xref: /linux/drivers/iio/temperature/mlx90635.c (revision 55d0969c451159cff86949b38c39171cab962069)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mlx90635.c - Melexis MLX90635 contactless IR temperature sensor
4  *
5  * Copyright (c) 2023 Melexis <cmo@melexis.com>
6  *
7  * Driver for the Melexis MLX90635 I2C 16-bit IR thermopile sensor
8  */
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/i2c.h>
15 #include <linux/iopoll.h>
16 #include <linux/jiffies.h>
17 #include <linux/kernel.h>
18 #include <linux/limits.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/module.h>
21 #include <linux/math64.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/regmap.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include <linux/iio/iio.h>
27 
28 /* Memory sections addresses */
29 #define MLX90635_ADDR_RAM	0x0000 /* Start address of ram */
30 #define MLX90635_ADDR_EEPROM	0x0018 /* Start address of user eeprom */
31 
32 /* EEPROM addresses - used at startup */
33 #define MLX90635_EE_I2C_CFG	0x0018 /* I2C address register initial value */
34 #define MLX90635_EE_CTRL1	0x001A /* Control register1 initial value */
35 #define MLX90635_EE_CTRL2	0x001C /* Control register2 initial value */
36 
37 #define MLX90635_EE_Ha		0x001E /* Ha customer calib value reg 16bit */
38 #define MLX90635_EE_Hb		0x0020 /* Hb customer calib value reg 16bit */
39 #define MLX90635_EE_Fa		0x0026 /* Fa calibration register 32bit */
40 #define MLX90635_EE_FASCALE	0x002A /* Scaling coefficient for Fa register 16bit */
41 #define MLX90635_EE_Ga		0x002C /* Ga calibration register 16bit */
42 #define MLX90635_EE_Fb		0x002E /* Fb calibration register 16bit */
43 #define MLX90635_EE_Ea		0x0030 /* Ea calibration register 32bit */
44 #define MLX90635_EE_Eb		0x0034 /* Eb calibration register 32bit */
45 #define MLX90635_EE_P_G		0x0038 /* P_G calibration register 16bit */
46 #define MLX90635_EE_P_O		0x003A /* P_O calibration register 16bit */
47 #define MLX90635_EE_Aa		0x003C /* Aa calibration register 16bit */
48 #define MLX90635_EE_VERSION	0x003E /* Version bits 4:7 and 12:15 */
49 #define MLX90635_EE_Gb		0x0040 /* Gb calibration register 16bit */
50 
51 /* Device status register - volatile */
52 #define MLX90635_REG_STATUS	0x0000
53 #define   MLX90635_STAT_BUSY BIT(6) /* Device busy indicator */
54 #define   MLX90635_STAT_BRST BIT(5) /* Brown out reset indicator */
55 #define   MLX90635_STAT_CYCLE_POS GENMASK(4, 2) /* Data position */
56 #define   MLX90635_STAT_END_CONV BIT(1) /* End of conversion indicator */
57 #define   MLX90635_STAT_DATA_RDY BIT(0) /* Data ready indicator */
58 
59 /* EEPROM control register address - volatile */
60 #define MLX90635_REG_EE		0x000C
61 #define   MLX90635_EE_ACTIVE BIT(4) /* Power-on EEPROM */
62 #define   MLX90635_EE_BUSY_MASK	BIT(15)
63 
64 #define MLX90635_REG_CMD	0x0010 /* Command register address */
65 
66 /* Control register1 address - volatile */
67 #define MLX90635_REG_CTRL1	0x0014
68 #define   MLX90635_CTRL1_REFRESH_RATE_MASK GENMASK(2, 0)
69 #define   MLX90635_CTRL1_RES_CTRL_MASK GENMASK(4, 3)
70 #define   MLX90635_CTRL1_TABLE_MASK BIT(15) /* Table select */
71 
72 /* Control register2 address - volatile */
73 #define   MLX90635_REG_CTRL2	0x0016
74 #define   MLX90635_CTRL2_BURST_CNT_MASK GENMASK(10, 6) /* Burst count */
75 #define   MLX90635_CTRL2_MODE_MASK GENMASK(12, 11) /* Power mode */
76 #define   MLX90635_CTRL2_SOB_MASK BIT(15)
77 
78 /* PowerModes statuses */
79 #define MLX90635_PWR_STATUS_HALT 0
80 #define MLX90635_PWR_STATUS_SLEEP_STEP 1
81 #define MLX90635_PWR_STATUS_STEP 2
82 #define MLX90635_PWR_STATUS_CONTINUOUS 3
83 
84 /* Measurement data addresses */
85 #define MLX90635_RESULT_1   0x0002
86 #define MLX90635_RESULT_2   0x0004
87 #define MLX90635_RESULT_3   0x0006
88 #define MLX90635_RESULT_4   0x0008
89 #define MLX90635_RESULT_5   0x000A
90 
91 /* Timings (ms) */
92 #define MLX90635_TIMING_RST_MIN 200 /* Minimum time after addressed reset command */
93 #define MLX90635_TIMING_RST_MAX 250 /* Maximum time after addressed reset command */
94 #define MLX90635_TIMING_POLLING 10000 /* Time between bit polling*/
95 #define MLX90635_TIMING_EE_ACTIVE_MIN 100 /* Minimum time after activating the EEPROM for read */
96 #define MLX90635_TIMING_EE_ACTIVE_MAX 150 /* Maximum time after activating the EEPROM for read */
97 
98 /* Magic constants */
99 #define MLX90635_ID_DSPv1 0x01 /* EEPROM DSP version */
100 #define MLX90635_RESET_CMD  0x0006 /* Reset sensor (address or global) */
101 #define MLX90635_MAX_MEAS_NUM   31 /* Maximum number of measurements in list */
102 #define MLX90635_PTAT_DIV 12   /* Used to divide the PTAT value in pre-processing */
103 #define MLX90635_IR_DIV 24   /* Used to divide the IR value in pre-processing */
104 #define MLX90635_SLEEP_DELAY_MS 6000 /* Autosleep delay */
