * cm_id lookup is in progress. Therefore, perform netdevice 1848 * validation, cm_id lookup under rcu lock. 1849 * RCU lock along with netdevice state check, synchronizes with 1850 * netdevice migrating to different net namespace and also avoids 1851 * case where net namespace doesn't get deleted while lookup is in 1852 * progress. 1853 * If the device state is not IFF_UP, its properties such as ifindex 1854 * and nd_net cannot be trusted to remain valid without rcu lock. 1855 * net/core/dev.c change_net_namespace() ensures to synchronize with 1856 * ongoing operations on net device after device is closed using 1857 * synchronize_net(). 1858 */ 1859 rcu_read_lock(); 1860 if (*net_dev) { 1861 /* 1862 * If netdevice is down, it is likely that it is administratively 1863 * down or it might be migrating to different namespace. 1864 * In that case avoid further processing, as the net namespace 1865 * or ifindex may change. 1866 */ 1867 if (((*net_dev)->flags & IFF_UP) == 0) { 1868 id_priv = ERR_PTR(-EHOSTUNREACH); 1869 goto err; 1870 } 1871 1872 if (!validate_net_dev(*net_dev, 1873 (struct sockaddr *)&req->src_addr_storage, 1874 (struct sockaddr *)&req->listen_addr_storage)) { 1875 id_priv = ERR_PTR(-EHOSTUNREACH); 1876 goto err; 1877 } 1878 } 1879 1880 bind_list = cma_ps_find(*net_dev ? dev_net(*net_dev) : &init_net, 1881 rdma_ps_from_service_id(req->service_id), 1882 cma_port_from_service_id(req->service_id)); 1883 id_priv = cma_find_listener(bind_list, cm_id, ib_event, req, *net_dev); 1884 err: 1885 rcu_read_unlock(); 1886 mutex_unlock(&lock); 1887 if (IS_ERR(id_priv) && *net_dev) { 1888 dev_put(*net_dev); 1889 *net_dev = NULL; 1890 } 1891 return id_priv; 1892 } 1893 1894 static inline u8 cma_user_data_offset(struct rdma_id_private *id_priv) 1895 { 1896 return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); 1897 } 1898 1899 static void cma_cancel_route(struct rdma_id_private *id_priv) 1900 { 1901 if (rdma_cap_ib_sa(id_priv->id.device, id_priv->id.port_num)) { 1902 if (id_priv->query) 1903 ib_sa_cancel_query(id_priv->query_id, id_priv->query); 1904 } 1905 } 1906 1907 static void _cma_cancel_listens(struct rdma_id_private *id_priv) 1908 { 1909 struct rdma_id_private *dev_id_priv; 1910 1911 lockdep_assert_held(&lock); 1912 1913 /* 1914 * Remove from listen_any_list to prevent added devices from spawning 1915 * additional listen requests. 1916 */ 1917 list_del_init(&id_priv->listen_any_item); 1918 1919 while (!list_empty(&id_priv->listen_list)) { 1920 dev_id_priv = 1921 list_first_entry(&id_priv->listen_list, 1922 struct rdma_id_private, listen_item); 1923 /* sync with device removal to avoid duplicate destruction */ 1924 list_del_init(&dev_id_priv->device_item); 1925 list_del_init(&dev_id_priv->listen_item); 1926 mutex_unlock(&lock); 1927 1928 rdma_destroy_id(&dev_id_priv->id); 1929 mutex_lock(&lock); 1930 } 1931 } 1932 1933 static void cma_cancel_listens(struct rdma_id_private *id_priv) 1934 { 1935 mutex_lock(&lock); 1936 _cma_cancel_listens(id_priv); 1937 mutex_unlock(&lock); 1938 } 1939 1940 static void cma_cancel_operation(struct rdma_id_private *id_priv, 1941 enum rdma_cm_state state) 1942 { 1943 switch (state) { 1944 case RDMA_CM_ADDR_QUERY: 1945 /* 1946 * We can avoid doing the rdma_addr_cancel() based on state, 1947 * only RDMA_CM_ADDR_QUERY has a work that could still execute. 1948 * Notice that the addr_handler work could still be exiting 1949 * outside this state, however due to the interaction with the 1950 * handler_mutex the work is guaranteed not to touch id_priv 1951 * during exit. 1952 */ 1953 rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); 1954 break; 1955 case RDMA_CM_ROUTE_QUERY: 1956 cma_cancel_route(id_priv); 1957 break; 1958 case RDMA_CM_LISTEN: 1959 if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) 1960 cma_cancel_listens(id_priv); 1961 break; 1962 default: 1963 break; 1964 } 1965 } 1966 1967 static void cma_release_port(struct rdma_id_private *id_priv) 1968 { 1969 struct rdma_bind_list *bind_list = id_priv->bind_list; 1970 struct net *net = id_priv->id.route.addr.dev_addr.net; 1971 1972 if (!bind_list) 1973 return; 1974 1975 mutex_lock(&lock); 1976 hlist_del(&id_priv->node); 1977 if (hlist_empty(&bind_list->owners)) { 1978 cma_ps_remove(net, bind_list->ps, bind_list->port); 1979 kfree(bind_list); 1980 } 1981 mutex_unlock(&lock); 1982 } 1983 1984 static void destroy_mc(struct rdma_id_private *id_priv, 1985 struct cma_multicast *mc) 1986 { 1987 bool send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 1988 1989 if (rdma_cap_ib_mcast(id_priv->id.device, id_priv->id.port_num)) 1990 ib_sa_free_multicast(mc->sa_mc); 1991 1992 if (rdma_protocol_roce(id_priv->id.device, id_priv->id.port_num)) { 1993 struct rdma_dev_addr *dev_addr = 1994 &id_priv->id.route.addr.dev_addr; 1995 struct net_device *ndev = NULL; 1996 1997 if (dev_addr->bound_dev_if) 1998 ndev = dev_get_by_index(dev_addr->net, 1999 dev_addr->bound_dev_if); 2000 if (ndev && !send_only) { 2001 enum ib_gid_type gid_type; 2002 union ib_gid mgid; 2003 2004 gid_type = id_priv->cma_dev->default_gid_type 2005 [id_priv->id.port_num - 2006 rdma_start_port( 2007 id_priv->cma_dev->device)]; 2008 cma_iboe_set_mgid((struct sockaddr *)&mc->addr, &mgid, 2009 gid_type); 2010 cma_igmp_send(ndev, &mgid, false); 2011 } 2012 dev_put(ndev); 2013 2014 cancel_work_sync(&mc->iboe_join.work); 2015 } 2016 kfree(mc); 2017 } 2018 2019 static void cma_leave_mc_groups(struct rdma_id_private *id_priv) 2020 { 2021 struct cma_multicast *mc; 2022 2023 while (!list_empty(&id_priv->mc_list)) { 2024 mc = list_first_entry(&id_priv->mc_list, struct cma_multicast, 2025 list); 2026 list_del(&mc->list); 2027 destroy_mc(id_priv, mc); 2028 } 2029 } 2030 2031 static void _destroy_id(struct rdma_id_private *id_priv, 2032 enum rdma_cm_state state) 2033 { 2034 cma_cancel_operation(id_priv, state); 2035 2036 rdma_restrack_del(&id_priv->res); 2037 cma_remove_id_from_tree(id_priv); 2038 if (id_priv->cma_dev) { 2039 if (rdma_cap_ib_cm(id_priv->id.device, 1)) { 2040 if (id_priv->cm_id.ib) 2041 ib_destroy_cm_id(id_priv->cm_id.ib); 2042 } else if (rdma_cap_iw_cm(id_priv->id.device, 1)) { 2043 if (id_priv->cm_id.iw) 2044 iw_destroy_cm_id(id_priv->cm_id.iw); 2045 } 2046 cma_leave_mc_groups(id_priv); 2047 cma_release_dev(id_priv); 2048 } 2049 2050 cma_release_port(id_priv); 2051 cma_id_put(id_priv); 2052 wait_for_completion(&id_priv->comp); 2053 2054 if (id_priv->internal_id) 2055 cma_id_put(id_priv->id.context); 2056 2057 kfree(id_priv->id.route.path_rec); 2058 kfree(id_priv->id.route.path_rec_inbound); 2059 kfree(id_priv->id.route.path_rec_outbound); 2060 2061 put_net(id_priv->id.route.addr.dev_addr.net); 2062 kfree(id_priv); 2063 } 2064 2065 /* 2066 * destroy an ID from within the handler_mutex. This ensures that no other 2067 * handlers can start running concurrently. 2068 */ 2069 static void destroy_id_handler_unlock(struct rdma_id_private *id_priv) 2070 __releases(&idprv->handler_mutex) 2071 { 2072 enum rdma_cm_state state; 2073 unsigned long flags; 2074 2075 trace_cm_id_destroy(id_priv); 2076 2077 /* 2078 * Setting the state to destroyed under the handler mutex provides a 2079 * fence against calling handler callbacks. If this is invoked due to 2080 * the failure of a handler callback then it guarentees that no future 2081 * handlers will be called. 2082 */ 2083 lockdep_assert_held(&id_priv->handler_mutex); 2084 spin_lock_irqsave(&id_priv->lock, flags); 2085 state = id_priv->state; 2086 id_priv->state = RDMA_CM_DESTROYING; 2087 spin_unlock_irqrestore(&id_priv->lock, flags); 2088 mutex_unlock(&id_priv->handler_mutex); 2089 _destroy_id(id_priv, state); 2090 } 2091 2092 void rdma_destroy_id(struct rdma_cm_id *id) 2093 { 2094 struct rdma_id_private *id_priv = 2095 container_of(id, struct rdma_id_private, id); 2096 2097 mutex_lock(&id_priv->handler_mutex); 2098 destroy_id_handler_unlock(id_priv); 2099 } 2100 EXPORT_SYMBOL(rdma_destroy_id); 2101 2102 static int cma_rep_recv(struct rdma_id_private *id_priv) 2103 { 2104 int ret; 2105 2106 ret = cma_modify_qp_rtr(id_priv, NULL); 2107 if (ret) 2108 goto reject; 2109 2110 ret = cma_modify_qp_rts(id_priv, NULL); 2111 if (ret) 2112 goto reject; 2113 2114 trace_cm_send_rtu(id_priv); 2115 ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); 2116 if (ret) 2117 goto reject; 2118 2119 return 0; 2120 reject: 2121 pr_debug_ratelimited("RDMA CM: CONNECT_ERROR: failed to handle reply. status %d\n", ret); 2122 cma_modify_qp_err(id_priv); 2123 trace_cm_send_rej(id_priv); 2124 ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, 2125 NULL, 0, NULL, 0); 2126 return ret; 2127 } 2128 2129 static void cma_set_rep_event_data(struct rdma_cm_event *event, 2130 const struct ib_cm_rep_event_param *rep_data, 2131 void *private_data) 2132 { 2133 event->param.conn.private_data = private_data; 2134 event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; 2135 event->param.conn.responder_resources = rep_data->responder_resources; 2136 event->param.conn.initiator_depth = rep_data->initiator_depth; 2137 event->param.conn.flow_control = rep_data->flow_control; 2138 event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; 2139 event->param.conn.srq = rep_data->srq; 2140 event->param.conn.qp_num = rep_data->remote_qpn; 2141 2142 event->ece.vendor_id = rep_data->ece.vendor_id; 2143 event->ece.attr_mod = rep_data->ece.attr_mod; 2144 } 2145 2146 static int cma_cm_event_handler(struct rdma_id_private *id_priv, 2147 struct rdma_cm_event *event) 2148 { 2149 int ret; 2150 2151 lockdep_assert_held(&id_priv->handler_mutex); 2152 2153 trace_cm_event_handler(id_priv, event); 2154 ret = id_priv->id.event_handler(&id_priv->id, event); 2155 trace_cm_event_done(id_priv, event, ret); 2156 return ret; 2157 } 2158 2159 static int cma_ib_handler(struct ib_cm_id *cm_id, 2160 const struct ib_cm_event *ib_event) 2161 { 2162 struct rdma_id_private *id_priv = cm_id->context; 2163 struct rdma_cm_event event = {}; 2164 enum rdma_cm_state state; 2165 int ret; 2166 2167 mutex_lock(&id_priv->handler_mutex); 2168 state = READ_ONCE(id_priv->state); 2169 if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && 2170 state != RDMA_CM_CONNECT) || 2171 (ib_event->event == IB_CM_TIMEWAIT_EXIT && 2172 state != RDMA_CM_DISCONNECT)) 2173 goto out; 2174 2175 switch (ib_event->event) { 2176 case IB_CM_REQ_ERROR: 2177 case IB_CM_REP_ERROR: 2178 event.event = RDMA_CM_EVENT_UNREACHABLE; 2179 event.status = -ETIMEDOUT; 2180 break; 2181 case IB_CM_REP_RECEIVED: 2182 if (state == RDMA_CM_CONNECT && 2183 (id_priv->id.qp_type != IB_QPT_UD)) { 2184 trace_cm_send_mra(id_priv); 2185 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2186 } 2187 if (id_priv->id.qp) { 2188 event.status = cma_rep_recv(id_priv); 2189 event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : 2190 RDMA_CM_EVENT_ESTABLISHED; 2191 } else { 2192 event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; 2193 } 2194 cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, 2195 ib_event->private_data); 2196 break; 2197 case IB_CM_RTU_RECEIVED: 2198 case IB_CM_USER_ESTABLISHED: 2199 event.event = RDMA_CM_EVENT_ESTABLISHED; 2200 break; 2201 case IB_CM_DREQ_ERROR: 2202 event.status = -ETIMEDOUT; 2203 fallthrough; 2204 case IB_CM_DREQ_RECEIVED: 2205 case IB_CM_DREP_RECEIVED: 2206 if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, 2207 RDMA_CM_DISCONNECT)) 2208 goto out; 2209 event.event = RDMA_CM_EVENT_DISCONNECTED; 2210 break; 2211 case IB_CM_TIMEWAIT_EXIT: 2212 event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; 2213 break; 2214 case IB_CM_MRA_RECEIVED: 2215 /* ignore event */ 2216 goto out; 2217 case IB_CM_REJ_RECEIVED: 2218 pr_debug_ratelimited("RDMA CM: REJECTED: %s\n", rdma_reject_msg(&id_priv->id, 2219 ib_event->param.rej_rcvd.reason)); 2220 cma_modify_qp_err(id_priv); 2221 event.status = ib_event->param.rej_rcvd.reason; 2222 event.event = RDMA_CM_EVENT_REJECTED; 2223 event.param.conn.private_data = ib_event->private_data; 2224 event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; 2225 break; 2226 default: 2227 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 2228 ib_event->event); 2229 goto out; 2230 } 2231 2232 ret = cma_cm_event_handler(id_priv, &event); 2233 if (ret) { 2234 /* Destroy the CM ID by returning a non-zero value. */ 2235 id_priv->cm_id.ib = NULL; 2236 destroy_id_handler_unlock(id_priv); 2237 return ret; 2238 } 2239 out: 2240 mutex_unlock(&id_priv->handler_mutex); 2241 return 0; 2242 } 2243 2244 static struct rdma_id_private * 2245 cma_ib_new_conn_id(const struct rdma_cm_id *listen_id, 2246 const struct ib_cm_event *ib_event, 2247 struct net_device *net_dev) 2248 { 2249 struct rdma_id_private *listen_id_priv; 2250 struct rdma_id_private *id_priv; 2251 struct rdma_cm_id *id; 2252 struct rdma_route *rt; 2253 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2254 struct sa_path_rec *path = ib_event->param.req_rcvd.primary_path; 2255 const __be64 service_id = 2256 ib_event->param.req_rcvd.primary_path->service_id; 2257 int ret; 2258 2259 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2260 id_priv = __rdma_create_id(listen_id->route.addr.dev_addr.net, 2261 listen_id->event_handler, listen_id->context, 2262 listen_id->ps, 2263 ib_event->param.req_rcvd.qp_type, 2264 listen_id_priv); 2265 if (IS_ERR(id_priv)) 2266 return NULL; 2267 2268 id = &id_priv->id; 2269 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2270 (struct sockaddr *)&id->route.addr.dst_addr, 2271 listen_id, ib_event, ss_family, service_id)) 2272 goto err; 2273 2274 rt = &id->route; 2275 rt->num_pri_alt_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; 2276 rt->path_rec = kmalloc_array(rt->num_pri_alt_paths, 2277 sizeof(*rt->path_rec), GFP_KERNEL); 2278 if (!rt->path_rec) 2279 goto err; 2280 2281 rt->path_rec[0] = *path; 2282 if (rt->num_pri_alt_paths == 2) 2283 rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; 2284 2285 if (net_dev) { 2286 rdma_copy_src_l2_addr(&rt->addr.dev_addr, net_dev); 2287 } else { 2288 if (!cma_protocol_roce(listen_id) && 2289 cma_any_addr(cma_src_addr(id_priv))) { 2290 rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; 2291 rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); 2292 ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); 2293 } else if (!cma_any_addr(cma_src_addr(id_priv))) { 2294 ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); 2295 if (ret) 2296 goto err; 2297 } 2298 } 2299 rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); 2300 2301 id_priv->state = RDMA_CM_CONNECT; 2302 return id_priv; 2303 2304 err: 2305 rdma_destroy_id(id); 2306 return NULL; 2307 } 2308 2309 static struct rdma_id_private * 2310 cma_ib_new_udp_id(const struct rdma_cm_id *listen_id, 2311 const struct ib_cm_event *ib_event, 2312 struct net_device *net_dev) 2313 { 2314 const struct rdma_id_private *listen_id_priv; 2315 struct rdma_id_private *id_priv; 2316 struct rdma_cm_id *id; 2317 const sa_family_t ss_family = listen_id->route.addr.src_addr.ss_family; 2318 struct net *net = listen_id->route.addr.dev_addr.net; 2319 int ret; 2320 2321 listen_id_priv = container_of(listen_id, struct rdma_id_private, id); 2322 id_priv = __rdma_create_id(net, listen_id->event_handler, 2323 listen_id->context, listen_id->ps, IB_QPT_UD, 2324 listen_id_priv); 2325 if (IS_ERR(id_priv)) 2326 return NULL; 2327 2328 id = &id_priv->id; 2329 if (cma_save_net_info((struct sockaddr *)&id->route.addr.src_addr, 2330 (struct sockaddr *)&id->route.addr.dst_addr, 2331 listen_id, ib_event, ss_family, 2332 ib_event->param.sidr_req_rcvd.service_id)) 2333 goto err; 2334 2335 if (net_dev) { 2336 rdma_copy_src_l2_addr(&id->route.addr.dev_addr, net_dev); 2337 } else { 2338 if (!cma_any_addr(cma_src_addr(id_priv))) { 2339 ret = cma_translate_addr(cma_src_addr(id_priv), 2340 &id->route.addr.dev_addr); 2341 if (ret) 2342 goto err; 2343 } 2344 } 2345 2346 id_priv->state = RDMA_CM_CONNECT; 2347 return id_priv; 2348 err: 2349 rdma_destroy_id(id); 2350 return NULL; 2351 } 2352 2353 static void cma_set_req_event_data(struct rdma_cm_event *event, 2354 const struct ib_cm_req_event_param *req_data, 2355 void *private_data, int offset) 2356 { 2357 event->param.conn.private_data = private_data + offset; 2358 event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; 2359 event->param.conn.responder_resources = req_data->responder_resources; 2360 event->param.conn.initiator_depth = req_data->initiator_depth; 2361 event->param.conn.flow_control = req_data->flow_control; 2362 event->param.conn.retry_count = req_data->retry_count; 2363 event->param.conn.rnr_retry_count = req_data->rnr_retry_count; 2364 event->param.conn.srq = req_data->srq; 2365 event->param.conn.qp_num = req_data->remote_qpn; 2366 2367 event->ece.vendor_id = req_data->ece.vendor_id; 2368 event->ece.attr_mod = req_data->ece.attr_mod; 2369 } 2370 2371 static int cma_ib_check_req_qp_type(const struct rdma_cm_id *id, 2372 const struct ib_cm_event *ib_event) 2373 { 2374 return (((ib_event->event == IB_CM_REQ_RECEIVED) && 2375 (ib_event->param.req_rcvd.qp_type == id->qp_type)) || 2376 ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && 2377 (id->qp_type == IB_QPT_UD)) || 2378 (!id->qp_type)); 2379 } 2380 2381 static int cma_ib_req_handler(struct ib_cm_id *cm_id, 2382 const struct ib_cm_event *ib_event) 2383 { 2384 struct rdma_id_private *listen_id, *conn_id = NULL; 2385 struct rdma_cm_event event = {}; 2386 struct cma_req_info req = {}; 2387 struct net_device *net_dev; 2388 u8 offset; 2389 int ret; 2390 2391 listen_id = cma_ib_id_from_event(cm_id, ib_event, &req, &net_dev); 2392 if (IS_ERR(listen_id)) 2393 return PTR_ERR(listen_id); 2394 2395 trace_cm_req_handler(listen_id, ib_event->event); 2396 if (!cma_ib_check_req_qp_type(&listen_id->id, ib_event)) { 2397 ret = -EINVAL; 2398 goto net_dev_put; 2399 } 2400 2401 mutex_lock(&listen_id->handler_mutex); 2402 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) { 2403 ret = -ECONNABORTED; 2404 goto err_unlock; 2405 } 2406 2407 offset = cma_user_data_offset(listen_id); 2408 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2409 if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { 2410 conn_id = cma_ib_new_udp_id(&listen_id->id, ib_event, net_dev); 2411 event.param.ud.private_data = ib_event->private_data + offset; 2412 event.param.ud.private_data_len = 2413 IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; 2414 } else { 2415 conn_id = cma_ib_new_conn_id(&listen_id->id, ib_event, net_dev); 2416 cma_set_req_event_data(&event, &ib_event->param.req_rcvd, 2417 ib_event->private_data, offset); 2418 } 2419 if (!conn_id) { 2420 ret = -ENOMEM; 2421 goto err_unlock; 2422 } 2423 2424 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2425 ret = cma_ib_acquire_dev(conn_id, listen_id, &req); 2426 if (ret) { 2427 destroy_id_handler_unlock(conn_id); 2428 goto err_unlock; 2429 } 2430 2431 conn_id->cm_id.ib = cm_id; 2432 cm_id->context = conn_id; 2433 cm_id->cm_handler = cma_ib_handler; 2434 2435 ret = cma_cm_event_handler(conn_id, &event); 2436 if (ret) { 2437 /* Destroy the CM ID by returning a non-zero value. */ 2438 conn_id->cm_id.ib = NULL; 2439 mutex_unlock(&listen_id->handler_mutex); 2440 destroy_id_handler_unlock(conn_id); 2441 goto net_dev_put; 2442 } 2443 2444 if (READ_ONCE(conn_id->state) == RDMA_CM_CONNECT && 2445 conn_id->id.qp_type != IB_QPT_UD) { 2446 trace_cm_send_mra(cm_id->context); 2447 ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); 2448 } 2449 mutex_unlock(&conn_id->handler_mutex); 2450 2451 err_unlock: 2452 mutex_unlock(&listen_id->handler_mutex); 2453 2454 net_dev_put: 2455 dev_put(net_dev); 2456 2457 return ret; 2458 } 2459 2460 __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) 2461 { 2462 if (addr->sa_family == AF_IB) 2463 return ((struct sockaddr_ib *) addr)->sib_sid; 2464 2465 return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); 2466 } 2467 EXPORT_SYMBOL(rdma_get_service_id); 2468 2469 void rdma_read_gids(struct rdma_cm_id *cm_id, union ib_gid *sgid, 2470 union ib_gid *dgid) 2471 { 2472 struct rdma_addr *addr = &cm_id->route.addr; 2473 2474 if (!cm_id->device) { 2475 if (sgid) 2476 memset(sgid, 0, sizeof(*sgid)); 2477 if (dgid) 2478 memset(dgid, 0, sizeof(*dgid)); 2479 return; 2480 } 2481 2482 if (rdma_protocol_roce(cm_id->device, cm_id->port_num)) { 2483 if (sgid) 2484 rdma_ip2gid((struct sockaddr *)&addr->src_addr, sgid); 2485 if (dgid) 2486 rdma_ip2gid((struct sockaddr *)&addr->dst_addr, dgid); 2487 } else { 2488 if (sgid) 2489 rdma_addr_get_sgid(&addr->dev_addr, sgid); 2490 if (dgid) 2491 rdma_addr_get_dgid(&addr->dev_addr, dgid); 2492 } 2493 } 2494 EXPORT_SYMBOL(rdma_read_gids); 2495 2496 static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) 2497 { 2498 struct rdma_id_private *id_priv = iw_id->context; 2499 struct rdma_cm_event event = {}; 2500 int ret = 0; 2501 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2502 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2503 2504 mutex_lock(&id_priv->handler_mutex); 2505 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 2506 goto out; 2507 2508 switch (iw_event->event) { 2509 case IW_CM_EVENT_CLOSE: 2510 event.event = RDMA_CM_EVENT_DISCONNECTED; 2511 break; 2512 case IW_CM_EVENT_CONNECT_REPLY: 2513 memcpy(cma_src_addr(id_priv), laddr, 2514 rdma_addr_size(laddr)); 2515 memcpy(cma_dst_addr(id_priv), raddr, 2516 rdma_addr_size(raddr)); 2517 switch (iw_event->status) { 2518 case 0: 2519 event.event = RDMA_CM_EVENT_ESTABLISHED; 2520 event.param.conn.initiator_depth = iw_event->ird; 2521 event.param.conn.responder_resources = iw_event->ord; 2522 break; 2523 case -ECONNRESET: 2524 case -ECONNREFUSED: 2525 event.event = RDMA_CM_EVENT_REJECTED; 2526 break; 2527 case -ETIMEDOUT: 2528 event.event = RDMA_CM_EVENT_UNREACHABLE; 2529 break; 2530 default: 2531 event.event = RDMA_CM_EVENT_CONNECT_ERROR; 2532 break; 2533 } 2534 break; 2535 case IW_CM_EVENT_ESTABLISHED: 2536 event.event = RDMA_CM_EVENT_ESTABLISHED; 2537 event.param.conn.initiator_depth = iw_event->ird; 2538 event.param.conn.responder_resources = iw_event->ord; 2539 break; 2540 default: 2541 goto out; 2542 } 2543 2544 event.status = iw_event->status; 2545 event.param.conn.private_data = iw_event->private_data; 2546 event.param.conn.private_data_len = iw_event->private_data_len; 2547 ret = cma_cm_event_handler(id_priv, &event); 2548 if (ret) { 2549 /* Destroy the CM ID by returning a non-zero value. */ 2550 id_priv->cm_id.iw = NULL; 2551 destroy_id_handler_unlock(id_priv); 2552 return ret; 2553 } 2554 2555 out: 2556 mutex_unlock(&id_priv->handler_mutex); 2557 return ret; 2558 } 2559 2560 static int iw_conn_req_handler(struct iw_cm_id *cm_id, 2561 struct iw_cm_event *iw_event) 2562 { 2563 struct rdma_id_private *listen_id, *conn_id; 2564 struct rdma_cm_event event = {}; 2565 int ret = -ECONNABORTED; 2566 struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; 2567 struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; 2568 2569 event.event = RDMA_CM_EVENT_CONNECT_REQUEST; 2570 event.param.conn.private_data = iw_event->private_data; 2571 event.param.conn.private_data_len = iw_event->private_data_len; 2572 event.param.conn.initiator_depth = iw_event->ird; 2573 event.param.conn.responder_resources = iw_event->ord; 2574 2575 listen_id = cm_id->context; 2576 2577 mutex_lock(&listen_id->handler_mutex); 2578 if (READ_ONCE(listen_id->state) != RDMA_CM_LISTEN) 2579 goto out; 2580 2581 /* Create a new RDMA id for the new IW CM ID */ 2582 conn_id = __rdma_create_id(listen_id->id.route.addr.dev_addr.net, 2583 listen_id->id.event_handler, 2584 listen_id->id.context, RDMA_PS_TCP, 2585 IB_QPT_RC, listen_id); 2586 if (IS_ERR(conn_id)) { 2587 ret = -ENOMEM; 2588 goto out; 2589 } 2590 mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); 2591 conn_id->state = RDMA_CM_CONNECT; 2592 2593 ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); 2594 if (ret) { 2595 mutex_unlock(&listen_id->handler_mutex); 2596 destroy_id_handler_unlock(conn_id); 2597 return ret; 2598 } 2599 2600 ret = cma_iw_acquire_dev(conn_id, listen_id); 2601 if (ret) { 2602 mutex_unlock(&listen_id->handler_mutex); 2603 destroy_id_handler_unlock(conn_id); 2604 return ret; 2605 } 2606 2607 conn_id->cm_id.iw = cm_id; 2608 cm_id->context = conn_id; 2609 cm_id->cm_handler = cma_iw_handler; 2610 2611 memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); 2612 memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); 2613 2614 ret = cma_cm_event_handler(conn_id, &event); 2615 if (ret) { 2616 /* User wants to destroy the CM ID */ 2617 conn_id->cm_id.iw = NULL; 2618 mutex_unlock(&listen_id->handler_mutex); 2619 destroy_id_handler_unlock(conn_id); 2620 return ret; 2621 } 2622 2623 mutex_unlock(&conn_id->handler_mutex); 2624 2625 out: 2626 mutex_unlock(&listen_id->handler_mutex); 2627 return ret; 2628 } 2629 2630 static int cma_ib_listen(struct rdma_id_private *id_priv) 2631 { 2632 struct sockaddr *addr; 2633 struct ib_cm_id *id; 2634 __be64 svc_id; 2635 2636 addr = cma_src_addr(id_priv); 2637 svc_id = rdma_get_service_id(&id_priv->id, addr); 2638 id = ib_cm_insert_listen(id_priv->id.device, 2639 cma_ib_req_handler, svc_id); 2640 if (IS_ERR(id)) 2641 return PTR_ERR(id); 2642 id_priv->cm_id.ib = id; 2643 2644 return 0; 2645 } 2646 2647 static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) 2648 { 2649 int ret; 2650 struct iw_cm_id *id; 2651 2652 id = iw_create_cm_id(id_priv->id.device, 2653 iw_conn_req_handler, 2654 id_priv); 2655 if (IS_ERR(id)) 2656 return PTR_ERR(id); 2657 2658 mutex_lock(&id_priv->qp_mutex); 2659 id->tos = id_priv->tos; 2660 id->tos_set = id_priv->tos_set; 2661 mutex_unlock(&id_priv->qp_mutex); 2662 id->afonly = id_priv->afonly; 2663 id_priv->cm_id.iw = id; 2664 2665 memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), 2666 rdma_addr_size(cma_src_addr(id_priv))); 2667 2668 ret = iw_cm_listen(id_priv->cm_id.iw, backlog); 2669 2670 if (ret) { 2671 iw_destroy_cm_id(id_priv->cm_id.iw); 2672 id_priv->cm_id.iw = NULL; 2673 } 2674 2675 return ret; 2676 } 2677 2678 static int cma_listen_handler(struct rdma_cm_id *id, 2679 struct rdma_cm_event *event) 2680 { 2681 struct rdma_id_private *id_priv = id->context; 2682 2683 /* Listening IDs are always destroyed on removal */ 2684 if (event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) 2685 return -1; 2686 2687 id->context = id_priv->id.context; 2688 id->event_handler = id_priv->id.event_handler; 2689 trace_cm_event_handler(id_priv, event); 2690 return id_priv->id.event_handler(id, event); 2691 } 2692 2693 static int cma_listen_on_dev(struct rdma_id_private *id_priv, 2694 struct cma_device *cma_dev, 2695 struct rdma_id_private **to_destroy) 2696 { 2697 struct rdma_id_private *dev_id_priv; 2698 struct net *net = id_priv->id.route.addr.dev_addr.net; 2699 int ret; 2700 2701 lockdep_assert_held(&lock); 2702 2703 *to_destroy = NULL; 2704 if (cma_family(id_priv) == AF_IB && !rdma_cap_ib_cm(cma_dev->device, 1)) 2705 return 0; 2706 2707 dev_id_priv = 2708 __rdma_create_id(net, cma_listen_handler, id_priv, 2709 id_priv->id.ps, id_priv->id.qp_type, id_priv); 2710 if (IS_ERR(dev_id_priv)) 2711 return PTR_ERR(dev_id_priv); 2712 2713 dev_id_priv->state = RDMA_CM_ADDR_BOUND; 2714 memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), 2715 rdma_addr_size(cma_src_addr(id_priv))); 2716 2717 _cma_attach_to_dev(dev_id_priv, cma_dev); 2718 rdma_restrack_add(&dev_id_priv->res); 2719 cma_id_get(id_priv); 2720 dev_id_priv->internal_id = 1; 2721 dev_id_priv->afonly = id_priv->afonly; 2722 mutex_lock(&id_priv->qp_mutex); 2723 dev_id_priv->tos_set = id_priv->tos_set; 2724 dev_id_priv->tos = id_priv->tos; 2725 mutex_unlock(&id_priv->qp_mutex); 2726 2727 ret = rdma_listen(&dev_id_priv->id, id_priv->backlog); 2728 if (ret) 2729 goto err_listen; 2730 list_add_tail(&dev_id_priv->listen_item, &id_priv->listen_list); 2731 return 0; 2732 err_listen: 2733 /* Caller must destroy this after releasing lock */ 2734 *to_destroy = dev_id_priv; 2735 dev_warn(&cma_dev->device->dev, "RDMA CMA: %s, error %d\n", __func__, ret); 2736 return ret; 2737 } 2738 2739 static int cma_listen_on_all(struct rdma_id_private *id_priv) 2740 { 2741 struct rdma_id_private *to_destroy; 2742 struct cma_device *cma_dev; 2743 int ret; 2744 2745 mutex_lock(&lock); 2746 list_add_tail(&id_priv->listen_any_item, &listen_any_list); 2747 list_for_each_entry(cma_dev, &dev_list, list) { 2748 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 2749 if (ret) { 2750 /* Prevent racing with cma_process_remove() */ 2751 if (to_destroy) 2752 list_del_init(&to_destroy->device_item); 2753 goto err_listen; 2754 } 2755 } 2756 mutex_unlock(&lock); 2757 return 0; 2758 2759 err_listen: 2760 _cma_cancel_listens(id_priv); 2761 mutex_unlock(&lock); 2762 if (to_destroy) 2763 rdma_destroy_id(&to_destroy->id); 2764 return ret; 2765 } 2766 2767 void rdma_set_service_type(struct rdma_cm_id *id, int tos) 2768 { 2769 struct rdma_id_private *id_priv; 2770 2771 id_priv = container_of(id, struct rdma_id_private, id); 2772 mutex_lock(&id_priv->qp_mutex); 2773 id_priv->tos = (u8) tos; 2774 id_priv->tos_set = true; 2775 mutex_unlock(&id_priv->qp_mutex); 2776 } 2777 EXPORT_SYMBOL(rdma_set_service_type); 2778 2779 /** 2780 * rdma_set_ack_timeout() - Set the ack timeout of QP associated 2781 * with a connection identifier. 