xref: /linux/drivers/infiniband/core/cache.c (revision b6459415b384cb829f0b2a4268f211c789f6cf0b)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Intel Corporation. All rights reserved.
4  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5  * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/if_vlan.h>
37 #include <linux/module.h>
38 #include <linux/errno.h>
39 #include <linux/slab.h>
40 #include <linux/workqueue.h>
41 #include <linux/netdevice.h>
42 #include <net/addrconf.h>
43 
44 #include <rdma/ib_cache.h>
45 
46 #include "core_priv.h"
47 
48 struct ib_pkey_cache {
49 	int             table_len;
50 	u16             table[];
51 };
52 
53 struct ib_update_work {
54 	struct work_struct work;
55 	struct ib_event event;
56 	bool enforce_security;
57 };
58 
59 union ib_gid zgid;
60 EXPORT_SYMBOL(zgid);
61 
62 enum gid_attr_find_mask {
63 	GID_ATTR_FIND_MASK_GID          = 1UL << 0,
64 	GID_ATTR_FIND_MASK_NETDEV	= 1UL << 1,
65 	GID_ATTR_FIND_MASK_DEFAULT	= 1UL << 2,
66 	GID_ATTR_FIND_MASK_GID_TYPE	= 1UL << 3,
67 };
68 
69 enum gid_table_entry_state {
70 	GID_TABLE_ENTRY_INVALID		= 1,
71 	GID_TABLE_ENTRY_VALID		= 2,
72 	/*
73 	 * Indicates that entry is pending to be removed, there may
74 	 * be active users of this GID entry.
75 	 * When last user of the GID entry releases reference to it,
76 	 * GID entry is detached from the table.
77 	 */
78 	GID_TABLE_ENTRY_PENDING_DEL	= 3,
79 };
80 
81 struct roce_gid_ndev_storage {
82 	struct rcu_head rcu_head;
83 	struct net_device *ndev;
84 };
85 
86 struct ib_gid_table_entry {
87 	struct kref			kref;
88 	struct work_struct		del_work;
89 	struct ib_gid_attr		attr;
90 	void				*context;
91 	/* Store the ndev pointer to release reference later on in
92 	 * call_rcu context because by that time gid_table_entry
93 	 * and attr might be already freed. So keep a copy of it.
94 	 * ndev_storage is freed by rcu callback.
95 	 */
96 	struct roce_gid_ndev_storage	*ndev_storage;
97 	enum gid_table_entry_state	state;
98 };
99 
100 struct ib_gid_table {
101 	int				sz;
102 	/* In RoCE, adding a GID to the table requires:
103 	 * (a) Find if this GID is already exists.
104 	 * (b) Find a free space.
105 	 * (c) Write the new GID
106 	 *
107 	 * Delete requires different set of operations:
108 	 * (a) Find the GID
109 	 * (b) Delete it.
110 	 *
111 	 **/
112 	/* Any writer to data_vec must hold this lock and the write side of
113 	 * rwlock. Readers must hold only rwlock. All writers must be in a
114 	 * sleepable context.
115 	 */
116 	struct mutex			lock;
117 	/* rwlock protects data_vec[ix]->state and entry pointer.
118 	 */
119 	rwlock_t			rwlock;
120 	struct ib_gid_table_entry	**data_vec;
121 	/* bit field, each bit indicates the index of default GID */
122 	u32				default_gid_indices;
123 };
124 
125 static void dispatch_gid_change_event(struct ib_device *ib_dev, u32 port)
126 {
127 	struct ib_event event;
128 
129 	event.device		= ib_dev;
130 	event.element.port_num	= port;
131 	event.event		= IB_EVENT_GID_CHANGE;
132 
133 	ib_dispatch_event_clients(&event);
134 }
135 
136 static const char * const gid_type_str[] = {
137 	/* IB/RoCE v1 value is set for IB_GID_TYPE_IB and IB_GID_TYPE_ROCE for
138 	 * user space compatibility reasons.
139 	 */
140 	[IB_GID_TYPE_IB]	= "IB/RoCE v1",
141 	[IB_GID_TYPE_ROCE]	= "IB/RoCE v1",
142 	[IB_GID_TYPE_ROCE_UDP_ENCAP]	= "RoCE v2",
143 };
144 
145 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
146 {
147 	if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
148 		return gid_type_str[gid_type];
149 
150 	return "Invalid GID type";
151 }
152 EXPORT_SYMBOL(ib_cache_gid_type_str);
153 
154 /** rdma_is_zero_gid - Check if given GID is zero or not.
155  * @gid:	GID to check
156  * Returns true if given GID is zero, returns false otherwise.
157  */
158 bool rdma_is_zero_gid(const union ib_gid *gid)
159 {
160 	return !memcmp(gid, &zgid, sizeof(*gid));
161 }
162 EXPORT_SYMBOL(rdma_is_zero_gid);
163 
164 /** is_gid_index_default - Check if a given index belongs to
165  * reserved default GIDs or not.
166  * @table:	GID table pointer
167  * @index:	Index to check in GID table
168  * Returns true if index is one of the reserved default GID index otherwise
169  * returns false.
170  */
171 static bool is_gid_index_default(const struct ib_gid_table *table,
172 				 unsigned int index)
173 {
174 	return index < 32 && (BIT(index) & table->default_gid_indices);
175 }
176 
177 int ib_cache_gid_parse_type_str(const char *buf)
178 {
179 	unsigned int i;
180 	size_t len;
181 	int err = -EINVAL;
182 
183 	len = strlen(buf);
184 	if (len == 0)
185 		return -EINVAL;
186 
187 	if (buf[len - 1] == '\n')
188 		len--;
189 
190 	for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
191 		if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
192 		    len == strlen(gid_type_str[i])) {
193 			err = i;
194 			break;
195 		}
196 
197 	return err;
198 }
199 EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
200 
201 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u32 port)
202 {
203 	return device->port_data[port].cache.gid;
204 }
205 
206 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
207 {
208 	return !entry;
209 }
210 
211 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
212 {
213 	return entry && entry->state == GID_TABLE_ENTRY_VALID;
214 }
215 
216 static void schedule_free_gid(struct kref *kref)
217 {
218 	struct ib_gid_table_entry *entry =
219 			container_of(kref, struct ib_gid_table_entry, kref);
220 
221 	queue_work(ib_wq, &entry->del_work);
222 }
223 
224 static void put_gid_ndev(struct rcu_head *head)
225 {
226 	struct roce_gid_ndev_storage *storage =
227 		container_of(head, struct roce_gid_ndev_storage, rcu_head);
228 
229 	WARN_ON(!storage->ndev);
230 	/* At this point its safe to release netdev reference,
231 	 * as all callers working on gid_attr->ndev are done
232 	 * using this netdev.
