1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/module.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[]; 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_event event; 55 bool enforce_security; 56 }; 57 58 union ib_gid zgid; 59 EXPORT_SYMBOL(zgid); 60 61 enum gid_attr_find_mask { 62 GID_ATTR_FIND_MASK_GID = 1UL << 0, 63 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 64 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 65 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 66 }; 67 68 enum gid_table_entry_state { 69 GID_TABLE_ENTRY_INVALID = 1, 70 GID_TABLE_ENTRY_VALID = 2, 71 /* 72 * Indicates that entry is pending to be removed, there may 73 * be active users of this GID entry. 74 * When last user of the GID entry releases reference to it, 75 * GID entry is detached from the table. 76 */ 77 GID_TABLE_ENTRY_PENDING_DEL = 3, 78 }; 79 80 struct roce_gid_ndev_storage { 81 struct rcu_head rcu_head; 82 struct net_device *ndev; 83 }; 84 85 struct ib_gid_table_entry { 86 struct kref kref; 87 struct work_struct del_work; 88 struct ib_gid_attr attr; 89 void *context; 90 /* Store the ndev pointer to release reference later on in 91 * call_rcu context because by that time gid_table_entry 92 * and attr might be already freed. So keep a copy of it. 93 * ndev_storage is freed by rcu callback. 94 */ 95 struct roce_gid_ndev_storage *ndev_storage; 96 enum gid_table_entry_state state; 97 }; 98 99 struct ib_gid_table { 100 int sz; 101 /* In RoCE, adding a GID to the table requires: 102 * (a) Find if this GID is already exists. 103 * (b) Find a free space. 104 * (c) Write the new GID 105 * 106 * Delete requires different set of operations: 107 * (a) Find the GID 108 * (b) Delete it. 109 * 110 **/ 111 /* Any writer to data_vec must hold this lock and the write side of 112 * rwlock. Readers must hold only rwlock. All writers must be in a 113 * sleepable context. 114 */ 115 struct mutex lock; 116 /* rwlock protects data_vec[ix]->state and entry pointer. 117 */ 118 rwlock_t rwlock; 119 struct ib_gid_table_entry **data_vec; 120 /* bit field, each bit indicates the index of default GID */ 121 u32 default_gid_indices; 122 }; 123 124 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port) 125 { 126 struct ib_event event; 127 128 event.device = ib_dev; 129 event.element.port_num = port; 130 event.event = IB_EVENT_GID_CHANGE; 131 132 ib_dispatch_event_clients(&event); 133 } 134 135 static const char * const gid_type_str[] = { 136 [IB_GID_TYPE_IB] = "IB/RoCE v1", 137 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 138 }; 139 140 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 141 { 142 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 143 return gid_type_str[gid_type]; 144 145 return "Invalid GID type"; 146 } 147 EXPORT_SYMBOL(ib_cache_gid_type_str); 148 149 /** rdma_is_zero_gid - Check if given GID is zero or not. 150 * @gid: GID to check 151 * Returns true if given GID is zero, returns false otherwise. 152 */ 153 bool rdma_is_zero_gid(const union ib_gid *gid) 154 { 155 return !memcmp(gid, &zgid, sizeof(*gid)); 156 } 157 EXPORT_SYMBOL(rdma_is_zero_gid); 158 159 /** is_gid_index_default - Check if a given index belongs to 160 * reserved default GIDs or not. 161 * @table: GID table pointer 162 * @index: Index to check in GID table 163 * Returns true if index is one of the reserved default GID index otherwise 164 * returns false. 165 */ 166 static bool is_gid_index_default(const struct ib_gid_table *table, 167 unsigned int index) 168 { 169 return index < 32 && (BIT(index) & table->default_gid_indices); 170 } 171 172 int ib_cache_gid_parse_type_str(const char *buf) 173 { 174 unsigned int i; 175 size_t len; 176 int err = -EINVAL; 177 178 len = strlen(buf); 179 if (len == 0) 180 return -EINVAL; 181 182 if (buf[len - 1] == '\n') 183 len--; 184 185 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 186 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 187 len == strlen(gid_type_str[i])) { 188 err = i; 189 break; 190 } 191 192 return err; 193 } 194 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 195 196 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port) 197 { 198 return device->port_data[port].cache.gid; 199 } 200 201 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 202 { 203 return !entry; 204 } 205 206 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 207 { 208 return entry && entry->state == GID_TABLE_ENTRY_VALID; 209 } 210 211 static void schedule_free_gid(struct kref *kref) 212 { 213 struct ib_gid_table_entry *entry = 214 container_of(kref, struct ib_gid_table_entry, kref); 215 216 queue_work(ib_wq, &entry->del_work); 217 } 218 219 static void put_gid_ndev(struct rcu_head *head) 220 { 221 struct roce_gid_ndev_storage *storage = 222 container_of(head, struct roce_gid_ndev_storage, rcu_head); 223 224 WARN_ON(!storage->ndev); 225 /* At this point its safe to release netdev reference, 226 * as all callers working on gid_attr->ndev are done 227 * using this netdev. 228 */ 229 dev_put(storage->ndev); 230 kfree(storage); 231 } 232 233 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 234 { 235 struct ib_device *device = entry->attr.device; 236 u8 port_num = entry->attr.port_num; 237 struct ib_gid_table *table = rdma_gid_table(device, port_num); 238 239 dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__, 240 port_num, entry->attr.index, entry->attr.gid.raw); 241 242 write_lock_irq(&table->rwlock); 243 244 /* 245 * The only way to avoid overwriting NULL in table is 246 * by comparing if it is same entry in table or not! 247 * If new entry in table is added by the time we free here, 248 * don't overwrite the table entry. 