105 #define MLX90635_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
106 #define MLX90635_READ_RETRIES 100 /* Number of read retries before quitting with timeout error */
107 #define MLX90635_VERSION_MASK (GENMASK(15, 12) | GENMASK(7, 4))
108 #define MLX90635_DSP_VERSION(reg) (((reg & GENMASK(14, 12)) >> 9) | ((reg & GENMASK(6, 4)) >> 4))
109 #define MLX90635_DSP_FIXED BIT(15)
110 
111 
112 /**
113  * struct mlx90635_data - private data for the MLX90635 device
114  * @client: I2C client of the device
115  * @lock: Internal mutex because multiple reads are needed for single triggered
116  *	  measurement to ensure data consistency
117  * @regmap: Regmap of the device registers
118  * @regmap_ee: Regmap of the device EEPROM which can be cached
119  * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1
120  * @regulator: Regulator of the device
121  * @powerstatus: Current POWER status of the device
122  * @interaction_ts: Timestamp of the last temperature read that is used
123  *		    for power management in jiffies
124  */
125 struct mlx90635_data {
126 	struct i2c_client *client;
127 	struct mutex lock;
128 	struct regmap *regmap;
129 	struct regmap *regmap_ee;
130 	u16 emissivity;
131 	struct regulator *regulator;
132 	int powerstatus;
133 	unsigned long interaction_ts;
134 };
135 
136 static const struct regmap_range mlx90635_volatile_reg_range[] = {
137 	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
138 	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
139 	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
140 	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
141 	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
142 };
143 
144 static const struct regmap_access_table mlx90635_volatile_regs_tbl = {
145 	.yes_ranges = mlx90635_volatile_reg_range,
146 	.n_yes_ranges = ARRAY_SIZE(mlx90635_volatile_reg_range),
147 };
148 
149 static const struct regmap_range mlx90635_read_reg_range[] = {
150 	regmap_reg_range(MLX90635_REG_STATUS, MLX90635_REG_STATUS),
151 	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
152 	regmap_reg_range(MLX90635_REG_EE, MLX90635_REG_EE),
153 	regmap_reg_range(MLX90635_REG_CMD, MLX90635_REG_CMD),
154 	regmap_reg_range(MLX90635_REG_CTRL1, MLX90635_REG_CTRL2),
155 };
156 
157 static const struct regmap_access_table mlx90635_readable_regs_tbl = {
158 	.yes_ranges = mlx90635_read_reg_range,
159 	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_reg_range),
160 };
161 
162 static const struct regmap_range mlx90635_no_write_reg_range[] = {
163 	regmap_reg_range(MLX90635_RESULT_1, MLX90635_RESULT_5),
164 };
165 
166 static const struct regmap_access_table mlx90635_writeable_regs_tbl = {
167 	.no_ranges = mlx90635_no_write_reg_range,
168 	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_reg_range),
169 };
170 
171 static const struct regmap_config mlx90635_regmap = {
172 	.name = "mlx90635-registers",
173 	.reg_stride = 1,
174 	.reg_bits = 16,
175 	.val_bits = 16,
176 
177 	.volatile_table = &mlx90635_volatile_regs_tbl,
178 	.rd_table = &mlx90635_readable_regs_tbl,
179 	.wr_table = &mlx90635_writeable_regs_tbl,
180 
181 	.use_single_read = true,
182 	.use_single_write = true,
183 	.can_multi_write = false,
184 	.reg_format_endian = REGMAP_ENDIAN_BIG,
185 	.val_format_endian = REGMAP_ENDIAN_BIG,
186 	.cache_type = REGCACHE_RBTREE,
187 };
188 
189 static const struct regmap_range mlx90635_read_ee_range[] = {
190 	regmap_reg_range(MLX90635_EE_I2C_CFG, MLX90635_EE_CTRL2),
191 	regmap_reg_range(MLX90635_EE_Ha, MLX90635_EE_Gb),
192 };
193 
194 static const struct regmap_access_table mlx90635_readable_ees_tbl = {
195 	.yes_ranges = mlx90635_read_ee_range,
196 	.n_yes_ranges = ARRAY_SIZE(mlx90635_read_ee_range),
197 };
198 
199 static const struct regmap_range mlx90635_no_write_ee_range[] = {
200 	regmap_reg_range(MLX90635_ADDR_EEPROM, MLX90635_EE_Gb),
201 };
202 
203 static const struct regmap_access_table mlx90635_writeable_ees_tbl = {
204 	.no_ranges = mlx90635_no_write_ee_range,
205 	.n_no_ranges = ARRAY_SIZE(mlx90635_no_write_ee_range),
206 };
207 
208 static const struct regmap_config mlx90635_regmap_ee = {
209 	.name = "mlx90635-eeprom",
210 	.reg_stride = 1,
211 	.reg_bits = 16,
212 	.val_bits = 16,
213 
214 	.volatile_table = NULL,
215 	.rd_table = &mlx90635_readable_ees_tbl,
216 	.wr_table = &mlx90635_writeable_ees_tbl,
217 
218 	.use_single_read = true,
219 	.use_single_write = true,
220 	.can_multi_write = false,
221 	.reg_format_endian = REGMAP_ENDIAN_BIG,
222 	.val_format_endian = REGMAP_ENDIAN_BIG,
223 	.cache_type = REGCACHE_RBTREE,
224 };
225 
226 /**
227  * mlx90635_reset_delay() - Give the mlx90635 some time to reset properly
228  * If this is not done, the following I2C command(s) will not be accepted.
