xref: /linux/drivers/iio/temperature/mlx90632.c (revision 666fab4a3ea143315a9c059fad9f3a0f1365d54b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
4  *
5  * Copyright (c) 2017 Melexis <cmo@melexis.com>
6  *
7  * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
8  */
9 #include <linux/delay.h>
10 #include <linux/err.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/i2c.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/limits.h>
16 #include <linux/module.h>
17 #include <linux/math64.h>
18 #include <linux/of.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/regmap.h>
21 
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 
25 /* Memory sections addresses */
26 #define MLX90632_ADDR_RAM	0x4000 /* Start address of ram */
27 #define MLX90632_ADDR_EEPROM	0x2480 /* Start address of user eeprom */
28 
29 /* EEPROM addresses - used at startup */
30 #define MLX90632_EE_CTRL	0x24d4 /* Control register initial value */
31 #define MLX90632_EE_I2C_ADDR	0x24d5 /* I2C address register initial value */
32 #define MLX90632_EE_VERSION	0x240b /* EEPROM version reg address */
33 #define MLX90632_EE_P_R		0x240c /* P_R calibration register 32bit */
34 #define MLX90632_EE_P_G		0x240e /* P_G calibration register 32bit */
35 #define MLX90632_EE_P_T		0x2410 /* P_T calibration register 32bit */
36 #define MLX90632_EE_P_O		0x2412 /* P_O calibration register 32bit */
37 #define MLX90632_EE_Aa		0x2414 /* Aa calibration register 32bit */
38 #define MLX90632_EE_Ab		0x2416 /* Ab calibration register 32bit */
39 #define MLX90632_EE_Ba		0x2418 /* Ba calibration register 32bit */
40 #define MLX90632_EE_Bb		0x241a /* Bb calibration register 32bit */
41 #define MLX90632_EE_Ca		0x241c /* Ca calibration register 32bit */
42 #define MLX90632_EE_Cb		0x241e /* Cb calibration register 32bit */
43 #define MLX90632_EE_Da		0x2420 /* Da calibration register 32bit */
44 #define MLX90632_EE_Db		0x2422 /* Db calibration register 32bit */
45 #define MLX90632_EE_Ea		0x2424 /* Ea calibration register 32bit */
46 #define MLX90632_EE_Eb		0x2426 /* Eb calibration register 32bit */
47 #define MLX90632_EE_Fa		0x2428 /* Fa calibration register 32bit */
48 #define MLX90632_EE_Fb		0x242a /* Fb calibration register 32bit */
49 #define MLX90632_EE_Ga		0x242c /* Ga calibration register 32bit */
50 
51 #define MLX90632_EE_Gb		0x242e /* Gb calibration register 16bit */
52 #define MLX90632_EE_Ka		0x242f /* Ka calibration register 16bit */
53 
54 #define MLX90632_EE_Ha		0x2481 /* Ha customer calib value reg 16bit */
55 #define MLX90632_EE_Hb		0x2482 /* Hb customer calib value reg 16bit */
56 
57 /* Register addresses - volatile */
58 #define MLX90632_REG_I2C_ADDR	0x3000 /* Chip I2C address register */
59 
60 /* Control register address - volatile */
61 #define MLX90632_REG_CONTROL	0x3001 /* Control Register address */
62 #define   MLX90632_CFG_PWR_MASK		GENMASK(2, 1) /* PowerMode Mask */
63 #define   MLX90632_CFG_MTYP_MASK		GENMASK(8, 4) /* Meas select Mask */
64 
65 /* PowerModes statuses */
66 #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
67 #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
68 #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/
69 #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
70 #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/
71 
72 /* Measurement types */
73 #define MLX90632_MTYP_MEDICAL 0
74 #define MLX90632_MTYP_EXTENDED 17
75 
76 /* Measurement type select*/
77 #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
78 #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
79 #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
80 
81 /* I2C command register - volatile */
82 #define MLX90632_REG_I2C_CMD    0x3005 /* I2C command Register address */
83 
84 /* Device status register - volatile */
85 #define MLX90632_REG_STATUS	0x3fff /* Device status register */
86 #define   MLX90632_STAT_BUSY		BIT(10) /* Device busy indicator */
87 #define   MLX90632_STAT_EE_BUSY		BIT(9) /* EEPROM busy indicator */
