1 /* 2 * Copyright (c) 2004 Topspin Communications. All rights reserved. 3 * Copyright (c) 2005 Intel Corporation. All rights reserved. 4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * OpenIB.org BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or 14 * without modification, are permitted provided that the following 15 * conditions are met: 16 * 17 * - Redistributions of source code must retain the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer. 20 * 21 * - Redistributions in binary form must reproduce the above 22 * copyright notice, this list of conditions and the following 23 * disclaimer in the documentation and/or other materials 24 * provided with the distribution. 25 * 26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 33 * SOFTWARE. 34 */ 35 36 #include <linux/if_vlan.h> 37 #include <linux/errno.h> 38 #include <linux/slab.h> 39 #include <linux/workqueue.h> 40 #include <linux/netdevice.h> 41 #include <net/addrconf.h> 42 43 #include <rdma/ib_cache.h> 44 45 #include "core_priv.h" 46 47 struct ib_pkey_cache { 48 int table_len; 49 u16 table[] __counted_by(table_len); 50 }; 51 52 struct ib_update_work { 53 struct work_struct work; 54 struct ib_event event; 55 bool enforce_security; 56 }; 57 58 union ib_gid zgid; 59 EXPORT_SYMBOL(zgid); 60 61 enum gid_attr_find_mask { 62 GID_ATTR_FIND_MASK_GID = 1UL << 0, 63 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1, 64 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2, 65 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3, 66 }; 67 68 enum gid_table_entry_state { 69 GID_TABLE_ENTRY_INVALID = 1, 70 GID_TABLE_ENTRY_VALID = 2, 71 /* 72 * Indicates that entry is pending to be removed, there may 73 * be active users of this GID entry. 74 * When last user of the GID entry releases reference to it, 75 * GID entry is detached from the table. 76 */ 77 GID_TABLE_ENTRY_PENDING_DEL = 3, 78 }; 79 80 struct roce_gid_ndev_storage { 81 struct rcu_head rcu_head; 82 struct net_device *ndev; 83 }; 84 85 struct ib_gid_table_entry { 86 struct kref kref; 87 struct work_struct del_work; 88 struct ib_gid_attr attr; 89 void *context; 90 /* Store the ndev pointer to release reference later on in 91 * call_rcu context because by that time gid_table_entry 92 * and attr might be already freed. So keep a copy of it. 93 * ndev_storage is freed by rcu callback. 94 */ 95 struct roce_gid_ndev_storage *ndev_storage; 96 enum gid_table_entry_state state; 97 }; 98 99 struct ib_gid_table { 100 int sz; 101 /* In RoCE, adding a GID to the table requires: 102 * (a) Find if this GID is already exists. 103 * (b) Find a free space. 104 * (c) Write the new GID 105 * 106 * Delete requires different set of operations: 107 * (a) Find the GID 108 * (b) Delete it. 109 * 110 **/ 111 /* Any writer to data_vec must hold this lock and the write side of 112 * rwlock. Readers must hold only rwlock. All writers must be in a 113 * sleepable context. 114 */ 115 struct mutex lock; 116 /* rwlock protects data_vec[ix]->state and entry pointer. 117 */ 118 rwlock_t rwlock; 119 struct ib_gid_table_entry **data_vec; 120 /* bit field, each bit indicates the index of default GID */ 121 u32 default_gid_indices; 122 }; 123 124 static void dispatch_gid_change_event(struct ib_device *ib_dev, u32 port) 125 { 126 struct ib_event event; 127 128 event.device = ib_dev; 129 event.element.port_num = port; 130 event.event = IB_EVENT_GID_CHANGE; 131 132 ib_dispatch_event_clients(&event); 133 } 134 135 static const char * const gid_type_str[] = { 136 /* IB/RoCE v1 value is set for IB_GID_TYPE_IB and IB_GID_TYPE_ROCE for 137 * user space compatibility reasons. 138 */ 139 [IB_GID_TYPE_IB] = "IB/RoCE v1", 140 [IB_GID_TYPE_ROCE] = "IB/RoCE v1", 141 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2", 142 }; 143 144 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type) 145 { 146 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type]) 147 return gid_type_str[gid_type]; 148 149 return "Invalid GID type"; 150 } 151 EXPORT_SYMBOL(ib_cache_gid_type_str); 152 153 /** rdma_is_zero_gid - Check if given GID is zero or not. 154 * @gid: GID to check 155 * Returns true if given GID is zero, returns false otherwise. 156 */ 157 bool rdma_is_zero_gid(const union ib_gid *gid) 158 { 159 return !memcmp(gid, &zgid, sizeof(*gid)); 160 } 161 EXPORT_SYMBOL(rdma_is_zero_gid); 162 163 /** is_gid_index_default - Check if a given index belongs to 164 * reserved default GIDs or not. 165 * @table: GID table pointer 166 * @index: Index to check in GID table 167 * Returns true if index is one of the reserved default GID index otherwise 168 * returns false. 169 */ 170 static bool is_gid_index_default(const struct ib_gid_table *table, 171 unsigned int index) 172 { 173 return index < 32 && (BIT(index) & table->default_gid_indices); 174 } 175 176 int ib_cache_gid_parse_type_str(const char *buf) 177 { 178 unsigned int i; 179 size_t len; 180 int err = -EINVAL; 181 182 len = strlen(buf); 183 if (len == 0) 184 return -EINVAL; 185 186 if (buf[len - 1] == '\n') 187 len--; 188 189 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i) 190 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) && 191 len == strlen(gid_type_str[i])) { 192 err = i; 193 break; 194 } 195 196 return err; 197 } 198 EXPORT_SYMBOL(ib_cache_gid_parse_type_str); 199 200 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u32 port) 201 { 202 return device->port_data[port].cache.gid; 203 } 204 205 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry) 206 { 207 return !entry; 208 } 209 210 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry) 211 { 212 return entry && entry->state == GID_TABLE_ENTRY_VALID; 213 } 214 215 static void schedule_free_gid(struct kref *kref) 216 { 217 struct ib_gid_table_entry *entry = 218 container_of(kref, struct ib_gid_table_entry, kref); 219 220 queue_work(ib_wq, &entry->del_work); 221 } 222 223 static void put_gid_ndev(struct rcu_head *head) 224 { 225 struct roce_gid_ndev_storage *storage = 226 container_of(head, struct roce_gid_ndev_storage, rcu_head); 227 228 WARN_ON(!storage->ndev); 229 /* At this point its safe to release netdev reference, 230 * as all callers working on gid_attr->ndev are done 231 * using this netdev. 