249 */ 250 if (entry == table->data_vec[entry->attr.index]) 251 table->data_vec[entry->attr.index] = NULL; 252 /* Now this index is ready to be allocated */ 253 write_unlock_irq(&table->rwlock); 254 255 if (entry->ndev_storage) 256 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); 257 kfree(entry); 258 } 259 260 static void free_gid_entry(struct kref *kref) 261 { 262 struct ib_gid_table_entry *entry = 263 container_of(kref, struct ib_gid_table_entry, kref); 264 265 free_gid_entry_locked(entry); 266 } 267 268 /** 269 * free_gid_work - Release reference to the GID entry 270 * @work: Work structure to refer to GID entry which needs to be 271 * deleted. 272 * 273 * free_gid_work() frees the entry from the HCA's hardware table 274 * if provider supports it. It releases reference to netdevice. 275 */ 276 static void free_gid_work(struct work_struct *work) 277 { 278 struct ib_gid_table_entry *entry = 279 container_of(work, struct ib_gid_table_entry, del_work); 280 struct ib_device *device = entry->attr.device; 281 u8 port_num = entry->attr.port_num; 282 struct ib_gid_table *table = rdma_gid_table(device, port_num); 283 284 mutex_lock(&table->lock); 285 free_gid_entry_locked(entry); 286 mutex_unlock(&table->lock); 287 } 288 289 static struct ib_gid_table_entry * 290 alloc_gid_entry(const struct ib_gid_attr *attr) 291 { 292 struct ib_gid_table_entry *entry; 293 struct net_device *ndev; 294 295 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 296 if (!entry) 297 return NULL; 298 299 ndev = rcu_dereference_protected(attr->ndev, 1); 300 if (ndev) { 301 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), 302 GFP_KERNEL); 303 if (!entry->ndev_storage) { 304 kfree(entry); 305 return NULL; 306 } 307 dev_hold(ndev); 308 entry->ndev_storage->ndev = ndev; 309 } 310 kref_init(&entry->kref); 311 memcpy(&entry->attr, attr, sizeof(*attr)); 312 INIT_WORK(&entry->del_work, free_gid_work); 313 entry->state = GID_TABLE_ENTRY_INVALID; 314 return entry; 315 } 316 317 static void store_gid_entry(struct ib_gid_table *table, 318 struct ib_gid_table_entry *entry) 319 { 320 entry->state = GID_TABLE_ENTRY_VALID; 321 322 dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n", 323 __func__, entry->attr.port_num, entry->attr.index, 324 entry->attr.gid.raw); 325 326 lockdep_assert_held(&table->lock); 327 write_lock_irq(&table->rwlock); 328 table->data_vec[entry->attr.index] = entry; 329 write_unlock_irq(&table->rwlock); 330 } 331 332 static void get_gid_entry(struct ib_gid_table_entry *entry) 333 { 334 kref_get(&entry->kref); 335 } 336 337 static void put_gid_entry(struct ib_gid_table_entry *entry) 338 { 339 kref_put(&entry->kref, schedule_free_gid); 340 } 341 342 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 343 { 344 kref_put(&entry->kref, free_gid_entry); 345 } 346 347 static int add_roce_gid(struct ib_gid_table_entry *entry) 348 { 349 const struct ib_gid_attr *attr = &entry->attr; 350 int ret; 351 352 if (!attr->ndev) { 353 dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n", 354 __func__, attr->port_num, attr->index); 355 return -EINVAL; 356 } 357 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 358 ret = attr->device->ops.add_gid(attr, &entry->context); 359 if (ret) { 360 dev_err(&attr->device->dev, 361 "%s GID add failed port=%d index=%d\n", 362 __func__, attr->port_num, attr->index); 363 return ret; 364 } 365 } 366 return 0; 367 } 368 369 /** 370 * del_gid - Delete GID table entry 371 * 372 * @ib_dev: IB device whose GID entry to be deleted 373 * @port: Port number of the IB device 374 * @table: GID table of the IB device for a port 375 * @ix: GID entry index to delete 376 * 377 */ 378 static void del_gid(struct ib_device *ib_dev, u8 port, 379 struct ib_gid_table *table, int ix) 380 { 381 struct roce_gid_ndev_storage *ndev_storage; 382 struct ib_gid_table_entry *entry; 383 384 lockdep_assert_held(&table->lock); 385 386 dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port, 387 ix, table->data_vec[ix]->attr.gid.raw); 388 389 write_lock_irq(&table->rwlock); 390 entry = table->data_vec[ix]; 391 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 392 /* 393 * For non RoCE protocol, GID entry slot is ready to use. 394 */ 395 if (!rdma_protocol_roce(ib_dev, port)) 396 table->data_vec[ix] = NULL; 397 write_unlock_irq(&table->rwlock); 398 399 ndev_storage = entry->ndev_storage; 400 if (ndev_storage) { 401 entry->ndev_storage = NULL; 402 rcu_assign_pointer(entry->attr.ndev, NULL); 403 call_rcu(&ndev_storage->rcu_head, put_gid_ndev); 404 } 405 406 if (rdma_cap_roce_gid_table(ib_dev, port)) 407 ib_dev->ops.del_gid(&entry->attr, &entry->context); 408 409 put_gid_entry_locked(entry); 410 } 411 412 /** 413 * add_modify_gid - Add or modify GID table entry 414 * 415 * @table: GID table in which GID to be added or modified 416 * @attr: Attributes of the GID 417 * 418 * Returns 0 on success or appropriate error code. It accepts zero 419 * GID addition for non RoCE ports for HCA's who report them as valid 420 * GID. However such zero GIDs are not added to the cache. 