1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mlx90614.c - Support for Melexis MLX90614/MLX90615 contactless IR temperature sensor 4 * 5 * Copyright (c) 2014 Peter Meerwald <pmeerw@pmeerw.net> 6 * Copyright (c) 2015 Essensium NV 7 * Copyright (c) 2015 Melexis 8 * 9 * Driver for the Melexis MLX90614/MLX90615 I2C 16-bit IR thermopile sensor 10 * 11 * MLX90614 - 17-bit ADC + MLX90302 DSP 12 * MLX90615 - 16-bit ADC + MLX90325 DSP 13 * 14 * (7-bit I2C slave address 0x5a, 100KHz bus speed only!) 15 * 16 * To wake up from sleep mode, the SDA line must be held low while SCL is high 17 * for at least 33ms. This is achieved with an extra GPIO that can be connected 18 * directly to the SDA line. In normal operation, the GPIO is set as input and 19 * will not interfere in I2C communication. While the GPIO is driven low, the 20 * i2c adapter is locked since it cannot be used by other clients. The SCL line 21 * always has a pull-up so we do not need an extra GPIO to drive it high. If 22 * the "wakeup" GPIO is not given, power management will be disabled. 23 */ 24 25 #include <linux/delay.h> 26 #include <linux/err.h> 27 #include <linux/gpio/consumer.h> 28 #include <linux/i2c.h> 29 #include <linux/jiffies.h> 30 #include <linux/module.h> 31 #include <linux/of_device.h> 32 #include <linux/pm_runtime.h> 33 34 #include <linux/iio/iio.h> 35 #include <linux/iio/sysfs.h> 36 37 #define MLX90614_OP_RAM 0x00 38 #define MLX90614_OP_EEPROM 0x20 39 #define MLX90614_OP_SLEEP 0xff 40 41 #define MLX90615_OP_EEPROM 0x10 42 #define MLX90615_OP_RAM 0x20 43 #define MLX90615_OP_SLEEP 0xc6 44 45 /* Control bits in configuration register */ 46 #define MLX90614_CONFIG_IIR_SHIFT 0 /* IIR coefficient */ 47 #define MLX90614_CONFIG_IIR_MASK (0x7 << MLX90614_CONFIG_IIR_SHIFT) 48 #define MLX90614_CONFIG_DUAL_SHIFT 6 /* single (0) or dual (1) IR sensor */ 49 #define MLX90614_CONFIG_DUAL_MASK (1 << MLX90614_CONFIG_DUAL_SHIFT) 50 #define MLX90614_CONFIG_FIR_SHIFT 8 /* FIR coefficient */ 51 #define MLX90614_CONFIG_FIR_MASK (0x7 << MLX90614_CONFIG_FIR_SHIFT) 52 53 #define MLX90615_CONFIG_IIR_SHIFT 12 /* IIR coefficient */ 54 #define MLX90615_CONFIG_IIR_MASK (0x7 << MLX90615_CONFIG_IIR_SHIFT) 55 56 /* Timings (in ms) */ 57 #define MLX90614_TIMING_EEPROM 20 /* time for EEPROM write/erase to complete */ 58 #define MLX90614_TIMING_WAKEUP 34 /* time to hold SDA low for wake-up */ 59 #define MLX90614_TIMING_STARTUP 250 /* time before first data after wake-up */ 60 61 #define MLX90615_TIMING_WAKEUP 22 /* time to hold SCL low for wake-up */ 62 63 #define MLX90614_AUTOSLEEP_DELAY 5000 /* default autosleep delay */ 64 65 /* Magic constants */ 66 #define MLX90614_CONST_OFFSET_DEC -13657 /* decimal part of the Kelvin offset */ 67 #define MLX90614_CONST_OFFSET_REM 500000 /* remainder of offset (273.15*50) */ 68 #define MLX90614_CONST_SCALE 20 /* Scale in milliKelvin (0.02 * 1000) */ 69 #define MLX90614_CONST_FIR 0x7 /* Fixed value for FIR part of low pass filter */ 70 71 /* Non-constant mask variant of FIELD_GET() and FIELD_PREP() */ 72 #define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1)) 73 #define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask)) 74 75 struct mlx_chip_info { 76 /* EEPROM offsets with 16-bit data, MSB first */ 77 /* emissivity correction coefficient */ 78 u8 op_eeprom_emissivity; 79 u8 op_eeprom_config1; 80 /* RAM offsets with 16-bit data, MSB first */ 81 /* ambient temperature */ 