232 */ 233 dev_put(storage->ndev); 234 kfree(storage); 235 } 236 237 static void free_gid_entry_locked(struct ib_gid_table_entry *entry) 238 { 239 struct ib_device *device = entry->attr.device; 240 u32 port_num = entry->attr.port_num; 241 struct ib_gid_table *table = rdma_gid_table(device, port_num); 242 243 dev_dbg(&device->dev, "%s port=%u index=%u gid %pI6\n", __func__, 244 port_num, entry->attr.index, entry->attr.gid.raw); 245 246 write_lock_irq(&table->rwlock); 247 248 /* 249 * The only way to avoid overwriting NULL in table is 250 * by comparing if it is same entry in table or not! 251 * If new entry in table is added by the time we free here, 252 * don't overwrite the table entry. 253 */ 254 if (entry == table->data_vec[entry->attr.index]) 255 table->data_vec[entry->attr.index] = NULL; 256 /* Now this index is ready to be allocated */ 257 write_unlock_irq(&table->rwlock); 258 259 if (entry->ndev_storage) 260 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev); 261 kfree(entry); 262 } 263 264 static void free_gid_entry(struct kref *kref) 265 { 266 struct ib_gid_table_entry *entry = 267 container_of(kref, struct ib_gid_table_entry, kref); 268 269 free_gid_entry_locked(entry); 270 } 271 272 /** 273 * free_gid_work - Release reference to the GID entry 274 * @work: Work structure to refer to GID entry which needs to be 275 * deleted. 276 * 277 * free_gid_work() frees the entry from the HCA's hardware table 278 * if provider supports it. It releases reference to netdevice. 279 */ 280 static void free_gid_work(struct work_struct *work) 281 { 282 struct ib_gid_table_entry *entry = 283 container_of(work, struct ib_gid_table_entry, del_work); 284 struct ib_device *device = entry->attr.device; 285 u32 port_num = entry->attr.port_num; 286 struct ib_gid_table *table = rdma_gid_table(device, port_num); 287 288 mutex_lock(&table->lock); 289 free_gid_entry_locked(entry); 290 mutex_unlock(&table->lock); 291 } 292 293 static struct ib_gid_table_entry * 294 alloc_gid_entry(const struct ib_gid_attr *attr) 295 { 296 struct ib_gid_table_entry *entry; 297 struct net_device *ndev; 298 299 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 300 if (!entry) 301 return NULL; 302 303 ndev = rcu_dereference_protected(attr->ndev, 1); 304 if (ndev) { 305 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage), 306 GFP_KERNEL); 307 if (!entry->ndev_storage) { 308 kfree(entry); 309 return NULL; 310 } 311 dev_hold(ndev); 312 entry->ndev_storage->ndev = ndev; 313 } 314 kref_init(&entry->kref); 315 memcpy(&entry->attr, attr, sizeof(*attr)); 316 INIT_WORK(&entry->del_work, free_gid_work); 317 entry->state = GID_TABLE_ENTRY_INVALID; 318 return entry; 319 } 320 321 static void store_gid_entry(struct ib_gid_table *table, 322 struct ib_gid_table_entry *entry) 323 { 324 entry->state = GID_TABLE_ENTRY_VALID; 325 326 dev_dbg(&entry->attr.device->dev, "%s port=%u index=%u gid %pI6\n", 327 __func__, entry->attr.port_num, entry->attr.index, 328 entry->attr.gid.raw); 329 330 lockdep_assert_held(&table->lock); 331 write_lock_irq(&table->rwlock); 332 table->data_vec[entry->attr.index] = entry; 333 write_unlock_irq(&table->rwlock); 334 } 335 336 static void get_gid_entry(struct ib_gid_table_entry *entry) 337 { 338 kref_get(&entry->kref); 339 } 340 341 static void put_gid_entry(struct ib_gid_table_entry *entry) 342 { 343 kref_put(&entry->kref, schedule_free_gid); 344 } 345 346 static void put_gid_entry_locked(struct ib_gid_table_entry *entry) 347 { 348 kref_put(&entry->kref, free_gid_entry); 349 } 350 351 static int add_roce_gid(struct ib_gid_table_entry *entry) 352 { 353 const struct ib_gid_attr *attr = &entry->attr; 354 int ret; 355 356 if (!attr->ndev) { 357 dev_err(&attr->device->dev, "%s NULL netdev port=%u index=%u\n", 358 __func__, attr->port_num, attr->index); 359 return -EINVAL; 360 } 361 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) { 362 ret = attr->device->ops.add_gid(attr, &entry->context); 363 if (ret) { 364 dev_err(&attr->device->dev, 365 "%s GID add failed port=%u index=%u\n", 366 __func__, attr->port_num, attr->index); 367 return ret; 368 } 369 } 370 return 0; 371 } 372 373 /** 374 * del_gid - Delete GID table entry 375 * 376 * @ib_dev: IB device whose GID entry to be deleted 377 * @port: Port number of the IB device 378 * @table: GID table of the IB device for a port 379 * @ix: GID entry index to delete 380 * 381 */ 382 static void del_gid(struct ib_device *ib_dev, u32 port, 383 struct ib_gid_table *table, int ix) 384 { 385 struct roce_gid_ndev_storage *ndev_storage; 386 struct ib_gid_table_entry *entry; 387 388 lockdep_assert_held(&table->lock); 389 390 dev_dbg(&ib_dev->dev, "%s port=%u index=%d gid %pI6\n", __func__, port, 391 ix, table->data_vec[ix]->attr.gid.raw); 392 393 write_lock_irq(&table->rwlock); 394 entry = table->data_vec[ix]; 395 entry->state = GID_TABLE_ENTRY_PENDING_DEL; 396 /* 397 * For non RoCE protocol, GID entry slot is ready to use. 398 */ 399 if (!rdma_protocol_roce(ib_dev, port)) 400 table->data_vec[ix] = NULL; 401 write_unlock_irq(&table->rwlock); 402 403 if (rdma_cap_roce_gid_table(ib_dev, port)) 404 ib_dev->ops.del_gid(&entry->attr, &entry->context); 405 406 ndev_storage = entry->ndev_storage; 407 if (ndev_storage) { 408 entry->ndev_storage = NULL; 409 rcu_assign_pointer(entry->attr.ndev, NULL); 410 call_rcu(&ndev_storage->rcu_head, put_gid_ndev); 411 } 412 413 put_gid_entry_locked(entry); 414 } 415 416 /** 417 * add_modify_gid - Add or modify GID table entry 418 * 419 * @table: GID table in which GID to be added or modified 420 * @attr: Attributes of the GID 421 * 422 * Returns 0 on success or appropriate error code. It accepts zero 423 * GID addition for non RoCE ports for HCA's who report them as valid 424 * GID. However such zero GIDs are not added to the cache. 