421 */ 422 static int add_modify_gid(struct ib_gid_table *table, 423 const struct ib_gid_attr *attr) 424 { 425 struct ib_gid_table_entry *entry; 426 int ret = 0; 427 428 /* 429 * Invalidate any old entry in the table to make it safe to write to 430 * this index. 431 */ 432 if (is_gid_entry_valid(table->data_vec[attr->index])) 433 del_gid(attr->device, attr->port_num, table, attr->index); 434 435 /* 436 * Some HCA's report multiple GID entries with only one valid GID, and 437 * leave other unused entries as the zero GID. Convert zero GIDs to 438 * empty table entries instead of storing them. 439 */ 440 if (rdma_is_zero_gid(&attr->gid)) 441 return 0; 442 443 entry = alloc_gid_entry(attr); 444 if (!entry) 445 return -ENOMEM; 446 447 if (rdma_protocol_roce(attr->device, attr->port_num)) { 448 ret = add_roce_gid(entry); 449 if (ret) 450 goto done; 451 } 452 453 store_gid_entry(table, entry); 454 return 0; 455 456 done: 457 put_gid_entry(entry); 458 return ret; 459 } 460 461 /* rwlock should be read locked, or lock should be held */ 462 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 463 const struct ib_gid_attr *val, bool default_gid, 464 unsigned long mask, int *pempty) 465 { 466 int i = 0; 467 int found = -1; 468 int empty = pempty ? -1 : 0; 469 470 while (i < table->sz && (found < 0 || empty < 0)) { 471 struct ib_gid_table_entry *data = table->data_vec[i]; 472 struct ib_gid_attr *attr; 473 int curr_index = i; 474 475 i++; 476 477 /* find_gid() is used during GID addition where it is expected 478 * to return a free entry slot which is not duplicate. 479 * Free entry slot is requested and returned if pempty is set, 480 * so lookup free slot only if requested. 481 */ 482 if (pempty && empty < 0) { 483 if (is_gid_entry_free(data) && 484 default_gid == 485 is_gid_index_default(table, curr_index)) { 486 /* 487 * Found an invalid (free) entry; allocate it. 488 * If default GID is requested, then our 489 * found slot must be one of the DEFAULT 490 * reserved slots or we fail. 491 * This ensures that only DEFAULT reserved 492 * slots are used for default property GIDs. 493 */ 494 empty = curr_index; 495 } 496 } 497 498 /* 499 * Additionally find_gid() is used to find valid entry during 500 * lookup operation; so ignore the entries which are marked as 501 * pending for removal and the entries which are marked as 502 * invalid. 503 */ 504 if (!is_gid_entry_valid(data)) 505 continue; 506 507 if (found >= 0) 508 continue; 509 510 attr = &data->attr; 511 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 512 attr->gid_type != val->gid_type) 513 continue; 514 515 if (mask & GID_ATTR_FIND_MASK_GID && 516 memcmp(gid, &data->attr.gid, sizeof(*gid))) 517 continue; 518 519 if (mask & GID_ATTR_FIND_MASK_NETDEV && 520 attr->ndev != val->ndev) 521 continue; 522 523 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 524 is_gid_index_default(table, curr_index) != default_gid) 525 continue; 526 527 found = curr_index; 528 } 529 530 if (pempty) 531 *pempty = empty; 532 533 return found; 534 } 535 536 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 537 { 538 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 539 addrconf_ifid_eui48(&gid->raw[8], dev); 540 } 541 542 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 543 union ib_gid *gid, struct ib_gid_attr *attr, 544 unsigned long mask, bool default_gid) 545 { 546 struct ib_gid_table *table; 547 int ret = 0; 548 int empty; 549 int ix; 550 551 /* Do not allow adding zero GID in support of 552 * IB spec version 1.3 section 4.1.1 point (6) and 553 * section 12.7.10 and section 12.7.20 554 */ 555 if (rdma_is_zero_gid(gid)) 556 return -EINVAL; 557 558 table = rdma_gid_table(ib_dev, port); 559 560 mutex_lock(&table->lock); 561 562 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 563 if (ix >= 0) 564 goto out_unlock; 565 566 if (empty < 0) { 567 ret = -ENOSPC; 568 goto out_unlock; 569 } 570 attr->device = ib_dev; 571 attr->index = empty; 572 attr->port_num = port; 573 attr->gid = *gid; 574 ret = add_modify_gid(table, attr); 575 if (!ret) 576 dispatch_gid_change_event(ib_dev, port); 577 578 out_unlock: 579 mutex_unlock(&table->lock); 580 if (ret) 581 pr_warn("%s: unable to add gid %pI6 error=%d\n", 582 __func__, gid->raw, ret); 583 return ret; 584 } 585 586 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port, 587 union ib_gid *gid, struct ib_gid_attr *attr) 588 { 589 unsigned long mask = GID_ATTR_FIND_MASK_GID | 590 GID_ATTR_FIND_MASK_GID_TYPE | 591 GID_ATTR_FIND_MASK_NETDEV; 592 593 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 594 } 595 596 static int 597 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 598 union ib_gid *gid, struct ib_gid_attr *attr, 599 unsigned long mask, bool default_gid) 600 { 601 struct ib_gid_table *table; 602 int ret = 0; 603 int ix; 604 605 table = rdma_gid_table(ib_dev, port); 606 607 mutex_lock(&table->lock); 608 609 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 610 if (ix < 0) { 611 ret = -EINVAL; 612 goto out_unlock; 613 } 614 615 del_gid(ib_dev, port, table, ix); 616 dispatch_gid_change_event(ib_dev, port); 617 618 out_unlock: 619 mutex_unlock(&table->lock); 620 if (ret) 621 pr_debug("%s: can't delete gid %pI6 error=%d\n", 622 __func__, gid->raw, ret); 623 return ret; 624 } 625 626 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port, 627 union ib_gid *gid, struct ib_gid_attr *attr) 628 { 629 unsigned long mask = GID_ATTR_FIND_MASK_GID | 630 GID_ATTR_FIND_MASK_GID_TYPE | 631 GID_ATTR_FIND_MASK_DEFAULT | 632 GID_ATTR_FIND_MASK_NETDEV; 633 634 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 635 } 636 637 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port, 638 struct net_device *ndev) 639 { 640 struct ib_gid_table *table; 641 int ix; 642 bool deleted = false; 643 644 table = rdma_gid_table(ib_dev, port); 645 646 mutex_lock(&table->lock); 647 648 for (ix = 0; ix < table->sz; ix++) { 649 if (is_gid_entry_valid(table->data_vec[ix]) && 650 table->data_vec[ix]->attr.ndev == ndev) { 651 del_gid(ib_dev, port, table, ix); 652 deleted = true; 653 } 654 } 655 656 mutex_unlock(&table->lock); 657 658 if (deleted) 659 dispatch_gid_change_event(ib_dev, port); 660 661 return 0; 662 } 663 664 /** 665 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 666 * a valid GID entry for given search parameters. It searches for the specified 667 * GID value in the local software cache. 668 * @device: The device to query. 669 * @gid: The GID value to search for. 670 * @gid_type: The GID type to search for. 671 * @port_num: The port number of the device where the GID value should be 672 * searched. 673 * @ndev: In RoCE, the net device of the device. NULL means ignore. 674 * 675 * Returns sgid attributes if the GID is found with valid reference or 676 * returns ERR_PTR for the error. 677 * The caller must invoke rdma_put_gid_attr() to release the reference. 678 */ 679 const struct ib_gid_attr * 680 rdma_find_gid_by_port(struct ib_device *ib_dev, 681 const union ib_gid *gid, 682 enum ib_gid_type gid_type, 683 u8 port, struct net_device *ndev) 684 { 685 int local_index; 686 struct ib_gid_table *table; 687 unsigned long mask = GID_ATTR_FIND_MASK_GID | 688 GID_ATTR_FIND_MASK_GID_TYPE; 689 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 690 const struct ib_gid_attr *attr; 691 unsigned long flags; 692 693 if (!rdma_is_port_valid(ib_dev, port)) 694 return ERR_PTR(-ENOENT); 695 696 table = rdma_gid_table(ib_dev, port); 697 698 if (ndev) 699 mask |= GID_ATTR_FIND_MASK_NETDEV; 700 701 read_lock_irqsave(&table->rwlock, flags); 702 local_index = find_gid(table, gid, &val, false, mask, NULL); 703 if (local_index >= 0) { 704 get_gid_entry(table->data_vec[local_index]); 705 attr = &table->data_vec[local_index]->attr; 706 read_unlock_irqrestore(&table->rwlock, flags); 707 return attr; 708 } 709 710 read_unlock_irqrestore(&table->rwlock, flags); 711 return ERR_PTR(-ENOENT); 712 } 713 EXPORT_SYMBOL(rdma_find_gid_by_port); 714 715 /** 716 * rdma_find_gid_by_filter - Returns the GID table attribute where a 717 * specified GID value occurs 718 * @device: The device to query. 719 * @gid: The GID value to search for. 720 * @port: The port number of the device where the GID value could be 721 * searched. 722 * @filter: The filter function is executed on any matching GID in the table. 723 * If the filter function returns true, the corresponding index is returned, 724 * otherwise, we continue searching the GID table. It's guaranteed that 725 * while filter is executed, ndev field is valid and the structure won't 726 * change. filter is executed in an atomic context. filter must not be NULL. 727 * 728 * rdma_find_gid_by_filter() searches for the specified GID value 729 * of which the filter function returns true in the port's GID table. 730 * 731 */ 732 const struct ib_gid_attr *rdma_find_gid_by_filter( 733 struct ib_device *ib_dev, const union ib_gid *gid, u8 port, 734 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 735 void *), 736 void *context) 737 { 738 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 739 struct ib_gid_table *table; 740 unsigned long flags; 741 unsigned int i; 742 743 if (!rdma_is_port_valid(ib_dev, port)) 744 return ERR_PTR(-EINVAL); 745 746 table = rdma_gid_table(ib_dev, port); 747 748 read_lock_irqsave(&table->rwlock, flags); 749 for (i = 0; i < table->sz; i++) { 750 struct ib_gid_table_entry *entry = table->data_vec[i]; 751 752 if (!is_gid_entry_valid(entry)) 753 continue; 754 755 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 756 continue; 757 758 if (filter(gid, &entry->attr, context)) { 759 get_gid_entry(entry); 760 res = &entry->attr; 761 break; 762 } 763 } 764 read_unlock_irqrestore(&table->rwlock, flags); 765 return res; 766 } 767 768 static struct ib_gid_table *alloc_gid_table(int sz) 769 { 770 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 771 772 if (!table) 773 return NULL; 774 775 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 776 if (!table->data_vec) 777 goto err_free_table; 778 779 mutex_init(&table->lock); 780 781 table->sz = sz; 782 rwlock_init(&table->rwlock); 783 return table; 784 785 err_free_table: 786 kfree(table); 787 return NULL; 788 } 789 790 static void release_gid_table(struct ib_device *device, 791 struct ib_gid_table *table) 792 { 793 bool leak = false; 794 int i; 795 796 if (!table) 797 return; 798 799 for (i = 0; i < table->sz; i++) { 800 if (is_gid_entry_free(table->data_vec[i])) 801 continue; 802 if (kref_read(&table->data_vec[i]->kref) > 1) { 803 dev_err(&device->dev, 804 "GID entry ref leak for index %d ref=%d\n", i, 805 kref_read(&table->data_vec[i]->kref)); 806 leak = true; 807 } 808 } 809 if (leak) 810 return; 811 812 mutex_destroy(&table->lock); 813 kfree(table->data_vec); 814 kfree(table); 815 } 816 817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port, 818 struct ib_gid_table *table) 819 { 820 int i; 821 822 if (!table) 823 