82 u8 op_ram_ta; 83 /* object 1 temperature */ 84 u8 op_ram_tobj1; 85 /* object 2 temperature */ 86 u8 op_ram_tobj2; 87 u8 op_sleep; 88 /* support for two input channels (MLX90614 only) */ 89 u8 dual_channel; 90 u8 wakeup_delay_ms; 91 u16 emissivity_max; 92 u16 fir_config_mask; 93 u16 iir_config_mask; 94 int iir_valid_offset; 95 u16 iir_values[8]; 96 int iir_freqs[8][2]; 97 }; 98 99 struct mlx90614_data { 100 struct i2c_client *client; 101 struct mutex lock; /* for EEPROM access only */ 102 struct gpio_desc *wakeup_gpio; /* NULL to disable sleep/wake-up */ 103 const struct mlx_chip_info *chip_info; /* Chip hardware details */ 104 unsigned long ready_timestamp; /* in jiffies */ 105 }; 106 107 /* 108 * Erase an address and write word. 109 * The mutex must be locked before calling. 110 */ 111 static s32 mlx90614_write_word(const struct i2c_client *client, u8 command, 112 u16 value) 113 { 114 /* 115 * Note: The mlx90614 requires a PEC on writing but does not send us a 116 * valid PEC on reading. Hence, we cannot set I2C_CLIENT_PEC in 117 * i2c_client.flags. As a workaround, we use i2c_smbus_xfer here. 118 */ 119 union i2c_smbus_data data; 120 s32 ret; 121 122 dev_dbg(&client->dev, "Writing 0x%x to address 0x%x", value, command); 123 124 data.word = 0x0000; /* erase command */ 125 ret = i2c_smbus_xfer(client->adapter, client->addr, 126 client->flags | I2C_CLIENT_PEC, 127 I2C_SMBUS_WRITE, command, 128 I2C_SMBUS_WORD_DATA, &data); 129 if (ret < 0) 130 return ret; 131 132 msleep(MLX90614_TIMING_EEPROM); 133 134 data.word = value; /* actual write */ 135 ret = i2c_smbus_xfer(client->adapter, client->addr, 136 client->flags | I2C_CLIENT_PEC, 137 I2C_SMBUS_WRITE, command, 138 I2C_SMBUS_WORD_DATA, &data); 139 140 msleep(MLX90614_TIMING_EEPROM); 141 142 return ret; 143 } 144 145 /* 146 * Find the IIR value inside iir_values array and return its position 147 * which is equivalent to the bit value in sensor register 148 */ 149 static inline s32 mlx90614_iir_search(const struct i2c_client *client, 150 int value) 151 { 152 struct iio_dev *indio_dev = i2c_get_clientdata(client); 153 struct mlx90614_data *data = iio_priv(indio_dev); 154 const struct mlx_chip_info *chip_info = data->chip_info; 155 int i; 156 s32 ret; 157 158 for (i = chip_info->iir_valid_offset; 159 i < ARRAY_SIZE(chip_info->iir_values); 160 i++) { 161 if (value == chip_info->iir_values[i]) 162 break; 163 } 164 165 if (i == ARRAY_SIZE(chip_info->iir_values)) 166 return -EINVAL; 167 168 /* 169 * CONFIG register values must not be changed so 170 * we must read them before we actually write 171 * changes 172 */ 173 ret = i2c_smbus_read_word_data(client, chip_info->op_eeprom_config1); 174 if (ret < 0) 175 return ret; 176 177 /* Modify FIR on parts which have configurable FIR filter */ 178 if (chip_info->fir_config_mask) { 179 ret &= ~chip_info->fir_config_mask; 180 ret |= field_prep(chip_info->fir_config_mask, MLX90614_CONST_FIR); 181 } 182 183 ret &= ~chip_info->iir_config_mask; 184 ret |= field_prep(chip_info->iir_config_mask, i); 185 186 /* Write changed values */ 187 ret = mlx90614_write_word(client, chip_info->op_eeprom_config1, ret); 188 return ret; 189 } 190 191 #ifdef CONFIG_PM 192 /* 193 * If @startup is true, make sure MLX90614_TIMING_STARTUP ms have elapsed since 194 * the last wake-up. This is normally only needed to get a valid temperature 195 * reading. EEPROM access does not need such delay. 