233 	 */
234 	dev_put(storage->ndev);
235 	kfree(storage);
236 }
237 
238 static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
239 {
240 	struct ib_device *device = entry->attr.device;
241 	u32 port_num = entry->attr.port_num;
242 	struct ib_gid_table *table = rdma_gid_table(device, port_num);
243 
244 	dev_dbg(&device->dev, "%s port=%u index=%u gid %pI6\n", __func__,
245 		port_num, entry->attr.index, entry->attr.gid.raw);
246 
247 	write_lock_irq(&table->rwlock);
248 
249 	/*
250 	 * The only way to avoid overwriting NULL in table is
251 	 * by comparing if it is same entry in table or not!
252 	 * If new entry in table is added by the time we free here,
253 	 * don't overwrite the table entry.
254 	 */
255 	if (entry == table->data_vec[entry->attr.index])
256 		table->data_vec[entry->attr.index] = NULL;
257 	/* Now this index is ready to be allocated */
258 	write_unlock_irq(&table->rwlock);
259 
260 	if (entry->ndev_storage)
261 		call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
262 	kfree(entry);
263 }
264 
265 static void free_gid_entry(struct kref *kref)
266 {
267 	struct ib_gid_table_entry *entry =
268 			container_of(kref, struct ib_gid_table_entry, kref);
269 
270 	free_gid_entry_locked(entry);
271 }
272 
273 /**
274  * free_gid_work - Release reference to the GID entry
275  * @work: Work structure to refer to GID entry which needs to be
276  * deleted.
277  *
278  * free_gid_work() frees the entry from the HCA's hardware table
279  * if provider supports it. It releases reference to netdevice.
280  */
281 static void free_gid_work(struct work_struct *work)
282 {
283 	struct ib_gid_table_entry *entry =
284 		container_of(work, struct ib_gid_table_entry, del_work);
285 	struct ib_device *device = entry->attr.device;
286 	u32 port_num = entry->attr.port_num;
287 	struct ib_gid_table *table = rdma_gid_table(device, port_num);
288 
289 	mutex_lock(&table->lock);
290 	free_gid_entry_locked(entry);
291 	mutex_unlock(&table->lock);
292 }
293 
294 static struct ib_gid_table_entry *
295 alloc_gid_entry(const struct ib_gid_attr *attr)
296 {
297 	struct ib_gid_table_entry *entry;
298 	struct net_device *ndev;
299 
300 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
301 	if (!entry)
302 		return NULL;
303 
304 	ndev = rcu_dereference_protected(attr->ndev, 1);
305 	if (ndev) {
306 		entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
307 					      GFP_KERNEL);
308 		if (!entry->ndev_storage) {
309 			kfree(entry);
310 			return NULL;
311 		}
312 		dev_hold(ndev);
313 		entry->ndev_storage->ndev = ndev;
314 	}
315 	kref_init(&entry->kref);
316 	memcpy(&entry->attr, attr, sizeof(*attr));
317 	INIT_WORK(&entry->del_work, free_gid_work);
318 	entry->state = GID_TABLE_ENTRY_INVALID;
319 	return entry;
320 }
321 
322 static void store_gid_entry(struct ib_gid_table *table,
323 			    struct ib_gid_table_entry *entry)
324 {
325 	entry->state = GID_TABLE_ENTRY_VALID;
326 
327 	dev_dbg(&entry->attr.device->dev, "%s port=%u index=%u gid %pI6\n",
328 		__func__, entry->attr.port_num, entry->attr.index,
329 		entry->attr.gid.raw);
330 
331 	lockdep_assert_held(&table->lock);
332 	write_lock_irq(&table->rwlock);
333 	table->data_vec[entry->attr.index] = entry;
334 	write_unlock_irq(&table->rwlock);
335 }
336 
337 static void get_gid_entry(struct ib_gid_table_entry *entry)
338 {
339 	kref_get(&entry->kref);
340 }
341 
342 static void put_gid_entry(struct ib_gid_table_entry *entry)
343 {
344 	kref_put(&entry->kref, schedule_free_gid);
345 }
346 
347 static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
348 {
349 	kref_put(&entry->kref, free_gid_entry);
350 }
351 
352 static int add_roce_gid(struct ib_gid_table_entry *entry)
353 {
354 	const struct ib_gid_attr *attr = &entry->attr;
355 	int ret;
356 
357 	if (!attr->ndev) {
358 		dev_err(&attr->device->dev, "%s NULL netdev port=%u index=%u\n",
359 			__func__, attr->port_num, attr->index);
360 		return -EINVAL;
361 	}
362 	if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
363 		ret = attr->device->ops.add_gid(attr, &entry->context);
364 		if (ret) {
365 			dev_err(&attr->device->dev,
366 				"%s GID add failed port=%u index=%u\n",
367 				__func__, attr->port_num, attr->index);
368 			return ret;
369 		}
370 	}
371 	return 0;
372 }
373 
374 /**
375  * del_gid - Delete GID table entry
376  *
377  * @ib_dev:	IB device whose GID entry to be deleted
378  * @port:	Port number of the IB device
379  * @table:	GID table of the IB device for a port
380  * @ix:		GID entry index to delete
381  *
382  */
383 static void del_gid(struct ib_device *ib_dev, u32 port,
384 		    struct ib_gid_table *table, int ix)
385 {
386 	struct roce_gid_ndev_storage *ndev_storage;
387 	struct ib_gid_table_entry *entry;
388 
389 	lockdep_assert_held(&table->lock);
390 
391 	dev_dbg(&ib_dev->dev, "%s port=%u index=%d gid %pI6\n", __func__, port,
392 		ix, table->data_vec[ix]->attr.gid.raw);
393 
394 	write_lock_irq(&table->rwlock);
395 	entry = table->data_vec[ix];
396 	entry->state = GID_TABLE_ENTRY_PENDING_DEL;
397 	/*
398 	 * For non RoCE protocol, GID entry slot is ready to use.
399 	 */
400 	if (!rdma_protocol_roce(ib_dev, port))
401 		table->data_vec[ix] = NULL;
402 	write_unlock_irq(&table->rwlock);
403 
404 	ndev_storage = entry->ndev_storage;
405 	if (ndev_storage) {
406 		entry->ndev_storage = NULL;
407 		rcu_assign_pointer(entry->attr.ndev, NULL);
408 		call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
409 	}
410 
411 	if (rdma_cap_roce_gid_table(ib_dev, port))
412 		ib_dev->ops.del_gid(&entry->attr, &entry->context);
413 
414 	put_gid_entry_locked(entry);
415 }
416 
417 /**
418  * add_modify_gid - Add or modify GID table entry
419  *
420  * @table:	GID table in which GID to be added or modified
421  * @attr:	Attributes of the GID
422  *
423  * Returns 0 on success or appropriate error code. It accepts zero
424  * GID addition for non RoCE ports for HCA's who report them as valid
425  * GID. However such zero GIDs are not added to the cache.
426  */
427 static int add_modify_gid(struct ib_gid_table *table,
428 			  const struct ib_gid_attr *attr)
429 {
430 	struct ib_gid_table_entry *entry;
431 	int ret = 0;
432 
433 	/*
434 	 * Invalidate any old entry in the table to make it safe to write to
435 	 * this index.