2782 * @id: Communication identifier to associated with service type. 2783 * @timeout: Ack timeout to set a QP, expressed as 4.096 * 2^(timeout) usec. 2784 * 2785 * This function should be called before rdma_connect() on active side, 2786 * and on passive side before rdma_accept(). It is applicable to primary 2787 * path only. The timeout will affect the local side of the QP, it is not 2788 * negotiated with remote side and zero disables the timer. In case it is 2789 * set before rdma_resolve_route, the value will also be used to determine 2790 * PacketLifeTime for RoCE. 2791 * 2792 * Return: 0 for success 2793 */ 2794 int rdma_set_ack_timeout(struct rdma_cm_id *id, u8 timeout) 2795 { 2796 struct rdma_id_private *id_priv; 2797 2798 if (id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_INI) 2799 return -EINVAL; 2800 2801 id_priv = container_of(id, struct rdma_id_private, id); 2802 mutex_lock(&id_priv->qp_mutex); 2803 id_priv->timeout = timeout; 2804 id_priv->timeout_set = true; 2805 mutex_unlock(&id_priv->qp_mutex); 2806 2807 return 0; 2808 } 2809 EXPORT_SYMBOL(rdma_set_ack_timeout); 2810 2811 /** 2812 * rdma_set_min_rnr_timer() - Set the minimum RNR Retry timer of the 2813 * QP associated with a connection identifier. 2814 * @id: Communication identifier to associated with service type. 2815 * @min_rnr_timer: 5-bit value encoded as Table 45: "Encoding for RNR NAK 2816 * Timer Field" in the IBTA specification. 2817 * 2818 * This function should be called before rdma_connect() on active 2819 * side, and on passive side before rdma_accept(). The timer value 2820 * will be associated with the local QP. When it receives a send it is 2821 * not read to handle, typically if the receive queue is empty, an RNR 2822 * Retry NAK is returned to the requester with the min_rnr_timer 2823 * encoded. The requester will then wait at least the time specified 2824 * in the NAK before retrying. The default is zero, which translates 2825 * to a minimum RNR Timer value of 655 ms. 2826 * 2827 * Return: 0 for success 2828 */ 2829 int rdma_set_min_rnr_timer(struct rdma_cm_id *id, u8 min_rnr_timer) 2830 { 2831 struct rdma_id_private *id_priv; 2832 2833 /* It is a five-bit value */ 2834 if (min_rnr_timer & 0xe0) 2835 return -EINVAL; 2836 2837 if (WARN_ON(id->qp_type != IB_QPT_RC && id->qp_type != IB_QPT_XRC_TGT)) 2838 return -EINVAL; 2839 2840 id_priv = container_of(id, struct rdma_id_private, id); 2841 mutex_lock(&id_priv->qp_mutex); 2842 id_priv->min_rnr_timer = min_rnr_timer; 2843 id_priv->min_rnr_timer_set = true; 2844 mutex_unlock(&id_priv->qp_mutex); 2845 2846 return 0; 2847 } 2848 EXPORT_SYMBOL(rdma_set_min_rnr_timer); 2849 2850 static int route_set_path_rec_inbound(struct cma_work *work, 2851 struct sa_path_rec *path_rec) 2852 { 2853 struct rdma_route *route = &work->id->id.route; 2854 2855 if (!route->path_rec_inbound) { 2856 route->path_rec_inbound = 2857 kzalloc(sizeof(*route->path_rec_inbound), GFP_KERNEL); 2858 if (!route->path_rec_inbound) 2859 return -ENOMEM; 2860 } 2861 2862 *route->path_rec_inbound = *path_rec; 2863 return 0; 2864 } 2865 2866 static int route_set_path_rec_outbound(struct cma_work *work, 2867 struct sa_path_rec *path_rec) 2868 { 2869 struct rdma_route *route = &work->id->id.route; 2870 2871 if (!route->path_rec_outbound) { 2872 route->path_rec_outbound = 2873 kzalloc(sizeof(*route->path_rec_outbound), GFP_KERNEL); 2874 if (!route->path_rec_outbound) 2875 return -ENOMEM; 2876 } 2877 2878 *route->path_rec_outbound = *path_rec; 2879 return 0; 2880 } 2881 2882 static void cma_query_handler(int status, struct sa_path_rec *path_rec, 2883 unsigned int num_prs, void *context) 2884 { 2885 struct cma_work *work = context; 2886 struct rdma_route *route; 2887 int i; 2888 2889 route = &work->id->id.route; 2890 2891 if (status) 2892 goto fail; 2893 2894 for (i = 0; i < num_prs; i++) { 2895 if (!path_rec[i].flags || (path_rec[i].flags & IB_PATH_GMP)) 2896 *route->path_rec = path_rec[i]; 2897 else if (path_rec[i].flags & IB_PATH_INBOUND) 2898 status = route_set_path_rec_inbound(work, &path_rec[i]); 2899 else if (path_rec[i].flags & IB_PATH_OUTBOUND) 2900 status = route_set_path_rec_outbound(work, 2901 &path_rec[i]); 2902 else 2903 status = -EINVAL; 2904 2905 if (status) 2906 goto fail; 2907 } 2908 2909 route->num_pri_alt_paths = 1; 2910 queue_work(cma_wq, &work->work); 2911 return; 2912 2913 fail: 2914 work->old_state = RDMA_CM_ROUTE_QUERY; 2915 work->new_state = RDMA_CM_ADDR_RESOLVED; 2916 work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; 2917 work->event.status = status; 2918 pr_debug_ratelimited("RDMA CM: ROUTE_ERROR: failed to query path. status %d\n", 2919 status); 2920 queue_work(cma_wq, &work->work); 2921 } 2922 2923 static int cma_query_ib_route(struct rdma_id_private *id_priv, 2924 unsigned long timeout_ms, struct cma_work *work) 2925 { 2926 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 2927 struct sa_path_rec path_rec; 2928 ib_sa_comp_mask comp_mask; 2929 struct sockaddr_in6 *sin6; 2930 struct sockaddr_ib *sib; 2931 2932 memset(&path_rec, 0, sizeof path_rec); 2933 2934 if (rdma_cap_opa_ah(id_priv->id.device, id_priv->id.port_num)) 2935 path_rec.rec_type = SA_PATH_REC_TYPE_OPA; 2936 else 2937 path_rec.rec_type = SA_PATH_REC_TYPE_IB; 2938 rdma_addr_get_sgid(dev_addr, &path_rec.sgid); 2939 rdma_addr_get_dgid(dev_addr, &path_rec.dgid); 2940 path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 2941 path_rec.numb_path = 1; 2942 path_rec.reversible = 1; 2943 path_rec.service_id = rdma_get_service_id(&id_priv->id, 2944 cma_dst_addr(id_priv)); 2945 2946 comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | 2947 IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | 2948 IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; 2949 2950 switch (cma_family(id_priv)) { 2951 case AF_INET: 2952 path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); 2953 comp_mask |= IB_SA_PATH_REC_QOS_CLASS; 2954 break; 2955 case AF_INET6: 2956 sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 2957 path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); 2958 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2959 break; 2960 case AF_IB: 2961 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 2962 path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); 2963 comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; 2964 break; 2965 } 2966 2967 id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, 2968 id_priv->id.port_num, &path_rec, 2969 comp_mask, timeout_ms, 2970 GFP_KERNEL, cma_query_handler, 2971 work, &id_priv->query); 2972 2973 return (id_priv->query_id < 0) ? id_priv->query_id : 0; 2974 } 2975 2976 static void cma_iboe_join_work_handler(struct work_struct *work) 2977 { 2978 struct cma_multicast *mc = 2979 container_of(work, struct cma_multicast, iboe_join.work); 2980 struct rdma_cm_event *event = &mc->iboe_join.event; 2981 struct rdma_id_private *id_priv = mc->id_priv; 2982 int ret; 2983 2984 mutex_lock(&id_priv->handler_mutex); 2985 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 2986 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 2987 goto out_unlock; 2988 2989 ret = cma_cm_event_handler(id_priv, event); 2990 WARN_ON(ret); 2991 2992 out_unlock: 2993 mutex_unlock(&id_priv->handler_mutex); 2994 if (event->event == RDMA_CM_EVENT_MULTICAST_JOIN) 2995 rdma_destroy_ah_attr(&event->param.ud.ah_attr); 2996 } 2997 2998 static void cma_work_handler(struct work_struct *_work) 2999 { 3000 struct cma_work *work = container_of(_work, struct cma_work, work); 3001 struct rdma_id_private *id_priv = work->id; 3002 3003 mutex_lock(&id_priv->handler_mutex); 3004 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 3005 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 3006 goto out_unlock; 3007 if (work->old_state != 0 || work->new_state != 0) { 3008 if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) 3009 goto out_unlock; 3010 } 3011 3012 if (cma_cm_event_handler(id_priv, &work->event)) { 3013 cma_id_put(id_priv); 3014 destroy_id_handler_unlock(id_priv); 3015 goto out_free; 3016 } 3017 3018 out_unlock: 3019 mutex_unlock(&id_priv->handler_mutex); 3020 cma_id_put(id_priv); 3021 out_free: 3022 if (work->event.event == RDMA_CM_EVENT_MULTICAST_JOIN) 3023 rdma_destroy_ah_attr(&work->event.param.ud.ah_attr); 3024 kfree(work); 3025 } 3026 3027 static void cma_init_resolve_route_work(struct cma_work *work, 3028 struct rdma_id_private *id_priv) 3029 { 3030 work->id = id_priv; 3031 INIT_WORK(&work->work, cma_work_handler); 3032 work->old_state = RDMA_CM_ROUTE_QUERY; 3033 work->new_state = RDMA_CM_ROUTE_RESOLVED; 3034 work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; 3035 } 3036 3037 static void enqueue_resolve_addr_work(struct cma_work *work, 3038 struct rdma_id_private *id_priv) 3039 { 3040 /* Balances with cma_id_put() in cma_work_handler */ 3041 cma_id_get(id_priv); 3042 3043 work->id = id_priv; 3044 INIT_WORK(&work->work, cma_work_handler); 3045 work->old_state = RDMA_CM_ADDR_QUERY; 3046 work->new_state = RDMA_CM_ADDR_RESOLVED; 3047 work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3048 3049 queue_work(cma_wq, &work->work); 3050 } 3051 3052 static int cma_resolve_ib_route(struct rdma_id_private *id_priv, 3053 unsigned long timeout_ms) 3054 { 3055 struct rdma_route *route = &id_priv->id.route; 3056 struct cma_work *work; 3057 int ret; 3058 3059 work = kzalloc(sizeof *work, GFP_KERNEL); 3060 if (!work) 3061 return -ENOMEM; 3062 3063 cma_init_resolve_route_work(work, id_priv); 3064 3065 if (!route->path_rec) 3066 route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); 3067 if (!route->path_rec) { 3068 ret = -ENOMEM; 3069 goto err1; 3070 } 3071 3072 ret = cma_query_ib_route(id_priv, timeout_ms, work); 3073 if (ret) 3074 goto err2; 3075 3076 return 0; 3077 err2: 3078 kfree(route->path_rec); 3079 route->path_rec = NULL; 3080 err1: 3081 kfree(work); 3082 return ret; 3083 } 3084 3085 static enum ib_gid_type cma_route_gid_type(enum rdma_network_type network_type, 3086 unsigned long supported_gids, 3087 enum ib_gid_type default_gid) 3088 { 3089 if ((network_type == RDMA_NETWORK_IPV4 || 3090 network_type == RDMA_NETWORK_IPV6) && 3091 test_bit(IB_GID_TYPE_ROCE_UDP_ENCAP, &supported_gids)) 3092 return IB_GID_TYPE_ROCE_UDP_ENCAP; 3093 3094 return default_gid; 3095 } 3096 3097 /* 3098 * cma_iboe_set_path_rec_l2_fields() is helper function which sets 3099 * path record type based on GID type. 3100 * It also sets up other L2 fields which includes destination mac address 3101 * netdev ifindex, of the path record. 3102 * It returns the netdev of the bound interface for this path record entry. 