425 */ 426 static int add_modify_gid(struct ib_gid_table *table, 427 const struct ib_gid_attr *attr) 428 { 429 struct ib_gid_table_entry *entry; 430 int ret = 0; 431 432 /* 433 * Invalidate any old entry in the table to make it safe to write to 434 * this index. 435 */ 436 if (is_gid_entry_valid(table->data_vec[attr->index])) 437 del_gid(attr->device, attr->port_num, table, attr->index); 438 439 /* 440 * Some HCA's report multiple GID entries with only one valid GID, and 441 * leave other unused entries as the zero GID. Convert zero GIDs to 442 * empty table entries instead of storing them. 443 */ 444 if (rdma_is_zero_gid(&attr->gid)) 445 return 0; 446 447 entry = alloc_gid_entry(attr); 448 if (!entry) 449 return -ENOMEM; 450 451 if (rdma_protocol_roce(attr->device, attr->port_num)) { 452 ret = add_roce_gid(entry); 453 if (ret) 454 goto done; 455 } 456 457 store_gid_entry(table, entry); 458 return 0; 459 460 done: 461 put_gid_entry(entry); 462 return ret; 463 } 464 465 /* rwlock should be read locked, or lock should be held */ 466 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid, 467 const struct ib_gid_attr *val, bool default_gid, 468 unsigned long mask, int *pempty) 469 { 470 int i = 0; 471 int found = -1; 472 int empty = pempty ? -1 : 0; 473 474 while (i < table->sz && (found < 0 || empty < 0)) { 475 struct ib_gid_table_entry *data = table->data_vec[i]; 476 struct ib_gid_attr *attr; 477 int curr_index = i; 478 479 i++; 480 481 /* find_gid() is used during GID addition where it is expected 482 * to return a free entry slot which is not duplicate. 483 * Free entry slot is requested and returned if pempty is set, 484 * so lookup free slot only if requested. 485 */ 486 if (pempty && empty < 0) { 487 if (is_gid_entry_free(data) && 488 default_gid == 489 is_gid_index_default(table, curr_index)) { 490 /* 491 * Found an invalid (free) entry; allocate it. 492 * If default GID is requested, then our 493 * found slot must be one of the DEFAULT 494 * reserved slots or we fail. 495 * This ensures that only DEFAULT reserved 496 * slots are used for default property GIDs. 497 */ 498 empty = curr_index; 499 } 500 } 501 502 /* 503 * Additionally find_gid() is used to find valid entry during 504 * lookup operation; so ignore the entries which are marked as 505 * pending for removal and the entries which are marked as 506 * invalid. 507 */ 508 if (!is_gid_entry_valid(data)) 509 continue; 510 511 if (found >= 0) 512 continue; 513 514 attr = &data->attr; 515 if (mask & GID_ATTR_FIND_MASK_GID_TYPE && 516 attr->gid_type != val->gid_type) 517 continue; 518 519 if (mask & GID_ATTR_FIND_MASK_GID && 520 memcmp(gid, &data->attr.gid, sizeof(*gid))) 521 continue; 522 523 if (mask & GID_ATTR_FIND_MASK_NETDEV && 524 attr->ndev != val->ndev) 525 continue; 526 527 if (mask & GID_ATTR_FIND_MASK_DEFAULT && 528 is_gid_index_default(table, curr_index) != default_gid) 529 continue; 530 531 found = curr_index; 532 } 533 534 if (pempty) 535 *pempty = empty; 536 537 return found; 538 } 539 540 static void make_default_gid(struct net_device *dev, union ib_gid *gid) 541 { 542 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL); 543 addrconf_ifid_eui48(&gid->raw[8], dev); 544 } 545 546 static int __ib_cache_gid_add(struct ib_device *ib_dev, u32 port, 547 union ib_gid *gid, struct ib_gid_attr *attr, 548 unsigned long mask, bool default_gid) 549 { 550 struct ib_gid_table *table; 551 int ret = 0; 552 int empty; 553 int ix; 554 555 /* Do not allow adding zero GID in support of 556 * IB spec version 1.3 section 4.1.1 point (6) and 557 * section 12.7.10 and section 12.7.20 558 */ 559 if (rdma_is_zero_gid(gid)) 560 return -EINVAL; 561 562 table = rdma_gid_table(ib_dev, port); 563 564 mutex_lock(&table->lock); 565 566 ix = find_gid(table, gid, attr, default_gid, mask, &empty); 567 if (ix >= 0) 568 goto out_unlock; 569 570 if (empty < 0) { 571 ret = -ENOSPC; 572 goto out_unlock; 573 } 574 attr->device = ib_dev; 575 attr->index = empty; 576 attr->port_num = port; 577 attr->gid = *gid; 578 ret = add_modify_gid(table, attr); 579 if (!ret) 580 dispatch_gid_change_event(ib_dev, port); 581 582 out_unlock: 583 mutex_unlock(&table->lock); 584 if (ret) 585 pr_warn("%s: unable to add gid %pI6 error=%d\n", 586 __func__, gid->raw, ret); 587 return ret; 588 } 589 590 int ib_cache_gid_add(struct ib_device *ib_dev, u32 port, 591 union ib_gid *gid, struct ib_gid_attr *attr) 592 { 593 unsigned long mask = GID_ATTR_FIND_MASK_GID | 594 GID_ATTR_FIND_MASK_GID_TYPE | 595 GID_ATTR_FIND_MASK_NETDEV; 596 597 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false); 598 } 599 600 static int 601 _ib_cache_gid_del(struct ib_device *ib_dev, u32 port, 602 union ib_gid *gid, struct ib_gid_attr *attr, 603 unsigned long mask, bool default_gid) 604 { 605 struct ib_gid_table *table; 606 int ret = 0; 607 int ix; 608 609 table = rdma_gid_table(ib_dev, port); 610 611 mutex_lock(&table->lock); 612 613 ix = find_gid(table, gid, attr, default_gid, mask, NULL); 614 if (ix < 0) { 615 ret = -EINVAL; 616 goto out_unlock; 617 } 618 619 del_gid(ib_dev, port, table, ix); 620 dispatch_gid_change_event(ib_dev, port); 621 622 out_unlock: 623 mutex_unlock(&table->lock); 624 if (ret) 625 pr_debug("%s: can't delete gid %pI6 error=%d\n", 626 __func__, gid->raw, ret); 627 return ret; 628 } 629 630 int ib_cache_gid_del(struct ib_device *ib_dev, u32 port, 631 union ib_gid *gid, struct ib_gid_attr *attr) 632 { 633 unsigned long mask = GID_ATTR_FIND_MASK_GID | 634 GID_ATTR_FIND_MASK_GID_TYPE | 635 GID_ATTR_FIND_MASK_DEFAULT | 636 GID_ATTR_FIND_MASK_NETDEV; 637 638 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false); 639 } 640 641 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u32 port, 642 struct net_device *ndev) 643 { 644 struct ib_gid_table *table; 645 int ix; 646 bool deleted = false; 647 648 table = rdma_gid_table(ib_dev, port); 649 650 mutex_lock(&table->lock); 651 652 for (ix = 0; ix < table->sz; ix++) { 653 if (is_gid_entry_valid(table->data_vec[ix]) && 654 table->data_vec[ix]->attr.ndev == ndev) { 655 del_gid(ib_dev, port, table, ix); 656 deleted = true; 657 } 658 } 659 660 mutex_unlock(&table->lock); 661 662 if (deleted) 663 dispatch_gid_change_event(ib_dev, port); 664 665 return 0; 666 } 667 668 /** 669 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds 670 * a valid GID entry for given search parameters. It searches for the specified 671 * GID value in the local software cache. 