88 #define   MLX90632_STAT_BRST		BIT(8) /* Brown out reset indicator */
89 #define   MLX90632_STAT_CYCLE_POS	GENMASK(6, 2) /* Data position */
90 #define   MLX90632_STAT_DATA_RDY	BIT(0) /* Data ready indicator */
91 
92 /* RAM_MEAS address-es for each channel */
93 #define MLX90632_RAM_1(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num)
94 #define MLX90632_RAM_2(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 1)
95 #define MLX90632_RAM_3(meas_num)	(MLX90632_ADDR_RAM + 3 * meas_num + 2)
96 
97 /* Name important RAM_MEAS channels */
98 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
99 #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
100 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
101 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
102 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
103 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
104 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
105 #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
106 
107 /* Magic constants */
108 #define MLX90632_ID_MEDICAL	0x0105 /* EEPROM DSPv5 Medical device id */
109 #define MLX90632_ID_CONSUMER	0x0205 /* EEPROM DSPv5 Consumer device id */
110 #define MLX90632_ID_EXTENDED	0x0505 /* EEPROM DSPv5 Extended range device id */
111 #define MLX90632_ID_MASK	GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
112 #define MLX90632_DSP_VERSION	5 /* DSP version */
113 #define MLX90632_DSP_MASK	GENMASK(7, 0) /* DSP version in EE_VERSION */
114 #define MLX90632_RESET_CMD	0x0006 /* Reset sensor (address or global) */
115 #define MLX90632_REF_12 	12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
116 #define MLX90632_REF_3		12LL /* ResCtrlRef value of Channel 3 */
117 #define MLX90632_MAX_MEAS_NUM	31 /* Maximum measurements in list */
118 #define MLX90632_SLEEP_DELAY_MS 3000 /* Autosleep delay */
119 #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
120 
121 /**
122  * struct mlx90632_data - private data for the MLX90632 device
123  * @client: I2C client of the device
124  * @lock: Internal mutex for multiple reads for single measurement
125  * @regmap: Regmap of the device
126  * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
127  * @mtyp: Measurement type physical sensor configuration for extended range
128  *        calculations
129  * @object_ambient_temperature: Ambient temperature at object (might differ of
130  *                              the ambient temperature of sensor.
131  */
132 struct mlx90632_data {
133 	struct i2c_client *client;
134 	struct mutex lock;
135 	struct regmap *regmap;
136 	u16 emissivity;
137 	u8 mtyp;
138 	u32 object_ambient_temperature;
139 };
140 
141 static const struct regmap_range mlx90632_volatile_reg_range[] = {
142 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
143 	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
144 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
145 	regmap_reg_range(MLX90632_RAM_1(0),
146 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
147 };
148 
149 static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
150 	.yes_ranges = mlx90632_volatile_reg_range,
151 	.n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
152 };
153 
154 static const struct regmap_range mlx90632_read_reg_range[] = {
155 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
156 	regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
157 	regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
158 	regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
159 	regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
160 	regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
161 	regmap_reg_range(MLX90632_RAM_1(0),
162 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
163 };
164 
165 static const struct regmap_access_table mlx90632_readable_regs_tbl = {
166 	.yes_ranges = mlx90632_read_reg_range,
167 	.n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
168 };
169 
170 static const struct regmap_range mlx90632_no_write_reg_range[] = {