196 * Return 0 on success, <0 on error. 197 */ 198 static int mlx90614_power_get(struct mlx90614_data *data, bool startup) 199 { 200 unsigned long now; 201 int ret; 202 203 if (!data->wakeup_gpio) 204 return 0; 205 206 ret = pm_runtime_resume_and_get(&data->client->dev); 207 if (ret < 0) 208 return ret; 209 210 if (startup) { 211 now = jiffies; 212 if (time_before(now, data->ready_timestamp) && 213 msleep_interruptible(jiffies_to_msecs( 214 data->ready_timestamp - now)) != 0) { 215 pm_runtime_put_autosuspend(&data->client->dev); 216 return -EINTR; 217 } 218 } 219 220 return 0; 221 } 222 223 static void mlx90614_power_put(struct mlx90614_data *data) 224 { 225 if (!data->wakeup_gpio) 226 return; 227 228 pm_runtime_mark_last_busy(&data->client->dev); 229 pm_runtime_put_autosuspend(&data->client->dev); 230 } 231 #else 232 static inline int mlx90614_power_get(struct mlx90614_data *data, bool startup) 233 { 234 return 0; 235 } 236 237 static inline void mlx90614_power_put(struct mlx90614_data *data) 238 { 239 } 240 #endif 241 242 static int mlx90614_read_raw(struct iio_dev *indio_dev, 243 struct iio_chan_spec const *channel, int *val, 244 int *val2, long mask) 245 { 246 struct mlx90614_data *data = iio_priv(indio_dev); 247 const struct mlx_chip_info *chip_info = data->chip_info; 248 u8 cmd, idx; 249 s32 ret; 250 251 switch (mask) { 252 case IIO_CHAN_INFO_RAW: /* 0.02K / LSB */ 253 switch (channel->channel2) { 254 case IIO_MOD_TEMP_AMBIENT: 255 cmd = chip_info->op_ram_ta; 256 break; 257 case IIO_MOD_TEMP_OBJECT: 258 if (chip_info->dual_channel && channel->channel) 259 return -EINVAL; 260 261 switch (channel->channel) { 262 case 0: 263 cmd = chip_info->op_ram_tobj1; 264 break; 265 case 1: 266 cmd = chip_info->op_ram_tobj2; 267 break; 268 default: 269 return -EINVAL; 270 } 271 break; 272 default: 273 return -EINVAL; 274 } 275 276 ret = mlx90614_power_get(data, true); 277 if (ret < 0) 278 return ret; 279 ret = i2c_smbus_read_word_data(data->client, cmd); 280 mlx90614_power_put(data); 281 282 if (ret < 0) 283 return ret; 284 285 /* MSB is an error flag */ 286 if (ret & 0x8000) 287 return -EIO; 288 289 *val = ret; 290 return IIO_VAL_INT; 291 case IIO_CHAN_INFO_OFFSET: 292 *val = MLX90614_CONST_OFFSET_DEC; 293 *val2 = MLX90614_CONST_OFFSET_REM; 294 return IIO_VAL_INT_PLUS_MICRO; 295 case IIO_CHAN_INFO_SCALE: 296 *val = MLX90614_CONST_SCALE; 297 return IIO_VAL_INT; 298 case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/emissivity_max / LSB */ 299 ret = mlx90614_power_get(data, false); 300 if (ret < 0) 301 return ret; 302 303 mutex_lock(&data->lock); 304 ret = i2c_smbus_read_word_data(data->client, 305 chip_info->op_eeprom_emissivity); 306 mutex_unlock(&data->lock); 307 mlx90614_power_put(data); 308 309 if (ret < 0) 310 return ret; 311 312 if (ret == chip_info->emissivity_max) { 313 *val = 1; 314 *val2 = 0; 315 } else { 316 *val = 0; 317 *val2 = ret * NSEC_PER_SEC / chip_info->emissivity_max; 318 } 319 return IIO_VAL_INT_PLUS_NANO; 320 /* IIR setting with FIR=1024 (MLX90614) or FIR=65536 (MLX90615) */ 321 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 322 ret = mlx90614_power_get(data, false); 323 if (ret < 0) 324 return ret; 325 326 mutex_lock(&data->lock); 327 ret = i2c_smbus_read_word_data(data->client, 328 chip_info->op_eeprom_config1); 329 mutex_unlock(&data->lock); 330 mlx90614_power_put(data); 331 332 if (ret < 0) 333 return ret; 334 335 idx = field_get(chip_info->iir_config_mask, ret) - 