672 * @ib_dev: The device to query. 673 * @gid: The GID value to search for. 674 * @gid_type: The GID type to search for. 675 * @port: The port number of the device where the GID value should be searched. 676 * @ndev: In RoCE, the net device of the device. NULL means ignore. 677 * 678 * Returns sgid attributes if the GID is found with valid reference or 679 * returns ERR_PTR for the error. 680 * The caller must invoke rdma_put_gid_attr() to release the reference. 681 */ 682 const struct ib_gid_attr * 683 rdma_find_gid_by_port(struct ib_device *ib_dev, 684 const union ib_gid *gid, 685 enum ib_gid_type gid_type, 686 u32 port, struct net_device *ndev) 687 { 688 int local_index; 689 struct ib_gid_table *table; 690 unsigned long mask = GID_ATTR_FIND_MASK_GID | 691 GID_ATTR_FIND_MASK_GID_TYPE; 692 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type}; 693 const struct ib_gid_attr *attr; 694 unsigned long flags; 695 696 if (!rdma_is_port_valid(ib_dev, port)) 697 return ERR_PTR(-ENOENT); 698 699 table = rdma_gid_table(ib_dev, port); 700 701 if (ndev) 702 mask |= GID_ATTR_FIND_MASK_NETDEV; 703 704 read_lock_irqsave(&table->rwlock, flags); 705 local_index = find_gid(table, gid, &val, false, mask, NULL); 706 if (local_index >= 0) { 707 get_gid_entry(table->data_vec[local_index]); 708 attr = &table->data_vec[local_index]->attr; 709 read_unlock_irqrestore(&table->rwlock, flags); 710 return attr; 711 } 712 713 read_unlock_irqrestore(&table->rwlock, flags); 714 return ERR_PTR(-ENOENT); 715 } 716 EXPORT_SYMBOL(rdma_find_gid_by_port); 717 718 /** 719 * rdma_find_gid_by_filter - Returns the GID table attribute where a 720 * specified GID value occurs 721 * @ib_dev: The device to query. 722 * @gid: The GID value to search for. 723 * @port: The port number of the device where the GID value could be 724 * searched. 725 * @filter: The filter function is executed on any matching GID in the table. 726 * If the filter function returns true, the corresponding index is returned, 727 * otherwise, we continue searching the GID table. It's guaranteed that 728 * while filter is executed, ndev field is valid and the structure won't 729 * change. filter is executed in an atomic context. filter must not be NULL. 730 * @context: Private data to pass into the call-back. 731 * 732 * rdma_find_gid_by_filter() searches for the specified GID value 733 * of which the filter function returns true in the port's GID table. 734 * 735 */ 736 const struct ib_gid_attr *rdma_find_gid_by_filter( 737 struct ib_device *ib_dev, const union ib_gid *gid, u32 port, 738 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *, 739 void *), 740 void *context) 741 { 742 const struct ib_gid_attr *res = ERR_PTR(-ENOENT); 743 struct ib_gid_table *table; 744 unsigned long flags; 745 unsigned int i; 746 747 if (!rdma_is_port_valid(ib_dev, port)) 748 return ERR_PTR(-EINVAL); 749 750 table = rdma_gid_table(ib_dev, port); 751 752 read_lock_irqsave(&table->rwlock, flags); 753 for (i = 0; i < table->sz; i++) { 754 struct ib_gid_table_entry *entry = table->data_vec[i]; 755 756 if (!is_gid_entry_valid(entry)) 757 continue; 758 759 if (memcmp(gid, &entry->attr.gid, sizeof(*gid))) 760 continue; 761 762 if (filter(gid, &entry->attr, context)) { 763 get_gid_entry(entry); 764 res = &entry->attr; 765 break; 766 } 767 } 768 read_unlock_irqrestore(&table->rwlock, flags); 769 return res; 770 } 771 772 static struct ib_gid_table *alloc_gid_table(int sz) 773 { 774 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL); 775 776 if (!table) 777 return NULL; 778 779 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL); 780 if (!table->data_vec) 781 goto err_free_table; 782 783 mutex_init(&table->lock); 784 785 table->sz = sz; 786 rwlock_init(&table->rwlock); 787 return table; 788 789 err_free_table: 790 kfree(table); 791 return NULL; 792 } 793 794 static void release_gid_table(struct ib_device *device, 795 struct ib_gid_table *table) 796 { 797 int i; 798 799 if (!table) 800 return; 801 802 for (i = 0; i < table->sz; i++) { 803 if (is_gid_entry_free(table->data_vec[i])) 804 continue; 805 806 WARN_ONCE(true, 807 "GID entry ref leak for dev %s index %d ref=%u\n", 808 dev_name(&device->dev), i, 809 kref_read(&table->data_vec[i]->kref)); 810 } 811 812 mutex_destroy(&table->lock); 813 kfree(table->data_vec); 814 kfree(table); 815 } 816 817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u32 port, 818 struct ib_gid_table *table) 819 { 820 int i; 821 822 if (!table) 823 return; 824 825 mutex_lock(&table->lock); 826 for (i = 0; i < table->sz; ++i) { 827 if (is_gid_entry_valid(table->data_vec[i])) 828 del_gid(ib_dev, port, table, i); 829 } 830 mutex_unlock(&table->lock); 831 } 832 833 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u32 port, 834 struct net_device *ndev, 835 unsigned long gid_type_mask, 836 enum ib_cache_gid_default_mode mode) 837 { 838 union ib_gid gid = { }; 839 struct ib_gid_attr gid_attr; 840 unsigned int gid_type; 841 unsigned long mask; 842 843 mask = GID_ATTR_FIND_MASK_GID_TYPE | 844 GID_ATTR_FIND_MASK_DEFAULT | 845 GID_ATTR_FIND_MASK_NETDEV; 846 memset(&gid_attr, 0, sizeof(gid_attr)); 847 gid_attr.ndev = ndev; 848 849 