171 	regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
172 	regmap_reg_range(MLX90632_RAM_1(0),
173 			 MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
174 };
175 
176 static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
177 	.no_ranges = mlx90632_no_write_reg_range,
178 	.n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
179 };
180 
181 static const struct regmap_config mlx90632_regmap = {
182 	.reg_bits = 16,
183 	.val_bits = 16,
184 
185 	.volatile_table = &mlx90632_volatile_regs_tbl,
186 	.rd_table = &mlx90632_readable_regs_tbl,
187 	.wr_table = &mlx90632_writeable_regs_tbl,
188 
189 	.use_single_read = true,
190 	.use_single_write = true,
191 	.reg_format_endian = REGMAP_ENDIAN_BIG,
192 	.val_format_endian = REGMAP_ENDIAN_BIG,
193 	.cache_type = REGCACHE_RBTREE,
194 };
195 
196 static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap)
197 {
198 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
199 				  MLX90632_CFG_PWR_MASK,
200 				  MLX90632_PWR_STATUS_SLEEP_STEP);
201 }
202 
203 static s32 mlx90632_pwr_continuous(struct regmap *regmap)
204 {
205 	return regmap_update_bits(regmap, MLX90632_REG_CONTROL,
206 				  MLX90632_CFG_PWR_MASK,
207 				  MLX90632_PWR_STATUS_CONTINUOUS);
208 }
209 
210 /**
211  * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
212  * @data: pointer to mlx90632_data object containing regmap information
213  *
214  * Perform a measurement and return latest measurement cycle position reported
215  * by sensor. This is a blocking function for 500ms, as that is default sensor
216  * refresh rate.
217  */
218 static int mlx90632_perform_measurement(struct mlx90632_data *data)
219 {
220 	unsigned int reg_status;
221 	int ret;
222 
223 	ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS,
224 				 MLX90632_STAT_DATA_RDY, 0);
225 	if (ret < 0)
226 		return ret;
227 
228 	ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
229 				       !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
230 				       100 * 10000);
231 
232 	if (ret < 0) {
233 		dev_err(&data->client->dev, "data not ready");
234 		return -ETIMEDOUT;
235 	}
236 
237 	return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
238 }
239 
240 static int mlx90632_set_meas_type(struct regmap *regmap, u8 type)
241 {
242 	int ret;
243 
244 	if ((type != MLX90632_MTYP_MEDICAL) && (type != MLX90632_MTYP_EXTENDED))
245 		return -EINVAL;
246 
247 	ret = regmap_write(regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
248 	if (ret < 0)
249 		return ret;
250 
251 	ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL,
252 				 (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
253 				 (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
254 	if (ret < 0)
255 		return ret;
256 
257 	return mlx90632_pwr_continuous(regmap);
258 }
259 
260 static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
261 				       uint8_t *channel_old)
262 {
263 	switch (perform_ret) {
264 	case 1:
265 		*channel_new = 1;
266 		*channel_old = 2;
267 		break;
268 	case 2:
269 		*channel_new = 2;
270 		*channel_old = 1;
271 		break;
272 	default:
273 		return -EINVAL;
274 	}
275 
276 	return 0;
277 }
278 
279 static int mlx90632_read_ambient_raw(struct regmap *regmap,
280 				     s16 *ambient_new_raw, s16 *ambient_old_raw)
281 {
282 	int ret;
283 	unsigned int read_tmp;
284 
285 	ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
286 	if (ret < 0)
287 		return ret;
288 	*ambient_new_raw = (s16)read_tmp;
289 
290 	ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
291 	if (ret < 0)
292 		return ret;
293 	*ambient_old_raw = (s16)read_tmp;
294 
295 	return ret;
296 }
297 
298 static int mlx90632_read_object_raw(struct regmap *regmap,
299 				    int perform_measurement_ret,
300 				    s16 *object_new_raw, s16 *object_old_raw)
301 {
302 	int ret;
303 	unsigned int read_tmp;
304 	s16 read;
305 	u8 channel = 0;
306 	u8 channel_old = 0;
307 
308 	ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