436 	 */
437 	if (is_gid_entry_valid(table->data_vec[attr->index]))
438 		del_gid(attr->device, attr->port_num, table, attr->index);
439 
440 	/*
441 	 * Some HCA's report multiple GID entries with only one valid GID, and
442 	 * leave other unused entries as the zero GID. Convert zero GIDs to
443 	 * empty table entries instead of storing them.
444 	 */
445 	if (rdma_is_zero_gid(&attr->gid))
446 		return 0;
447 
448 	entry = alloc_gid_entry(attr);
449 	if (!entry)
450 		return -ENOMEM;
451 
452 	if (rdma_protocol_roce(attr->device, attr->port_num)) {
453 		ret = add_roce_gid(entry);
454 		if (ret)
455 			goto done;
456 	}
457 
458 	store_gid_entry(table, entry);
459 	return 0;
460 
461 done:
462 	put_gid_entry(entry);
463 	return ret;
464 }
465 
466 /* rwlock should be read locked, or lock should be held */
467 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
468 		    const struct ib_gid_attr *val, bool default_gid,
469 		    unsigned long mask, int *pempty)
470 {
471 	int i = 0;
472 	int found = -1;
473 	int empty = pempty ? -1 : 0;
474 
475 	while (i < table->sz && (found < 0 || empty < 0)) {
476 		struct ib_gid_table_entry *data = table->data_vec[i];
477 		struct ib_gid_attr *attr;
478 		int curr_index = i;
479 
480 		i++;
481 
482 		/* find_gid() is used during GID addition where it is expected
483 		 * to return a free entry slot which is not duplicate.
484 		 * Free entry slot is requested and returned if pempty is set,
485 		 * so lookup free slot only if requested.
486 		 */
487 		if (pempty && empty < 0) {
488 			if (is_gid_entry_free(data) &&
489 			    default_gid ==
490 				is_gid_index_default(table, curr_index)) {
491 				/*
492 				 * Found an invalid (free) entry; allocate it.
493 				 * If default GID is requested, then our
494 				 * found slot must be one of the DEFAULT
495 				 * reserved slots or we fail.
496 				 * This ensures that only DEFAULT reserved
497 				 * slots are used for default property GIDs.
498 				 */
499 				empty = curr_index;
500 			}
501 		}
502 
503 		/*
504 		 * Additionally find_gid() is used to find valid entry during
505 		 * lookup operation; so ignore the entries which are marked as
506 		 * pending for removal and the entries which are marked as
507 		 * invalid.
508 		 */
509 		if (!is_gid_entry_valid(data))
510 			continue;
511 
512 		if (found >= 0)
513 			continue;
514 
515 		attr = &data->attr;
516 		if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
517 		    attr->gid_type != val->gid_type)
518 			continue;
519 
520 		if (mask & GID_ATTR_FIND_MASK_GID &&
521 		    memcmp(gid, &data->attr.gid, sizeof(*gid)))
522 			continue;
523 
524 		if (mask & GID_ATTR_FIND_MASK_NETDEV &&
525 		    attr->ndev != val->ndev)
526 			continue;
527 
528 		if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
529 		    is_gid_index_default(table, curr_index) != default_gid)
530 			continue;
531 
532 		found = curr_index;
533 	}
534 
535 	if (pempty)
536 		*pempty = empty;
537 
538 	return found;
539 }
540 
541 static void make_default_gid(struct  net_device *dev, union ib_gid *gid)
542 {
543 	gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
544 	addrconf_ifid_eui48(&gid->raw[8], dev);
545 }
546 
547 static int __ib_cache_gid_add(struct ib_device *ib_dev, u32 port,
548 			      union ib_gid *gid, struct ib_gid_attr *attr,
549 			      unsigned long mask, bool default_gid)
550 {
551 	struct ib_gid_table *table;
552 	int ret = 0;
553 	int empty;
554 	int ix;
555 
556 	/* Do not allow adding zero GID in support of
557 	 * IB spec version 1.3 section 4.1.1 point (6) and
558 	 * section 12.7.10 and section 12.7.20
559 	 */
560 	if (rdma_is_zero_gid(gid))
561 		return -EINVAL;
562 
563 	table = rdma_gid_table(ib_dev, port);
564 
565 	mutex_lock(&table->lock);
566 
567 	ix = find_gid(table, gid, attr, default_gid, mask, &empty);
568 	if (ix >= 0)
569 		goto out_unlock;
570 
571 	if (empty < 0) {
572 		ret = -ENOSPC;
573 		goto out_unlock;
574 	}
575 	attr->device = ib_dev;
576 	attr->index = empty;
577 	attr->port_num = port;
578 	attr->gid = *gid;
579 	ret = add_modify_gid(table, attr);
580 	if (!ret)
581 		dispatch_gid_change_event(ib_dev, port);
582 
583 out_unlock:
584 	mutex_unlock(&table->lock);
585 	if (ret)
586 		pr_warn("%s: unable to add gid %pI6 error=%d\n",
587 			__func__, gid->raw, ret);
588 	return ret;
589 }
590 
591 int ib_cache_gid_add(struct ib_device *ib_dev, u32 port,
592 		     union ib_gid *gid, struct ib_gid_attr *attr)
593 {
594 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
595 			     GID_ATTR_FIND_MASK_GID_TYPE |
596 			     GID_ATTR_FIND_MASK_NETDEV;
597 
598 	return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
599 }
600 
601 static int
602 _ib_cache_gid_del(struct ib_device *ib_dev, u32 port,
603 		  union ib_gid *gid, struct ib_gid_attr *attr,
604 		  unsigned long mask, bool default_gid)
605 {
606 	struct ib_gid_table *table;
607 	int ret = 0;
608 	int ix;
609 
610 	table = rdma_gid_table(ib_dev, port);
611 
612 	mutex_lock(&table->lock);
613 
614 	ix = find_gid(table, gid, attr, default_gid, mask, NULL);
615 	if (ix < 0) {
616 		ret = -EINVAL;
617 		goto out_unlock;
618 	}
619 
620 	del_gid(ib_dev, port, table, ix);
621 	dispatch_gid_change_event(ib_dev, port);
622 
623 out_unlock:
624 	mutex_unlock(&table->lock);
625 	if (ret)
626 		pr_debug("%s: can't delete gid %pI6 error=%d\n",
627 			 __func__, gid->raw, ret);
628 	return ret;
629 }
630 
631 int ib_cache_gid_del(struct ib_device *ib_dev, u32 port,
632 		     union ib_gid *gid, struct ib_gid_attr *attr)
633 {
634 	unsigned long mask = GID_ATTR_FIND_MASK_GID	  |
635 			     GID_ATTR_FIND_MASK_GID_TYPE |
636 			     GID_ATTR_FIND_MASK_DEFAULT  |
637 			     GID_ATTR_FIND_MASK_NETDEV;
638 
639 	return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
640 }
641 
642 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u32 port,
643 				     struct net_device *ndev)
644 {
645 	struct ib_gid_table *table;
646 	int ix;
647 	bool deleted = false;
648 
649 	table = rdma_gid_table(ib_dev, port);
650 
651 	mutex_lock(&table->lock);
652 
653 	for (ix = 0; ix < table->sz; ix++) {
654 		if (is_gid_entry_valid(table->data_vec[ix]) &&
655 		    table->data_vec[ix]->attr.ndev == ndev) {
656 			del_gid(ib_dev, port, table, ix);
657 			deleted = true;
658 		}
659 	}
660 
661 	mutex_unlock(&table->lock);
662 
663 	if (deleted)
664 		dispatch_gid_change_event(ib_dev, port);
665 
666 	return 0;
667 }
668 
669 /**
670  * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
671  * a valid GID entry for given search parameters. It searches for the specified
672  * GID value in the local software cache.