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) { 850 if (1UL << gid_type & ~gid_type_mask) 851 continue; 852 853 gid_attr.gid_type = gid_type; 854 855 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) { 856 make_default_gid(ndev, &gid); 857 __ib_cache_gid_add(ib_dev, port, &gid, 858 &gid_attr, mask, true); 859 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) { 860 _ib_cache_gid_del(ib_dev, port, &gid, 861 &gid_attr, mask, true); 862 } 863 } 864 } 865 866 static void gid_table_reserve_default(struct ib_device *ib_dev, u32 port, 867 struct ib_gid_table *table) 868 { 869 unsigned int i; 870 unsigned long roce_gid_type_mask; 871 unsigned int num_default_gids; 872 873 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port); 874 num_default_gids = hweight_long(roce_gid_type_mask); 875 /* Reserve starting indices for default GIDs */ 876 for (i = 0; i < num_default_gids && i < table->sz; i++) 877 table->default_gid_indices |= BIT(i); 878 } 879 880 881 static void gid_table_release_one(struct ib_device *ib_dev) 882 { 883 u32 p; 884 885 rdma_for_each_port (ib_dev, p) { 886 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid); 887 ib_dev->port_data[p].cache.gid = NULL; 888 } 889 } 890 891 static int _gid_table_setup_one(struct ib_device *ib_dev) 892 { 893 struct ib_gid_table *table; 894 u32 rdma_port; 895 896 rdma_for_each_port (ib_dev, rdma_port) { 897 table = alloc_gid_table( 898 ib_dev->port_data[rdma_port].immutable.gid_tbl_len); 899 if (!table) 900 goto rollback_table_setup; 901 902 gid_table_reserve_default(ib_dev, rdma_port, table); 903 ib_dev->port_data[rdma_port].cache.gid = table; 904 } 905 return 0; 906 907 rollback_table_setup: 908 gid_table_release_one(ib_dev); 909 return -ENOMEM; 910 } 911 912 static void gid_table_cleanup_one(struct ib_device *ib_dev) 913 { 914 u32 p; 915 916 rdma_for_each_port (ib_dev, p) 917 cleanup_gid_table_port(ib_dev, p, 918 ib_dev->port_data[p].cache.gid); 919 } 920 921 static int gid_table_setup_one(struct ib_device *ib_dev) 922 { 923 int err; 924 925 err = _gid_table_setup_one(ib_dev); 926 927 if (err) 928 return err; 929 930 rdma_roce_rescan_device(ib_dev); 931 932 return err; 933 } 934 935 /** 936 * rdma_query_gid - Read the GID content from the GID software cache 937 * @device: Device to query the GID 938 * @port_num: Port number of the device 939 * @index: Index of the GID table entry to read 940 * @gid: Pointer to GID where to store the entry's GID 941 * 942 * rdma_query_gid() only reads the GID entry content for requested device, 943 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't 944 * hold any reference to the GID table entry in the HCA or software cache. 945 * 946 * Returns 0 on success or appropriate error code. 947 * 948 */ 949 int rdma_query_gid(struct ib_device *device, u32 port_num, 950 int index, union ib_gid *gid) 951 { 952 struct ib_gid_table *table; 953 unsigned long flags; 954 int res; 955 956 if (!rdma_is_port_valid(device, port_num)) 957 return -EINVAL; 958 959 table = rdma_gid_table(device, port_num); 960 read_lock_irqsave(&table->rwlock, flags); 961 962 if (index < 0 || index >= table->sz) { 963 res = -EINVAL; 964 goto done; 965 } 966 967 if (!is_gid_entry_valid(table->data_vec[index])) { 968 res = -ENOENT; 969 goto done; 970 } 971 972 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid)); 973 res = 0; 974 975 done: 976 read_unlock_irqrestore(&table->rwlock, flags); 977 return res; 978 } 979 EXPORT_SYMBOL(rdma_query_gid); 980 981 /** 982 * rdma_read_gid_hw_context - Read the HW GID context from GID attribute 983 * @attr: Potinter to the GID attribute 984 * 985 * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding 986 * to the SGID attr. Callers are required to already be holding the reference 987 * to an existing GID entry. 988 * 989 * Returns the HW GID context 990 * 991 */ 992 void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr) 993 { 994 return container_of(attr, struct ib_gid_table_entry, attr)->context; 995 } 996 EXPORT_SYMBOL(rdma_read_gid_hw_context); 997 998 /** 999 * rdma_find_gid - Returns SGID attributes if the matching GID is found. 1000 * @device: The device to query. 1001 * @gid: The GID value to search for. 1002 * @gid_type: The GID type to search for. 1003 * @ndev: In RoCE, the net device of the device. NULL means ignore. 1004 * 1005 * rdma_find_gid() searches for the specified GID value in the software cache. 1006 * 1007 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the 1008 * error. The caller must invoke rdma_put_gid_attr() to release the reference. 1009 * 1010 */ 1011 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device, 1012 const union ib_gid *gid, 1013 enum ib_gid_type gid_type, 1014 struct net_device *ndev) 1015 { 1016 unsigned long mask = GID_ATTR_FIND_MASK_GID | 1017 GID_ATTR_FIND_MASK_GID_TYPE; 1018 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type}; 1019 u32 p; 1020 1021 if (ndev) 1022 mask |= GID_ATTR_FIND_MASK_NETDEV; 1023 1024 rdma_for_each_port(device, p) { 1025 struct ib_gid_table *table; 1026 unsigned long flags; 1027 int index; 1028 1029 table = device->port_data[p].cache.gid; 1030 read_lock_irqsave(&table->rwlock, flags); 1031 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL); 1032 if (index >= 0) { 1033 const struct ib_gid_attr *attr; 1034 1035 get_gid_entry(table->data_vec[index]); 1036 attr = &table->data_vec[index]->attr; 1037 read_unlock_irqrestore(&table->rwlock, flags); 1038 return attr; 1039 } 1040 read_unlock_irqrestore(&table->rwlock, flags); 1041 } 1042 1043 return ERR_PTR(-ENOENT); 1044 } 1045 EXPORT_SYMBOL(rdma_find_gid); 1046 1047 int ib_get_cached_pkey(struct ib_device *device, 1048 u32 port_num, 1049 int index, 1050 u16 *pkey) 1051 { 1052 struct ib_pkey_cache *cache; 1053 unsigned long flags; 1054 int ret = 0; 1055 1056 if (!rdma_is_port_valid(device, port_num)) 1057 return -EINVAL; 1058 1059 read_lock_irqsave(&device->cache_lock, flags); 