return; 824 825 mutex_lock(&table->lock); 826 for (i = 0; i < table->sz; ++i) { 827 if (is_gid_entry_valid(table->data_vec[i])) 828 del_gid(ib_dev, port, table, i); 829 } 830 mutex_unlock(&table->lock); 831 } 832 833 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port, 834 struct net_device *ndev, 835 unsigned long gid_type_mask, 836 enum ib_cache_gid_default_mode mode) 837 { 838 union ib_gid gid = { }; 839 struct ib_gid_attr gid_attr; 840 unsigned int gid_type; 841 unsigned long mask; 842 843 mask = GID_ATTR_FIND_MASK_GID_TYPE | 844 GID_ATTR_FIND_MASK_DEFAULT | 845 GID_ATTR_FIND_MASK_NETDEV; 846 memset(&gid_attr, 0, sizeof(gid_attr)); 847 gid_attr.ndev = ndev; 848 849 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 850 if (1UL << gid_type & ~gid_type_mask) 851 continue; 852 853 gid_attr.gid_type = gid_type; 854 855 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 856 make_default_gid(ndev, &gid); 857 __ib_cache_gid_add(ib_dev, port, &gid, 858 &gid_attr, mask, true); 859 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 860 _ib_cache_gid_del(ib_dev, port, &gid, 861 &gid_attr, mask, true); 862 } 863 } 864 } 865 866 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port, 867 struct ib_gid_table *table) 868 { 869 unsigned int i; 870 unsigned long roce_gid_type_mask; 871 unsigned int num_default_gids; 872 873 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 874 num_default_gids = hweight_long(roce_gid_type_mask); 875 /* Reserve starting indices for default GIDs */ 876 for (i = 0; i < num_default_gids && i < table->sz; i++) 877 table->default_gid_indices |= BIT(i); 878 } 879 880 881 static void gid_table_release_one(struct ib_device *ib_dev) 882 { 883 unsigned int p; 884 885 rdma_for_each_port (ib_dev, p) { 886 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); 887 ib_dev->port_data[p].cache.gid = NULL; 888 } 889 } 890 891 static int _gid_table_setup_one(struct ib_device *ib_dev) 892 { 893 struct ib_gid_table *table; 894 unsigned int rdma_port; 895 896 rdma_for_each_port (ib_dev, rdma_port) { 897 table = alloc_gid_table( 898 ib_dev->port_data[rdma_port].immutable.gid_tbl_len); 899 if (!table) 900 goto rollback_table_setup; 901 902 gid_table_reserve_default(ib_dev, rdma_port, table); 903 ib_dev->port_data[rdma_port].cache.gid = table; 904 } 905 return 0; 906 907 rollback_table_setup: 908 gid_table_release_one(ib_dev); 909 return -ENOMEM; 910 } 911 912 static void gid_table_cleanup_one(struct ib_device *ib_dev) 913 { 914 unsigned int p; 915 916 rdma_for_each_port (ib_dev, p) 917 cleanup_gid_table_port(ib_dev, p, 918 ib_dev->port_data[p].cache.gid); 919 } 920 921 static int gid_table_setup_one(struct ib_device *ib_dev) 922 { 923 int err; 924 925 err = _gid_table_setup_one(ib_dev); 926 927 if (err) 928 return err; 929 930 rdma_roce_rescan_device(ib_dev); 931 932 return err; 933 } 934 935 /** 936 * rdma_query_gid - Read the GID content from the GID software cache 937 * @device: Device to query the GID 938 * @port_num: Port number of the device 939 * @index: Index of the GID table entry to read 940 * @gid: Pointer to GID where to store the entry's GID 941 * 942 * rdma_query_gid() only reads the GID entry content for requested device, 943 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 944 * hold any reference to the GID table entry in the HCA or software cache. 945 * 946 * Returns 0 on success or appropriate error code. 947 * 948 */ 949 int rdma_query_gid(struct ib_device *device, u8 port_num, 950 int index, union ib_gid *gid) 951 { 952 struct ib_gid_table *table; 953 unsigned long flags; 954 int res = -EINVAL; 955 956 if (!rdma_is_port_valid(device, port_num)) 957 return -EINVAL; 958 959 table = rdma_gid_table(device, port_num); 960 read_lock_irqsave(&table->rwlock, flags); 961 962 if (index < 0 || index >= table->sz || 963 !is_gid_entry_valid(table->data_vec[index])) 964 goto done; 965 966 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 967 res = 0; 968 969 done: 970 read_unlock_irqrestore(&table->rwlock, flags); 971 return res; 972 } 973 EXPORT_SYMBOL(rdma_query_gid); 974 975 /** 976 * rdma_read_gid_hw_context - Read the HW GID context from GID attribute 977 * @attr: Potinter to the GID attribute 978 * 979 * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding 980 * to the SGID attr. Callers are required to already be holding the reference 981 * to an existing GID entry. 982 * 983 * Returns the HW GID context 984 * 985 */ 986 void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr) 987 { 988 return container_of(attr, struct ib_gid_table_entry, attr)->context; 989 } 990 EXPORT_SYMBOL(rdma_read_gid_hw_context); 991 992 /** 993 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 994 * @device: The device to query. 995 * @gid: The GID value to search for. 996 * @gid_type: The GID type to search for. 997 * @ndev: In RoCE, the net device of the device. NULL means ignore. 998 * 999 * rdma_find_gid() searches for the specified GID value in the software cache. 