673  * @ib_dev: The device to query.
674  * @gid: The GID value to search for.
675  * @gid_type: The GID type to search for.
676  * @port: The port number of the device where the GID value should be searched.
677  * @ndev: In RoCE, the net device of the device. NULL means ignore.
678  *
679  * Returns sgid attributes if the GID is found with valid reference or
680  * returns ERR_PTR for the error.
681  * The caller must invoke rdma_put_gid_attr() to release the reference.
682  */
683 const struct ib_gid_attr *
684 rdma_find_gid_by_port(struct ib_device *ib_dev,
685 		      const union ib_gid *gid,
686 		      enum ib_gid_type gid_type,
687 		      u32 port, struct net_device *ndev)
688 {
689 	int local_index;
690 	struct ib_gid_table *table;
691 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
692 			     GID_ATTR_FIND_MASK_GID_TYPE;
693 	struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
694 	const struct ib_gid_attr *attr;
695 	unsigned long flags;
696 
697 	if (!rdma_is_port_valid(ib_dev, port))
698 		return ERR_PTR(-ENOENT);
699 
700 	table = rdma_gid_table(ib_dev, port);
701 
702 	if (ndev)
703 		mask |= GID_ATTR_FIND_MASK_NETDEV;
704 
705 	read_lock_irqsave(&table->rwlock, flags);
706 	local_index = find_gid(table, gid, &val, false, mask, NULL);
707 	if (local_index >= 0) {
708 		get_gid_entry(table->data_vec[local_index]);
709 		attr = &table->data_vec[local_index]->attr;
710 		read_unlock_irqrestore(&table->rwlock, flags);
711 		return attr;
712 	}
713 
714 	read_unlock_irqrestore(&table->rwlock, flags);
715 	return ERR_PTR(-ENOENT);
716 }
717 EXPORT_SYMBOL(rdma_find_gid_by_port);
718 
719 /**
720  * rdma_find_gid_by_filter - Returns the GID table attribute where a
721  * specified GID value occurs
722  * @ib_dev: The device to query.
723  * @gid: The GID value to search for.
724  * @port: The port number of the device where the GID value could be
725  *   searched.
726  * @filter: The filter function is executed on any matching GID in the table.
727  *   If the filter function returns true, the corresponding index is returned,
728  *   otherwise, we continue searching the GID table. It's guaranteed that
729  *   while filter is executed, ndev field is valid and the structure won't
730  *   change. filter is executed in an atomic context. filter must not be NULL.
731  * @context: Private data to pass into the call-back.
732  *
733  * rdma_find_gid_by_filter() searches for the specified GID value
734  * of which the filter function returns true in the port's GID table.
735  *
736  */
737 const struct ib_gid_attr *rdma_find_gid_by_filter(
738 	struct ib_device *ib_dev, const union ib_gid *gid, u32 port,
739 	bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
740 		       void *),
741 	void *context)
742 {
743 	const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
744 	struct ib_gid_table *table;
745 	unsigned long flags;
746 	unsigned int i;
747 
748 	if (!rdma_is_port_valid(ib_dev, port))
749 		return ERR_PTR(-EINVAL);
750 
751 	table = rdma_gid_table(ib_dev, port);
752 
753 	read_lock_irqsave(&table->rwlock, flags);
754 	for (i = 0; i < table->sz; i++) {
755 		struct ib_gid_table_entry *entry = table->data_vec[i];
756 
757 		if (!is_gid_entry_valid(entry))
758 			continue;
759 
760 		if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
761 			continue;
762 
763 		if (filter(gid, &entry->attr, context)) {
764 			get_gid_entry(entry);
765 			res = &entry->attr;
766 			break;
767 		}
768 	}
769 	read_unlock_irqrestore(&table->rwlock, flags);
770 	return res;
771 }
772 
773 static struct ib_gid_table *alloc_gid_table(int sz)
774 {
775 	struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
776 
777 	if (!table)
778 		return NULL;
779 
780 	table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
781 	if (!table->data_vec)
782 		goto err_free_table;
783 
784 	mutex_init(&table->lock);
785 
786 	table->sz = sz;
787 	rwlock_init(&table->rwlock);
788 	return table;
789 
790 err_free_table:
791 	kfree(table);
792 	return NULL;
793 }
794 
795 static void release_gid_table(struct ib_device *device,
796 			      struct ib_gid_table *table)
797 {
798 	bool leak = false;
799 	int i;
800 
801 	if (!table)
802 		return;
803 
804 	for (i = 0; i < table->sz; i++) {
805 		if (is_gid_entry_free(table->data_vec[i]))
806 			continue;
807 		if (kref_read(&table->data_vec[i]->kref) > 1) {
808 			dev_err(&device->dev,
809 				"GID entry ref leak for index %d ref=%u\n", i,
810 				kref_read(&table->data_vec[i]->kref));
811 			leak = true;
812 		}
813 	}
814 	if (leak)
815 		return;
816 
817 	mutex_destroy(&table->lock);
818 	kfree(table->data_vec);
819 	kfree(table);
820 }
821 
822 static void cleanup_gid_table_port(struct ib_device *ib_dev, u32 port,
823 				   struct ib_gid_table *table)
824 {
825 	int i;
826 
827 	if (!table)
828 		return;
829 
830 	mutex_lock(&table->lock);
831 	for (i = 0; i < table->sz; ++i) {
832 		if (is_gid_entry_valid(table->data_vec[i]))
833 			del_gid(ib_dev, port, table, i);
834 	}
835 	mutex_unlock(&table->lock);
836 }
837 
838 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u32 port,
839 				  struct net_device *ndev,
840 				  unsigned long gid_type_mask,
841 				  enum ib_cache_gid_default_mode mode)
842 {
843 	union ib_gid gid = { };
844 	struct ib_gid_attr gid_attr;
845 	unsigned int gid_type;
846 	unsigned long mask;
847 
848 	mask = GID_ATTR_FIND_MASK_GID_TYPE |
849 	       GID_ATTR_FIND_MASK_DEFAULT |
850 	       GID_ATTR_FIND_MASK_NETDEV;
851 	memset(&gid_attr, 0, sizeof(gid_attr));
852 	gid_attr.ndev = ndev;
853 
854 	for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
855 		if (1UL << gid_type & ~gid_type_mask)
856 			continue;
857 
858 		gid_attr.gid_type = gid_type;
859 
860 		if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
861 			make_default_gid(ndev, &gid);
862 			__ib_cache_gid_add(ib_dev, port, &gid,
863 					   &gid_attr, mask, true);
864 		} else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
865 			_ib_cache_gid_del(ib_dev, port, &gid,
866 					  &gid_attr, mask, true);
867 		}
868 	}
869 }
870 
871 static void gid_table_reserve_default(struct ib_device *ib_dev, u32 port,
872 				      struct ib_gid_table *table)
873 {
874 	unsigned int i;
875 	unsigned long roce_gid_type_mask;
876 	unsigned int num_default_gids;