1060 1061 cache = device->port_data[port_num].cache.pkey; 1062 1063 if (!cache || index < 0 || index >= cache->table_len) 1064 ret = -EINVAL; 1065 else 1066 *pkey = cache->table[index]; 1067 1068 read_unlock_irqrestore(&device->cache_lock, flags); 1069 1070 return ret; 1071 } 1072 EXPORT_SYMBOL(ib_get_cached_pkey); 1073 1074 void ib_get_cached_subnet_prefix(struct ib_device *device, u32 port_num, 1075 u64 *sn_pfx) 1076 { 1077 unsigned long flags; 1078 1079 read_lock_irqsave(&device->cache_lock, flags); 1080 *sn_pfx = device->port_data[port_num].cache.subnet_prefix; 1081 read_unlock_irqrestore(&device->cache_lock, flags); 1082 } 1083 EXPORT_SYMBOL(ib_get_cached_subnet_prefix); 1084 1085 int ib_find_cached_pkey(struct ib_device *device, u32 port_num, 1086 u16 pkey, u16 *index) 1087 { 1088 struct ib_pkey_cache *cache; 1089 unsigned long flags; 1090 int i; 1091 int ret = -ENOENT; 1092 int partial_ix = -1; 1093 1094 if (!rdma_is_port_valid(device, port_num)) 1095 return -EINVAL; 1096 1097 read_lock_irqsave(&device->cache_lock, flags); 1098 1099 cache = device->port_data[port_num].cache.pkey; 1100 if (!cache) { 1101 ret = -EINVAL; 1102 goto err; 1103 } 1104 1105 *index = -1; 1106 1107 for (i = 0; i < cache->table_len; ++i) 1108 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) { 1109 if (cache->table[i] & 0x8000) { 1110 *index = i; 1111 ret = 0; 1112 break; 1113 } else { 1114 partial_ix = i; 1115 } 1116 } 1117 1118 if (ret && partial_ix >= 0) { 1119 *index = partial_ix; 1120 ret = 0; 1121 } 1122 1123 err: 1124 read_unlock_irqrestore(&device->cache_lock, flags); 1125 1126 return ret; 1127 } 1128 EXPORT_SYMBOL(ib_find_cached_pkey); 1129 1130 int ib_find_exact_cached_pkey(struct ib_device *device, u32 port_num, 1131 u16 pkey, u16 *index) 1132 { 1133 struct ib_pkey_cache *cache; 1134 unsigned long flags; 1135 int i; 1136 int ret = -ENOENT; 1137 1138 if (!rdma_is_port_valid(device, port_num)) 1139 return -EINVAL; 1140 1141 read_lock_irqsave(&device->cache_lock, flags); 1142 1143 cache = device->port_data[port_num].cache.pkey; 1144 if (!cache) { 1145 ret = -EINVAL; 1146 goto err; 1147 } 1148 1149 *index = -1; 1150 1151 for (i = 0; i < cache->table_len; ++i) 1152 if (cache->table[i] == pkey) { 1153 *index = i; 1154 ret = 0; 1155 break; 1156 } 1157 1158 err: 1159 read_unlock_irqrestore(&device->cache_lock, flags); 1160 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(ib_find_exact_cached_pkey); 1164 1165 int ib_get_cached_lmc(struct ib_device *device, u32 port_num, u8 *lmc) 1166 { 1167 unsigned long flags; 1168 int ret = 0; 1169 1170 if (!rdma_is_port_valid(device, port_num)) 1171 return -EINVAL; 1172 1173 read_lock_irqsave(&device->cache_lock, flags); 1174 *lmc = device->port_data[port_num].cache.lmc; 1175 read_unlock_irqrestore(&device->cache_lock, flags); 1176 1177 return ret; 1178 } 1179 EXPORT_SYMBOL(ib_get_cached_lmc); 1180 1181 int ib_get_cached_port_state(struct ib_device *device, u32 port_num, 1182 enum ib_port_state *port_state) 1183 { 1184 unsigned long flags; 1185 int ret = 0; 1186 1187 if (!rdma_is_port_valid(device, port_num)) 1188 return -EINVAL; 1189 1190 read_lock_irqsave(&device->cache_lock, flags); 1191 *port_state = device->port_data[port_num].cache.port_state; 1192 read_unlock_irqrestore(&device->cache_lock, flags); 1193 1194 return ret; 1195 } 1196 EXPORT_SYMBOL(ib_get_cached_port_state); 1197 1198 /** 1199 * rdma_get_gid_attr - Returns GID attributes for a port of a device 1200 * at a requested gid_index, if a valid GID entry exists. 1201 * @device: The device to query. 1202 * @port_num: The port number on the device where the GID value 1203 * is to be queried. 1204 * @index: Index of the GID table entry whose attributes are to 1205 * be queried. 1206 * 1207 * rdma_get_gid_attr() acquires reference count of gid attributes from the 1208 * cached GID table. Caller must invoke rdma_put_gid_attr() to release 1209 * reference to gid attribute regardless of link layer. 1210 * 1211 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error 1212 * code. 1213 */ 1214 const struct ib_gid_attr * 1215 rdma_get_gid_attr(struct ib_device *device, u32 port_num, int index) 1216 { 1217 const struct ib_gid_attr *attr = ERR_PTR(-ENODATA); 1218 struct ib_gid_table *table; 1219 unsigned long flags; 1220 1221 if (!rdma_is_port_valid(device, port_num)) 1222 return ERR_PTR(-EINVAL); 1223 1224 table = rdma_gid_table(device, port_num); 1225 if (index < 0 || index >= table->sz) 1226 return ERR_PTR(-EINVAL); 1227 1228 read_lock_irqsave(&table->rwlock, flags); 1229 if (!is_gid_entry_valid(table->data_vec[index])) 1230 goto done; 1231 1232 get_gid_entry(table->data_vec[index]); 1233 attr = &table->data_vec[index]->attr; 1234 done: 1235 read_unlock_irqrestore(&table->rwlock, flags); 1236 return attr; 1237 } 1238 EXPORT_SYMBOL(rdma_get_gid_attr); 1239 1240 /** 1241 * rdma_query_gid_table - Reads GID table entries of all the ports of a device up to max_entries. 1242 * @device: The device to query. 1243 * @entries: Entries where GID entries are returned. 1244 * @max_entries: Maximum number of entries that can be returned. 1245 * Entries array must be allocated to hold max_entries number of entries. 