1000 * 1001 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 1002 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 1003 * 1004 */ 1005 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 1006 const union ib_gid *gid, 1007 enum ib_gid_type gid_type, 1008 struct net_device *ndev) 1009 { 1010 unsigned long mask = GID_ATTR_FIND_MASK_GID | 1011 GID_ATTR_FIND_MASK_GID_TYPE; 1012 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 1013 unsigned int p; 1014 1015 if (ndev) 1016 mask |= GID_ATTR_FIND_MASK_NETDEV; 1017 1018 rdma_for_each_port(device, p) { 1019 struct ib_gid_table *table; 1020 unsigned long flags; 1021 int index; 1022 1023 table = device->port_data[p].cache.gid; 1024 read_lock_irqsave(&table->rwlock, flags); 1025 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1026 if (index >= 0) { 1027 const struct ib_gid_attr *attr; 1028 1029 get_gid_entry(table->data_vec[index]); 1030 attr = &table->data_vec[index]->attr; 1031 read_unlock_irqrestore(&table->rwlock, flags); 1032 return attr; 1033 } 1034 read_unlock_irqrestore(&table->rwlock, flags); 1035 } 1036 1037 return ERR_PTR(-ENOENT); 1038 } 1039 EXPORT_SYMBOL(rdma_find_gid); 1040 1041 int ib_get_cached_pkey(struct ib_device *device, 1042 u8 port_num, 1043 int index, 1044 u16 *pkey) 1045 { 1046 struct ib_pkey_cache *cache; 1047 unsigned long flags; 1048 int ret = 0; 1049 1050 if (!rdma_is_port_valid(device, port_num)) 1051 return -EINVAL; 1052 1053 read_lock_irqsave(&device->cache_lock, flags); 1054 1055 cache = device->port_data[port_num].cache.pkey; 1056 1057 if (index < 0 || index >= cache->table_len) 1058 ret = -EINVAL; 1059 else 1060 *pkey = cache->table[index]; 1061 1062 read_unlock_irqrestore(&device->cache_lock, flags); 1063 1064 return ret; 1065 } 1066 EXPORT_SYMBOL(ib_get_cached_pkey); 1067 1068 int ib_get_cached_subnet_prefix(struct ib_device *device, 1069 u8 port_num, 1070 u64 *sn_pfx) 1071 { 1072 unsigned long flags; 1073 1074 if (!rdma_is_port_valid(device, port_num)) 1075 return -EINVAL; 1076 1077 read_lock_irqsave(&device->cache_lock, flags); 1078 *sn_pfx = device->port_data[port_num].cache.subnet_prefix; 1079 read_unlock_irqrestore(&device->cache_lock, flags); 1080 1081 return 0; 1082 } 1083 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1084 1085 int ib_find_cached_pkey(struct ib_device *device, 1086 u8 port_num, 1087 u16 pkey, 1088 u16 *index) 1089 { 1090 struct ib_pkey_cache *cache; 1091 unsigned long flags; 1092 int i; 1093 int ret = -ENOENT; 1094 int partial_ix = -1; 1095 1096 if (!rdma_is_port_valid(device, port_num)) 1097 return -EINVAL; 1098 1099 read_lock_irqsave(&device->cache_lock, flags); 1100 1101 cache = device->port_data[port_num].cache.pkey; 1102 1103 *index = -1; 1104 1105 for (i = 0; i < cache->table_len; ++i) 1106 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1107 if (cache->table[i] & 0x8000) { 1108 *index = i; 1109 ret = 0; 1110 break; 1111 } else 1112 partial_ix = i; 1113 } 1114 1115 if (ret && partial_ix >= 0) { 1116 *index = partial_ix; 1117 ret = 0; 1118 } 1119 1120 read_unlock_irqrestore(&device->cache_lock, flags); 1121 1122 return ret; 1123 } 1124 EXPORT_SYMBOL(ib_find_cached_pkey); 1125 1126 int ib_find_exact_cached_pkey(struct ib_device *device, 1127 u8 port_num, 1128 u16 pkey, 1129 u16 *index) 1130 { 1131 struct ib_pkey_cache *cache; 1132 unsigned long flags; 1133 int i; 1134 int ret = -ENOENT; 1135 1136 if (!rdma_is_port_valid(device, port_num)) 1137 return -EINVAL; 1138 1139 read_lock_irqsave(&device->cache_lock, flags); 1140 1141 cache = device->port_data[port_num].cache.pkey; 1142 1143 *index = -1; 1144 1145 for (i = 0; i < cache->table_len; ++i) 1146 if (cache->table[i] == pkey) { 1147 *index = i; 1148 ret = 0; 1149 break; 1150 } 1151 1152 read_unlock_irqrestore(&device->cache_lock, flags); 1153 1154 return ret; 1155 } 1156 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1157 1158 int ib_get_cached_lmc(struct ib_device *device, 1159 u8 port_num, 1160 u8 *lmc) 1161 { 1162 unsigned long flags; 1163 int ret = 0; 1164 1165 if (!rdma_is_port_valid(device, port_num)) 1166 return -EINVAL; 1167 1168 read_lock_irqsave(&device->cache_lock, flags); 1169 *lmc = device->port_data[port_num].cache.lmc; 1170 read_unlock_irqrestore(&device->cache_lock, flags); 1171 1172 return ret; 1173 } 1174 EXPORT_SYMBOL(ib_get_cached_lmc); 1175 1176 int ib_get_cached_port_state(struct ib_device *device, 1177 u8 port_num, 1178 enum ib_port_state *port_state) 1179 { 1180 unsigned long flags; 1181 int ret = 0; 1182 1183 if (!rdma_is_port_valid(device, port_num)) 1184 return -EINVAL; 1185 1186 read_lock_irqsave(&device->cache_lock, flags); 1187 *port_state = device->port_data[port_num].cache.port_state; 1188 read_unlock_irqrestore(&device->cache_lock, flags); 1189 1190 return ret; 1191 } 1192 EXPORT_SYMBOL(ib_get_cached_port_state); 1193 1194 /** 1195 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1196 * at a requested gid_index, if a valid GID entry exists. 1197 * @device: The device to query. 1198 * @port_num: The port number on the device where the GID value 1199 * is to be queried. 1200 * @index: Index of the GID table entry whose attributes are to 1201 * be queried. 1202 * 1203 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1204 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1205 * reference to gid attribute regardless of link layer. 