229  */
230 static void mlx90635_reset_delay(void)
231 {
232 	usleep_range(MLX90635_TIMING_RST_MIN, MLX90635_TIMING_RST_MAX);
233 }
234 
235 static int mlx90635_pwr_sleep_step(struct mlx90635_data *data)
236 {
237 	int ret;
238 
239 	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP)
240 		return 0;
241 
242 	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
243 				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_SLEEP_STEP));
244 	if (ret < 0)
245 		return ret;
246 
247 	data->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
248 	return 0;
249 }
250 
251 static int mlx90635_pwr_continuous(struct mlx90635_data *data)
252 {
253 	int ret;
254 
255 	if (data->powerstatus == MLX90635_PWR_STATUS_CONTINUOUS)
256 		return 0;
257 
258 	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2, MLX90635_CTRL2_MODE_MASK,
259 				FIELD_PREP(MLX90635_CTRL2_MODE_MASK, MLX90635_PWR_STATUS_CONTINUOUS));
260 	if (ret < 0)
261 		return ret;
262 
263 	data->powerstatus = MLX90635_PWR_STATUS_CONTINUOUS;
264 	return 0;
265 }
266 
267 static int mlx90635_read_ee_register(struct regmap *regmap, u16 reg_lsb,
268 				     s32 *reg_value)
269 {
270 	unsigned int read;
271 	u32 value;
272 	int ret;
273 
274 	ret = regmap_read(regmap, reg_lsb + 2, &read);
275 	if (ret < 0)
276 		return ret;
277 
278 	value = read;
279 
280 	ret = regmap_read(regmap, reg_lsb, &read);
281 	if (ret < 0)
282 		return ret;
283 
284 	*reg_value = (read << 16) | (value & 0xffff);
285 
286 	return 0;
287 }
288 
289 static int mlx90635_read_ee_ambient(struct regmap *regmap, s16 *PG, s16 *PO, s16 *Gb)
290 {
291 	unsigned int read_tmp;
292 	int ret;
293 
294 	ret = regmap_read(regmap, MLX90635_EE_P_O, &read_tmp);
295 	if (ret < 0)
296 		return ret;
297 	*PO = (s16)read_tmp;
298 
299 	ret = regmap_read(regmap, MLX90635_EE_P_G, &read_tmp);
300 	if (ret < 0)
301 		return ret;
302 	*PG = (s16)read_tmp;
303 
304 	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
305 	if (ret < 0)
306 		return ret;
307 	*Gb = (u16)read_tmp;
308 
309 	return 0;
310 }
311 
312 static int mlx90635_read_ee_object(struct regmap *regmap, u32 *Ea, u32 *Eb, u32 *Fa, s16 *Fb,
313 				   s16 *Ga, s16 *Gb, s16 *Ha, s16 *Hb, u16 *Fa_scale)
314 {
315 	unsigned int read_tmp;
316 	int ret;
317 
318 	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Ea, Ea);
319 	if (ret < 0)
320 		return ret;
321 
322 	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Eb, Eb);
323 	if (ret < 0)
324 		return ret;
325 
326 	ret = mlx90635_read_ee_register(regmap, MLX90635_EE_Fa, Fa);
327 	if (ret < 0)
328 		return ret;
329 
330 	ret = regmap_read(regmap, MLX90635_EE_Ha, &read_tmp);
331 	if (ret < 0)
332 		return ret;
333 	*Ha = (s16)read_tmp;
334 
335 	ret = regmap_read(regmap, MLX90635_EE_Hb, &read_tmp);
336 	if (ret < 0)
337 		return ret;
338 	*Hb = (s16)read_tmp;
339 
340 	ret = regmap_read(regmap, MLX90635_EE_Ga, &read_tmp);
341 	if (ret < 0)
342 		return ret;
343 	*Ga = (s16)read_tmp;
344 
345 	ret = regmap_read(regmap, MLX90635_EE_Gb, &read_tmp);
346 	if (ret < 0)
347 		return ret;
348 	*Gb = (s16)read_tmp;
349 
350 	ret = regmap_read(regmap, MLX90635_EE_Fb, &read_tmp);
351 	if (ret < 0)
352 		return ret;
353 	*Fb = (s16)read_tmp;
354 
355 	ret = regmap_read(regmap, MLX90635_EE_FASCALE, &read_tmp);
356 	if (ret < 0)
357 		return ret;
358 	*Fa_scale = (u16)read_tmp;
359 
360 	return 0;
361 }
362 
363 static int mlx90635_calculate_dataset_ready_time(struct mlx90635_data *data, int *refresh_time)
364 {
365 	unsigned int reg;
366 	int ret;
367 
368 	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
369 	if (ret < 0)
370 		return ret;
371 
372 	*refresh_time = 2 * (MLX90635_MEAS_MAX_TIME >> FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg)) + 80;
373 
374 	return 0;
375 }
376 
377 static int mlx90635_perform_measurement_burst(struct mlx90635_data *data)
378 {
379 	unsigned int reg_status;
380 	int refresh_time;
381 	int ret;
382 
383 	ret = regmap_write_bits(data->regmap, MLX90635_REG_STATUS,
384 				MLX90635_STAT_END_CONV, MLX90635_STAT_END_CONV);
385 	if (ret < 0)
386 		return ret;
387 
388 	ret = mlx90635_calculate_dataset_ready_time(data, &refresh_time);
389 	if (ret < 0)
390 		return ret;
391 
392 	ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL2,