3103 */ 3104 static struct net_device * 3105 cma_iboe_set_path_rec_l2_fields(struct rdma_id_private *id_priv) 3106 { 3107 struct rdma_route *route = &id_priv->id.route; 3108 enum ib_gid_type gid_type = IB_GID_TYPE_ROCE; 3109 struct rdma_addr *addr = &route->addr; 3110 unsigned long supported_gids; 3111 struct net_device *ndev; 3112 3113 if (!addr->dev_addr.bound_dev_if) 3114 return NULL; 3115 3116 ndev = dev_get_by_index(addr->dev_addr.net, 3117 addr->dev_addr.bound_dev_if); 3118 if (!ndev) 3119 return NULL; 3120 3121 supported_gids = roce_gid_type_mask_support(id_priv->id.device, 3122 id_priv->id.port_num); 3123 gid_type = cma_route_gid_type(addr->dev_addr.network, 3124 supported_gids, 3125 id_priv->gid_type); 3126 /* Use the hint from IP Stack to select GID Type */ 3127 if (gid_type < ib_network_to_gid_type(addr->dev_addr.network)) 3128 gid_type = ib_network_to_gid_type(addr->dev_addr.network); 3129 route->path_rec->rec_type = sa_conv_gid_to_pathrec_type(gid_type); 3130 3131 route->path_rec->roce.route_resolved = true; 3132 sa_path_set_dmac(route->path_rec, addr->dev_addr.dst_dev_addr); 3133 return ndev; 3134 } 3135 3136 int rdma_set_ib_path(struct rdma_cm_id *id, 3137 struct sa_path_rec *path_rec) 3138 { 3139 struct rdma_id_private *id_priv; 3140 struct net_device *ndev; 3141 int ret; 3142 3143 id_priv = container_of(id, struct rdma_id_private, id); 3144 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3145 RDMA_CM_ROUTE_RESOLVED)) 3146 return -EINVAL; 3147 3148 id->route.path_rec = kmemdup(path_rec, sizeof(*path_rec), 3149 GFP_KERNEL); 3150 if (!id->route.path_rec) { 3151 ret = -ENOMEM; 3152 goto err; 3153 } 3154 3155 if (rdma_protocol_roce(id->device, id->port_num)) { 3156 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3157 if (!ndev) { 3158 ret = -ENODEV; 3159 goto err_free; 3160 } 3161 dev_put(ndev); 3162 } 3163 3164 id->route.num_pri_alt_paths = 1; 3165 return 0; 3166 3167 err_free: 3168 kfree(id->route.path_rec); 3169 id->route.path_rec = NULL; 3170 err: 3171 cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); 3172 return ret; 3173 } 3174 EXPORT_SYMBOL(rdma_set_ib_path); 3175 3176 static int cma_resolve_iw_route(struct rdma_id_private *id_priv) 3177 { 3178 struct cma_work *work; 3179 3180 work = kzalloc(sizeof *work, GFP_KERNEL); 3181 if (!work) 3182 return -ENOMEM; 3183 3184 cma_init_resolve_route_work(work, id_priv); 3185 queue_work(cma_wq, &work->work); 3186 return 0; 3187 } 3188 3189 static int get_vlan_ndev_tc(struct net_device *vlan_ndev, int prio) 3190 { 3191 struct net_device *dev; 3192 3193 dev = vlan_dev_real_dev(vlan_ndev); 3194 if (dev->num_tc) 3195 return netdev_get_prio_tc_map(dev, prio); 3196 3197 return (vlan_dev_get_egress_qos_mask(vlan_ndev, prio) & 3198 VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 3199 } 3200 3201 struct iboe_prio_tc_map { 3202 int input_prio; 3203 int output_tc; 3204 bool found; 3205 }; 3206 3207 static int get_lower_vlan_dev_tc(struct net_device *dev, 3208 struct netdev_nested_priv *priv) 3209 { 3210 struct iboe_prio_tc_map *map = (struct iboe_prio_tc_map *)priv->data; 3211 3212 if (is_vlan_dev(dev)) 3213 map->output_tc = get_vlan_ndev_tc(dev, map->input_prio); 3214 else if (dev->num_tc) 3215 map->output_tc = netdev_get_prio_tc_map(dev, map->input_prio); 3216 else 3217 map->output_tc = 0; 3218 /* We are interested only in first level VLAN device, so always 3219 * return 1 to stop iterating over next level devices. 3220 */ 3221 map->found = true; 3222 return 1; 3223 } 3224 3225 static int iboe_tos_to_sl(struct net_device *ndev, int tos) 3226 { 3227 struct iboe_prio_tc_map prio_tc_map = {}; 3228 int prio = rt_tos2priority(tos); 3229 struct netdev_nested_priv priv; 3230 3231 /* If VLAN device, get it directly from the VLAN netdev */ 3232 if (is_vlan_dev(ndev)) 3233 return get_vlan_ndev_tc(ndev, prio); 3234 3235 prio_tc_map.input_prio = prio; 3236 priv.data = (void *)&prio_tc_map; 3237 rcu_read_lock(); 3238 netdev_walk_all_lower_dev_rcu(ndev, 3239 get_lower_vlan_dev_tc, 3240 &priv); 3241 rcu_read_unlock(); 3242 /* If map is found from lower device, use it; Otherwise 3243 * continue with the current netdevice to get priority to tc map. 3244 */ 3245 if (prio_tc_map.found) 3246 return prio_tc_map.output_tc; 3247 else if (ndev->num_tc) 3248 return netdev_get_prio_tc_map(ndev, prio); 3249 else 3250 return 0; 3251 } 3252 3253 static __be32 cma_get_roce_udp_flow_label(struct rdma_id_private *id_priv) 3254 { 3255 struct sockaddr_in6 *addr6; 3256 u16 dport, sport; 3257 u32 hash, fl; 3258 3259 addr6 = (struct sockaddr_in6 *)cma_src_addr(id_priv); 3260 fl = be32_to_cpu(addr6->sin6_flowinfo) & IB_GRH_FLOWLABEL_MASK; 3261 if ((cma_family(id_priv) != AF_INET6) || !fl) { 3262 dport = be16_to_cpu(cma_port(cma_dst_addr(id_priv))); 3263 sport = be16_to_cpu(cma_port(cma_src_addr(id_priv))); 3264 hash = (u32)sport * 31 + dport; 3265 fl = hash & IB_GRH_FLOWLABEL_MASK; 3266 } 3267 3268 return cpu_to_be32(fl); 3269 } 3270 3271 static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) 3272 { 3273 struct rdma_route *route = &id_priv->id.route; 3274 struct rdma_addr *addr = &route->addr; 3275 struct cma_work *work; 3276 int ret; 3277 struct net_device *ndev; 3278 3279 u8 default_roce_tos = id_priv->cma_dev->default_roce_tos[id_priv->id.port_num - 3280 rdma_start_port(id_priv->cma_dev->device)]; 3281 u8 tos; 3282 3283 mutex_lock(&id_priv->qp_mutex); 3284 tos = id_priv->tos_set ? id_priv->tos : default_roce_tos; 3285 mutex_unlock(&id_priv->qp_mutex); 3286 3287 work = kzalloc(sizeof *work, GFP_KERNEL); 3288 if (!work) 3289 return -ENOMEM; 3290 3291 route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); 3292 if (!route->path_rec) { 3293 ret = -ENOMEM; 3294 goto err1; 3295 } 3296 3297 route->num_pri_alt_paths = 1; 3298 3299 ndev = cma_iboe_set_path_rec_l2_fields(id_priv); 3300 if (!ndev) { 3301 ret = -ENODEV; 3302 goto err2; 3303 } 3304 3305 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 3306 &route->path_rec->sgid); 3307 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.dst_addr, 3308 &route->path_rec->dgid); 3309 3310 if (((struct sockaddr *)&id_priv->id.route.addr.dst_addr)->sa_family != AF_IB) 3311 /* TODO: get the hoplimit from the inet/inet6 device */ 3312 route->path_rec->hop_limit = addr->dev_addr.hoplimit; 3313 else 3314 route->path_rec->hop_limit = 1; 3315 route->path_rec->reversible = 1; 3316 route->path_rec->pkey = cpu_to_be16(0xffff); 3317 route->path_rec->mtu_selector = IB_SA_EQ; 3318 route->path_rec->sl = iboe_tos_to_sl(ndev, tos); 3319 route->path_rec->traffic_class = tos; 3320 route->path_rec->mtu = iboe_get_mtu(ndev->mtu); 3321 route->path_rec->rate_selector = IB_SA_EQ; 3322 route->path_rec->rate = IB_RATE_PORT_CURRENT; 3323 dev_put(ndev); 3324 route->path_rec->packet_life_time_selector = IB_SA_EQ; 3325 /* In case ACK timeout is set, use this value to calculate 3326 * PacketLifeTime. As per IBTA 12.7.34, 3327 * local ACK timeout = (2 * PacketLifeTime + Local CA’s ACK delay). 3328 * Assuming a negligible local ACK delay, we can use 3329 * PacketLifeTime = local ACK timeout/2 3330 * as a reasonable approximation for RoCE networks. 3331 */ 3332 mutex_lock(&id_priv->qp_mutex); 3333 if (id_priv->timeout_set && id_priv->timeout) 3334 route->path_rec->packet_life_time = id_priv->timeout - 1; 3335 else 3336 route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; 3337 mutex_unlock(&id_priv->qp_mutex); 3338 3339 if (!route->path_rec->mtu) { 3340 ret = -EINVAL; 3341 goto err2; 3342 } 3343 3344 if (rdma_protocol_roce_udp_encap(id_priv->id.device, 3345 id_priv->id.port_num)) 3346 route->path_rec->flow_label = 3347 cma_get_roce_udp_flow_label(id_priv); 3348 3349 cma_init_resolve_route_work(work, id_priv); 3350 queue_work(cma_wq, &work->work); 3351 3352 return 0; 3353 3354 err2: 3355 kfree(route->path_rec); 3356 route->path_rec = NULL; 3357 route->num_pri_alt_paths = 0; 3358 err1: 3359 kfree(work); 3360 return ret; 3361 } 3362 3363 int rdma_resolve_route(struct rdma_cm_id *id, unsigned long timeout_ms) 3364 { 3365 struct rdma_id_private *id_priv; 3366 int ret; 3367 3368 if (!timeout_ms) 3369 return -EINVAL; 3370 3371 id_priv = container_of(id, struct rdma_id_private, id); 3372 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) 3373 return -EINVAL; 3374 3375 cma_id_get(id_priv); 3376 if (rdma_cap_ib_sa(id->device, id->port_num)) 3377 ret = cma_resolve_ib_route(id_priv, timeout_ms); 3378 else if (rdma_protocol_roce(id->device, id->port_num)) { 3379 ret = cma_resolve_iboe_route(id_priv); 3380 if (!ret) 3381 cma_add_id_to_tree(id_priv); 3382 } 3383 else if (rdma_protocol_iwarp(id->device, id->port_num)) 3384 ret = cma_resolve_iw_route(id_priv); 3385 else 3386 ret = -ENOSYS; 3387 3388 if (ret) 3389 goto err; 3390 3391 return 0; 3392 err: 3393 cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); 3394 cma_id_put(id_priv); 3395 return ret; 3396 } 3397 EXPORT_SYMBOL(rdma_resolve_route); 3398 3399 static void cma_set_loopback(struct sockaddr *addr) 3400 { 3401 switch (addr->sa_family) { 3402 case AF_INET: 3403 ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); 3404 break; 3405 case AF_INET6: 3406 ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 3407 0, 0, 0, htonl(1)); 3408 break; 3409 default: 3410 ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 3411 0, 0, 0, htonl(1)); 3412 break; 3413 } 3414 } 3415 3416 static int cma_bind_loopback(struct rdma_id_private *id_priv) 3417 { 3418 struct cma_device *cma_dev, *cur_dev; 3419 union ib_gid gid; 3420 enum ib_port_state port_state; 3421 unsigned int p; 3422 u16 pkey; 3423 int ret; 3424 3425 cma_dev = NULL; 3426 mutex_lock(&lock); 3427 list_for_each_entry(cur_dev, &dev_list, list) { 3428 if (cma_family(id_priv) == AF_IB && 3429 !rdma_cap_ib_cm(cur_dev->device, 1)) 3430 continue; 3431 3432 if (!cma_dev) 3433 cma_dev = cur_dev; 3434 3435 rdma_for_each_port (cur_dev->device, p) { 3436 if (!ib_get_cached_port_state(cur_dev->device, p, &port_state) && 3437 port_state == IB_PORT_ACTIVE) { 3438 cma_dev = cur_dev; 3439 goto port_found; 3440 } 3441 } 3442 } 3443 3444 if (!cma_dev) { 3445 ret = -ENODEV; 3446 goto out; 3447 } 3448 3449 p = 1; 3450 3451 port_found: 3452 ret = rdma_query_gid(cma_dev->device, p, 0, &gid); 3453 if (ret) 3454 goto out; 3455 3456 ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); 3457 if (ret) 3458 goto out; 3459 3460 id_priv->id.route.addr.dev_addr.dev_type = 3461 (rdma_protocol_ib(cma_dev->device, p)) ? 3462 ARPHRD_INFINIBAND : ARPHRD_ETHER; 3463 3464 rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3465 ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); 3466 id_priv->id.port_num = p; 3467 cma_attach_to_dev(id_priv, cma_dev); 3468 rdma_restrack_add(&id_priv->res); 3469 cma_set_loopback(cma_src_addr(id_priv)); 3470 out: 3471 mutex_unlock(&lock); 3472 return ret; 3473 } 3474 3475 static void addr_handler(int status, struct sockaddr *src_addr, 3476 struct rdma_dev_addr *dev_addr, void *context) 3477 { 3478 struct rdma_id_private *id_priv = context; 3479 struct rdma_cm_event event = {}; 3480 struct sockaddr *addr; 3481 struct sockaddr_storage old_addr; 3482 3483 mutex_lock(&id_priv->handler_mutex); 3484 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, 3485 RDMA_CM_ADDR_RESOLVED)) 3486 goto out; 3487 3488 /* 3489 * Store the previous src address, so that if we fail to acquire 3490 * matching rdma device, old address can be restored back, which helps 3491 * to cancel the cma listen operation correctly. 3492 */ 3493 addr = cma_src_addr(id_priv); 3494 memcpy(&old_addr, addr, rdma_addr_size(addr)); 3495 memcpy(addr, src_addr, rdma_addr_size(src_addr)); 3496 if (!status && !id_priv->cma_dev) { 3497 status = cma_acquire_dev_by_src_ip(id_priv); 3498 if (status) 3499 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to acquire device. status %d\n", 3500 status); 3501 rdma_restrack_add(&id_priv->res); 3502 } else if (status) { 3503 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to resolve IP. status %d\n", status); 3504 } 3505 3506 if (status) { 3507 memcpy(addr, &old_addr, 3508 rdma_addr_size((struct sockaddr *)&old_addr)); 3509 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, 3510 RDMA_CM_ADDR_BOUND)) 3511 goto out; 3512 event.event = RDMA_CM_EVENT_ADDR_ERROR; 3513 event.status = status; 3514 } else 3515 event.event = RDMA_CM_EVENT_ADDR_RESOLVED; 3516 3517 if (cma_cm_event_handler(id_priv, &event)) { 3518 destroy_id_handler_unlock(id_priv); 3519 return; 3520 } 3521 out: 3522 mutex_unlock(&id_priv->handler_mutex); 3523 } 3524 3525 static int cma_resolve_loopback(struct rdma_id_private *id_priv) 3526 { 3527 struct cma_work *work; 3528 union ib_gid gid; 3529 int ret; 3530 3531 work = kzalloc(sizeof *work, GFP_KERNEL); 3532 if (!work) 3533 return -ENOMEM; 3534 3535 if (!id_priv->cma_dev) { 3536 ret = cma_bind_loopback(id_priv); 3537 if (ret) 3538 goto err; 3539 } 3540 3541 rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); 3542 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); 3543 3544 enqueue_resolve_addr_work(work, id_priv); 3545 return 0; 3546 err: 3547 kfree(work); 3548 return ret; 3549 } 3550 3551 static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) 3552 { 3553 struct cma_work *work; 3554 int ret; 3555 3556 work = kzalloc(sizeof *work, GFP_KERNEL); 3557 if (!work) 3558 return -ENOMEM; 3559 3560 if (!id_priv->cma_dev) { 3561 ret = cma_resolve_ib_dev(id_priv); 3562 if (ret) 3563 goto err; 3564 } 3565 3566 rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) 3567 &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); 3568 3569 enqueue_resolve_addr_work(work, id_priv); 3570 return 0; 3571 err: 3572 kfree(work); 3573 return ret; 3574 } 3575 3576 int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) 3577 { 3578 struct rdma_id_private *id_priv; 3579 unsigned long flags; 3580 int ret; 3581 3582 id_priv = container_of(id, struct rdma_id_private, id); 3583 spin_lock_irqsave(&id_priv->lock, flags); 3584 if ((reuse && id_priv->state != RDMA_CM_LISTEN) || 3585 id_priv->state == RDMA_CM_IDLE) { 3586 id_priv->reuseaddr = reuse; 3587 ret = 0; 3588 } else { 3589 ret = -EINVAL; 3590 } 3591 spin_unlock_irqrestore(&id_priv->lock, flags); 3592 return ret; 3593 } 3594 EXPORT_SYMBOL(rdma_set_reuseaddr); 3595 3596 int rdma_set_afonly(struct rdma_cm_id *id, int afonly) 3597 { 3598 struct rdma_id_private *id_priv; 3599 unsigned long flags; 3600 int ret; 3601 3602 id_priv = container_of(id, struct rdma_id_private, id); 3603 spin_lock_irqsave(&id_priv->lock, flags); 3604 if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { 3605 id_priv->options |= (1 << CMA_OPTION_AFONLY); 3606 id_priv->afonly = afonly; 3607 ret = 0; 3608 } else { 3609 ret = -EINVAL; 3610 } 3611 spin_unlock_irqrestore(&id_priv->lock, flags); 3612 return ret; 3613 } 3614 EXPORT_SYMBOL(rdma_set_afonly); 3615 3616 static void cma_bind_port(struct rdma_bind_list *bind_list, 3617 struct rdma_id_private *id_priv) 3618 { 3619 struct sockaddr *addr; 3620 struct sockaddr_ib *sib; 3621 u64 sid, mask; 3622 __be16 port; 3623 3624 lockdep_assert_held(&lock); 3625 3626 addr = cma_src_addr(id_priv); 3627 port = htons(bind_list->port); 3628 3629 switch (addr->sa_family) { 3630 case AF_INET: 3631 ((struct sockaddr_in *) addr)->sin_port = port; 3632 break; 3633 case AF_INET6: 3634 ((struct sockaddr_in6 *) addr)->sin6_port = port; 3635 break; 3636 case AF_IB: 3637 sib = (struct