877 
878 	roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
879 	num_default_gids = hweight_long(roce_gid_type_mask);
880 	/* Reserve starting indices for default GIDs */
881 	for (i = 0; i < num_default_gids && i < table->sz; i++)
882 		table->default_gid_indices |= BIT(i);
883 }
884 
885 
886 static void gid_table_release_one(struct ib_device *ib_dev)
887 {
888 	u32 p;
889 
890 	rdma_for_each_port (ib_dev, p) {
891 		release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
892 		ib_dev->port_data[p].cache.gid = NULL;
893 	}
894 }
895 
896 static int _gid_table_setup_one(struct ib_device *ib_dev)
897 {
898 	struct ib_gid_table *table;
899 	u32 rdma_port;
900 
901 	rdma_for_each_port (ib_dev, rdma_port) {
902 		table = alloc_gid_table(
903 			ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
904 		if (!table)
905 			goto rollback_table_setup;
906 
907 		gid_table_reserve_default(ib_dev, rdma_port, table);
908 		ib_dev->port_data[rdma_port].cache.gid = table;
909 	}
910 	return 0;
911 
912 rollback_table_setup:
913 	gid_table_release_one(ib_dev);
914 	return -ENOMEM;
915 }
916 
917 static void gid_table_cleanup_one(struct ib_device *ib_dev)
918 {
919 	u32 p;
920 
921 	rdma_for_each_port (ib_dev, p)
922 		cleanup_gid_table_port(ib_dev, p,
923 				       ib_dev->port_data[p].cache.gid);
924 }
925 
926 static int gid_table_setup_one(struct ib_device *ib_dev)
927 {
928 	int err;
929 
930 	err = _gid_table_setup_one(ib_dev);
931 
932 	if (err)
933 		return err;
934 
935 	rdma_roce_rescan_device(ib_dev);
936 
937 	return err;
938 }
939 
940 /**
941  * rdma_query_gid - Read the GID content from the GID software cache
942  * @device:		Device to query the GID
943  * @port_num:		Port number of the device
944  * @index:		Index of the GID table entry to read
945  * @gid:		Pointer to GID where to store the entry's GID
946  *
947  * rdma_query_gid() only reads the GID entry content for requested device,
948  * port and index. It reads for IB, RoCE and iWarp link layers.  It doesn't
949  * hold any reference to the GID table entry in the HCA or software cache.
950  *
951  * Returns 0 on success or appropriate error code.
952  *
953  */
954 int rdma_query_gid(struct ib_device *device, u32 port_num,
955 		   int index, union ib_gid *gid)
956 {
957 	struct ib_gid_table *table;
958 	unsigned long flags;
959 	int res = -EINVAL;
960 
961 	if (!rdma_is_port_valid(device, port_num))
962 		return -EINVAL;
963 
964 	table = rdma_gid_table(device, port_num);
965 	read_lock_irqsave(&table->rwlock, flags);
966 
967 	if (index < 0 || index >= table->sz ||
968 	    !is_gid_entry_valid(table->data_vec[index]))
969 		goto done;
970 
971 	memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
972 	res = 0;
973 
974 done:
975 	read_unlock_irqrestore(&table->rwlock, flags);
976 	return res;
977 }
978 EXPORT_SYMBOL(rdma_query_gid);
979 
980 /**
981  * rdma_read_gid_hw_context - Read the HW GID context from GID attribute
982  * @attr:		Potinter to the GID attribute
983  *
984  * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding
985  * to the SGID attr. Callers are required to already be holding the reference
986  * to an existing GID entry.
987  *
988  * Returns the HW GID context
989  *
990  */
991 void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr)
992 {
993 	return container_of(attr, struct ib_gid_table_entry, attr)->context;
994 }
995 EXPORT_SYMBOL(rdma_read_gid_hw_context);
996 
997 /**
998  * rdma_find_gid - Returns SGID attributes if the matching GID is found.
999  * @device: The device to query.
1000  * @gid: The GID value to search for.
1001  * @gid_type: The GID type to search for.
1002  * @ndev: In RoCE, the net device of the device. NULL means ignore.
1003  *
1004  * rdma_find_gid() searches for the specified GID value in the software cache.
1005  *
1006  * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
1007  * error. The caller must invoke rdma_put_gid_attr() to release the reference.
1008  *
1009  */
1010 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
1011 					const union ib_gid *gid,
1012 					enum ib_gid_type gid_type,
1013 					struct net_device *ndev)
1014 {
1015 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
1016 			     GID_ATTR_FIND_MASK_GID_TYPE;
1017 	struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
1018 	u32 p;
1019 
1020 	if (ndev)
1021 		mask |= GID_ATTR_FIND_MASK_NETDEV;
1022 
1023 	rdma_for_each_port(device, p) {
1024 		struct ib_gid_table *table;
1025 		unsigned long flags;
1026 		int index;
1027 
1028 		table = device->port_data[p].cache.gid;
1029 		read_lock_irqsave(&table->rwlock, flags);
1030 		index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1031 		if (index >= 0) {
1032 			const struct ib_gid_attr *attr;
1033 
1034 			get_gid_entry(table->data_vec[index]);
1035 			attr = &table->data_vec[index]->attr;
1036 			read_unlock_irqrestore(&table->rwlock, flags);
1037 			return attr;
1038 		}
1039 		read_unlock_irqrestore(&table->rwlock, flags);
1040 	}
1041 
1042 	return ERR_PTR(-ENOENT);
1043 }
1044 EXPORT_SYMBOL(rdma_find_gid);
1045 
1046 int ib_get_cached_pkey(struct ib_device *device,
1047 		       u32               port_num,
1048 		       int               index,
1049 		       u16              *pkey)
1050 {
1051 	struct ib_pkey_cache *cache;
1052 	unsigned long flags;
1053 	int ret = 0;
1054 
1055 	if (!rdma_is_port_valid(device, port_num))
1056 		return -EINVAL;
1057 
1058 	read_lock_irqsave(&device->cache_lock, flags);
1059 
1060 	cache = device->port_data[port_num].cache.pkey;
1061 
1062 	if (!cache || index < 0 || index >= cache->table_len)
1063 		ret = -EINVAL;
1064 	else
1065 		*pkey = cache->table[index];
1066 
1067 	read_unlock_irqrestore(&device->cache_lock, flags);
1068 
1069 	return ret;
1070 }
1071 EXPORT_SYMBOL(ib_get_cached_pkey);
1072 
1073 void ib_get_cached_subnet_prefix(struct ib_device *device, u32 port_num,
1074 				u64 *sn_pfx)
1075 {
1076 	unsigned long flags;
1077 
1078 	read_lock_irqsave(&device->cache_lock, flags);
1079 	*sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1080 	read_unlock_irqrestore(&device->cache_lock, flags);
1081 }
1082 EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1083 
1084 int ib_find_cached_pkey(struct ib_device *device, u32 port_num,
1085 			u16 pkey, u16 *index)
1086 {