309 					  &channel_old);
310 	if (ret != 0)
311 		return ret;
312 
313 	ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
314 	if (ret < 0)
315 		return ret;
316 
317 	read = (s16)read_tmp;
318 
319 	ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
320 	if (ret < 0)
321 		return ret;
322 	*object_new_raw = (read + (s16)read_tmp) / 2;
323 
324 	ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
325 	if (ret < 0)
326 		return ret;
327 	read = (s16)read_tmp;
328 
329 	ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
330 	if (ret < 0)
331 		return ret;
332 	*object_old_raw = (read + (s16)read_tmp) / 2;
333 
334 	return ret;
335 }
336 
337 static int mlx90632_read_all_channel(struct mlx90632_data *data,
338 				     s16 *ambient_new_raw, s16 *ambient_old_raw,
339 				     s16 *object_new_raw, s16 *object_old_raw)
340 {
341 	s32 ret, measurement;
342 
343 	mutex_lock(&data->lock);
344 	measurement = mlx90632_perform_measurement(data);
345 	if (measurement < 0) {
346 		ret = measurement;
347 		goto read_unlock;
348 	}
349 	ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
350 					ambient_old_raw);
351 	if (ret < 0)
352 		goto read_unlock;
353 
354 	ret = mlx90632_read_object_raw(data->regmap, measurement,
355 				       object_new_raw, object_old_raw);
356 read_unlock:
357 	mutex_unlock(&data->lock);
358 	return ret;
359 }
360 
361 static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
362 					      s16 *ambient_new_raw, s16 *ambient_old_raw)
363 {
364 	unsigned int read_tmp;
365 	int ret;
366 
367 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
368 	if (ret < 0)
369 		return ret;
370 	*ambient_new_raw = (s16)read_tmp;
371 
372 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
373 	if (ret < 0)
374 		return ret;
375 	*ambient_old_raw = (s16)read_tmp;
376 
377 	return 0;
378 }
379 
380 static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
381 {
382 	unsigned int read_tmp;
383 	s32 read;
384 	int ret;
385 
386 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
387 	if (ret < 0)
388 		return ret;
389 	read = (s16)read_tmp;
390 
391 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
392 	if (ret < 0)
393 		return ret;
394 	read = read - (s16)read_tmp;
395 
396 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
397 	if (ret < 0)
398 		return ret;
399 	read = read - (s16)read_tmp;
400 
401 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
402 	if (ret < 0)
403 		return ret;
404 	read = (read + (s16)read_tmp) / 2;
405 
406 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
407 	if (ret < 0)
408 		return ret;
409 	read = read + (s16)read_tmp;
410 
411 	ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
412 	if (ret < 0)
413 		return ret;
414 	read = read + (s16)read_tmp;
415 
416 	if (read > S16_MAX || read < S16_MIN)
417 		return -ERANGE;
418 
419 	*object_new_raw = read;
420 
421 	return 0;
422 }
423 
424 static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
425 					      s16 *ambient_new_raw, s16 *ambient_old_raw)
426 {
427 	s32 ret, meas;
428 
429 	mutex_lock(&data->lock);
430 	ret = mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_EXTENDED);
431 	if (ret < 0)
432 		goto read_unlock;
433 
434 	ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
435 				50000, 800000, false, data);
436 	if (ret != 0)
437 		goto read_unlock;
438 
439 	ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
440 	if (ret < 0)
441 		goto read_unlock;
442 
443 	ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
444 
445 read_unlock:
446 	(void) mlx90632_set_meas_type(data->regmap, MLX90632_MTYP_MEDICAL);
447 
448 	mutex_unlock(&data->lock);
449 	return ret;
450 }
451 
452 static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
453 				     s32 *reg_value)
454 {
455 	s32 ret;
456 	unsigned int read;
457 	u32 value;
458 
459 	ret = regmap_read(regmap, reg_lsb, &read);
460 	if (ret < 0)
461 		return ret;
462 
463 	value = read;
464 
465 	ret = regmap_read(regmap, reg_lsb + 1, &read);
466 	if (ret < 0)