sockaddr_ib *) addr; 3638 sid = be64_to_cpu(sib->sib_sid); 3639 mask = be64_to_cpu(sib->sib_sid_mask); 3640 sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); 3641 sib->sib_sid_mask = cpu_to_be64(~0ULL); 3642 break; 3643 } 3644 id_priv->bind_list = bind_list; 3645 hlist_add_head(&id_priv->node, &bind_list->owners); 3646 } 3647 3648 static int cma_alloc_port(enum rdma_ucm_port_space ps, 3649 struct rdma_id_private *id_priv, unsigned short snum) 3650 { 3651 struct rdma_bind_list *bind_list; 3652 int ret; 3653 3654 lockdep_assert_held(&lock); 3655 3656 bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); 3657 if (!bind_list) 3658 return -ENOMEM; 3659 3660 ret = cma_ps_alloc(id_priv->id.route.addr.dev_addr.net, ps, bind_list, 3661 snum); 3662 if (ret < 0) 3663 goto err; 3664 3665 bind_list->ps = ps; 3666 bind_list->port = snum; 3667 cma_bind_port(bind_list, id_priv); 3668 return 0; 3669 err: 3670 kfree(bind_list); 3671 return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; 3672 } 3673 3674 static int cma_port_is_unique(struct rdma_bind_list *bind_list, 3675 struct rdma_id_private *id_priv) 3676 { 3677 struct rdma_id_private *cur_id; 3678 struct sockaddr *daddr = cma_dst_addr(id_priv); 3679 struct sockaddr *saddr = cma_src_addr(id_priv); 3680 __be16 dport = cma_port(daddr); 3681 3682 lockdep_assert_held(&lock); 3683 3684 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3685 struct sockaddr *cur_daddr = cma_dst_addr(cur_id); 3686 struct sockaddr *cur_saddr = cma_src_addr(cur_id); 3687 __be16 cur_dport = cma_port(cur_daddr); 3688 3689 if (id_priv == cur_id) 3690 continue; 3691 3692 /* different dest port -> unique */ 3693 if (!cma_any_port(daddr) && 3694 !cma_any_port(cur_daddr) && 3695 (dport != cur_dport)) 3696 continue; 3697 3698 /* different src address -> unique */ 3699 if (!cma_any_addr(saddr) && 3700 !cma_any_addr(cur_saddr) && 3701 cma_addr_cmp(saddr, cur_saddr)) 3702 continue; 3703 3704 /* different dst address -> unique */ 3705 if (!cma_any_addr(daddr) && 3706 !cma_any_addr(cur_daddr) && 3707 cma_addr_cmp(daddr, cur_daddr)) 3708 continue; 3709 3710 return -EADDRNOTAVAIL; 3711 } 3712 return 0; 3713 } 3714 3715 static int cma_alloc_any_port(enum rdma_ucm_port_space ps, 3716 struct rdma_id_private *id_priv) 3717 { 3718 static unsigned int last_used_port; 3719 int low, high, remaining; 3720 unsigned int rover; 3721 struct net *net = id_priv->id.route.addr.dev_addr.net; 3722 3723 lockdep_assert_held(&lock); 3724 3725 inet_get_local_port_range(net, &low, &high); 3726 remaining = (high - low) + 1; 3727 rover = get_random_u32_inclusive(low, remaining + low - 1); 3728 retry: 3729 if (last_used_port != rover) { 3730 struct rdma_bind_list *bind_list; 3731 int ret; 3732 3733 bind_list = cma_ps_find(net, ps, (unsigned short)rover); 3734 3735 if (!bind_list) { 3736 ret = cma_alloc_port(ps, id_priv, rover); 3737 } else { 3738 ret = cma_port_is_unique(bind_list, id_priv); 3739 if (!ret) 3740 cma_bind_port(bind_list, id_priv); 3741 } 3742 /* 3743 * Remember previously used port number in order to avoid 3744 * re-using same port immediately after it is closed. 3745 */ 3746 if (!ret) 3747 last_used_port = rover; 3748 if (ret != -EADDRNOTAVAIL) 3749 return ret; 3750 } 3751 if (--remaining) { 3752 rover++; 3753 if ((rover < low) || (rover > high)) 3754 rover = low; 3755 goto retry; 3756 } 3757 return -EADDRNOTAVAIL; 3758 } 3759 3760 /* 3761 * Check that the requested port is available. This is called when trying to 3762 * bind to a specific port, or when trying to listen on a bound port. In 3763 * the latter case, the provided id_priv may already be on the bind_list, but 3764 * we still need to check that it's okay to start listening. 3765 */ 3766 static int cma_check_port(struct rdma_bind_list *bind_list, 3767 struct rdma_id_private *id_priv, uint8_t reuseaddr) 3768 { 3769 struct rdma_id_private *cur_id; 3770 struct sockaddr *addr, *cur_addr; 3771 3772 lockdep_assert_held(&lock); 3773 3774 addr = cma_src_addr(id_priv); 3775 hlist_for_each_entry(cur_id, &bind_list->owners, node) { 3776 if (id_priv == cur_id) 3777 continue; 3778 3779 if (reuseaddr && cur_id->reuseaddr) 3780 continue; 3781 3782 cur_addr = cma_src_addr(cur_id); 3783 if (id_priv->afonly && cur_id->afonly && 3784 (addr->sa_family != cur_addr->sa_family)) 3785 continue; 3786 3787 if (cma_any_addr(addr) || cma_any_addr(cur_addr)) 3788 return -EADDRNOTAVAIL; 3789 3790 if (!cma_addr_cmp(addr, cur_addr)) 3791 return -EADDRINUSE; 3792 } 3793 return 0; 3794 } 3795 3796 static int cma_use_port(enum rdma_ucm_port_space ps, 3797 struct rdma_id_private *id_priv) 3798 { 3799 struct rdma_bind_list *bind_list; 3800 unsigned short snum; 3801 int ret; 3802 3803 lockdep_assert_held(&lock); 3804 3805 snum = ntohs(cma_port(cma_src_addr(id_priv))); 3806 if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) 3807 return -EACCES; 3808 3809 bind_list = cma_ps_find(id_priv->id.route.addr.dev_addr.net, ps, snum); 3810 if (!bind_list) { 3811 ret = cma_alloc_port(ps, id_priv, snum); 3812 } else { 3813 ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); 3814 if (!ret) 3815 cma_bind_port(bind_list, id_priv); 3816 } 3817 return ret; 3818 } 3819 3820 static enum rdma_ucm_port_space 3821 cma_select_inet_ps(struct rdma_id_private *id_priv) 3822 { 3823 switch (id_priv->id.ps) { 3824 case RDMA_PS_TCP: 3825 case RDMA_PS_UDP: 3826 case RDMA_PS_IPOIB: 3827 case RDMA_PS_IB: 3828 return id_priv->id.ps; 3829 default: 3830 3831 return 0; 3832 } 3833 } 3834 3835 static enum rdma_ucm_port_space 3836 cma_select_ib_ps(struct rdma_id_private *id_priv) 3837 { 3838 enum rdma_ucm_port_space ps = 0; 3839 struct sockaddr_ib *sib; 3840 u64 sid_ps, mask, sid; 3841 3842 sib = (struct sockaddr_ib *) cma_src_addr(id_priv); 3843 mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; 3844 sid = be64_to_cpu(sib->sib_sid) & mask; 3845 3846 if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { 3847 sid_ps = RDMA_IB_IP_PS_IB; 3848 ps = RDMA_PS_IB; 3849 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && 3850 (sid == (RDMA_IB_IP_PS_TCP & mask))) { 3851 sid_ps = RDMA_IB_IP_PS_TCP; 3852 ps = RDMA_PS_TCP; 3853 } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && 3854 (sid == (RDMA_IB_IP_PS_UDP & mask))) { 3855 sid_ps = RDMA_IB_IP_PS_UDP; 3856 ps = RDMA_PS_UDP; 3857 } 3858 3859 if (ps) { 3860 sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); 3861 sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | 3862 be64_to_cpu(sib->sib_sid_mask)); 3863 } 3864 return ps; 3865 } 3866 3867 static int cma_get_port(struct rdma_id_private *id_priv) 3868 { 3869 enum rdma_ucm_port_space ps; 3870 int ret; 3871 3872 if (cma_family(id_priv) != AF_IB) 3873 ps = cma_select_inet_ps(id_priv); 3874 else 3875 ps = cma_select_ib_ps(id_priv); 3876 if (!ps) 3877 return -EPROTONOSUPPORT; 3878 3879 mutex_lock(&lock); 3880 if (cma_any_port(cma_src_addr(id_priv))) 3881 ret = cma_alloc_any_port(ps, id_priv); 3882 else 3883 ret = cma_use_port(ps, id_priv); 3884 mutex_unlock(&lock); 3885 3886 return ret; 3887 } 3888 3889 static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, 3890 struct sockaddr *addr) 3891 { 3892 #if IS_ENABLED(CONFIG_IPV6) 3893 struct sockaddr_in6 *sin6; 3894 3895 if (addr->sa_family != AF_INET6) 3896 return 0; 3897 3898 sin6 = (struct sockaddr_in6 *) addr; 3899 3900 if (!(ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)) 3901 return 0; 3902 3903 if (!sin6->sin6_scope_id) 3904 return -EINVAL; 3905 3906 dev_addr->bound_dev_if = sin6->sin6_scope_id; 3907 #endif 3908 return 0; 3909 } 3910 3911 int rdma_listen(struct rdma_cm_id *id, int backlog) 3912 { 3913 struct rdma_id_private *id_priv = 3914 container_of(id, struct rdma_id_private, id); 3915 int ret; 3916 3917 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) { 3918 struct sockaddr_in any_in = { 3919 .sin_family = AF_INET, 3920 .sin_addr.s_addr = htonl(INADDR_ANY), 3921 }; 3922 3923 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 3924 ret = rdma_bind_addr(id, (struct sockaddr *)&any_in); 3925 if (ret) 3926 return ret; 3927 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 3928 RDMA_CM_LISTEN))) 3929 return -EINVAL; 3930 } 3931 3932 /* 3933 * Once the ID reaches RDMA_CM_LISTEN it is not allowed to be reusable 3934 * any more, and has to be unique in the bind list. 3935 */ 3936 if (id_priv->reuseaddr) { 3937 mutex_lock(&lock); 3938 ret = cma_check_port(id_priv->bind_list, id_priv, 0); 3939 if (!ret) 3940 id_priv->reuseaddr = 0; 3941 mutex_unlock(&lock); 3942 if (ret) 3943 goto err; 3944 } 3945 3946 id_priv->backlog = backlog; 3947 if (id_priv->cma_dev) { 3948 if (rdma_cap_ib_cm(id->device, 1)) { 3949 ret = cma_ib_listen(id_priv); 3950 if (ret) 3951 goto err; 3952 } else if (rdma_cap_iw_cm(id->device, 1)) { 3953 ret = cma_iw_listen(id_priv, backlog); 3954 if (ret) 3955 goto err; 3956 } else { 3957 ret = -ENOSYS; 3958 goto err; 3959 } 3960 } else { 3961 ret = cma_listen_on_all(id_priv); 3962 if (ret) 3963 goto err; 3964 } 3965 3966 return 0; 3967 err: 3968 id_priv->backlog = 0; 3969 /* 3970 * All the failure paths that lead here will not allow the req_handler's 3971 * to have run. 3972 */ 3973 cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); 3974 return ret; 3975 } 3976 EXPORT_SYMBOL(rdma_listen); 3977 3978 static int rdma_bind_addr_dst(struct rdma_id_private *id_priv, 3979 struct sockaddr *addr, const struct sockaddr *daddr) 3980 { 3981 struct sockaddr *id_daddr; 3982 int ret; 3983 3984 if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && 3985 addr->sa_family != AF_IB) 3986 return -EAFNOSUPPORT; 3987 3988 if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) 3989 return -EINVAL; 3990 3991 ret = cma_check_linklocal(&id_priv->id.route.addr.dev_addr, addr); 3992 if (ret) 3993 goto err1; 3994 3995 memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); 3996 if (!cma_any_addr(addr)) { 3997 ret = cma_translate_addr(addr, &id_priv->id.route.addr.dev_addr); 3998 if (ret) 3999 goto err1; 4000 4001 ret = cma_acquire_dev_by_src_ip(id_priv); 4002 if (ret) 4003 goto err1; 4004 } 4005 4006 if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { 4007 if (addr->sa_family == AF_INET) 4008 id_priv->afonly = 1; 4009 #if IS_ENABLED(CONFIG_IPV6) 4010 else if (addr->sa_family == AF_INET6) { 4011 struct net *net = id_priv->id.route.addr.dev_addr.net; 4012 4013 id_priv->afonly = net->ipv6.sysctl.bindv6only; 4014 } 4015 #endif 4016 } 4017 id_daddr = cma_dst_addr(id_priv); 4018 if (daddr != id_daddr) 4019 memcpy(id_daddr, daddr, rdma_addr_size(addr)); 4020 id_daddr->sa_family = addr->sa_family; 4021 4022 ret = cma_get_port(id_priv); 4023 if (ret) 4024 goto err2; 4025 4026 if (!cma_any_addr(addr)) 4027 rdma_restrack_add(&id_priv->res); 4028 return 0; 4029 err2: 4030 if (id_priv->cma_dev) 4031 cma_release_dev(id_priv); 4032 err1: 4033 cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); 4034 return ret; 4035 } 4036 4037 static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4038 const struct sockaddr *dst_addr) 4039 { 4040 struct rdma_id_private *id_priv = 4041 container_of(id, struct rdma_id_private, id); 4042 struct sockaddr_storage zero_sock = {}; 4043 4044 if (src_addr && src_addr->sa_family) 4045 return rdma_bind_addr_dst(id_priv, src_addr, dst_addr); 4046 4047 /* 4048 * When the src_addr is not specified, automatically supply an any addr 4049 */ 4050 zero_sock.ss_family = dst_addr->sa_family; 4051 if (IS_ENABLED(CONFIG_IPV6) && dst_addr->sa_family == AF_INET6) { 4052 struct sockaddr_in6 *src_addr6 = 4053 (struct sockaddr_in6 *)&zero_sock; 4054 struct sockaddr_in6 *dst_addr6 = 4055 (struct sockaddr_in6 *)dst_addr; 4056 4057 src_addr6->sin6_scope_id = dst_addr6->sin6_scope_id; 4058 if (ipv6_addr_type(&dst_addr6->sin6_addr) & IPV6_ADDR_LINKLOCAL) 4059 id->route.addr.dev_addr.bound_dev_if = 4060 dst_addr6->sin6_scope_id; 4061 } else if (dst_addr->sa_family == AF_IB) { 4062 ((struct sockaddr_ib *)&zero_sock)->sib_pkey = 4063 ((struct sockaddr_ib *)dst_addr)->sib_pkey; 4064 } 4065 return rdma_bind_addr_dst(id_priv, (struct sockaddr *)&zero_sock, dst_addr); 4066 } 4067 4068 /* 4069 * If required, resolve the source address for bind and leave the id_priv in 4070 * state RDMA_CM_ADDR_BOUND. This oddly uses the state to determine the prior 4071 * calls made by ULP, a previously bound ID will not be re-bound and src_addr is 4072 * ignored. 4073 */ 4074 static int resolve_prepare_src(struct rdma_id_private *id_priv, 4075 struct sockaddr *src_addr, 4076 const struct sockaddr *dst_addr) 4077 { 4078 int ret; 4079 4080 if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) { 4081 /* For a well behaved ULP state will be RDMA_CM_IDLE */ 4082 ret = cma_bind_addr(&id_priv->id, src_addr, dst_addr); 4083 if (ret) 4084 return ret; 4085 if (WARN_ON(!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, 4086 RDMA_CM_ADDR_QUERY))) 4087 return -EINVAL; 4088 4089 } else { 4090 memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); 4091 } 4092 4093 if (cma_family(id_priv) != dst_addr->sa_family) { 4094 ret = -EINVAL; 4095 goto err_state; 4096 } 4097 return 0; 4098 4099 err_state: 4100 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4101 return ret; 4102 } 4103 4104 int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, 4105 const struct sockaddr *dst_addr, unsigned long timeout_ms) 4106 { 4107 struct rdma_id_private *id_priv = 4108 container_of(id, struct rdma_id_private, id); 4109 int ret; 4110 4111 ret = resolve_prepare_src(id_priv, src_addr, dst_addr); 4112 if (ret) 4113 return ret; 4114 4115 if (cma_any_addr(dst_addr)) { 4116 ret = cma_resolve_loopback(id_priv); 4117 } else { 4118 if (dst_addr->sa_family == AF_IB) { 4119 ret = cma_resolve_ib_addr(id_priv); 4120 } else { 4121 /* 4122 * The FSM can return back to RDMA_CM_ADDR_BOUND after 4123 * rdma_resolve_ip() is called, eg through the error 4124 * path in addr_handler(). If this happens the existing 4125 * request must be canceled before issuing a new one. 4126 * Since canceling a request is a bit slow and this 4127 * oddball path is rare, keep track once a request has 4128 * been issued. The track turns out to be a permanent 4129 * state since this is the only cancel as it is 4130 * immediately before rdma_resolve_ip(). 