393 				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1),
394 				FIELD_PREP(MLX90635_CTRL2_SOB_MASK, 1));
395 	if (ret < 0)
396 		return ret;
397 
398 	msleep(refresh_time); /* Wait minimum time for dataset to be ready */
399 
400 	ret = regmap_read_poll_timeout(data->regmap, MLX90635_REG_STATUS, reg_status,
401 				       (!(reg_status & MLX90635_STAT_END_CONV)) == 0,
402 				       MLX90635_TIMING_POLLING, MLX90635_READ_RETRIES * 10000);
403 	if (ret < 0) {
404 		dev_err(&data->client->dev, "data not ready");
405 		return -ETIMEDOUT;
406 	}
407 
408 	return 0;
409 }
410 
411 static int mlx90635_read_ambient_raw(struct regmap *regmap,
412 				     s16 *ambient_new_raw, s16 *ambient_old_raw)
413 {
414 	unsigned int read_tmp;
415 	int ret;
416 
417 	ret = regmap_read(regmap, MLX90635_RESULT_2, &read_tmp);
418 	if (ret < 0)
419 		return ret;
420 	*ambient_new_raw = (s16)read_tmp;
421 
422 	ret = regmap_read(regmap, MLX90635_RESULT_3, &read_tmp);
423 	if (ret < 0)
424 		return ret;
425 	*ambient_old_raw = (s16)read_tmp;
426 
427 	return 0;
428 }
429 
430 static int mlx90635_read_object_raw(struct regmap *regmap, s16 *object_raw)
431 {
432 	unsigned int read_tmp;
433 	s16 read;
434 	int ret;
435 
436 	ret = regmap_read(regmap, MLX90635_RESULT_1, &read_tmp);
437 	if (ret < 0)
438 		return ret;
439 
440 	read = (s16)read_tmp;
441 
442 	ret = regmap_read(regmap, MLX90635_RESULT_4, &read_tmp);
443 	if (ret < 0)
444 		return ret;
445 	*object_raw = (read - (s16)read_tmp) / 2;
446 
447 	return 0;
448 }
449 
450 static int mlx90635_read_all_channel(struct mlx90635_data *data,
451 				     s16 *ambient_new_raw, s16 *ambient_old_raw,
452 				     s16 *object_raw)
453 {
454 	int ret;
455 
456 	mutex_lock(&data->lock);
457 	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
458 		/* Trigger measurement in Sleep Step mode */
459 		ret = mlx90635_perform_measurement_burst(data);
460 		if (ret < 0)
461 			goto read_unlock;
462 	}
463 
464 	ret = mlx90635_read_ambient_raw(data->regmap, ambient_new_raw,
465 					ambient_old_raw);
466 	if (ret < 0)
467 		goto read_unlock;
468 
469 	ret = mlx90635_read_object_raw(data->regmap, object_raw);
470 read_unlock:
471 	mutex_unlock(&data->lock);
472 	return ret;
473 }
474 
475 static s64 mlx90635_preprocess_temp_amb(s16 ambient_new_raw,
476 					s16 ambient_old_raw, s16 Gb)
477 {
478 	s64 VR_Ta, kGb, tmp;
479 
480 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
481 	VR_Ta = (s64)ambient_old_raw * 1000000LL +
482 		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
483 			(MLX90635_PTAT_DIV));
484 	tmp = div64_s64(
485 			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
486 				   (MLX90635_PTAT_DIV)), VR_Ta);
487 	return div64_s64(tmp << 19ULL, 1000LL);
488 }
489 
490 static s64 mlx90635_preprocess_temp_obj(s16 object_raw,
491 					s16 ambient_new_raw,
492 					s16 ambient_old_raw, s16 Gb)
493 {
494 	s64 VR_IR, kGb, tmp;
495 
496 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
497 	VR_IR = (s64)ambient_old_raw * 1000000LL +
498 		kGb * (div64_s64((s64)ambient_new_raw * 1000LL,
499 			MLX90635_PTAT_DIV));
500 	tmp = div64_s64(
501 			div64_s64((s64)(object_raw * 1000000LL),
502 				   MLX90635_IR_DIV) * 1000000LL,
503 			VR_IR);
504 	return div64_s64((tmp << 19ULL), 1000LL);
505 }
506 
507 static s32 mlx90635_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
508 				      u16 P_G, u16 P_O, s16 Gb)
509 {
510 	s64 kPG, kPO, AMB;
511 
512 	AMB = mlx90635_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
513 					   Gb);
514 	kPG = ((s64)P_G * 1000000LL) >> 9ULL;
515 	kPO = AMB - (((s64)P_O * 1000LL) >> 1ULL);
516 
517 	return 30 * 1000LL + div64_s64(kPO * 1000000LL, kPG);
518 }
519 
520 static s32 mlx90635_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
521 					       s64 TAdut, s64 TAdut4, s16 Ga,
522 					       u32 Fa, u16 Fa_scale, s16 Fb,
523 					       s16 Ha, s16 Hb, u16 emissivity)
524 {
525 	s64 calcedGa, calcedGb, calcedFa, Alpha_corr;
526 	s64 Ha_customer, Hb_customer;
527 
528 	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
529 	Hb_customer = ((s64)Hb * 100) >> 10ULL;
530 
531 	calcedGa = ((s64)((s64)Ga * (prev_object_temp - 35 * 1000LL)
532 			     * 1000LL)) >> 24LL;