467 		return ret;
468 
469 	*reg_value = (read << 16) | (value & 0xffff);
470 
471 	return 0;
472 }
473 
474 static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
475 					s16 ambient_old_raw, s16 Gb)
476 {
477 	s64 VR_Ta, kGb, tmp;
478 
479 	kGb = ((s64)Gb * 1000LL) >> 10ULL;
480 	VR_Ta = (s64)ambient_old_raw * 1000000LL +
481 		kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
482 			(MLX90632_REF_3));
483 	tmp = div64_s64(
484 			 div64_s64(((s64)ambient_new_raw * 1000000000000LL),
485 				   (MLX90632_REF_3)), VR_Ta);
486 	return div64_s64(tmp << 19ULL, 1000LL);
487 }
488 
489 static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
490 					s16 ambient_new_raw,
491 					s16 ambient_old_raw, s16 Ka)
492 {
493 	s64 VR_IR, kKa, tmp;
494 
495 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
496 	VR_IR = (s64)ambient_old_raw * 1000000LL +
497 		kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
498 			(MLX90632_REF_3));
499 	tmp = div64_s64(
500 			div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
501 				   * 1000000000000LL), (MLX90632_REF_12)),
502 			VR_IR);
503 	return div64_s64((tmp << 19ULL), 1000LL);
504 }
505 
506 static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
507 						 s16 ambient_old_raw, s16 Ka)
508 {
509 	s64 VR_IR, kKa, tmp;
510 
511 	kKa = ((s64)Ka * 1000LL) >> 10ULL;
512 	VR_IR = (s64)ambient_old_raw * 1000000LL +
513 		kKa * div64_s64((s64)ambient_new_raw * 1000LL,
514 				MLX90632_REF_3);
515 	tmp = div64_s64(
516 			div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
517 			VR_IR);
518 	return div64_s64(tmp << 19ULL, 1000LL);
519 }
520 
521 static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
522 				      s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
523 {
524 	s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
525 
526 	AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
527 					   Gb);
528 	Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
529 	Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
530 	Ablock = Asub * (Bsub * Bsub);
531 	Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
532 	Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
533 
534 	sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
535 
536 	return div64_s64(sum, 10000000LL);
537 }
538 
539 static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
540 					       s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
541 					       s32 Ga, s16 Ha, s16 Hb,
542 					       u16 emissivity)
543 {
544 	s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
545 	s64 Ha_customer, Hb_customer;
546 
547 	Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
548 	Hb_customer = ((s64)Hb * 100) >> 10ULL;
549 
550 	calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
551 			     * 1000LL)) >> 36LL;
552 	calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
553 	Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
554 				* Ha_customer), 1000LL);
555 	Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
556 	Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
557 	Alpha_corr = div64_s64(Alpha_corr, 1000LL);
558 	ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
559 
560 	return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
561 		- 27315 - Hb_customer) * 10;
562 }
563 
564 static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
565 {
566 	return (div64_s64(TAdut, scale) + 27315) *
567 		(div64_s64(TAdut, scale) + 27315) *
568 		(div64_s64(TAdut, scale) + 27315) *
569 		(div64_s64(TAdut, scale) + 27315);
570 }
571 
572 static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
573 				     s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
574 				     u16 tmp_emi)
575 {
576 	s64 kTA, kTA0, TAdut, TAdut4;
577 	s64 temp = 25000;
578 	s8 i;
579 
580 	kTA = (Ea * 1000LL) >> 16LL;
581 	kTA0 = (Eb * 1000LL) >> 8LL;
582 	TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
583 	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