4131 */ 4132 if (id_priv->used_resolve_ip) 4133 rdma_addr_cancel(&id->route.addr.dev_addr); 4134 else 4135 id_priv->used_resolve_ip = 1; 4136 ret = rdma_resolve_ip(cma_src_addr(id_priv), dst_addr, 4137 &id->route.addr.dev_addr, 4138 timeout_ms, addr_handler, 4139 false, id_priv); 4140 } 4141 } 4142 if (ret) 4143 goto err; 4144 4145 return 0; 4146 err: 4147 cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); 4148 return ret; 4149 } 4150 EXPORT_SYMBOL(rdma_resolve_addr); 4151 4152 int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) 4153 { 4154 struct rdma_id_private *id_priv = 4155 container_of(id, struct rdma_id_private, id); 4156 4157 return rdma_bind_addr_dst(id_priv, addr, cma_dst_addr(id_priv)); 4158 } 4159 EXPORT_SYMBOL(rdma_bind_addr); 4160 4161 static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) 4162 { 4163 struct cma_hdr *cma_hdr; 4164 4165 cma_hdr = hdr; 4166 cma_hdr->cma_version = CMA_VERSION; 4167 if (cma_family(id_priv) == AF_INET) { 4168 struct sockaddr_in *src4, *dst4; 4169 4170 src4 = (struct sockaddr_in *) cma_src_addr(id_priv); 4171 dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); 4172 4173 cma_set_ip_ver(cma_hdr, 4); 4174 cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; 4175 cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; 4176 cma_hdr->port = src4->sin_port; 4177 } else if (cma_family(id_priv) == AF_INET6) { 4178 struct sockaddr_in6 *src6, *dst6; 4179 4180 src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); 4181 dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); 4182 4183 cma_set_ip_ver(cma_hdr, 6); 4184 cma_hdr->src_addr.ip6 = src6->sin6_addr; 4185 cma_hdr->dst_addr.ip6 = dst6->sin6_addr; 4186 cma_hdr->port = src6->sin6_port; 4187 } 4188 return 0; 4189 } 4190 4191 static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, 4192 const struct ib_cm_event *ib_event) 4193 { 4194 struct rdma_id_private *id_priv = cm_id->context; 4195 struct rdma_cm_event event = {}; 4196 const struct ib_cm_sidr_rep_event_param *rep = 4197 &ib_event->param.sidr_rep_rcvd; 4198 int ret; 4199 4200 mutex_lock(&id_priv->handler_mutex); 4201 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4202 goto out; 4203 4204 switch (ib_event->event) { 4205 case IB_CM_SIDR_REQ_ERROR: 4206 event.event = RDMA_CM_EVENT_UNREACHABLE; 4207 event.status = -ETIMEDOUT; 4208 break; 4209 case IB_CM_SIDR_REP_RECEIVED: 4210 event.param.ud.private_data = ib_event->private_data; 4211 event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; 4212 if (rep->status != IB_SIDR_SUCCESS) { 4213 event.event = RDMA_CM_EVENT_UNREACHABLE; 4214 event.status = ib_event->param.sidr_rep_rcvd.status; 4215 pr_debug_ratelimited("RDMA CM: UNREACHABLE: bad SIDR reply. status %d\n", 4216 event.status); 4217 break; 4218 } 4219 ret = cma_set_qkey(id_priv, rep->qkey); 4220 if (ret) { 4221 pr_debug_ratelimited("RDMA CM: ADDR_ERROR: failed to set qkey. status %d\n", ret); 4222 event.event = RDMA_CM_EVENT_ADDR_ERROR; 4223 event.status = ret; 4224 break; 4225 } 4226 ib_init_ah_attr_from_path(id_priv->id.device, 4227 id_priv->id.port_num, 4228 id_priv->id.route.path_rec, 4229 &event.param.ud.ah_attr, 4230 rep->sgid_attr); 4231 event.param.ud.qp_num = rep->qpn; 4232 event.param.ud.qkey = rep->qkey; 4233 event.event = RDMA_CM_EVENT_ESTABLISHED; 4234 event.status = 0; 4235 break; 4236 default: 4237 pr_err("RDMA CMA: unexpected IB CM event: %d\n", 4238 ib_event->event); 4239 goto out; 4240 } 4241 4242 ret = cma_cm_event_handler(id_priv, &event); 4243 4244 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4245 if (ret) { 4246 /* Destroy the CM ID by returning a non-zero value. */ 4247 id_priv->cm_id.ib = NULL; 4248 destroy_id_handler_unlock(id_priv); 4249 return ret; 4250 } 4251 out: 4252 mutex_unlock(&id_priv->handler_mutex); 4253 return 0; 4254 } 4255 4256 static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, 4257 struct rdma_conn_param *conn_param) 4258 { 4259 struct ib_cm_sidr_req_param req; 4260 struct ib_cm_id *id; 4261 void *private_data; 4262 u8 offset; 4263 int ret; 4264 4265 memset(&req, 0, sizeof req); 4266 offset = cma_user_data_offset(id_priv); 4267 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4268 return -EINVAL; 4269 4270 if (req.private_data_len) { 4271 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4272 if (!private_data) 4273 return -ENOMEM; 4274 } else { 4275 private_data = NULL; 4276 } 4277 4278 if (conn_param->private_data && conn_param->private_data_len) 4279 memcpy(private_data + offset, conn_param->private_data, 4280 conn_param->private_data_len); 4281 4282 if (private_data) { 4283 ret = cma_format_hdr(private_data, id_priv); 4284 if (ret) 4285 goto out; 4286 req.private_data = private_data; 4287 } 4288 4289 id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, 4290 id_priv); 4291 if (IS_ERR(id)) { 4292 ret = PTR_ERR(id); 4293 goto out; 4294 } 4295 id_priv->cm_id.ib = id; 4296 4297 req.path = id_priv->id.route.path_rec; 4298 req.sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4299 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4300 req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); 4301 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4302 4303 trace_cm_send_sidr_req(id_priv); 4304 ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); 4305 if (ret) { 4306 ib_destroy_cm_id(id_priv->cm_id.ib); 4307 id_priv->cm_id.ib = NULL; 4308 } 4309 out: 4310 kfree(private_data); 4311 return ret; 4312 } 4313 4314 static int cma_connect_ib(struct rdma_id_private *id_priv, 4315 struct rdma_conn_param *conn_param) 4316 { 4317 struct ib_cm_req_param req; 4318 struct rdma_route *route; 4319 void *private_data; 4320 struct ib_cm_id *id; 4321 u8 offset; 4322 int ret; 4323 4324 memset(&req, 0, sizeof req); 4325 offset = cma_user_data_offset(id_priv); 4326 if (check_add_overflow(offset, conn_param->private_data_len, &req.private_data_len)) 4327 return -EINVAL; 4328 4329 if (req.private_data_len) { 4330 private_data = kzalloc(req.private_data_len, GFP_ATOMIC); 4331 if (!private_data) 4332 return -ENOMEM; 4333 } else { 4334 private_data = NULL; 4335 } 4336 4337 if (conn_param->private_data && conn_param->private_data_len) 4338 memcpy(private_data + offset, conn_param->private_data, 4339 conn_param->private_data_len); 4340 4341 id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); 4342 if (IS_ERR(id)) { 4343 ret = PTR_ERR(id); 4344 goto out; 4345 } 4346 id_priv->cm_id.ib = id; 4347 4348 route = &id_priv->id.route; 4349 if (private_data) { 4350 ret = cma_format_hdr(private_data, id_priv); 4351 if (ret) 4352 goto out; 4353 req.private_data = private_data; 4354 } 4355 4356 req.primary_path = &route->path_rec[0]; 4357 req.primary_path_inbound = route->path_rec_inbound; 4358 req.primary_path_outbound = route->path_rec_outbound; 4359 if (route->num_pri_alt_paths == 2) 4360 req.alternate_path = &route->path_rec[1]; 4361 4362 req.ppath_sgid_attr = id_priv->id.route.addr.dev_addr.sgid_attr; 4363 /* Alternate path SGID attribute currently unsupported */ 4364 req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); 4365 req.qp_num = id_priv->qp_num; 4366 req.qp_type = id_priv->id.qp_type; 4367 req.starting_psn = id_priv->seq_num; 4368 req.responder_resources = conn_param->responder_resources; 4369 req.initiator_depth = conn_param->initiator_depth; 4370 req.flow_control = conn_param->flow_control; 4371 req.retry_count = min_t(u8, 7, conn_param->retry_count); 4372 req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4373 req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4374 req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; 4375 req.max_cm_retries = CMA_MAX_CM_RETRIES; 4376 req.srq = id_priv->srq ? 1 : 0; 4377 req.ece.vendor_id = id_priv->ece.vendor_id; 4378 req.ece.attr_mod = id_priv->ece.attr_mod; 4379 4380 trace_cm_send_req(id_priv); 4381 ret = ib_send_cm_req(id_priv->cm_id.ib, &req); 4382 out: 4383 if (ret && !IS_ERR(id)) { 4384 ib_destroy_cm_id(id); 4385 id_priv->cm_id.ib = NULL; 4386 } 4387 4388 kfree(private_data); 4389 return ret; 4390 } 4391 4392 static int cma_connect_iw(struct rdma_id_private *id_priv, 4393 struct rdma_conn_param *conn_param) 4394 { 4395 struct iw_cm_id *cm_id; 4396 int ret; 4397 struct iw_cm_conn_param iw_param; 4398 4399 cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); 4400 if (IS_ERR(cm_id)) 4401 return PTR_ERR(cm_id); 4402 4403 mutex_lock(&id_priv->qp_mutex); 4404 cm_id->tos = id_priv->tos; 4405 cm_id->tos_set = id_priv->tos_set; 4406 mutex_unlock(&id_priv->qp_mutex); 4407 4408 id_priv->cm_id.iw = cm_id; 4409 4410 memcpy(&cm_id->local_addr, cma_src_addr(id_priv), 4411 rdma_addr_size(cma_src_addr(id_priv))); 4412 memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), 4413 rdma_addr_size(cma_dst_addr(id_priv))); 4414 4415 ret = cma_modify_qp_rtr(id_priv, conn_param); 4416 if (ret) 4417 goto out; 4418 4419 if (conn_param) { 4420 iw_param.ord = conn_param->initiator_depth; 4421 iw_param.ird = conn_param->responder_resources; 4422 iw_param.private_data = conn_param->private_data; 4423 iw_param.private_data_len = conn_param->private_data_len; 4424 iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; 4425 } else { 4426 memset(&iw_param, 0, sizeof iw_param); 4427 iw_param.qpn = id_priv->qp_num; 4428 } 4429 ret = iw_cm_connect(cm_id, &iw_param); 4430 out: 4431 if (ret) { 4432 iw_destroy_cm_id(cm_id); 4433 id_priv->cm_id.iw = NULL; 4434 } 4435 return ret; 4436 } 4437 4438 /** 4439 * rdma_connect_locked - Initiate an active connection request. 4440 * @id: Connection identifier to connect. 4441 * @conn_param: Connection information used for connected QPs. 4442 * 4443 * Same as rdma_connect() but can only be called from the 4444 * RDMA_CM_EVENT_ROUTE_RESOLVED handler callback. 4445 */ 4446 int rdma_connect_locked(struct rdma_cm_id *id, 4447 struct rdma_conn_param *conn_param) 4448 { 4449 struct rdma_id_private *id_priv = 4450 container_of(id, struct rdma_id_private, id); 4451 int ret; 4452 4453 if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) 4454 return -EINVAL; 4455 4456 if (!id->qp) { 4457 id_priv->qp_num = conn_param->qp_num; 4458 id_priv->srq = conn_param->srq; 4459 } 4460 4461 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4462 if (id->qp_type == IB_QPT_UD) 4463 ret = cma_resolve_ib_udp(id_priv, conn_param); 4464 else 4465 ret = cma_connect_ib(id_priv, conn_param); 4466 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4467 ret = cma_connect_iw(id_priv, conn_param); 4468 } else { 4469 ret = -ENOSYS; 4470 } 4471 if (ret) 4472 goto err_state; 4473 return 0; 4474 err_state: 4475 cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); 4476 return ret; 4477 } 4478 EXPORT_SYMBOL(rdma_connect_locked); 4479 4480 /** 4481 * rdma_connect - Initiate an active connection request. 4482 * @id: Connection identifier to connect. 4483 * @conn_param: Connection information used for connected QPs. 4484 * 4485 * Users must have resolved a route for the rdma_cm_id to connect with by having 4486 * called rdma_resolve_route before calling this routine. 4487 * 4488 * This call will either connect to a remote QP or obtain remote QP information 4489 * for unconnected rdma_cm_id's. The actual operation is based on the 4490 * rdma_cm_id's port space. 4491 */ 4492 int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4493 { 4494 struct rdma_id_private *id_priv = 4495 container_of(id, struct rdma_id_private, id); 4496 int ret; 4497 4498 mutex_lock(&id_priv->handler_mutex); 4499 ret = rdma_connect_locked(id, conn_param); 4500 mutex_unlock(&id_priv->handler_mutex); 4501 return ret; 4502 } 4503 EXPORT_SYMBOL(rdma_connect); 4504 4505 /** 4506 * rdma_connect_ece - Initiate an active connection request with ECE data. 4507 * @id: Connection identifier to connect. 4508 * @conn_param: Connection information used for connected QPs. 4509 * @ece: ECE parameters 4510 * 4511 * See rdma_connect() explanation. 4512 */ 4513 int rdma_connect_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4514 struct rdma_ucm_ece *ece) 4515 { 4516 struct rdma_id_private *id_priv = 4517 container_of(id, struct rdma_id_private, id); 4518 4519 id_priv->ece.vendor_id = ece->vendor_id; 4520 id_priv->ece.attr_mod = ece->attr_mod; 4521 4522 return rdma_connect(id, conn_param); 4523 } 4524 EXPORT_SYMBOL(rdma_connect_ece); 4525 4526 static int cma_accept_ib(struct rdma_id_private *id_priv, 4527 struct rdma_conn_param *conn_param) 4528 { 4529 struct ib_cm_rep_param rep; 4530 int ret; 4531 4532 ret = cma_modify_qp_rtr(id_priv, conn_param); 4533 if (ret) 4534 goto out; 4535 4536 ret = cma_modify_qp_rts(id_priv, conn_param); 4537 if (ret) 4538 goto out; 4539 4540 memset(&rep, 0, sizeof rep); 4541 rep.qp_num = id_priv->qp_num; 4542 rep.starting_psn = id_priv->seq_num; 4543 rep.private_data = conn_param->private_data; 4544 rep.private_data_len = conn_param->private_data_len; 4545 rep.responder_resources = conn_param->responder_resources; 4546 rep.initiator_depth = conn_param->initiator_depth; 4547 rep.failover_accepted = 0; 4548 rep.flow_control = conn_param->flow_control; 4549 rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); 4550 rep.srq = id_priv->srq ? 