1087 	struct ib_pkey_cache *cache;
1088 	unsigned long flags;
1089 	int i;
1090 	int ret = -ENOENT;
1091 	int partial_ix = -1;
1092 
1093 	if (!rdma_is_port_valid(device, port_num))
1094 		return -EINVAL;
1095 
1096 	read_lock_irqsave(&device->cache_lock, flags);
1097 
1098 	cache = device->port_data[port_num].cache.pkey;
1099 	if (!cache) {
1100 		ret = -EINVAL;
1101 		goto err;
1102 	}
1103 
1104 	*index = -1;
1105 
1106 	for (i = 0; i < cache->table_len; ++i)
1107 		if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1108 			if (cache->table[i] & 0x8000) {
1109 				*index = i;
1110 				ret = 0;
1111 				break;
1112 			} else {
1113 				partial_ix = i;
1114 			}
1115 		}
1116 
1117 	if (ret && partial_ix >= 0) {
1118 		*index = partial_ix;
1119 		ret = 0;
1120 	}
1121 
1122 err:
1123 	read_unlock_irqrestore(&device->cache_lock, flags);
1124 
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL(ib_find_cached_pkey);
1128 
1129 int ib_find_exact_cached_pkey(struct ib_device *device, u32 port_num,
1130 			      u16 pkey, u16 *index)
1131 {
1132 	struct ib_pkey_cache *cache;
1133 	unsigned long flags;
1134 	int i;
1135 	int ret = -ENOENT;
1136 
1137 	if (!rdma_is_port_valid(device, port_num))
1138 		return -EINVAL;
1139 
1140 	read_lock_irqsave(&device->cache_lock, flags);
1141 
1142 	cache = device->port_data[port_num].cache.pkey;
1143 	if (!cache) {
1144 		ret = -EINVAL;
1145 		goto err;
1146 	}
1147 
1148 	*index = -1;
1149 
1150 	for (i = 0; i < cache->table_len; ++i)
1151 		if (cache->table[i] == pkey) {
1152 			*index = i;
1153 			ret = 0;
1154 			break;
1155 		}
1156 
1157 err:
1158 	read_unlock_irqrestore(&device->cache_lock, flags);
1159 
1160 	return ret;
1161 }
1162 EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1163 
1164 int ib_get_cached_lmc(struct ib_device *device, u32 port_num, u8 *lmc)
1165 {
1166 	unsigned long flags;
1167 	int ret = 0;
1168 
1169 	if (!rdma_is_port_valid(device, port_num))
1170 		return -EINVAL;
1171 
1172 	read_lock_irqsave(&device->cache_lock, flags);
1173 	*lmc = device->port_data[port_num].cache.lmc;
1174 	read_unlock_irqrestore(&device->cache_lock, flags);
1175 
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL(ib_get_cached_lmc);
1179 
1180 int ib_get_cached_port_state(struct ib_device *device, u32 port_num,
1181 			     enum ib_port_state *port_state)
1182 {
1183 	unsigned long flags;
1184 	int ret = 0;
1185 
1186 	if (!rdma_is_port_valid(device, port_num))
1187 		return -EINVAL;
1188 
1189 	read_lock_irqsave(&device->cache_lock, flags);
1190 	*port_state = device->port_data[port_num].cache.port_state;
1191 	read_unlock_irqrestore(&device->cache_lock, flags);
1192 
1193 	return ret;
1194 }
1195 EXPORT_SYMBOL(ib_get_cached_port_state);
1196 
1197 /**
1198  * rdma_get_gid_attr - Returns GID attributes for a port of a device
1199  * at a requested gid_index, if a valid GID entry exists.
1200  * @device:		The device to query.
1201  * @port_num:		The port number on the device where the GID value
1202  *			is to be queried.
1203  * @index:		Index of the GID table entry whose attributes are to
1204  *                      be queried.
1205  *
1206  * rdma_get_gid_attr() acquires reference count of gid attributes from the
1207  * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1208  * reference to gid attribute regardless of link layer.
1209  *
1210  * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1211  * code.
1212  */
1213 const struct ib_gid_attr *
1214 rdma_get_gid_attr(struct ib_device *device, u32 port_num, int index)
1215 {
1216 	const struct ib_gid_attr *attr = ERR_PTR(-ENODATA);
1217 	struct ib_gid_table *table;
1218 	unsigned long flags;
1219 
1220 	if (!rdma_is_port_valid(device, port_num))
1221 		return ERR_PTR(-EINVAL);
1222 
1223 	table = rdma_gid_table(device, port_num);
1224 	if (index < 0 || index >= table->sz)
1225 		return ERR_PTR(-EINVAL);
1226 
1227 	read_lock_irqsave(&table->rwlock, flags);
1228 	if (!is_gid_entry_valid(table->data_vec[index]))
1229 		goto done;
1230 
1231 	get_gid_entry(table->data_vec[index]);
1232 	attr = &table->data_vec[index]->attr;
1233 done:
1234 	read_unlock_irqrestore(&table->rwlock, flags);
1235 	return attr;
1236 }
1237 EXPORT_SYMBOL(rdma_get_gid_attr);
1238 
1239 /**
1240  * rdma_query_gid_table - Reads GID table entries of all the ports of a device up to max_entries.
1241  * @device: The device to query.
1242  * @entries: Entries where GID entries are returned.
1243  * @max_entries: Maximum number of entries that can be returned.
1244  * Entries array must be allocated to hold max_entries number of entries.
1245  *
1246  * Returns number of entries on success or appropriate error code.
1247  */
1248 ssize_t rdma_query_gid_table(struct ib_device *device,
1249 			     struct ib_uverbs_gid_entry *entries,
1250 			     size_t max_entries)
1251 {
1252 	const struct ib_gid_attr *gid_attr;
1253 	ssize_t num_entries = 0, ret;
1254 	struct ib_gid_table *table;
1255 	u32 port_num, i;
1256 	struct net_device *ndev;
1257 	unsigned long flags;
1258 
1259 	rdma_for_each_port(device, port_num) {
1260 		table = rdma_gid_table(device, port_num);
1261 		read_lock_irqsave(&table->rwlock, flags);
1262 		for (i = 0; i < table->sz; i++) {
1263 			if (!is_gid_entry_valid(table->data_vec[i]))
1264 				continue;
1265 			if (num_entries >= max_entries) {
1266 				ret = -EINVAL;
1267 				goto err;
1268 			}
1269 
1270 			gid_attr = &table->data_vec[i]->attr;
1271 
1272 			memcpy(&entries->gid, &gid_attr->gid,
1273 			       sizeof(gid_attr->gid));
1274 			entries->gid_index = gid_attr->index;
1275 			entries->port_num = gid_attr->port_num;
1276 			entries->gid_type = gid_attr->gid_type;
1277 			ndev = rcu_dereference_protected(
1278 				gid_attr->ndev,
1279 				lockdep_is_held(&table->rwlock));
1280 			if (ndev)
1281 				entries->netdev_ifindex = ndev->ifindex;
1282 
1283 			num_entries++;
1284 			entries++;
1285 		}
1286 		read_unlock_irqrestore(&table->rwlock, flags);
1287 	}
1288 
1289 	return num_entries;
1290 err:
1291 	read_unlock_irqrestore(&table->rwlock, flags);
1292 	return ret;
1293 }
1294 EXPORT_SYMBOL(rdma_query_gid_table);
1295 
1296 /**
1297  * rdma_put_gid_attr - Release reference to the GID attribute
1298  * @attr:		Pointer to the GID attribute whose reference
1299  *			needs to be released.