533 	calcedGb = ((s64)(Fb * (TAdut - 30 * 1000000LL))) >> 24LL;
534 
535 	Alpha_corr = ((s64)((s64)Fa * Ha_customer * 10000LL) >> Fa_scale);
536 	Alpha_corr *= ((s64)(1 * 1000000LL + calcedGa + calcedGb));
537 
538 	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
539 	Alpha_corr *= emissivity;
540 	Alpha_corr = div64_s64(Alpha_corr, 100LL);
541 	calcedFa = div64_s64((s64)object * 100000000000LL, Alpha_corr);
542 
543 	return (int_sqrt64(int_sqrt64(calcedFa * 100000000LL + TAdut4))
544 		- 27315 - Hb_customer) * 10;
545 }
546 
547 static s64 mlx90635_calc_ta4(s64 TAdut, s64 scale)
548 {
549 	return (div64_s64(TAdut, scale) + 27315) *
550 		(div64_s64(TAdut, scale) + 27315) *
551 		(div64_s64(TAdut, scale) + 27315) *
552 		(div64_s64(TAdut, scale) + 27315);
553 }
554 
555 static s32 mlx90635_calc_temp_object(s64 object, s64 ambient, u32 Ea, u32 Eb,
556 				     s16 Ga, u32 Fa, u16 Fa_scale, s16 Fb, s16 Ha, s16 Hb,
557 				     u16 tmp_emi)
558 {
559 	s64 kTA, kTA0, TAdut, TAdut4;
560 	s64 temp = 35000;
561 	s8 i;
562 
563 	kTA = (Ea * 1000LL) >> 16LL;
564 	kTA0 = (Eb * 1000LL) >> 8LL;
565 	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 30 * 1000000LL;
566 	TAdut4 = mlx90635_calc_ta4(TAdut, 10000LL);
567 
568 	/* Iterations of calculation as described in datasheet */
569 	for (i = 0; i < 5; ++i) {
570 		temp = mlx90635_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
571 							   Ga, Fa, Fa_scale, Fb, Ha, Hb,
572 							   tmp_emi);
573 	}
574 	return temp;
575 }
576 
577 static int mlx90635_calc_object(struct mlx90635_data *data, int *val)
578 {
579 	s16 ambient_new_raw, ambient_old_raw, object_raw;
580 	s16 Fb, Ga, Gb, Ha, Hb;
581 	s64 object, ambient;
582 	u32 Ea, Eb, Fa;
583 	u16 Fa_scale;
584 	int ret;
585 
586 	ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
587 	if (ret < 0)
588 		return ret;
589 
590 	ret = mlx90635_read_all_channel(data,
591 					&ambient_new_raw, &ambient_old_raw,
592 					&object_raw);
593 	if (ret < 0)
594 		return ret;
595 
596 	ambient = mlx90635_preprocess_temp_amb(ambient_new_raw,
597 					       ambient_old_raw, Gb);
598 	object = mlx90635_preprocess_temp_obj(object_raw,
599 					      ambient_new_raw,
600 					      ambient_old_raw, Gb);
601 
602 	*val = mlx90635_calc_temp_object(object, ambient, Ea, Eb, Ga, Fa, Fa_scale, Fb,
603 					 Ha, Hb, data->emissivity);
604 	return 0;
605 }
606 
607 static int mlx90635_calc_ambient(struct mlx90635_data *data, int *val)
608 {
609 	s16 ambient_new_raw, ambient_old_raw;
610 	s16 PG, PO, Gb;
611 	int ret;
612 
613 	ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
614 	if (ret < 0)
615 		return ret;
616 
617 	mutex_lock(&data->lock);
618 	if (data->powerstatus == MLX90635_PWR_STATUS_SLEEP_STEP) {
619 		ret = mlx90635_perform_measurement_burst(data);
620 		if (ret < 0)
621 			goto read_ambient_unlock;
622 	}
623 
624 	ret = mlx90635_read_ambient_raw(data->regmap, &ambient_new_raw,
625 					&ambient_old_raw);
626 read_ambient_unlock:
627 	mutex_unlock(&data->lock);
628 	if (ret < 0)
629 		return ret;
630 
631 	*val = mlx90635_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
632 					  PG, PO, Gb);
633 	return ret;
634 }
635 
636 static int mlx90635_get_refresh_rate(struct mlx90635_data *data,
637 				     unsigned int *refresh_rate)
638 {
639 	unsigned int reg;
640 	int ret;
641 
642 	ret = regmap_read(data->regmap, MLX90635_REG_CTRL1, &reg);
643 	if (ret < 0)
644 		return ret;
645 
646 	*refresh_rate = FIELD_GET(MLX90635_CTRL1_REFRESH_RATE_MASK, reg);
647 
648 	return 0;
649 }
650 
651 static const struct {
652 	int val;
653 	int val2;
654 } mlx90635_freqs[] = {
655 	{ 0, 200000 },
656 	{ 0, 500000 },
657 	{ 0, 900000 },
658 	{ 1, 700000 },
659 	{ 3, 0 },
660 	{ 4, 800000 },
661 	{ 6, 900000 },
662 	{ 8, 900000 }
663 };
664 
665 /**
666  * mlx90635_pm_interaction_wakeup() - Measure time between user interactions to change powermode
667  * @data: pointer to mlx90635_data object containing interaction_ts information
668  *
669  * Switch to continuous mode when interaction is faster than MLX90635_MEAS_MAX_TIME. Update the
670  * interaction_ts for each function call with the jiffies to enable measurement between function
671  * calls. Initial value of the interaction_ts needs to be set before this function call.