584 
585 	/* Iterations of calculation as described in datasheet */
586 	for (i = 0; i < 5; ++i) {
587 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
588 							   Fa, Fb, Ga, Ha, Hb,
589 							   tmp_emi);
590 	}
591 	return temp;
592 }
593 
594 static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
595 					      s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
596 					      s16 Ha, s16 Hb, u16 tmp_emi)
597 {
598 	s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
599 	s64 temp = 25000;
600 	s8 i;
601 
602 	kTA = (Ea * 1000LL) >> 16LL;
603 	kTA0 = (Eb * 1000LL) >> 8LL;
604 	TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
605 	Tr4 = mlx90632_calc_ta4(reflected, 10);
606 	TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
607 	TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
608 
609 	/* Iterations of calculation as described in datasheet */
610 	for (i = 0; i < 5; ++i) {
611 		temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
612 							   Fa / 2, Fb, Ga, Ha, Hb,
613 							   tmp_emi);
614 	}
615 
616 	return temp;
617 }
618 
619 static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
620 {
621 	s32 ret;
622 	s32 Ea, Eb, Fa, Fb, Ga;
623 	unsigned int read_tmp;
624 	s16 Ha, Hb, Gb, Ka;
625 	s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
626 	s64 object, ambient;
627 
628 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
629 	if (ret < 0)
630 		return ret;
631 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
632 	if (ret < 0)
633 		return ret;
634 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
635 	if (ret < 0)
636 		return ret;
637 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
638 	if (ret < 0)
639 		return ret;
640 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
641 	if (ret < 0)
642 		return ret;
643 	ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
644 	if (ret < 0)
645 		return ret;
646 	Ha = (s16)read_tmp;
647 	ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
648 	if (ret < 0)
649 		return ret;
650 	Hb = (s16)read_tmp;
651 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
652 	if (ret < 0)
653 		return ret;
654 	Gb = (s16)read_tmp;
655 	ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
656 	if (ret < 0)
657 		return ret;
658 	Ka = (s16)read_tmp;
659 
660 	ret = mlx90632_read_all_channel(data,
661 					&ambient_new_raw, &ambient_old_raw,
662 					&object_new_raw, &object_old_raw);
663 	if (ret < 0)
664 		return ret;
665 
666 	if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
667 	    data->mtyp == MLX90632_MTYP_EXTENDED) {
668 		ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
669 							 &ambient_new_raw, &ambient_old_raw);
670 		if (ret < 0)
671 			return ret;
672 
673 		/* Use extended mode calculations */
674 		ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
675 						       ambient_old_raw, Gb);
676 		object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
677 							       ambient_new_raw,
678 							       ambient_old_raw, Ka);
679 		*val = mlx90632_calc_temp_object_extended(object, ambient,
680 							  data->object_ambient_temperature,
681 							  Ea, Eb, Fa, Fb, Ga,
682 							  Ha, Hb, data->emissivity);
683 		return 0;
684 	}
685 
686 	ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
687 					       ambient_old_raw, Gb);
688 	object = mlx90632_preprocess_temp_obj(object_new_raw,
689 					      object_old_raw,
690 					      ambient_new_raw,
691 					      ambient_old_raw, Ka);
692 
693 	*val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
694 					 Ha, Hb, data->emissivity);
695 	return 0;
696 }
697 
698 static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
699 {
700 	s32 ret;
701 	unsigned int read_tmp;
702 	s32 PT, PR, PG, PO;
703 	s16 Gb;
704 	s16 ambient_new_raw, ambient_old_raw;
705 
706 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
707 	if (ret < 0)
708 		return ret;
709 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
710 	if (ret < 0)
711 		return ret;