1300  *
1301  * rdma_put_gid_attr() must be used to release reference whose
1302  * reference is acquired using rdma_get_gid_attr() or any APIs
1303  * which returns a pointer to the ib_gid_attr regardless of link layer
1304  * of IB or RoCE.
1305  *
1306  */
1307 void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1308 {
1309 	struct ib_gid_table_entry *entry =
1310 		container_of(attr, struct ib_gid_table_entry, attr);
1311 
1312 	put_gid_entry(entry);
1313 }
1314 EXPORT_SYMBOL(rdma_put_gid_attr);
1315 
1316 /**
1317  * rdma_hold_gid_attr - Get reference to existing GID attribute
1318  *
1319  * @attr:		Pointer to the GID attribute whose reference
1320  *			needs to be taken.
1321  *
1322  * Increase the reference count to a GID attribute to keep it from being
1323  * freed. Callers are required to already be holding a reference to attribute.
1324  *
1325  */
1326 void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1327 {
1328 	struct ib_gid_table_entry *entry =
1329 		container_of(attr, struct ib_gid_table_entry, attr);
1330 
1331 	get_gid_entry(entry);
1332 }
1333 EXPORT_SYMBOL(rdma_hold_gid_attr);
1334 
1335 /**
1336  * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1337  * which must be in UP state.
1338  *
1339  * @attr:Pointer to the GID attribute
1340  *
1341  * Returns pointer to netdevice if the netdevice was attached to GID and
1342  * netdevice is in UP state. Caller must hold RCU lock as this API
1343  * reads the netdev flags which can change while netdevice migrates to
1344  * different net namespace. Returns ERR_PTR with error code otherwise.
1345  *
1346  */
1347 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1348 {
1349 	struct ib_gid_table_entry *entry =
1350 			container_of(attr, struct ib_gid_table_entry, attr);
1351 	struct ib_device *device = entry->attr.device;
1352 	struct net_device *ndev = ERR_PTR(-EINVAL);
1353 	u32 port_num = entry->attr.port_num;
1354 	struct ib_gid_table *table;
1355 	unsigned long flags;
1356 	bool valid;
1357 
1358 	table = rdma_gid_table(device, port_num);
1359 
1360 	read_lock_irqsave(&table->rwlock, flags);
1361 	valid = is_gid_entry_valid(table->data_vec[attr->index]);
1362 	if (valid) {
1363 		ndev = rcu_dereference(attr->ndev);
1364 		if (!ndev)
1365 			ndev = ERR_PTR(-ENODEV);
1366 	}
1367 	read_unlock_irqrestore(&table->rwlock, flags);
1368 	return ndev;
1369 }
1370 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1371 
1372 static int get_lower_dev_vlan(struct net_device *lower_dev,
1373 			      struct netdev_nested_priv *priv)
1374 {
1375 	u16 *vlan_id = (u16 *)priv->data;
1376 
1377 	if (is_vlan_dev(lower_dev))
1378 		*vlan_id = vlan_dev_vlan_id(lower_dev);
1379 
1380 	/* We are interested only in first level vlan device, so
1381 	 * always return 1 to stop iterating over next level devices.
1382 	 */
1383 	return 1;
1384 }
1385 
1386 /**
1387  * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1388  *			     of a GID entry.
1389  *
1390  * @attr:	GID attribute pointer whose L2 fields to be read
1391  * @vlan_id:	Pointer to vlan id to fill up if the GID entry has
1392  *		vlan id. It is optional.
1393  * @smac:	Pointer to smac to fill up for a GID entry. It is optional.
1394  *
1395  * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1396  * (if gid entry has vlan) and source MAC, or returns error.
1397  */
1398 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1399 			    u16 *vlan_id, u8 *smac)
1400 {
1401 	struct netdev_nested_priv priv = {
1402 		.data = (void *)vlan_id,
1403 	};
1404 	struct net_device *ndev;
1405 
1406 	rcu_read_lock();
1407 	ndev = rcu_dereference(attr->ndev);
1408 	if (!ndev) {
1409 		rcu_read_unlock();
1410 		return -ENODEV;
1411 	}
1412 	if (smac)
1413 		ether_addr_copy(smac, ndev->dev_addr);
1414 	if (vlan_id) {
1415 		*vlan_id = 0xffff;
1416 		if (is_vlan_dev(ndev)) {
1417 			*vlan_id = vlan_dev_vlan_id(ndev);
1418 		} else {
1419 			/* If the netdev is upper device and if it's lower
1420 			 * device is vlan device, consider vlan id of the
1421 			 * the lower vlan device for this gid entry.