672  */
673 static int mlx90635_pm_interaction_wakeup(struct mlx90635_data *data)
674 {
675 	unsigned long now;
676 	int ret;
677 
678 	now = jiffies;
679 	if (time_in_range(now, data->interaction_ts,
680 			  data->interaction_ts +
681 			  msecs_to_jiffies(MLX90635_MEAS_MAX_TIME + 100))) {
682 		ret = mlx90635_pwr_continuous(data);
683 		if (ret < 0)
684 			return ret;
685 	}
686 
687 	data->interaction_ts = now;
688 
689 	return 0;
690 }
691 
692 static int mlx90635_read_raw(struct iio_dev *indio_dev,
693 			     struct iio_chan_spec const *channel, int *val,
694 			     int *val2, long mask)
695 {
696 	struct mlx90635_data *data = iio_priv(indio_dev);
697 	int ret;
698 	int cr;
699 
700 	pm_runtime_get_sync(&data->client->dev);
701 	ret = mlx90635_pm_interaction_wakeup(data);
702 	if (ret < 0)
703 		goto mlx90635_read_raw_pm;
704 
705 	switch (mask) {
706 	case IIO_CHAN_INFO_PROCESSED:
707 		switch (channel->channel2) {
708 		case IIO_MOD_TEMP_AMBIENT:
709 			ret = mlx90635_calc_ambient(data, val);
710 			if (ret < 0)
711 				goto mlx90635_read_raw_pm;
712 
713 			ret = IIO_VAL_INT;
714 			break;
715 		case IIO_MOD_TEMP_OBJECT:
716 			ret = mlx90635_calc_object(data, val);
717 			if (ret < 0)
718 				goto mlx90635_read_raw_pm;
719 
720 			ret = IIO_VAL_INT;
721 			break;
722 		default:
723 			ret = -EINVAL;
724 			break;
725 		}
726 		break;
727 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
728 		if (data->emissivity == 1000) {
729 			*val = 1;
730 			*val2 = 0;
731 		} else {
732 			*val = 0;
733 			*val2 = data->emissivity * 1000;
734 		}
735 		ret = IIO_VAL_INT_PLUS_MICRO;
736 		break;
737 	case IIO_CHAN_INFO_SAMP_FREQ:
738 		ret = mlx90635_get_refresh_rate(data, &cr);
739 		if (ret < 0)
740 			goto mlx90635_read_raw_pm;
741 
742 		*val = mlx90635_freqs[cr].val;
743 		*val2 = mlx90635_freqs[cr].val2;
744 		ret = IIO_VAL_INT_PLUS_MICRO;
745 		break;
746 	default:
747 		ret = -EINVAL;
748 		break;
749 	}
750 
751 mlx90635_read_raw_pm:
752 	pm_runtime_mark_last_busy(&data->client->dev);
753 	pm_runtime_put_autosuspend(&data->client->dev);
754 	return ret;
755 }
756 
757 static int mlx90635_write_raw(struct iio_dev *indio_dev,
758 			      struct iio_chan_spec const *channel, int val,
759 			      int val2, long mask)
760 {
761 	struct mlx90635_data *data = iio_priv(indio_dev);
762 	int ret;
763 	int i;
764 
765 	switch (mask) {
766 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
767 		/* Confirm we are within 0 and 1.0 */
768 		if (val < 0 || val2 < 0 || val > 1 ||
769 		    (val == 1 && val2 != 0))
770 			return -EINVAL;
771 		data->emissivity = val * 1000 + val2 / 1000;
772 		return 0;
773 	case IIO_CHAN_INFO_SAMP_FREQ:
774 		for (i = 0; i < ARRAY_SIZE(mlx90635_freqs); i++) {
775 			if (val == mlx90635_freqs[i].val &&
776 			    val2 == mlx90635_freqs[i].val2)
777 				break;
778 		}
779 		if (i == ARRAY_SIZE(mlx90635_freqs))
780 			return -EINVAL;
781 
782 		ret = regmap_write_bits(data->regmap, MLX90635_REG_CTRL1,
783 					MLX90635_CTRL1_REFRESH_RATE_MASK, i);
784 
785 		return ret;
786 	default:
787 		return -EINVAL;
788 	}
789 }
790 
791 static int mlx90635_read_avail(struct iio_dev *indio_dev,
792 			       struct iio_chan_spec const *chan,
793 			       const int **vals, int *type, int *length,
794 			       long mask)
795 {
796 	switch (mask) {
797 	case IIO_CHAN_INFO_SAMP_FREQ:
798 		*vals = (int *)mlx90635_freqs;
799 		*type = IIO_VAL_INT_PLUS_MICRO;
800 		*length = 2 * ARRAY_SIZE(mlx90635_freqs);
801 		return IIO_AVAIL_LIST;
802 	default:
803 		return -EINVAL;
804 	}
805 }
806 
807 static const struct iio_chan_spec mlx90635_channels[] = {
808 	{
809 		.type = IIO_TEMP,
810 		.modified = 1,
811 		.channel2 = IIO_MOD_TEMP_AMBIENT,
812 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
813 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
814 		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
815 	},
816 	{
817 		.type = IIO_TEMP,
818 		.modified = 1,
819 		.channel2 = IIO_MOD_TEMP_OBJECT,
820 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
821 			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY),
822 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
823 		.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