336 chip_info->iir_valid_offset; 337 338 *val = chip_info->iir_values[idx] / 100; 339 *val2 = (chip_info->iir_values[idx] % 100) * 10000; 340 return IIO_VAL_INT_PLUS_MICRO; 341 default: 342 return -EINVAL; 343 } 344 } 345 346 static int mlx90614_write_raw(struct iio_dev *indio_dev, 347 struct iio_chan_spec const *channel, int val, 348 int val2, long mask) 349 { 350 struct mlx90614_data *data = iio_priv(indio_dev); 351 const struct mlx_chip_info *chip_info = data->chip_info; 352 s32 ret; 353 354 switch (mask) { 355 case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/emissivity_max / LSB */ 356 if (val < 0 || val2 < 0 || val > 1 || (val == 1 && val2 != 0)) 357 return -EINVAL; 358 val = val * chip_info->emissivity_max + 359 val2 * chip_info->emissivity_max / NSEC_PER_SEC; 360 361 ret = mlx90614_power_get(data, false); 362 if (ret < 0) 363 return ret; 364 365 mutex_lock(&data->lock); 366 ret = mlx90614_write_word(data->client, 367 chip_info->op_eeprom_emissivity, val); 368 mutex_unlock(&data->lock); 369 mlx90614_power_put(data); 370 371 return ret; 372 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: /* IIR Filter setting */ 373 if (val < 0 || val2 < 0) 374 return -EINVAL; 375 376 ret = mlx90614_power_get(data, false); 377 if (ret < 0) 378 return ret; 379 380 mutex_lock(&data->lock); 381 ret = mlx90614_iir_search(data->client, 382 val * 100 + val2 / 10000); 383 mutex_unlock(&data->lock); 384 mlx90614_power_put(data); 385 386 return ret; 387 default: 388 return -EINVAL; 389 } 390 } 391 392 static int mlx90614_write_raw_get_fmt(struct iio_dev *indio_dev, 393 struct iio_chan_spec const *channel, 394 long mask) 395 { 396 switch (mask) { 397 case IIO_CHAN_INFO_CALIBEMISSIVITY: 398 return IIO_VAL_INT_PLUS_NANO; 399 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 400 return IIO_VAL_INT_PLUS_MICRO; 401 default: 402 return -EINVAL; 403 } 404 } 405 406 static int mlx90614_read_avail(struct iio_dev *indio_dev, 407 struct iio_chan_spec const *chan, 408 const int **vals, int *type, int *length, 409 long mask) 410 { 411 struct mlx90614_data *data = iio_priv(indio_dev); 412 const struct mlx_chip_info *chip_info = data->chip_info; 413 414 switch (mask) { 415 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 416 *vals = (int *)chip_info->iir_freqs; 417 *type = IIO_VAL_INT_PLUS_MICRO; 418 *length = 2 * (ARRAY_SIZE(chip_info->iir_freqs) - 419 chip_info->iir_valid_offset); 420 return IIO_AVAIL_LIST; 421 default: 422 return -EINVAL; 423 } 424 } 425 426 static const struct iio_chan_spec mlx90614_channels[] = { 427 { 428 .type = IIO_TEMP, 429 .modified = 1, 430 .channel2 = IIO_MOD_TEMP_AMBIENT, 431 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 432 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | 433 BIT(IIO_CHAN_INFO_SCALE), 434 }, 435 { 436 .type = IIO_TEMP, 437 .modified = 1, 438 .channel2 = IIO_MOD_TEMP_OBJECT, 439 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 440 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | 441 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 442 .info_mask_separate_available = 443 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 444 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | 445 BIT(IIO_CHAN_INFO_SCALE), 446 }, 447 { 448 .type = IIO_TEMP, 449 .indexed = 1, 450 .modified = 1, 451 .channel = 1, 452 .channel2 = IIO_MOD_TEMP_OBJECT, 453 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 