1206 * 1207 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1208 * code. 1209 */ 1210 const struct ib_gid_attr * 1211 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index) 1212 { 1213 const struct ib_gid_attr *attr = ERR_PTR(-EINVAL); 1214 struct ib_gid_table *table; 1215 unsigned long flags; 1216 1217 if (!rdma_is_port_valid(device, port_num)) 1218 return ERR_PTR(-EINVAL); 1219 1220 table = rdma_gid_table(device, port_num); 1221 if (index < 0 || index >= table->sz) 1222 return ERR_PTR(-EINVAL); 1223 1224 read_lock_irqsave(&table->rwlock, flags); 1225 if (!is_gid_entry_valid(table->data_vec[index])) 1226 goto done; 1227 1228 get_gid_entry(table->data_vec[index]); 1229 attr = &table->data_vec[index]->attr; 1230 done: 1231 read_unlock_irqrestore(&table->rwlock, flags); 1232 return attr; 1233 } 1234 EXPORT_SYMBOL(rdma_get_gid_attr); 1235 1236 /** 1237 * rdma_put_gid_attr - Release reference to the GID attribute 1238 * @attr: Pointer to the GID attribute whose reference 1239 * needs to be released. 1240 * 1241 * rdma_put_gid_attr() must be used to release reference whose 1242 * reference is acquired using rdma_get_gid_attr() or any APIs 1243 * which returns a pointer to the ib_gid_attr regardless of link layer 1244 * of IB or RoCE. 1245 * 1246 */ 1247 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1248 { 1249 struct ib_gid_table_entry *entry = 1250 container_of(attr, struct ib_gid_table_entry, attr); 1251 1252 put_gid_entry(entry); 1253 } 1254 EXPORT_SYMBOL(rdma_put_gid_attr); 1255 1256 /** 1257 * rdma_hold_gid_attr - Get reference to existing GID attribute 1258 * 1259 * @attr: Pointer to the GID attribute whose reference 1260 * needs to be taken. 1261 * 1262 * Increase the reference count to a GID attribute to keep it from being 1263 * freed. Callers are required to already be holding a reference to attribute. 1264 * 1265 */ 1266 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1267 { 1268 struct ib_gid_table_entry *entry = 1269 container_of(attr, struct ib_gid_table_entry, attr); 1270 1271 get_gid_entry(entry); 1272 } 1273 EXPORT_SYMBOL(rdma_hold_gid_attr); 1274 1275 /** 1276 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1277 * which must be in UP state. 1278 * 1279 * @attr:Pointer to the GID attribute 1280 * 1281 * Returns pointer to netdevice if the netdevice was attached to GID and 1282 * netdevice is in UP state. Caller must hold RCU lock as this API 1283 * reads the netdev flags which can change while netdevice migrates to 1284 * different net namespace. Returns ERR_PTR with error code otherwise. 1285 * 1286 */ 1287 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1288 { 1289 struct ib_gid_table_entry *entry = 1290 container_of(attr, struct ib_gid_table_entry, attr); 1291 struct ib_device *device = entry->attr.device; 1292 struct net_device *ndev = ERR_PTR(-ENODEV); 1293 u8 port_num = entry->attr.port_num; 1294 struct ib_gid_table *table; 1295 unsigned long flags; 1296 bool valid; 1297 1298 table = rdma_gid_table(device, port_num); 1299 1300 read_lock_irqsave(&table->rwlock, flags); 1301 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1302 if (valid) { 1303 ndev = rcu_dereference(attr->ndev); 1304 if (!ndev || 1305 (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0))) 1306 ndev = ERR_PTR(-ENODEV); 1307 } 1308 read_unlock_irqrestore(&table->rwlock, flags); 1309 return ndev; 1310 } 1311 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); 1312 1313 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data) 1314 { 1315 u16 *vlan_id = data; 1316 1317 if (is_vlan_dev(lower_dev)) 1318 *vlan_id = vlan_dev_vlan_id(lower_dev); 1319 1320 /* We are interested only in first level vlan device, so 1321 * always return 1 to stop iterating over next level devices. 1322 */ 1323 return 1; 1324 } 1325 1326 /** 1327 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address 1328 * of a GID entry. 1329 * 1330 * @attr: GID attribute pointer whose L2 fields to be read 1331 * @vlan_id: Pointer to vlan id to fill up if the GID entry has 1332 * vlan id. It is optional. 1333 * @smac: Pointer to smac to fill up for a GID entry. It is optional. 1334 * 1335 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id 1336 * (if gid entry has vlan) and source MAC, or returns error. 1337 */ 1338 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, 1339 u16 *vlan_id, u8 *smac) 1340 { 1341 struct net_device *ndev; 1342 1343 rcu_read_lock(); 1344 ndev = rcu_dereference(attr->ndev); 1345 if (!ndev) { 1346 rcu_read_unlock(); 1347 return -ENODEV; 1348 } 1349 if (smac) 1350 ether_addr_copy(smac, ndev->dev_addr); 1351 if (vlan_id) { 1352 *vlan_id = 0xffff; 1353 if (is_vlan_dev(ndev)) { 1354 *vlan_id = vlan_dev_vlan_id(ndev); 1355 } else { 1356 /* If the netdev is upper device and if it's lower 1357 * device is vlan device, consider vlan id of the 1358 * the lower vlan device for this gid entry. 1359 */ 1360 netdev_walk_all_lower_dev_rcu(attr->ndev, 1361 get_lower_dev_vlan, vlan_id); 1362 } 1363 } 1364 rcu_read_unlock(); 1365 return 0; 1366 } 1367 EXPORT_SYMBOL(rdma_read_gid_l2_fields); 1368 1369 static int config_non_roce_gid_cache(struct ib_device *device, 1370 u8 port, int gid_tbl_len) 1371 { 1372 struct ib_gid_attr gid_attr = {}; 1373 struct ib_gid_table *table; 1374 int ret = 0; 1375 int i; 1376 1377 gid_attr.device = device; 1378 gid_attr.port_num = port; 1379 table = rdma_gid_table(device, port); 1380 1381 mutex_lock(&table->lock); 1382 for (i = 0; i < gid_tbl_len; ++i) { 1383 if (!device->ops.query_gid) 1384 continue; 1385 ret = device->ops.query_gid(device, port, i, &gid_attr.gid); 1386 if (ret) { 1387 dev_warn(&device->dev, 1388 "query_gid failed (%d) for index %d\n", ret, 1389 i); 1390 goto err; 1391 } 1392 gid_attr.index = i; 1393 add_modify_gid(table, &gid_attr); 1394 } 1395 err: 1396 mutex_unlock(&table->lock); 1397 return ret; 1398 } 1399 1400 