712 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
713 	if (ret < 0)
714 		return ret;
715 	ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
716 	if (ret < 0)
717 		return ret;
718 	ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
719 	if (ret < 0)
720 		return ret;
721 	Gb = (s16)read_tmp;
722 
723 	ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
724 					&ambient_old_raw);
725 	if (ret < 0)
726 		return ret;
727 	*val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
728 					  PT, PR, PG, PO, Gb);
729 	return ret;
730 }
731 
732 static int mlx90632_read_raw(struct iio_dev *indio_dev,
733 			     struct iio_chan_spec const *channel, int *val,
734 			     int *val2, long mask)
735 {
736 	struct mlx90632_data *data = iio_priv(indio_dev);
737 	int ret;
738 
739 	switch (mask) {
740 	case IIO_CHAN_INFO_PROCESSED:
741 		switch (channel->channel2) {
742 		case IIO_MOD_TEMP_AMBIENT:
743 			ret = mlx90632_calc_ambient_dsp105(data, val);
744 			if (ret < 0)
745 				return ret;
746 			return IIO_VAL_INT;
747 		case IIO_MOD_TEMP_OBJECT:
748 			ret = mlx90632_calc_object_dsp105(data, val);
749 			if (ret < 0)
750 				return ret;
751 			return IIO_VAL_INT;
752 		default:
753 			return -EINVAL;
754 		}
755 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
756 		if (data->emissivity == 1000) {
757 			*val = 1;
758 			*val2 = 0;
759 		} else {
760 			*val = 0;
761 			*val2 = data->emissivity * 1000;
762 		}
763 		return IIO_VAL_INT_PLUS_MICRO;
764 	case IIO_CHAN_INFO_CALIBAMBIENT:
765 		*val = data->object_ambient_temperature;
766 		return IIO_VAL_INT;
767 	default:
768 		return -EINVAL;
769 	}
770 }
771 
772 static int mlx90632_write_raw(struct iio_dev *indio_dev,
773 			      struct iio_chan_spec const *channel, int val,
774 			      int val2, long mask)
775 {
776 	struct mlx90632_data *data = iio_priv(indio_dev);
777 
778 	switch (mask) {
779 	case IIO_CHAN_INFO_CALIBEMISSIVITY:
780 		/* Confirm we are within 0 and 1.0 */
781 		if (val < 0 || val2 < 0 || val > 1 ||
782 		    (val == 1 && val2 != 0))
783 			return -EINVAL;
784 		data->emissivity = val * 1000 + val2 / 1000;
785 		return 0;
786 	case IIO_CHAN_INFO_CALIBAMBIENT:
787 		data->object_ambient_temperature = val;
788 		return 0;
789 	default:
790 		return -EINVAL;
791 	}
792 }
793 
794 static const struct iio_chan_spec mlx90632_channels[] = {
795 	{
796 		.type = IIO_TEMP,
797 		.modified = 1,
798 		.channel2 = IIO_MOD_TEMP_AMBIENT,
799 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
800 	},
801 	{
802 		.type = IIO_TEMP,
803 		.modified = 1,
804 		.channel2 = IIO_MOD_TEMP_OBJECT,
805 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
806 			BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
807 	},
808 };
809 
810 static const struct iio_info mlx90632_info = {
811 	.read_raw = mlx90632_read_raw,
812 	.write_raw = mlx90632_write_raw,
813 };
814 
815 static int mlx90632_sleep(struct mlx90632_data *data)
816 {
817 	regcache_mark_dirty(data->regmap);
818 
819 	dev_dbg(&data->client->dev, "Requesting sleep");
820 	return mlx90632_pwr_set_sleep_step(data->regmap);
821 }
822 
823 static int mlx90632_wakeup(struct mlx90632_data *data)
824 {
825 	int ret;
826 
827 	ret = regcache_sync(data->regmap);
828 	if (ret < 0) {
829 		dev_err(&data->client->dev,
830 			"Failed to sync regmap registers: %d\n", ret);
831 		return ret;
832 	}
833 
834 	dev_dbg(&data->client->dev, "Requesting wake-up\n");
835 	return mlx90632_pwr_continuous(data->regmap);
836 }
837 
838 static int mlx90632_probe(struct i2c_client *client,
839 			  const struct i2c_device_id *id)
840 {
841 	struct iio_dev *indio_dev;
842 	struct mlx90632_data *mlx90632;
843 	struct regmap *regmap;
844 	int ret;
845 	unsigned int read;
846 
847 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
848 	if (!indio_dev) {
849 		dev_err(&client->dev, "Failed to allocate device\n");
850 		return -ENOMEM;
851 	}
852 
853 	regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
854 	if (IS_ERR(regmap)) {