454 BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | 455 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 456 .info_mask_separate_available = 457 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 458 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | 459 BIT(IIO_CHAN_INFO_SCALE), 460 }, 461 }; 462 463 static const struct iio_info mlx90614_info = { 464 .read_raw = mlx90614_read_raw, 465 .write_raw = mlx90614_write_raw, 466 .write_raw_get_fmt = mlx90614_write_raw_get_fmt, 467 .read_avail = mlx90614_read_avail, 468 }; 469 470 #ifdef CONFIG_PM 471 static int mlx90614_sleep(struct mlx90614_data *data) 472 { 473 const struct mlx_chip_info *chip_info = data->chip_info; 474 s32 ret; 475 476 if (!data->wakeup_gpio) { 477 dev_dbg(&data->client->dev, "Sleep disabled"); 478 return -ENOSYS; 479 } 480 481 dev_dbg(&data->client->dev, "Requesting sleep"); 482 483 mutex_lock(&data->lock); 484 ret = i2c_smbus_xfer(data->client->adapter, data->client->addr, 485 data->client->flags | I2C_CLIENT_PEC, 486 I2C_SMBUS_WRITE, chip_info->op_sleep, 487 I2C_SMBUS_BYTE, NULL); 488 mutex_unlock(&data->lock); 489 490 return ret; 491 } 492 493 static int mlx90614_wakeup(struct mlx90614_data *data) 494 { 495 const struct mlx_chip_info *chip_info = data->chip_info; 496 497 if (!data->wakeup_gpio) { 498 dev_dbg(&data->client->dev, "Wake-up disabled"); 499 return -ENOSYS; 500 } 501 502 dev_dbg(&data->client->dev, "Requesting wake-up"); 503 504 i2c_lock_bus(data->client->adapter, I2C_LOCK_ROOT_ADAPTER); 505 gpiod_direction_output(data->wakeup_gpio, 0); 506 msleep(chip_info->wakeup_delay_ms); 507 gpiod_direction_input(data->wakeup_gpio); 508 i2c_unlock_bus(data->client->adapter, I2C_LOCK_ROOT_ADAPTER); 509 510 data->ready_timestamp = jiffies + 511 msecs_to_jiffies(MLX90614_TIMING_STARTUP); 512 513 /* 514 * Quirk: the i2c controller may get confused right after the 515 * wake-up signal has been sent. As a workaround, do a dummy read. 516 * If the read fails, the controller will probably be reset so that 517 * further reads will work. 518 */ 519 i2c_smbus_read_word_data(data->client, chip_info->op_eeprom_config1); 520 521 return 0; 522 } 523 524 /* Return wake-up GPIO or NULL if sleep functionality should be disabled. */ 525 static struct gpio_desc *mlx90614_probe_wakeup(struct i2c_client *client) 526 { 527 struct gpio_desc *gpio; 528 529 if (!i2c_check_functionality(client->adapter, 530 I2C_FUNC_SMBUS_WRITE_BYTE)) { 531 dev_info(&client->dev, 532 "i2c adapter does not support SMBUS_WRITE_BYTE, sleep disabled"); 533 return NULL; 534 } 535 536 gpio = devm_gpiod_get_optional(&client->dev, "wakeup", GPIOD_IN); 537 538 if (IS_ERR(gpio)) { 539 dev_warn(&client->dev, 540 "gpio acquisition failed with error %ld, sleep disabled", 541 PTR_ERR(gpio)); 542 return NULL; 543 } else if (!gpio) { 544 dev_info(&client->dev, 545 "wakeup-gpio not found, sleep disabled"); 546 } 547 548 return gpio; 549 } 550 #else 551 static inline int mlx90614_sleep(struct mlx90614_data *data) 552 { 553 return -ENOSYS; 554 } 555 static inline int mlx90614_wakeup(struct mlx90614_data *data) 556 { 557 return -ENOSYS; 558 } 559 static inline struct gpio_desc *mlx90614_probe_wakeup(struct i2c_client *client) 560 { 561 return NULL; 562 } 563 #endif 564 565 /* Return 0 for single sensor, 1 for dual sensor, <0 on error. */ 566 static int mlx90614_probe_num_ir_sensors(struct i2c_client *client) 567 { 568 struct iio_dev *indio_dev = i2c_get_clientdata(client); 569 struct mlx90614_data *data = iio_priv(indio_dev); 570 const struct mlx_chip_info *chip_info = data->chip_info; 571 s32 ret; 572 573 if (chip_info->dual_channel) 574 return 0; 575 576 ret = i2c_smbus_read_word_data(client, chip_info->op_eeprom_config1); 577 578 if (ret < 0) 579 return ret; 580 581 return (ret & MLX90614_CONFIG_DUAL_MASK) ? 