1246 * 1247 * Returns number of entries on success or appropriate error code. 1248 */ 1249 ssize_t rdma_query_gid_table(struct ib_device *device, 1250 struct ib_uverbs_gid_entry *entries, 1251 size_t max_entries) 1252 { 1253 const struct ib_gid_attr *gid_attr; 1254 ssize_t num_entries = 0, ret; 1255 struct ib_gid_table *table; 1256 u32 port_num, i; 1257 struct net_device *ndev; 1258 unsigned long flags; 1259 1260 rdma_for_each_port(device, port_num) { 1261 table = rdma_gid_table(device, port_num); 1262 read_lock_irqsave(&table->rwlock, flags); 1263 for (i = 0; i < table->sz; i++) { 1264 if (!is_gid_entry_valid(table->data_vec[i])) 1265 continue; 1266 if (num_entries >= max_entries) { 1267 ret = -EINVAL; 1268 goto err; 1269 } 1270 1271 gid_attr = &table->data_vec[i]->attr; 1272 1273 memcpy(&entries->gid, &gid_attr->gid, 1274 sizeof(gid_attr->gid)); 1275 entries->gid_index = gid_attr->index; 1276 entries->port_num = gid_attr->port_num; 1277 entries->gid_type = gid_attr->gid_type; 1278 ndev = rcu_dereference_protected( 1279 gid_attr->ndev, 1280 lockdep_is_held(&table->rwlock)); 1281 if (ndev) 1282 entries->netdev_ifindex = ndev->ifindex; 1283 1284 num_entries++; 1285 entries++; 1286 } 1287 read_unlock_irqrestore(&table->rwlock, flags); 1288 } 1289 1290 return num_entries; 1291 err: 1292 read_unlock_irqrestore(&table->rwlock, flags); 1293 return ret; 1294 } 1295 EXPORT_SYMBOL(rdma_query_gid_table); 1296 1297 /** 1298 * rdma_put_gid_attr - Release reference to the GID attribute 1299 * @attr: Pointer to the GID attribute whose reference 1300 * needs to be released. 1301 * 1302 * rdma_put_gid_attr() must be used to release reference whose 1303 * reference is acquired using rdma_get_gid_attr() or any APIs 1304 * which returns a pointer to the ib_gid_attr regardless of link layer 1305 * of IB or RoCE. 1306 * 1307 */ 1308 void rdma_put_gid_attr(const struct ib_gid_attr *attr) 1309 { 1310 struct ib_gid_table_entry *entry = 1311 container_of(attr, struct ib_gid_table_entry, attr); 1312 1313 put_gid_entry(entry); 1314 } 1315 EXPORT_SYMBOL(rdma_put_gid_attr); 1316 1317 /** 1318 * rdma_hold_gid_attr - Get reference to existing GID attribute 1319 * 1320 * @attr: Pointer to the GID attribute whose reference 1321 * needs to be taken. 1322 * 1323 * Increase the reference count to a GID attribute to keep it from being 1324 * freed. Callers are required to already be holding a reference to attribute. 1325 * 1326 */ 1327 void rdma_hold_gid_attr(const struct ib_gid_attr *attr) 1328 { 1329 struct ib_gid_table_entry *entry = 1330 container_of(attr, struct ib_gid_table_entry, attr); 1331 1332 get_gid_entry(entry); 1333 } 1334 EXPORT_SYMBOL(rdma_hold_gid_attr); 1335 1336 /** 1337 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice 1338 * which must be in UP state. 1339 * 1340 * @attr:Pointer to the GID attribute 1341 * 1342 * Returns pointer to netdevice if the netdevice was attached to GID and 1343 * netdevice is in UP state. Caller must hold RCU lock as this API 1344 * reads the netdev flags which can change while netdevice migrates to 1345 * different net namespace. Returns ERR_PTR with error code otherwise. 1346 * 1347 */ 1348 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr) 1349 { 1350 struct ib_gid_table_entry *entry = 1351 container_of(attr, struct ib_gid_table_entry, attr); 1352 struct ib_device *device = entry->attr.device; 1353 struct net_device *ndev = ERR_PTR(-EINVAL); 1354 u32 port_num = entry->attr.port_num; 1355 struct ib_gid_table *table; 1356 unsigned long flags; 1357 bool valid; 1358 1359 table = rdma_gid_table(device, port_num); 1360 1361 read_lock_irqsave(&table->rwlock, flags); 1362 valid = is_gid_entry_valid(table->data_vec[attr->index]); 1363 if (valid) { 1364 ndev = rcu_dereference(attr->ndev); 1365 if (!ndev) 1366 ndev = ERR_PTR(-ENODEV); 1367 } 1368 read_unlock_irqrestore(&table->rwlock, flags); 1369 return ndev; 1370 } 1371 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu); 1372 1373 static int get_lower_dev_vlan(struct net_device *lower_dev, 1374 struct netdev_nested_priv *priv) 1375 { 1376 u16 *vlan_id = (u16 *)priv->data; 1377 1378 if (is_vlan_dev(lower_dev)) 1379 *vlan_id = vlan_dev_vlan_id(lower_dev); 1380 1381 /* We are interested only in first level vlan device, so 1382 * always return 1 to stop iterating over next level devices. 1383 */ 1384 return 1; 1385 } 1386 1387 /** 1388 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address 1389 * of a GID entry. 1390 * 1391 * @attr: GID attribute pointer whose L2 fields to be read 1392 * @vlan_id: Pointer to vlan id to fill up if the GID entry has 1393 * vlan id. It is optional. 1394 * @smac: Pointer to smac to fill up for a GID entry. It is optional. 1395 * 1396 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id 1397 * (if gid entry has vlan) and source MAC, or returns error. 1398 */ 1399 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr, 1400 u16 *vlan_id, u8 *smac) 1401 { 1402 struct netdev_nested_priv priv = { 1403 .data = (void *)vlan_id, 1404 }; 1405 struct net_device *ndev; 1406 1407 rcu_read_lock(); 1408 ndev = rcu_dereference(attr->ndev); 1409 if (!ndev) { 1410 rcu_read_unlock(); 1411 return -ENODEV; 1412 } 1413 if (smac) 1414 ether_addr_copy(smac, ndev->dev_addr); 1415 if (vlan_id) { 1416 *vlan_id = 0xffff; 1417 if (is_vlan_dev(ndev)) { 1418 *vlan_id = vlan_dev_vlan_id(ndev); 1419 } else { 1420 /* If the netdev is upper device and if it's lower 1421 * device is vlan device, consider vlan id of 1422 * the lower vlan device for this gid entry. 1423 */ 1424 netdev_walk_all_lower_dev_rcu(attr->ndev, 1425 get_lower_dev_vlan, &priv); 1426 } 1427 } 1428 rcu_read_unlock(); 1429 return 0; 1430 } 1431 EXPORT_SYMBOL(rdma_read_gid_l2_fields); 1432 1433 static int config_non_roce_gid_cache(struct ib_device *device, 1434 u32 port, struct ib_port_attr *tprops) 1435 { 1436 struct ib_gid_attr gid_attr = {}; 1437 struct ib_gid_table *table; 1438 int ret = 0; 1439 int i; 1440 1441 gid_attr.device = device; 1442 gid_attr.port_num = port; 1443 table = rdma_gid_table(device, port); 1444 1445 mutex_lock(&table->lock); 1446 for (i = 0; i < tprops->gid_tbl_len; ++i) { 1447 if (!device->ops.query_gid) 1448 continue; 1449 ret = device->ops.query_gid(device, port, i, &gid_attr.gid); 1450 if (ret) { 1451 dev_warn(&device->dev, 1452 "query_gid failed (%d) for index %d\n", ret, 1453 i); 1454 goto err; 1455 } 1456 1457 if (rdma_protocol_iwarp(device, port)) { 1458 struct net_device *ndev; 1459 1460 ndev = ib_device_get_netdev(device, port); 1461 if (!ndev) 1462 continue; 1463 RCU_INIT_POINTER(gid_attr.ndev, ndev); 1464 