855 		ret = PTR_ERR(regmap);
856 		dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
857 		return ret;
858 	}
859 
860 	mlx90632 = iio_priv(indio_dev);
861 	i2c_set_clientdata(client, indio_dev);
862 	mlx90632->client = client;
863 	mlx90632->regmap = regmap;
864 	mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
865 
866 	mutex_init(&mlx90632->lock);
867 	indio_dev->name = id->name;
868 	indio_dev->modes = INDIO_DIRECT_MODE;
869 	indio_dev->info = &mlx90632_info;
870 	indio_dev->channels = mlx90632_channels;
871 	indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
872 
873 	ret = mlx90632_wakeup(mlx90632);
874 	if (ret < 0) {
875 		dev_err(&client->dev, "Wakeup failed: %d\n", ret);
876 		return ret;
877 	}
878 
879 	ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
880 	if (ret < 0) {
881 		dev_err(&client->dev, "read of version failed: %d\n", ret);
882 		return ret;
883 	}
884 	read = read & MLX90632_ID_MASK;
885 	if (read == MLX90632_ID_MEDICAL) {
886 		dev_dbg(&client->dev,
887 			"Detected Medical EEPROM calibration %x\n", read);
888 	} else if (read == MLX90632_ID_CONSUMER) {
889 		dev_dbg(&client->dev,
890 			"Detected Consumer EEPROM calibration %x\n", read);
891 	} else if (read == MLX90632_ID_EXTENDED) {
892 		dev_dbg(&client->dev,
893 			"Detected Extended range EEPROM calibration %x\n", read);
894 		mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
895 	} else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
896 		dev_dbg(&client->dev,
897 			"Detected Unknown EEPROM calibration %x\n", read);
898 	} else {
899 		dev_err(&client->dev,
900 			"Wrong DSP version %x (expected %x)\n",
901 			read, MLX90632_DSP_VERSION);
902 		return -EPROTONOSUPPORT;
903 	}
904 
905 	mlx90632->emissivity = 1000;
906 	mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
907 
908 	pm_runtime_disable(&client->dev);
909 	ret = pm_runtime_set_active(&client->dev);
910 	if (ret < 0) {
911 		mlx90632_sleep(mlx90632);
912 		return ret;
913 	}
914 	pm_runtime_enable(&client->dev);
915 	pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
916 	pm_runtime_use_autosuspend(&client->dev);
917 
918 	return iio_device_register(indio_dev);
919 }
920 
921 static int mlx90632_remove(struct i2c_client *client)
922 {
923 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
924 	struct mlx90632_data *data = iio_priv(indio_dev);
925 
926 	iio_device_unregister(indio_dev);
927 
928 	pm_runtime_disable(&client->dev);
929 	pm_runtime_set_suspended(&client->dev);
930 	pm_runtime_put_noidle(&client->dev);
931 
932 	mlx90632_sleep(data);
933 
934 	return 0;
935 }
936 
937 static const struct i2c_device_id mlx90632_id[] = {
938 	{ "mlx90632", 0 },
939 	{ }
940 };
941 MODULE_DEVICE_TABLE(i2c, mlx90632_id);
942 
943 static const struct of_device_id mlx90632_of_match[] = {
944 	{ .compatible = "melexis,mlx90632" },
945 	{ }
946 };
947 MODULE_DEVICE_TABLE(of, mlx90632_of_match);
948 
949 static int __maybe_unused mlx90632_pm_suspend(struct device *dev)
950 {
951 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
952 	struct mlx90632_data *data = iio_priv(indio_dev);
953 
954 	return mlx90632_sleep(data);
955 }
956 
957 static int __maybe_unused mlx90632_pm_resume(struct device *dev)
958 {
959 	struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev));
960 	struct mlx90632_data *data = iio_priv(indio_dev);
961 
962 	return mlx90632_wakeup(data);
963 }
964 
965 static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend,
966 			    mlx90632_pm_resume, NULL);
967 
968 static struct i2c_driver mlx90632_driver = {
969 	.driver = {
970 		.name	= "mlx90632",
971 		.of_match_table = mlx90632_of_match,
972 		.pm	= &mlx90632_pm_ops,
973 	},
974 	.probe = mlx90632_probe,
975 	.remove = mlx90632_remove,
976 	.id_table = mlx90632_id,
977 };
978 module_i2c_driver(mlx90632_driver);
979 
980 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
981 MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
982 MODULE_LICENSE("GPL v2");
983