824 	},
825 };
826 
827 static const struct iio_info mlx90635_info = {
828 	.read_raw = mlx90635_read_raw,
829 	.write_raw = mlx90635_write_raw,
830 	.read_avail = mlx90635_read_avail,
831 };
832 
833 static void mlx90635_sleep(void *_data)
834 {
835 	struct mlx90635_data *data = _data;
836 
837 	mlx90635_pwr_sleep_step(data);
838 }
839 
840 static int mlx90635_suspend(struct mlx90635_data *data)
841 {
842 	return mlx90635_pwr_sleep_step(data);
843 }
844 
845 static int mlx90635_wakeup(struct mlx90635_data *data)
846 {
847 	s16 Fb, Ga, Gb, Ha, Hb, PG, PO;
848 	unsigned int dsp_version;
849 	u32 Ea, Eb, Fa;
850 	u16 Fa_scale;
851 	int ret;
852 
853 	regcache_cache_bypass(data->regmap_ee, false);
854 	regcache_cache_only(data->regmap_ee, false);
855 	regcache_cache_only(data->regmap, false);
856 
857 	ret = mlx90635_pwr_continuous(data);
858 	if (ret < 0) {
859 		dev_err(&data->client->dev, "Switch to continuous mode failed\n");
860 		return ret;
861 	}
862 	ret = regmap_write_bits(data->regmap, MLX90635_REG_EE,
863 				MLX90635_EE_ACTIVE, MLX90635_EE_ACTIVE);
864 	if (ret < 0) {
865 		dev_err(&data->client->dev, "Powering EEPROM failed\n");
866 		return ret;
867 	}
868 	usleep_range(MLX90635_TIMING_EE_ACTIVE_MIN, MLX90635_TIMING_EE_ACTIVE_MAX);
869 
870 	regcache_mark_dirty(data->regmap_ee);
871 
872 	ret = regcache_sync(data->regmap_ee);
873 	if (ret < 0) {
874 		dev_err(&data->client->dev,
875 			"Failed to sync cache: %d\n", ret);
876 		return ret;
877 	}
878 
879 	ret = mlx90635_read_ee_ambient(data->regmap_ee, &PG, &PO, &Gb);
880 	if (ret < 0) {
881 		dev_err(&data->client->dev,
882 			"Failed to read to cache Ambient coefficients EEPROM region: %d\n", ret);
883 		return ret;
884 	}
885 
886 	ret = mlx90635_read_ee_object(data->regmap_ee, &Ea, &Eb, &Fa, &Fb, &Ga, &Gb, &Ha, &Hb, &Fa_scale);
887 	if (ret < 0) {
888 		dev_err(&data->client->dev,
889 			"Failed to read to cache Object coefficients EEPROM region: %d\n", ret);
890 		return ret;
891 	}
892 
893 	ret = regmap_read(data->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
894 	if (ret < 0) {
895 		dev_err(&data->client->dev,
896 			"Failed to read to cache of EEPROM version: %d\n", ret);
897 		return ret;
898 	}
899 
900 	regcache_cache_only(data->regmap_ee, true);
901 
902 	return ret;
903 }
904 
905 static void mlx90635_disable_regulator(void *_data)
906 {
907 	struct mlx90635_data *data = _data;
908 	int ret;
909 
910 	ret = regulator_disable(data->regulator);
911 	if (ret < 0)
912 		dev_err(regmap_get_device(data->regmap),
913 			"Failed to disable power regulator: %d\n", ret);
914 }
915 
916 static int mlx90635_enable_regulator(struct mlx90635_data *data)
917 {
918 	int ret;
919 
920 	ret = regulator_enable(data->regulator);
921 	if (ret < 0) {
922 		dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
923 		return ret;
924 	}
925 
926 	mlx90635_reset_delay();
927 
928 	return ret;
929 }
930 
931 static int mlx90635_probe(struct i2c_client *client)
932 {
933 	struct mlx90635_data *mlx90635;
934 	struct iio_dev *indio_dev;
935 	unsigned int dsp_version;
936 	struct regmap *regmap;
937 	struct regmap *regmap_ee;
938 	int ret;
939 
940 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90635));
941 	if (!indio_dev)
942 		return dev_err_probe(&client->dev, -ENOMEM, "failed to allocate device\n");
943 
944 	regmap = devm_regmap_init_i2c(client, &mlx90635_regmap);
945 	if (IS_ERR(regmap))
946 		return dev_err_probe(&client->dev, PTR_ERR(regmap),
947 				     "failed to allocate regmap\n");
948 
949 	regmap_ee = devm_regmap_init_i2c(client, &mlx90635_regmap_ee);
950 	if (IS_ERR(regmap_ee))
951 		return dev_err_probe(&client->dev, PTR_ERR(regmap_ee),
952 				     "failed to allocate EEPROM regmap\n");
953 
954 	mlx90635 = iio_priv(indio_dev);
955 	i2c_set_clientdata(client, indio_dev);
956 	mlx90635->client = client;
957 	mlx90635->regmap = regmap;
958 	mlx90635->regmap_ee = regmap_ee;
959 	mlx90635->powerstatus = MLX90635_PWR_STATUS_SLEEP_STEP;
960 
961 	mutex_init(&mlx90635->lock);
962 	indio_dev->name = "mlx90635";
963 	indio_dev->modes = INDIO_DIRECT_MODE;
964 	indio_dev->info = &mlx90635_info;
965 	indio_dev->channels = mlx90635_channels;
966 	indio_dev->num_channels = ARRAY_SIZE(mlx90635_channels);