dev_put(ndev); 1465 } 1466 1467 gid_attr.index = i; 1468 tprops->subnet_prefix = 1469 be64_to_cpu(gid_attr.gid.global.subnet_prefix); 1470 add_modify_gid(table, &gid_attr); 1471 } 1472 err: 1473 mutex_unlock(&table->lock); 1474 return ret; 1475 } 1476 1477 static int 1478 ib_cache_update(struct ib_device *device, u32 port, bool update_gids, 1479 bool update_pkeys, bool enforce_security) 1480 { 1481 struct ib_port_attr *tprops = NULL; 1482 struct ib_pkey_cache *pkey_cache = NULL; 1483 struct ib_pkey_cache *old_pkey_cache = NULL; 1484 int i; 1485 int ret; 1486 1487 if (!rdma_is_port_valid(device, port)) 1488 return -EINVAL; 1489 1490 tprops = kmalloc(sizeof *tprops, GFP_KERNEL); 1491 if (!tprops) 1492 return -ENOMEM; 1493 1494 ret = ib_query_port(device, port, tprops); 1495 if (ret) { 1496 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret); 1497 goto err; 1498 } 1499 1500 if (!rdma_protocol_roce(device, port) && update_gids) { 1501 ret = config_non_roce_gid_cache(device, port, 1502 tprops); 1503 if (ret) 1504 goto err; 1505 } 1506 1507 update_pkeys &= !!tprops->pkey_tbl_len; 1508 1509 if (update_pkeys) { 1510 pkey_cache = kmalloc(struct_size(pkey_cache, table, 1511 tprops->pkey_tbl_len), 1512 GFP_KERNEL); 1513 if (!pkey_cache) { 1514 ret = -ENOMEM; 1515 goto err; 1516 } 1517 1518 pkey_cache->table_len = tprops->pkey_tbl_len; 1519 1520 for (i = 0; i < pkey_cache->table_len; ++i) { 1521 ret = ib_query_pkey(device, port, i, 1522 pkey_cache->table + i); 1523 if (ret) { 1524 dev_warn(&device->dev, 1525 "ib_query_pkey failed (%d) for index %d\n", 1526 ret, i); 1527 goto err; 1528 } 1529 } 1530 } 1531 1532 write_lock_irq(&device->cache_lock); 1533 1534 if (update_pkeys) { 1535 old_pkey_cache = device->port_data[port].cache.pkey; 1536 device->port_data[port].cache.pkey = pkey_cache; 1537 } 1538 device->port_data[port].cache.lmc = tprops->lmc; 1539 device->port_data[port].cache.port_state = tprops->state; 1540 1541 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix; 1542 write_unlock_irq(&device->cache_lock); 1543 1544 if (enforce_security) 1545 ib_security_cache_change(device, 1546 port, 1547 tprops->subnet_prefix); 1548 1549 kfree(old_pkey_cache); 1550 kfree(tprops); 1551 return 0; 1552 1553 err: 1554 kfree(pkey_cache); 1555 kfree(tprops); 1556 return ret; 1557 } 1558 1559 static void ib_cache_event_task(struct work_struct *_work) 1560 { 1561 struct ib_update_work *work = 1562 container_of(_work, struct ib_update_work, work); 1563 int ret; 1564 1565 /* Before distributing the cache update event, first sync 1566 * the cache. 1567 */ 1568 ret = ib_cache_update(work->event.device, work->event.element.port_num, 1569 work->event.event == IB_EVENT_GID_CHANGE, 1570 work->event.event == IB_EVENT_PKEY_CHANGE, 1571 work->enforce_security); 1572 1573 /* GID event is notified already for individual GID entries by 1574 * dispatch_gid_change_event(). Hence, notifiy for rest of the 1575 * events. 1576 */ 1577 if (!ret && work->event.event != IB_EVENT_GID_CHANGE) 1578 ib_dispatch_event_clients(&work->event); 1579 1580 kfree(work); 1581 } 1582 1583 static void ib_generic_event_task(struct work_struct *_work) 1584 { 1585 struct ib_update_work *work = 1586 container_of(_work, struct ib_update_work, work); 1587 1588 ib_dispatch_event_clients(&work->event); 1589 kfree(work); 1590 } 1591 1592 static bool is_cache_update_event(const struct ib_event *event) 1593 { 1594 return (event->event == IB_EVENT_PORT_ERR || 1595 event->event == IB_EVENT_PORT_ACTIVE || 1596 event->event == IB_EVENT_LID_CHANGE || 1597 event->event == IB_EVENT_PKEY_CHANGE || 1598 event->event == IB_EVENT_CLIENT_REREGISTER || 1599 event->event == IB_EVENT_GID_CHANGE); 1600 } 1601 1602 /** 1603 * ib_dispatch_event - Dispatch an asynchronous event 1604 * @event:Event to dispatch 1605 * 1606 * Low-level drivers must call ib_dispatch_event() to dispatch the 1607 * event to all registered event handlers when an asynchronous event 1608 * occurs. 1609 */ 1610 void ib_dispatch_event(const struct ib_event *event) 1611 { 1612 struct ib_update_work *work; 1613 1614 work = kzalloc(sizeof(*work), GFP_ATOMIC); 1615 if (!work) 1616 return; 1617 1618 if (is_cache_update_event(event)) 1619 INIT_WORK(&work->work, ib_cache_event_task); 1620 else 1621 INIT_WORK(&work->work, ib_generic_event_task); 1622 1623 work->event = *event; 1624 if (event->event == IB_EVENT_PKEY_CHANGE || 1625 event->event == IB_EVENT_GID_CHANGE) 1626 work->enforce_security = true; 1627 1628 queue_work(ib_wq, &work->work); 1629 } 1630 EXPORT_SYMBOL(ib_dispatch_event); 1631 1632 int ib_cache_setup_one(struct ib_device *device) 1633 { 1634 u32 p; 1635 int err; 1636 1637 err = gid_table_setup_one(device); 1638 if (err) 1639 return err; 1640 1641 rdma_for_each_port (device, p) { 1642 err = ib_cache_update(device, p, true, true, true); 1643 if (err) 1644 return err; 1645 } 1646 1647 return 0; 1648 } 1649 1650 void ib_cache_release_one(struct ib_device *device) 1651 { 1652 u32 p; 1653 1654 /* 1655 * The release function frees all the cache elements. 1656 * This function should be called as part of freeing 1657 * all the device's resources when the cache could no 1658 * longer be accessed. 1659 */ 1660 rdma_for_each_port (device, p) 1661 kfree(device->port_data[p].cache.pkey); 1662 1663 gid_table_release_one(device); 1664 } 1665 1666 void ib_cache_cleanup_one(struct ib_device *device) 1667 { 1668 /* The cleanup function waits for all in-progress workqueue 1669 * elements and cleans up the GID cache. This function should be 1670 * called after the device was removed from the devices list and 1671 * all clients were removed, so the cache exists but is 1672 * non-functional and shouldn't be updated anymore. 1673 */ 1674 flush_workqueue(ib_wq); 1675 gid_table_cleanup_one(device); 1676 1677 /* 1678 * Flush the wq second time for any pending GID delete work. 1679 */ 1680 flush_workqueue(ib_wq); 1681 } 1682