static int 1401 ib_cache_update(struct ib_device *device, u8 port, bool enforce_security) 1402 { 1403 struct ib_port_attr *tprops = NULL; 1404 struct ib_pkey_cache *pkey_cache = NULL, *old_pkey_cache; 1405 int i; 1406 int ret; 1407 1408 if (!rdma_is_port_valid(device, port)) 1409 return -EINVAL; 1410 1411 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1412 if (!tprops) 1413 return -ENOMEM; 1414 1415 ret = ib_query_port(device, port, tprops); 1416 if (ret) { 1417 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1418 goto err; 1419 } 1420 1421 if (!rdma_protocol_roce(device, port)) { 1422 ret = config_non_roce_gid_cache(device, port, 1423 tprops->gid_tbl_len); 1424 if (ret) 1425 goto err; 1426 } 1427 1428 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1429 tprops->pkey_tbl_len), 1430 GFP_KERNEL); 1431 if (!pkey_cache) { 1432 ret = -ENOMEM; 1433 goto err; 1434 } 1435 1436 pkey_cache->table_len = tprops->pkey_tbl_len; 1437 1438 for (i = 0; i < pkey_cache->table_len; ++i) { 1439 ret = ib_query_pkey(device, port, i, pkey_cache->table + i); 1440 if (ret) { 1441 dev_warn(&device->dev, 1442 "ib_query_pkey failed (%d) for index %d\n", 1443 ret, i); 1444 goto err; 1445 } 1446 } 1447 1448 write_lock_irq(&device->cache_lock); 1449 1450 old_pkey_cache = device->port_data[port].cache.pkey; 1451 1452 device->port_data[port].cache.pkey = pkey_cache; 1453 device->port_data[port].cache.lmc = tprops->lmc; 1454 device->port_data[port].cache.port_state = tprops->state; 1455 1456 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; 1457 write_unlock_irq(&device->cache_lock); 1458 1459 if (enforce_security) 1460 ib_security_cache_change(device, 1461 port, 1462 tprops->subnet_prefix); 1463 1464 kfree(old_pkey_cache); 1465 kfree(tprops); 1466 return 0; 1467 1468 err: 1469 kfree(pkey_cache); 1470 kfree(tprops); 1471 return ret; 1472 } 1473 1474 static void ib_cache_event_task(struct work_struct *_work) 1475 { 1476 struct ib_update_work *work = 1477 container_of(_work, struct ib_update_work, work); 1478 int ret; 1479 1480 /* Before distributing the cache update event, first sync 1481 * the cache. 1482 */ 1483 ret = ib_cache_update(work->event.device, work->event.element.port_num, 1484 work->enforce_security); 1485 1486 /* GID event is notified already for individual GID entries by 1487 * dispatch_gid_change_event(). Hence, notifiy for rest of the 1488 * events. 1489 */ 1490 if (!ret && work->event.event != IB_EVENT_GID_CHANGE) 1491 ib_dispatch_event_clients(&work->event); 1492 1493 kfree(work); 1494 } 1495 1496 static void ib_generic_event_task(struct work_struct *_work) 1497 { 1498 struct ib_update_work *work = 1499 container_of(_work, struct ib_update_work, work); 1500 1501 ib_dispatch_event_clients(&work->event); 1502 kfree(work); 1503 } 1504 1505 static bool is_cache_update_event(const struct ib_event *event) 1506 { 1507 return (event->event == IB_EVENT_PORT_ERR || 1508 event->event == IB_EVENT_PORT_ACTIVE || 1509 event->event == IB_EVENT_LID_CHANGE || 1510 event->event == IB_EVENT_PKEY_CHANGE || 1511 event->event == IB_EVENT_CLIENT_REREGISTER || 1512 event->event == IB_EVENT_GID_CHANGE); 1513 } 1514 1515 /** 1516 * ib_dispatch_event - Dispatch an asynchronous event 1517 * @event:Event to dispatch 1518 * 1519 * Low-level drivers must call ib_dispatch_event() to dispatch the 1520 * event to all registered event handlers when an asynchronous event 1521 * occurs. 1522 */ 1523 void ib_dispatch_event(const struct ib_event *event) 1524 { 1525 struct ib_update_work *work; 1526 1527 work = kzalloc(sizeof(*work), GFP_ATOMIC); 1528 if (!work) 1529 return; 1530 1531 if (is_cache_update_event(event)) 1532 INIT_WORK(&work->work, ib_cache_event_task); 1533 else 1534 INIT_WORK(&work->work, ib_generic_event_task); 1535 1536 work->event = *event; 1537 if (event->event == IB_EVENT_PKEY_CHANGE || 1538 event->event == IB_EVENT_GID_CHANGE) 1539 work->enforce_security = true; 1540 1541 queue_work(ib_wq, &work->work); 1542 } 1543 EXPORT_SYMBOL(ib_dispatch_event); 1544 1545 int ib_cache_setup_one(struct ib_device *device) 1546 { 1547 unsigned int p; 1548 int err; 1549 1550 rwlock_init(&device->cache_lock); 1551 1552 err = gid_table_setup_one(device); 1553 if (err) 1554 return err; 1555 1556 rdma_for_each_port (device, p) { 1557 err = ib_cache_update(device, p, true); 1558 if (err) 1559 return err; 1560 } 1561 1562 return 0; 1563 } 1564 1565 void ib_cache_release_one(struct ib_device *device) 1566 { 1567 unsigned int p; 1568 1569 /* 1570 * The release function frees all the cache elements. 1571 * This function should be called as part of freeing 1572 * all the device's resources when the cache could no 1573 * longer be accessed. 1574 */ 1575 rdma_for_each_port (device, p) 1576 kfree(device->port_data[p].cache.pkey); 1577 1578 gid_table_release_one(device); 1579 } 1580 1581 void ib_cache_cleanup_one(struct ib_device *device) 1582 { 1583 /* The cleanup function waits for all in-progress workqueue 1584 * elements and cleans up the GID cache. This function should be 1585 * called after the device was removed from the devices list and 1586 * all clients were removed, so the cache exists but is 1587 * non-functional and shouldn't be updated anymore. 1588 */ 1589 flush_workqueue(ib_wq); 1590 gid_table_cleanup_one(device); 1591 1592 /* 1593 * Flush the wq second time for any pending GID delete work. 1594 */ 1595 flush_workqueue(ib_wq); 1596 } 1597