1 : 0; 4551 rep.ece.vendor_id = id_priv->ece.vendor_id; 4552 rep.ece.attr_mod = id_priv->ece.attr_mod; 4553 4554 trace_cm_send_rep(id_priv); 4555 ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); 4556 out: 4557 return ret; 4558 } 4559 4560 static int cma_accept_iw(struct rdma_id_private *id_priv, 4561 struct rdma_conn_param *conn_param) 4562 { 4563 struct iw_cm_conn_param iw_param; 4564 int ret; 4565 4566 if (!conn_param) 4567 return -EINVAL; 4568 4569 ret = cma_modify_qp_rtr(id_priv, conn_param); 4570 if (ret) 4571 return ret; 4572 4573 iw_param.ord = conn_param->initiator_depth; 4574 iw_param.ird = conn_param->responder_resources; 4575 iw_param.private_data = conn_param->private_data; 4576 iw_param.private_data_len = conn_param->private_data_len; 4577 if (id_priv->id.qp) 4578 iw_param.qpn = id_priv->qp_num; 4579 else 4580 iw_param.qpn = conn_param->qp_num; 4581 4582 return iw_cm_accept(id_priv->cm_id.iw, &iw_param); 4583 } 4584 4585 static int cma_send_sidr_rep(struct rdma_id_private *id_priv, 4586 enum ib_cm_sidr_status status, u32 qkey, 4587 const void *private_data, int private_data_len) 4588 { 4589 struct ib_cm_sidr_rep_param rep; 4590 int ret; 4591 4592 memset(&rep, 0, sizeof rep); 4593 rep.status = status; 4594 if (status == IB_SIDR_SUCCESS) { 4595 if (qkey) 4596 ret = cma_set_qkey(id_priv, qkey); 4597 else 4598 ret = cma_set_default_qkey(id_priv); 4599 if (ret) 4600 return ret; 4601 rep.qp_num = id_priv->qp_num; 4602 rep.qkey = id_priv->qkey; 4603 4604 rep.ece.vendor_id = id_priv->ece.vendor_id; 4605 rep.ece.attr_mod = id_priv->ece.attr_mod; 4606 } 4607 4608 rep.private_data = private_data; 4609 rep.private_data_len = private_data_len; 4610 4611 trace_cm_send_sidr_rep(id_priv); 4612 return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); 4613 } 4614 4615 /** 4616 * rdma_accept - Called to accept a connection request or response. 4617 * @id: Connection identifier associated with the request. 4618 * @conn_param: Information needed to establish the connection. This must be 4619 * provided if accepting a connection request. If accepting a connection 4620 * response, this parameter must be NULL. 4621 * 4622 * Typically, this routine is only called by the listener to accept a connection 4623 * request. It must also be called on the active side of a connection if the 4624 * user is performing their own QP transitions. 4625 * 4626 * In the case of error, a reject message is sent to the remote side and the 4627 * state of the qp associated with the id is modified to error, such that any 4628 * previously posted receive buffers would be flushed. 4629 * 4630 * This function is for use by kernel ULPs and must be called from under the 4631 * handler callback. 4632 */ 4633 int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) 4634 { 4635 struct rdma_id_private *id_priv = 4636 container_of(id, struct rdma_id_private, id); 4637 int ret; 4638 4639 lockdep_assert_held(&id_priv->handler_mutex); 4640 4641 if (READ_ONCE(id_priv->state) != RDMA_CM_CONNECT) 4642 return -EINVAL; 4643 4644 if (!id->qp && conn_param) { 4645 id_priv->qp_num = conn_param->qp_num; 4646 id_priv->srq = conn_param->srq; 4647 } 4648 4649 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4650 if (id->qp_type == IB_QPT_UD) { 4651 if (conn_param) 4652 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4653 conn_param->qkey, 4654 conn_param->private_data, 4655 conn_param->private_data_len); 4656 else 4657 ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 4658 0, NULL, 0); 4659 } else { 4660 if (conn_param) 4661 ret = cma_accept_ib(id_priv, conn_param); 4662 else 4663 ret = cma_rep_recv(id_priv); 4664 } 4665 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4666 ret = cma_accept_iw(id_priv, conn_param); 4667 } else { 4668 ret = -ENOSYS; 4669 } 4670 if (ret) 4671 goto reject; 4672 4673 return 0; 4674 reject: 4675 cma_modify_qp_err(id_priv); 4676 rdma_reject(id, NULL, 0, IB_CM_REJ_CONSUMER_DEFINED); 4677 return ret; 4678 } 4679 EXPORT_SYMBOL(rdma_accept); 4680 4681 int rdma_accept_ece(struct rdma_cm_id *id, struct rdma_conn_param *conn_param, 4682 struct rdma_ucm_ece *ece) 4683 { 4684 struct rdma_id_private *id_priv = 4685 container_of(id, struct rdma_id_private, id); 4686 4687 id_priv->ece.vendor_id = ece->vendor_id; 4688 id_priv->ece.attr_mod = ece->attr_mod; 4689 4690 return rdma_accept(id, conn_param); 4691 } 4692 EXPORT_SYMBOL(rdma_accept_ece); 4693 4694 void rdma_lock_handler(struct rdma_cm_id *id) 4695 { 4696 struct rdma_id_private *id_priv = 4697 container_of(id, struct rdma_id_private, id); 4698 4699 mutex_lock(&id_priv->handler_mutex); 4700 } 4701 EXPORT_SYMBOL(rdma_lock_handler); 4702 4703 void rdma_unlock_handler(struct rdma_cm_id *id) 4704 { 4705 struct rdma_id_private *id_priv = 4706 container_of(id, struct rdma_id_private, id); 4707 4708 mutex_unlock(&id_priv->handler_mutex); 4709 } 4710 EXPORT_SYMBOL(rdma_unlock_handler); 4711 4712 int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) 4713 { 4714 struct rdma_id_private *id_priv; 4715 int ret; 4716 4717 id_priv = container_of(id, struct rdma_id_private, id); 4718 if (!id_priv->cm_id.ib) 4719 return -EINVAL; 4720 4721 switch (id->device->node_type) { 4722 case RDMA_NODE_IB_CA: 4723 ret = ib_cm_notify(id_priv->cm_id.ib, event); 4724 break; 4725 default: 4726 ret = 0; 4727 break; 4728 } 4729 return ret; 4730 } 4731 EXPORT_SYMBOL(rdma_notify); 4732 4733 int rdma_reject(struct rdma_cm_id *id, const void *private_data, 4734 u8 private_data_len, u8 reason) 4735 { 4736 struct rdma_id_private *id_priv; 4737 int ret; 4738 4739 id_priv = container_of(id, struct rdma_id_private, id); 4740 if (!id_priv->cm_id.ib) 4741 return -EINVAL; 4742 4743 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4744 if (id->qp_type == IB_QPT_UD) { 4745 ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, 4746 private_data, private_data_len); 4747 } else { 4748 trace_cm_send_rej(id_priv); 4749 ret = ib_send_cm_rej(id_priv->cm_id.ib, reason, NULL, 0, 4750 private_data, private_data_len); 4751 } 4752 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4753 ret = iw_cm_reject(id_priv->cm_id.iw, 4754 private_data, private_data_len); 4755 } else { 4756 ret = -ENOSYS; 4757 } 4758 4759 return ret; 4760 } 4761 EXPORT_SYMBOL(rdma_reject); 4762 4763 int rdma_disconnect(struct rdma_cm_id *id) 4764 { 4765 struct rdma_id_private *id_priv; 4766 int ret; 4767 4768 id_priv = container_of(id, struct rdma_id_private, id); 4769 if (!id_priv->cm_id.ib) 4770 return -EINVAL; 4771 4772 if (rdma_cap_ib_cm(id->device, id->port_num)) { 4773 ret = cma_modify_qp_err(id_priv); 4774 if (ret) 4775 goto out; 4776 /* Initiate or respond to a disconnect. */ 4777 trace_cm_disconnect(id_priv); 4778 if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) { 4779 if (!ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0)) 4780 trace_cm_sent_drep(id_priv); 4781 } else { 4782 trace_cm_sent_dreq(id_priv); 4783 } 4784 } else if (rdma_cap_iw_cm(id->device, id->port_num)) { 4785 ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); 4786 } else 4787 ret = -EINVAL; 4788 4789 out: 4790 return ret; 4791 } 4792 EXPORT_SYMBOL(rdma_disconnect); 4793 4794 static void cma_make_mc_event(int status, struct rdma_id_private *id_priv, 4795 struct ib_sa_multicast *multicast, 4796 struct rdma_cm_event *event, 4797 struct cma_multicast *mc) 4798 { 4799 struct rdma_dev_addr *dev_addr; 4800 enum ib_gid_type gid_type; 4801 struct net_device *ndev; 4802 4803 if (status) 4804 pr_debug_ratelimited("RDMA CM: MULTICAST_ERROR: failed to join multicast. status %d\n", 4805 status); 4806 4807 event->status = status; 4808 event->param.ud.private_data = mc->context; 4809 if (status) { 4810 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4811 return; 4812 } 4813 4814 dev_addr = &id_priv->id.route.addr.dev_addr; 4815 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4816 gid_type = 4817 id_priv->cma_dev 4818 ->default_gid_type[id_priv->id.port_num - 4819 rdma_start_port( 4820 id_priv->cma_dev->device)]; 4821 4822 event->event = RDMA_CM_EVENT_MULTICAST_JOIN; 4823 if (ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, 4824 &multicast->rec, ndev, gid_type, 4825 &event->param.ud.ah_attr)) { 4826 event->event = RDMA_CM_EVENT_MULTICAST_ERROR; 4827 goto out; 4828 } 4829 4830 event->param.ud.qp_num = 0xFFFFFF; 4831 event->param.ud.qkey = id_priv->qkey; 4832 4833 out: 4834 dev_put(ndev); 4835 } 4836 4837 static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) 4838 { 4839 struct cma_multicast *mc = multicast->context; 4840 struct rdma_id_private *id_priv = mc->id_priv; 4841 struct rdma_cm_event event = {}; 4842 int ret = 0; 4843 4844 mutex_lock(&id_priv->handler_mutex); 4845 if (READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL || 4846 READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING) 4847 goto out; 4848 4849 ret = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); 4850 if (!ret) { 4851 cma_make_mc_event(status, id_priv, multicast, &event, mc); 4852 ret = cma_cm_event_handler(id_priv, &event); 4853 } 4854 rdma_destroy_ah_attr(&event.param.ud.ah_attr); 4855 WARN_ON(ret); 4856 4857 out: 4858 mutex_unlock(&id_priv->handler_mutex); 4859 return 0; 4860 } 4861 4862 static void cma_set_mgid(struct rdma_id_private *id_priv, 4863 struct sockaddr *addr, union ib_gid *mgid) 4864 { 4865 unsigned char mc_map[MAX_ADDR_LEN]; 4866 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4867 struct sockaddr_in *sin = (struct sockaddr_in *) addr; 4868 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; 4869 4870 if (cma_any_addr(addr)) { 4871 memset(mgid, 0, sizeof *mgid); 4872 } else if ((addr->sa_family == AF_INET6) && 4873 ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 4874 0xFF10A01B)) { 4875 /* IPv6 address is an SA assigned MGID. */ 4876 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4877 } else if (addr->sa_family == AF_IB) { 4878 memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); 4879 } else if (addr->sa_family == AF_INET6) { 4880 ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); 4881 if (id_priv->id.ps == RDMA_PS_UDP) 4882 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4883 *mgid = *(union ib_gid *) (mc_map + 4); 4884 } else { 4885 ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); 4886 if (id_priv->id.ps == RDMA_PS_UDP) 4887 mc_map[7] = 0x01; /* Use RDMA CM signature */ 4888 *mgid = *(union ib_gid *) (mc_map + 4); 4889 } 4890 } 4891 4892 static int cma_join_ib_multicast(struct rdma_id_private *id_priv, 4893 struct cma_multicast *mc) 4894 { 4895 struct ib_sa_mcmember_rec rec; 4896 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4897 ib_sa_comp_mask comp_mask; 4898 int ret; 4899 4900 ib_addr_get_mgid(dev_addr, &rec.mgid); 4901 ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, 4902 &rec.mgid, &rec); 4903 if (ret) 4904 return ret; 4905 4906 if (!id_priv->qkey) { 4907 ret = cma_set_default_qkey(id_priv); 4908 if (ret) 4909 return ret; 4910 } 4911 4912 cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); 4913 rec.qkey = cpu_to_be32(id_priv->qkey); 4914 rdma_addr_get_sgid(dev_addr, &rec.port_gid); 4915 rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); 4916 rec.join_state = mc->join_state; 4917 4918 comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | 4919 IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | 4920 IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | 4921 IB_SA_MCMEMBER_REC_FLOW_LABEL | 4922 IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; 4923 4924 if (id_priv->id.ps == RDMA_PS_IPOIB) 4925 comp_mask |= IB_SA_MCMEMBER_REC_RATE | 4926 IB_SA_MCMEMBER_REC_RATE_SELECTOR | 4927 IB_SA_MCMEMBER_REC_MTU_SELECTOR | 4928 IB_SA_MCMEMBER_REC_MTU | 4929 IB_SA_MCMEMBER_REC_HOP_LIMIT; 4930 4931 mc->sa_mc = ib_sa_join_multicast(&sa_client, id_priv->id.device, 4932 id_priv->id.port_num, &rec, comp_mask, 4933 GFP_KERNEL, cma_ib_mc_handler, mc); 4934 return PTR_ERR_OR_ZERO(mc->sa_mc); 4935 } 4936 4937 static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid, 4938 enum ib_gid_type gid_type) 4939 { 4940 struct sockaddr_in *sin = (struct sockaddr_in *)addr; 4941 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; 4942 4943 if (cma_any_addr(addr)) { 4944 memset(mgid, 0, sizeof *mgid); 4945 } else if (addr->sa_family == AF_INET6) { 4946 memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); 4947 } else { 4948 mgid->raw[0] = 4949 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0xff; 4950 mgid->raw[1] = 4951 (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) ? 