967 
968 	mlx90635->regulator = devm_regulator_get(&client->dev, "vdd");
969 	if (IS_ERR(mlx90635->regulator))
970 		return dev_err_probe(&client->dev, PTR_ERR(mlx90635->regulator),
971 				     "failed to get vdd regulator");
972 
973 	ret = mlx90635_enable_regulator(mlx90635);
974 	if (ret < 0)
975 		return ret;
976 
977 	ret = devm_add_action_or_reset(&client->dev, mlx90635_disable_regulator,
978 				       mlx90635);
979 	if (ret < 0)
980 		return dev_err_probe(&client->dev, ret,
981 				     "failed to setup regulator cleanup action\n");
982 
983 	ret = mlx90635_wakeup(mlx90635);
984 	if (ret < 0)
985 		return dev_err_probe(&client->dev, ret, "wakeup failed\n");
986 
987 	ret = devm_add_action_or_reset(&client->dev, mlx90635_sleep, mlx90635);
988 	if (ret < 0)
989 		return dev_err_probe(&client->dev, ret,
990 				     "failed to setup low power cleanup\n");
991 
992 	ret = regmap_read(mlx90635->regmap_ee, MLX90635_EE_VERSION, &dsp_version);
993 	if (ret < 0)
994 		return dev_err_probe(&client->dev, ret, "read of version failed\n");
995 
996 	dsp_version = dsp_version & MLX90635_VERSION_MASK;
997 
998 	if (FIELD_GET(MLX90635_DSP_FIXED, dsp_version)) {
999 		if (MLX90635_DSP_VERSION(dsp_version) == MLX90635_ID_DSPv1) {
1000 			dev_dbg(&client->dev,
1001 				"Detected DSP v1 calibration %x\n", dsp_version);
1002 		} else {
1003 			dev_dbg(&client->dev,
1004 				"Detected Unknown EEPROM calibration %lx\n",
1005 				MLX90635_DSP_VERSION(dsp_version));
1006 		}
1007 	} else {
1008 		return dev_err_probe(&client->dev, -EPROTONOSUPPORT,
1009 			"Wrong fixed top bit %x (expected 0x8X0X)\n",
1010 			dsp_version);
1011 	}
1012 
1013 	mlx90635->emissivity = 1000;
1014 	mlx90635->interaction_ts = jiffies; /* Set initial value */
1015 
1016 	pm_runtime_get_noresume(&client->dev);
1017 	pm_runtime_set_active(&client->dev);
1018 
1019 	ret = devm_pm_runtime_enable(&client->dev);
1020 	if (ret)
1021 		return dev_err_probe(&client->dev, ret,
1022 				     "failed to enable powermanagement\n");
1023 
1024 	pm_runtime_set_autosuspend_delay(&client->dev, MLX90635_SLEEP_DELAY_MS);
1025 	pm_runtime_use_autosuspend(&client->dev);
1026 	pm_runtime_put_autosuspend(&client->dev);
1027 
1028 	return devm_iio_device_register(&client->dev, indio_dev);
1029 }
1030 
1031 static const struct i2c_device_id mlx90635_id[] = {
1032 	{ "mlx90635" },
1033 	{ }
1034 };
1035 MODULE_DEVICE_TABLE(i2c, mlx90635_id);
1036 
1037 static const struct of_device_id mlx90635_of_match[] = {
1038 	{ .compatible = "melexis,mlx90635" },
1039 	{ }
1040 };
1041 MODULE_DEVICE_TABLE(of, mlx90635_of_match);
1042 
1043 static int mlx90635_pm_suspend(struct device *dev)
1044 {
1045 	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
1046 	int ret;
1047 
1048 	ret = mlx90635_suspend(data);
1049 	if (ret < 0)
1050 		return ret;
1051 
1052 	ret = regulator_disable(data->regulator);
1053 	if (ret < 0)
1054 		dev_err(regmap_get_device(data->regmap),
1055 			"Failed to disable power regulator: %d\n", ret);
1056 
1057 	return ret;
1058 }
1059 
1060 static int mlx90635_pm_resume(struct device *dev)
1061 {
1062 	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
1063 	int ret;
1064 
1065 	ret = mlx90635_enable_regulator(data);
1066 	if (ret < 0)
1067 		return ret;
1068 
1069 	return mlx90635_wakeup(data);
1070 }
1071 
1072 static int mlx90635_pm_runtime_suspend(struct device *dev)
1073 {
1074 	struct mlx90635_data *data = iio_priv(dev_get_drvdata(dev));
1075 
1076 	return mlx90635_pwr_sleep_step(data);
1077 }
1078 
1079 static const struct dev_pm_ops mlx90635_pm_ops = {
1080 	SYSTEM_SLEEP_PM_OPS(mlx90635_pm_suspend, mlx90635_pm_resume)
1081 	RUNTIME_PM_OPS(mlx90635_pm_runtime_suspend, NULL, NULL)
1082 };
1083 
1084 static struct i2c_driver mlx90635_driver = {
1085 	.driver = {
1086 		.name	= "mlx90635",
1087 		.of_match_table = mlx90635_of_match,
1088 		.pm	= pm_ptr(&mlx90635_pm_ops),
1089 	},
1090 	.probe = mlx90635_probe,
1091 	.id_table = mlx90635_id,
1092 };
1093 module_i2c_driver(mlx90635_driver);
1094 
1095 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
1096 MODULE_DESCRIPTION("Melexis MLX90635 contactless Infra Red temperature sensor driver");
1097 MODULE_LICENSE("GPL");
1098