1 : 0; 582 } 583 584 static int mlx90614_probe(struct i2c_client *client) 585 { 586 const struct i2c_device_id *id = i2c_client_get_device_id(client); 587 struct iio_dev *indio_dev; 588 struct mlx90614_data *data; 589 int ret; 590 591 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) 592 return -EOPNOTSUPP; 593 594 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 595 if (!indio_dev) 596 return -ENOMEM; 597 598 data = iio_priv(indio_dev); 599 i2c_set_clientdata(client, indio_dev); 600 data->client = client; 601 mutex_init(&data->lock); 602 data->wakeup_gpio = mlx90614_probe_wakeup(client); 603 data->chip_info = device_get_match_data(&client->dev); 604 605 mlx90614_wakeup(data); 606 607 indio_dev->name = id->name; 608 indio_dev->modes = INDIO_DIRECT_MODE; 609 indio_dev->info = &mlx90614_info; 610 611 ret = mlx90614_probe_num_ir_sensors(client); 612 switch (ret) { 613 case 0: 614 dev_dbg(&client->dev, "Found single sensor"); 615 indio_dev->channels = mlx90614_channels; 616 indio_dev->num_channels = 2; 617 break; 618 case 1: 619 dev_dbg(&client->dev, "Found dual sensor"); 620 indio_dev->channels = mlx90614_channels; 621 indio_dev->num_channels = 3; 622 break; 623 default: 624 return ret; 625 } 626 627 if (data->wakeup_gpio) { 628 pm_runtime_set_autosuspend_delay(&client->dev, 629 MLX90614_AUTOSLEEP_DELAY); 630 pm_runtime_use_autosuspend(&client->dev); 631 pm_runtime_set_active(&client->dev); 632 pm_runtime_enable(&client->dev); 633 } 634 635 return iio_device_register(indio_dev); 636 } 637 638 static void mlx90614_remove(struct i2c_client *client) 639 { 640 struct iio_dev *indio_dev = i2c_get_clientdata(client); 641 struct mlx90614_data *data = iio_priv(indio_dev); 642 643 iio_device_unregister(indio_dev); 644 645 if (data->wakeup_gpio) { 646 pm_runtime_disable(&client->dev); 647 if (!pm_runtime_status_suspended(&client->dev)) 648 mlx90614_sleep(data); 649 pm_runtime_set_suspended(&client->dev); 650 } 651 } 652 653 static const struct mlx_chip_info mlx90614_chip_info = { 654 .op_eeprom_emissivity = MLX90614_OP_EEPROM | 0x04, 655 .op_eeprom_config1 = MLX90614_OP_EEPROM | 0x05, 656 .op_ram_ta = MLX90614_OP_RAM | 0x06, 657 .op_ram_tobj1 = MLX90614_OP_RAM | 0x07, 658 .op_ram_tobj2 = MLX90614_OP_RAM | 0x08, 659 .op_sleep = MLX90614_OP_SLEEP, 660 .dual_channel = true, 661 .wakeup_delay_ms = MLX90614_TIMING_WAKEUP, 662 .emissivity_max = 65535, 663 .fir_config_mask = MLX90614_CONFIG_FIR_MASK, 664 .iir_config_mask = MLX90614_CONFIG_IIR_MASK, 665 .iir_valid_offset = 0, 666 .iir_values = { 77, 31, 20, 15, 723, 153, 110, 86 }, 667 .iir_freqs = { 668 { 0, 150000 }, /* 13% ~= 0.15 Hz */ 669 { 0, 200000 }, /* 17% ~= 0.20 Hz */ 670 { 0, 310000 }, /* 25% ~= 0.31 Hz */ 671 { 0, 770000 }, /* 50% ~= 0.77 Hz */ 672 { 0, 860000 }, /* 57% ~= 0.86 Hz */ 673 { 1, 100000 }, /* 67% ~= 1.10 Hz */ 674 { 1, 530000 }, /* 80% ~= 1.53 Hz */ 675 { 7, 230000 } /* 100% ~= 7.23 Hz */ 676 }, 677 }; 678 679 static const struct mlx_chip_info mlx90615_chip_info = { 680 .op_eeprom_emissivity = MLX90615_OP_EEPROM | 0x03, 681 .op_eeprom_config1 = MLX90615_OP_EEPROM | 0x02, 682 .op_ram_ta = MLX90615_OP_RAM | 0x06, 683 .op_ram_tobj1 = MLX90615_OP_RAM | 0x07, 684 .op_ram_tobj2 = MLX90615_OP_RAM | 0x08, 685 .op_sleep = MLX90615_OP_SLEEP, 686 .dual_channel = false, 687 .wakeup_delay_ms = MLX90615_TIMING_WAKEUP, 688 .emissivity_max = 16383, 689 .fir_config_mask = 0, /* MLX90615 FIR is fixed */ 690 .iir_config_mask = MLX90615_CONFIG_IIR_MASK, 691 /* IIR value 0 is FORBIDDEN COMBINATION on MLX90615 */ 692 .iir_valid_offset = 1, 693 .iir_values = { 500, 50, 30, 20, 15, 13, 10 }, 694 .iir_freqs = { 695 { 0, 100000 }, /* 14% ~= 0.10 Hz */ 696 { 0, 130000 }, /* 17% ~= 0.13 Hz */ 697 { 0, 150000 }, /* 20% ~= 0.15 Hz */ 698 { 0, 200000 }, /* 25% ~= 0.20 Hz */ 699 { 0, 300000 }, /* 33% ~= 0.30 Hz */ 700 { 0, 500000 }, /* 50% ~= 0.50 Hz */ 701 { 5, 000000 }, /* 100% ~= 5.00 Hz */ 702 }, 703 }; 704 705 static const struct i2c_device_id mlx90614_id[] = { 706 { "mlx90614", .driver_data = (kernel_ulong_t)&mlx90614_chip_info }, 707 { "mlx90615", .driver_data = (kernel_ulong_t)&mlx90615_chip_info }, 708 { } 709 }; 710 MODULE_DEVICE_TABLE(i2c, mlx90614_id); 711 712 static const struct of_device_id mlx90614_of_match[] = { 713 { .compatible = "melexis,mlx90614", .data = &mlx90614_chip_info }, 714 { .compatible = "melexis,mlx90615", .data = &mlx90615_chip_info }, 715 { } 716 }; 717 MODULE_DEVICE_TABLE(of, mlx90614_of_match); 718 719 static int mlx90614_pm_suspend(struct device *dev) 720 { 721 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 722 struct mlx90614_data *data = iio_priv(indio_dev); 723 724 if (data->wakeup_gpio && pm_runtime_active(dev)) 725 return mlx90614_sleep(data); 726 727 return 0; 728 } 729 730 static int mlx90614_pm_resume(struct device *dev) 731 { 732 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 733 struct mlx90614_data *data = iio_priv(indio_dev); 734 int err; 735 736 if (data->wakeup_gpio) { 737 err = mlx90614_wakeup(data); 738 if (err < 0) 739 return err; 740 741 pm_runtime_disable(dev); 742 pm_runtime_set_active(dev); 743 pm_runtime_enable(dev); 744 } 745 746 return 0; 747 } 748 749 static int mlx90614_pm_runtime_suspend(struct device *dev) 750 { 751 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 752 struct mlx90614_data *data = iio_priv(indio_dev); 753 754 return mlx90614_sleep(data); 755 } 756 757 static int mlx90614_pm_runtime_resume(struct device *dev) 758 { 759 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 760 struct mlx90614_data *data = iio_priv(indio_dev); 761 762 return mlx90614_wakeup(data); 763 } 764 765 static const struct dev_pm_ops mlx90614_pm_ops = { 766 SYSTEM_SLEEP_PM_OPS(mlx90614_pm_suspend, mlx90614_pm_resume) 767 RUNTIME_PM_OPS(mlx90614_pm_runtime_suspend, 768 mlx90614_pm_runtime_resume, NULL) 769 }; 770 771 static struct i2c_driver mlx90614_driver = { 772 .driver = { 773 .name = "mlx90614", 774 .of_match_table = mlx90614_of_match, 775 .pm = pm_ptr(&mlx90614_pm_ops), 776 }, 777 .probe = mlx90614_probe, 778 .remove = mlx90614_remove, 779 .id_table = mlx90614_id, 780 }; 781 module_i2c_driver(mlx90614_driver); 782 783 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 784 MODULE_AUTHOR("Vianney le Clément de Saint-Marcq <vianney.leclement@essensium.com>"); 785 MODULE_AUTHOR("Crt Mori <cmo@melexis.com>"); 786 MODULE_DESCRIPTION("Melexis MLX90614 contactless IR temperature sensor driver"); 787 MODULE_LICENSE("GPL"); 788