1422 			 */
1423 			netdev_walk_all_lower_dev_rcu(attr->ndev,
1424 					get_lower_dev_vlan, &priv);
1425 		}
1426 	}
1427 	rcu_read_unlock();
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1431 
1432 static int config_non_roce_gid_cache(struct ib_device *device,
1433 				     u32 port, struct ib_port_attr *tprops)
1434 {
1435 	struct ib_gid_attr gid_attr = {};
1436 	struct ib_gid_table *table;
1437 	int ret = 0;
1438 	int i;
1439 
1440 	gid_attr.device = device;
1441 	gid_attr.port_num = port;
1442 	table = rdma_gid_table(device, port);
1443 
1444 	mutex_lock(&table->lock);
1445 	for (i = 0; i < tprops->gid_tbl_len; ++i) {
1446 		if (!device->ops.query_gid)
1447 			continue;
1448 		ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1449 		if (ret) {
1450 			dev_warn(&device->dev,
1451 				 "query_gid failed (%d) for index %d\n", ret,
1452 				 i);
1453 			goto err;
1454 		}
1455 		gid_attr.index = i;
1456 		tprops->subnet_prefix =
1457 			be64_to_cpu(gid_attr.gid.global.subnet_prefix);
1458 		add_modify_gid(table, &gid_attr);
1459 	}
1460 err:
1461 	mutex_unlock(&table->lock);
1462 	return ret;
1463 }
1464 
1465 static int
1466 ib_cache_update(struct ib_device *device, u32 port, bool update_gids,
1467 		bool update_pkeys, bool enforce_security)
1468 {
1469 	struct ib_port_attr       *tprops = NULL;
1470 	struct ib_pkey_cache      *pkey_cache = NULL;
1471 	struct ib_pkey_cache      *old_pkey_cache = NULL;
1472 	int                        i;
1473 	int                        ret;
1474 
1475 	if (!rdma_is_port_valid(device, port))
1476 		return -EINVAL;
1477 
1478 	tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1479 	if (!tprops)
1480 		return -ENOMEM;
1481 
1482 	ret = ib_query_port(device, port, tprops);
1483 	if (ret) {
1484 		dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1485 		goto err;
1486 	}
1487 
1488 	if (!rdma_protocol_roce(device, port) && update_gids) {
1489 		ret = config_non_roce_gid_cache(device, port,
1490 						tprops);
1491 		if (ret)
1492 			goto err;
1493 	}
1494 
1495 	update_pkeys &= !!tprops->pkey_tbl_len;
1496 
1497 	if (update_pkeys) {
1498 		pkey_cache = kmalloc(struct_size(pkey_cache, table,
1499 						 tprops->pkey_tbl_len),
1500 				     GFP_KERNEL);
1501 		if (!pkey_cache) {
1502 			ret = -ENOMEM;
1503 			goto err;
1504 		}
1505 
1506 		pkey_cache->table_len = tprops->pkey_tbl_len;
1507 
1508 		for (i = 0; i < pkey_cache->table_len; ++i) {
1509 			ret = ib_query_pkey(device, port, i,
1510 					    pkey_cache->table + i);
1511 			if (ret) {
1512 				dev_warn(&device->dev,
1513 					 "ib_query_pkey failed (%d) for index %d\n",
1514 					 ret, i);
1515 				goto err;
1516 			}
1517 		}
1518 	}
1519 
1520 	write_lock_irq(&device->cache_lock);
1521 
1522 	if (update_pkeys) {
1523 		old_pkey_cache = device->port_data[port].cache.pkey;
1524 		device->port_data[port].cache.pkey = pkey_cache;
1525 	}
1526 	device->port_data[port].cache.lmc = tprops->lmc;
1527 	device->port_data[port].cache.port_state = tprops->state;
1528 
1529 	device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1530 	write_unlock_irq(&device->cache_lock);
1531 
1532 	if (enforce_security)
1533 		ib_security_cache_change(device,
1534 					 port,
1535 					 tprops->subnet_prefix);
1536 
1537 	kfree(old_pkey_cache);
1538 	kfree(tprops);
1539 	return 0;
1540 
1541 err:
1542 	kfree(pkey_cache);
1543 	kfree(tprops);
1544 	return ret;
1545 }
1546 
1547 static void ib_cache_event_task(struct work_struct *_work)
1548 {
1549 	struct ib_update_work *work =
1550 		container_of(_work, struct ib_update_work, work);
1551 	int ret;
1552 
1553 	/* Before distributing the cache update event, first sync
1554 	 * the cache.
1555 	 */
1556 	ret = ib_cache_update(work->event.device, work->event.element.port_num,
1557 			      work->event.event == IB_EVENT_GID_CHANGE,
1558 			      work->event.event == IB_EVENT_PKEY_CHANGE,
1559 			      work->enforce_security);
1560 
1561 	/* GID event is notified already for individual GID entries by
1562 	 * dispatch_gid_change_event(). Hence, notifiy for rest of the
1563 	 * events.
1564 	 */
1565 	if (!ret && work->event.event != IB_EVENT_GID_CHANGE)
1566 		ib_dispatch_event_clients(&work->event);
1567 
1568 	kfree(work);
1569 }
1570 
1571 static void ib_generic_event_task(struct work_struct *_work)
1572 {
1573 	struct ib_update_work *work =
1574 		container_of(_work, struct ib_update_work, work);
1575 
1576 	ib_dispatch_event_clients(&work->event);
1577 	kfree(work);
1578 }
1579 
1580 static bool is_cache_update_event(const struct ib_event *event)
1581 {
1582 	return (event->event == IB_EVENT_PORT_ERR    ||
1583 		event->event == IB_EVENT_PORT_ACTIVE ||
1584 		event->event == IB_EVENT_LID_CHANGE  ||
1585 		event->event == IB_EVENT_PKEY_CHANGE ||
1586 		event->event == IB_EVENT_CLIENT_REREGISTER ||
1587 		event->event == IB_EVENT_GID_CHANGE);
1588 }
1589 
1590 /**
1591  * ib_dispatch_event - Dispatch an asynchronous event
1592  * @event:Event to dispatch
1593  *
1594  * Low-level drivers must call ib_dispatch_event() to dispatch the
1595  * event to all registered event handlers when an asynchronous event
1596  * occurs.
1597  */
1598 void ib_dispatch_event(const struct ib_event *event)
1599 {
1600 	struct ib_update_work *work;
1601 
1602 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
1603 	if (!work)
1604 		return;
1605 
1606 	if (is_cache_update_event(event))
1607 		INIT_WORK(&work->work, ib_cache_event_task);
1608 	else
1609 		INIT_WORK(&work->work, ib_generic_event_task);
1610 
1611 	work->event = *event;
1612 	if (event->event == IB_EVENT_PKEY_CHANGE ||
1613 	    event->event == IB_EVENT_GID_CHANGE)
1614 		work->enforce_security = true;
1615 
1616 	queue_work(ib_wq, &work->work);
1617 }
1618 EXPORT_SYMBOL(ib_dispatch_event);
1619 
1620 int ib_cache_setup_one(struct ib_device *device)
1621 {
1622 	u32 p;
1623 	int err;
1624 
1625 	err = gid_table_setup_one(device);
1626 	if (err)
1627 		return err;
1628 
1629 	rdma_for_each_port (device, p) {
1630 		err = ib_cache_update(device, p, true, true, true);
1631 		if (err)
1632 			return err;
1633 	}
1634 
1635 	return 0;
1636 }
1637 
1638 void ib_cache_release_one(struct ib_device *device)
1639 {
1640 	u32 p;
1641 
1642 	/*
1643 	 * The release function frees all the cache elements.
1644 	 * This function should be called as part of freeing
1645 	 * all the device's resources when the cache could no
1646 	 * longer be accessed.
1647 	 */
1648 	rdma_for_each_port (device, p)
1649 		kfree(device->port_data[p].cache.pkey);
1650 
1651 	gid_table_release_one(device);
1652 }
1653 
1654 void ib_cache_cleanup_one(struct ib_device *device)
1655 {
1656 	/* The cleanup function waits for all in-progress workqueue
1657 	 * elements and cleans up the GID cache. This function should be
1658 	 * called after the device was removed from the devices list and
1659 	 * all clients were removed, so the cache exists but is
1660 	 * non-functional and shouldn't be updated anymore.
1661 	 */
1662 	flush_workqueue(ib_wq);
1663 	gid_table_cleanup_one(device);
1664 
1665 	/*
1666 	 * Flush the wq second time for any pending GID delete work.
1667 	 */
1668 	flush_workqueue(ib_wq);
1669 }
1670