0 : 0x0e; 4952 mgid->raw[2] = 0; 4953 mgid->raw[3] = 0; 4954 mgid->raw[4] = 0; 4955 mgid->raw[5] = 0; 4956 mgid->raw[6] = 0; 4957 mgid->raw[7] = 0; 4958 mgid->raw[8] = 0; 4959 mgid->raw[9] = 0; 4960 mgid->raw[10] = 0xff; 4961 mgid->raw[11] = 0xff; 4962 *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; 4963 } 4964 } 4965 4966 static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, 4967 struct cma_multicast *mc) 4968 { 4969 struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; 4970 int err = 0; 4971 struct sockaddr *addr = (struct sockaddr *)&mc->addr; 4972 struct net_device *ndev = NULL; 4973 struct ib_sa_multicast ib = {}; 4974 enum ib_gid_type gid_type; 4975 bool send_only; 4976 4977 send_only = mc->join_state == BIT(SENDONLY_FULLMEMBER_JOIN); 4978 4979 if (cma_zero_addr(addr)) 4980 return -EINVAL; 4981 4982 gid_type = id_priv->cma_dev->default_gid_type[id_priv->id.port_num - 4983 rdma_start_port(id_priv->cma_dev->device)]; 4984 cma_iboe_set_mgid(addr, &ib.rec.mgid, gid_type); 4985 4986 ib.rec.pkey = cpu_to_be16(0xffff); 4987 if (dev_addr->bound_dev_if) 4988 ndev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if); 4989 if (!ndev) 4990 return -ENODEV; 4991 4992 ib.rec.rate = IB_RATE_PORT_CURRENT; 4993 ib.rec.hop_limit = 1; 4994 ib.rec.mtu = iboe_get_mtu(ndev->mtu); 4995 4996 if (addr->sa_family == AF_INET) { 4997 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) { 4998 ib.rec.hop_limit = IPV6_DEFAULT_HOPLIMIT; 4999 if (!send_only) { 5000 err = cma_igmp_send(ndev, &ib.rec.mgid, 5001 true); 5002 } 5003 } 5004 } else { 5005 if (gid_type == IB_GID_TYPE_ROCE_UDP_ENCAP) 5006 err = -ENOTSUPP; 5007 } 5008 dev_put(ndev); 5009 if (err || !ib.rec.mtu) 5010 return err ?: -EINVAL; 5011 5012 if (!id_priv->qkey) 5013 cma_set_default_qkey(id_priv); 5014 5015 rdma_ip2gid((struct sockaddr *)&id_priv->id.route.addr.src_addr, 5016 &ib.rec.port_gid); 5017 INIT_WORK(&mc->iboe_join.work, cma_iboe_join_work_handler); 5018 cma_make_mc_event(0, id_priv, &ib, &mc->iboe_join.event, mc); 5019 queue_work(cma_wq, &mc->iboe_join.work); 5020 return 0; 5021 } 5022 5023 int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, 5024 u8 join_state, void *context) 5025 { 5026 struct rdma_id_private *id_priv = 5027 container_of(id, struct rdma_id_private, id); 5028 struct cma_multicast *mc; 5029 int ret; 5030 5031 /* Not supported for kernel QPs */ 5032 if (WARN_ON(id->qp)) 5033 return -EINVAL; 5034 5035 /* ULP is calling this wrong. */ 5036 if (!id->device || (READ_ONCE(id_priv->state) != RDMA_CM_ADDR_BOUND && 5037 READ_ONCE(id_priv->state) != RDMA_CM_ADDR_RESOLVED)) 5038 return -EINVAL; 5039 5040 if (id_priv->id.qp_type != IB_QPT_UD) 5041 return -EINVAL; 5042 5043 mc = kzalloc(sizeof(*mc), GFP_KERNEL); 5044 if (!mc) 5045 return -ENOMEM; 5046 5047 memcpy(&mc->addr, addr, rdma_addr_size(addr)); 5048 mc->context = context; 5049 mc->id_priv = id_priv; 5050 mc->join_state = join_state; 5051 5052 if (rdma_protocol_roce(id->device, id->port_num)) { 5053 ret = cma_iboe_join_multicast(id_priv, mc); 5054 if (ret) 5055 goto out_err; 5056 } else if (rdma_cap_ib_mcast(id->device, id->port_num)) { 5057 ret = cma_join_ib_multicast(id_priv, mc); 5058 if (ret) 5059 goto out_err; 5060 } else { 5061 ret = -ENOSYS; 5062 goto out_err; 5063 } 5064 5065 spin_lock(&id_priv->lock); 5066 list_add(&mc->list, &id_priv->mc_list); 5067 spin_unlock(&id_priv->lock); 5068 5069 return 0; 5070 out_err: 5071 kfree(mc); 5072 return ret; 5073 } 5074 EXPORT_SYMBOL(rdma_join_multicast); 5075 5076 void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) 5077 { 5078 struct rdma_id_private *id_priv; 5079 struct cma_multicast *mc; 5080 5081 id_priv = container_of(id, struct rdma_id_private, id); 5082 spin_lock_irq(&id_priv->lock); 5083 list_for_each_entry(mc, &id_priv->mc_list, list) { 5084 if (memcmp(&mc->addr, addr, rdma_addr_size(addr)) != 0) 5085 continue; 5086 list_del(&mc->list); 5087 spin_unlock_irq(&id_priv->lock); 5088 5089 WARN_ON(id_priv->cma_dev->device != id->device); 5090 destroy_mc(id_priv, mc); 5091 return; 5092 } 5093 spin_unlock_irq(&id_priv->lock); 5094 } 5095 EXPORT_SYMBOL(rdma_leave_multicast); 5096 5097 static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) 5098 { 5099 struct rdma_dev_addr *dev_addr; 5100 struct cma_work *work; 5101 5102 dev_addr = &id_priv->id.route.addr.dev_addr; 5103 5104 if ((dev_addr->bound_dev_if == ndev->ifindex) && 5105 (net_eq(dev_net(ndev), dev_addr->net)) && 5106 memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { 5107 pr_info("RDMA CM addr change for ndev %s used by id %p\n", 5108 ndev->name, &id_priv->id); 5109 work = kzalloc(sizeof *work, GFP_KERNEL); 5110 if (!work) 5111 return -ENOMEM; 5112 5113 INIT_WORK(&work->work, cma_work_handler); 5114 work->id = id_priv; 5115 work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; 5116 cma_id_get(id_priv); 5117 queue_work(cma_wq, &work->work); 5118 } 5119 5120 return 0; 5121 } 5122 5123 static int cma_netdev_callback(struct notifier_block *self, unsigned long event, 5124 void *ptr) 5125 { 5126 struct net_device *ndev = netdev_notifier_info_to_dev(ptr); 5127 struct cma_device *cma_dev; 5128 struct rdma_id_private *id_priv; 5129 int ret = NOTIFY_DONE; 5130 5131 if (event != NETDEV_BONDING_FAILOVER) 5132 return NOTIFY_DONE; 5133 5134 if (!netif_is_bond_master(ndev)) 5135 return NOTIFY_DONE; 5136 5137 mutex_lock(&lock); 5138 list_for_each_entry(cma_dev, &dev_list, list) 5139 list_for_each_entry(id_priv, &cma_dev->id_list, device_item) { 5140 ret = cma_netdev_change(ndev, id_priv); 5141 if (ret) 5142 goto out; 5143 } 5144 5145 out: 5146 mutex_unlock(&lock); 5147 return ret; 5148 } 5149 5150 static void cma_netevent_work_handler(struct work_struct *_work) 5151 { 5152 struct rdma_id_private *id_priv = 5153 container_of(_work, struct rdma_id_private, id.net_work); 5154 struct rdma_cm_event event = {}; 5155 5156 mutex_lock(&id_priv->handler_mutex); 5157 5158 if (READ_ONCE(id_priv->state) == RDMA_CM_DESTROYING || 5159 READ_ONCE(id_priv->state) == RDMA_CM_DEVICE_REMOVAL) 5160 goto out_unlock; 5161 5162 event.event = RDMA_CM_EVENT_UNREACHABLE; 5163 event.status = -ETIMEDOUT; 5164 5165 if (cma_cm_event_handler(id_priv, &event)) { 5166 __acquire(&id_priv->handler_mutex); 5167 id_priv->cm_id.ib = NULL; 5168 cma_id_put(id_priv); 5169 destroy_id_handler_unlock(id_priv); 5170 return; 5171 } 5172 5173 out_unlock: 5174 mutex_unlock(&id_priv->handler_mutex); 5175 cma_id_put(id_priv); 5176 } 5177 5178 static int cma_netevent_callback(struct notifier_block *self, 5179 unsigned long event, void *ctx) 5180 { 5181 struct id_table_entry *ips_node = NULL; 5182 struct rdma_id_private *current_id; 5183 struct neighbour *neigh = ctx; 5184 unsigned long flags; 5185 5186 if (event != NETEVENT_NEIGH_UPDATE) 5187 return NOTIFY_DONE; 5188 5189 spin_lock_irqsave(&id_table_lock, flags); 5190 if (neigh->tbl->family == AF_INET6) { 5191 struct sockaddr_in6 neigh_sock_6; 5192 5193 neigh_sock_6.sin6_family = AF_INET6; 5194 neigh_sock_6.sin6_addr = *(struct in6_addr *)neigh->primary_key; 5195 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5196 (struct sockaddr *)&neigh_sock_6); 5197 } else if (neigh->tbl->family == AF_INET) { 5198 struct sockaddr_in neigh_sock_4; 5199 5200 neigh_sock_4.sin_family = AF_INET; 5201 neigh_sock_4.sin_addr.s_addr = *(__be32 *)(neigh->primary_key); 5202 ips_node = node_from_ndev_ip(&id_table, neigh->dev->ifindex, 5203 (struct sockaddr *)&neigh_sock_4); 5204 } else 5205 goto out; 5206 5207 if (!ips_node) 5208 goto out; 5209 5210 list_for_each_entry(current_id, &ips_node->id_list, id_list_entry) { 5211 if (!memcmp(current_id->id.route.addr.dev_addr.dst_dev_addr, 5212 neigh->ha, ETH_ALEN)) 5213 continue; 5214 INIT_WORK(¤t_id->id.net_work, cma_netevent_work_handler); 5215 cma_id_get(current_id); 5216 queue_work(cma_wq, ¤t_id->id.net_work); 5217 } 5218 out: 5219 spin_unlock_irqrestore(&id_table_lock, flags); 5220 return NOTIFY_DONE; 5221 } 5222 5223 static struct notifier_block cma_nb = { 5224 .notifier_call = cma_netdev_callback 5225 }; 5226 5227 static struct notifier_block cma_netevent_cb = { 5228 .notifier_call = cma_netevent_callback 5229 }; 5230 5231 static void cma_send_device_removal_put(struct rdma_id_private *id_priv) 5232 { 5233 struct rdma_cm_event event = { .event = RDMA_CM_EVENT_DEVICE_REMOVAL }; 5234 enum rdma_cm_state state; 5235 unsigned long flags; 5236 5237 mutex_lock(&id_priv->handler_mutex); 5238 /* Record that we want to remove the device */ 5239 spin_lock_irqsave(&id_priv->lock, flags); 5240 state = id_priv->state; 5241 if (state == RDMA_CM_DESTROYING || state == RDMA_CM_DEVICE_REMOVAL) { 5242 spin_unlock_irqrestore(&id_priv->lock, flags); 5243 mutex_unlock(&id_priv->handler_mutex); 5244 cma_id_put(id_priv); 5245 return; 5246 } 5247 id_priv->state = RDMA_CM_DEVICE_REMOVAL; 5248 spin_unlock_irqrestore(&id_priv->lock, flags); 5249 5250 if (cma_cm_event_handler(id_priv, &event)) { 5251 /* 5252 * At this point the ULP promises it won't call 5253 * rdma_destroy_id() concurrently 5254 */ 5255 cma_id_put(id_priv); 5256 mutex_unlock(&id_priv->handler_mutex); 5257 trace_cm_id_destroy(id_priv); 5258 _destroy_id(id_priv, state); 5259 return; 5260 } 5261 mutex_unlock(&id_priv->handler_mutex); 5262 5263 /* 5264 * If this races with destroy then the thread that first assigns state 5265 * to a destroying does the cancel. 5266 */ 5267 cma_cancel_operation(id_priv, state); 5268 cma_id_put(id_priv); 5269 } 5270 5271 static void cma_process_remove(struct cma_device *cma_dev) 5272 { 5273 mutex_lock(&lock); 5274 while (!list_empty(&cma_dev->id_list)) { 5275 struct rdma_id_private *id_priv = list_first_entry( 5276 &cma_dev->id_list, struct rdma_id_private, device_item); 5277 5278 list_del_init(&id_priv->listen_item); 5279 list_del_init(&id_priv->device_item); 5280 cma_id_get(id_priv); 5281 mutex_unlock(&lock); 5282 5283 cma_send_device_removal_put(id_priv); 5284 5285 mutex_lock(&lock); 5286 } 5287 mutex_unlock(&lock); 5288 5289 cma_dev_put(cma_dev); 5290 wait_for_completion(&cma_dev->comp); 5291 } 5292 5293 static bool cma_supported(struct ib_device *device) 5294 { 5295 u32 i; 5296 5297 rdma_for_each_port(device, i) { 5298 if (rdma_cap_ib_cm(device, i) || rdma_cap_iw_cm(device, i)) 5299 return true; 5300 } 5301 return false; 5302 } 5303 5304 static int cma_add_one(struct ib_device *device) 5305 { 5306 struct rdma_id_private *to_destroy; 5307 struct cma_device *cma_dev; 5308 struct rdma_id_private *id_priv; 5309 unsigned long supported_gids = 0; 5310 int ret; 5311 u32 i; 5312 5313 if (!cma_supported(device)) 5314 return -EOPNOTSUPP; 5315 5316 cma_dev = kmalloc(sizeof(*cma_dev), GFP_KERNEL); 5317 if (!cma_dev) 5318 return -ENOMEM; 5319 5320 cma_dev->device = device; 5321 cma_dev->default_gid_type = kcalloc(device->phys_port_cnt, 5322 sizeof(*cma_dev->default_gid_type), 5323 GFP_KERNEL); 5324 if (!cma_dev->default_gid_type) { 5325 ret = -ENOMEM; 5326 goto free_cma_dev; 5327 } 5328 5329 cma_dev->default_roce_tos = kcalloc(device->phys_port_cnt, 5330 sizeof(*cma_dev->default_roce_tos), 5331 GFP_KERNEL); 5332 if (!cma_dev->default_roce_tos) { 5333 ret = -ENOMEM; 5334 goto free_gid_type; 5335 } 5336 5337 rdma_for_each_port (device, i) { 5338 supported_gids = roce_gid_type_mask_support(device, i); 5339 WARN_ON(!supported_gids); 5340 if (supported_gids & (1 << CMA_PREFERRED_ROCE_GID_TYPE)) 5341 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5342 CMA_PREFERRED_ROCE_GID_TYPE; 5343 else 5344 cma_dev->default_gid_type[i - rdma_start_port(device)] = 5345 find_first_bit(&supported_gids, BITS_PER_LONG); 5346 cma_dev->default_roce_tos[i - rdma_start_port(device)] = 0; 5347 } 5348 5349 init_completion(&cma_dev->comp); 5350 refcount_set(&cma_dev->refcount, 1); 5351 INIT_LIST_HEAD(&cma_dev->id_list); 5352 ib_set_client_data(device, &cma_client, cma_dev); 5353 5354 mutex_lock(&lock); 5355 list_add_tail(&cma_dev->list, &dev_list); 5356 list_for_each_entry(id_priv, &listen_any_list, listen_any_item) { 5357 ret = cma_listen_on_dev(id_priv, cma_dev, &to_destroy); 5358 if (ret) 5359 goto free_listen; 5360 } 5361 mutex_unlock(&lock); 5362 5363 trace_cm_add_one(device); 5364 return 0; 5365 5366 free_listen: 5367 list_del(&cma_dev->list); 5368 mutex_unlock(&lock); 5369 5370 /* cma_process_remove() will delete to_destroy */ 5371 cma_process_remove(cma_dev); 5372 kfree(cma_dev->default_roce_tos); 5373 free_gid_type: 5374 kfree(cma_dev->default_gid_type); 5375 5376 free_cma_dev: 5377 kfree(cma_dev); 5378 return ret; 5379 } 5380 5381 static void cma_remove_one(struct ib_device *device, void *client_data) 5382 { 5383 struct cma_device *cma_dev = client_data; 5384 5385 trace_cm_remove_one(device); 5386 5387 mutex_lock(&lock); 5388 list_del(&cma_dev->list); 5389 mutex_unlock(&lock); 5390 5391 cma_process_remove(cma_dev); 5392 kfree(cma_dev->default_roce_tos); 5393 kfree(cma_dev->default_gid_type); 5394 kfree(cma_dev); 5395 } 5396 5397 static int cma_init_net(struct net *net) 5398 { 5399 struct cma_pernet *pernet = cma_pernet(net); 5400 5401 xa_init(&pernet->tcp_ps); 5402 xa_init(&pernet->udp_ps); 5403 xa_init(&pernet->ipoib_ps); 5404 xa_init(&pernet->ib_ps); 5405 5406 return 0; 5407 } 5408 5409 static void cma_exit_net(struct net *net) 5410 { 5411 struct cma_pernet *pernet = cma_pernet(net); 5412 5413 WARN_ON(!xa_empty(&pernet->tcp_ps)); 5414 WARN_ON(!xa_empty(&pernet->udp_ps)); 5415 WARN_ON(!xa_empty(&pernet->ipoib_ps)); 5416 WARN_ON(!xa_empty(&pernet->ib_ps)); 5417 } 5418 5419 static struct pernet_operations cma_pernet_operations = { 5420 .init = cma_init_net, 5421 .exit = cma_exit_net, 5422 .id = &cma_pernet_id, 5423 .size = sizeof(struct cma_pernet), 5424 }; 5425 5426 static int __init cma_init(void) 5427 { 5428 int ret; 5429 5430 /* 5431 * There is a rare lock ordering dependency in cma_netdev_callback() 5432 * that only happens when bonding is enabled. Teach lockdep that rtnl 5433 * must never be nested under lock so it can find these without having 5434 * to test with bonding. 5435 */ 5436 if (IS_ENABLED(CONFIG_LOCKDEP)) { 5437 rtnl_lock(); 5438 mutex_lock(&lock); 5439 mutex_unlock(&lock); 5440 rtnl_unlock(); 5441 } 5442 5443 cma_wq = alloc_ordered_workqueue("rdma_cm", WQ_MEM_RECLAIM); 5444 if (!cma_wq) 5445 return -ENOMEM; 5446 5447 ret = register_pernet_subsys(&cma_pernet_operations); 5448 if (ret) 5449 goto err_wq; 5450 5451 ib_sa_register_client(&sa_client); 5452 register_netdevice_notifier(&cma_nb); 5453 register_netevent_notifier(&cma_netevent_cb); 5454 5455 ret = ib_register_client(&cma_client); 5456 if (ret) 5457 goto err; 5458 5459 ret = cma_configfs_init(); 5460 if (ret) 5461 goto err_ib; 5462 5463 return 0; 5464 5465 err_ib: 5466 ib_unregister_client(&cma_client); 5467 err: 5468 unregister_netevent_notifier(&cma_netevent_cb); 5469 unregister_netdevice_notifier(&cma_nb); 5470 ib_sa_unregister_client(&sa_client); 5471 unregister_pernet_subsys(&cma_pernet_operations); 5472 err_wq: 5473 destroy_workqueue(cma_wq); 5474 return ret; 5475 } 5476 5477 static void __exit cma_cleanup(void) 5478 { 5479 cma_configfs_exit(); 5480 ib_unregister_client(&cma_client); 5481 unregister_netevent_notifier(&cma_netevent_cb); 5482 unregister_netdevice_notifier(&cma_nb); 5483 ib_sa_unregister_client(&sa_client); 5484 unregister_pernet_subsys(&cma_pernet_operations); 5485 destroy_workqueue(cma_wq); 5486 } 5487 5488 module_init(cma_init); 5489 module_exit(cma_cleanup); 5490