xref: /linux/drivers/iio/temperature/ltc2983.c (revision 24168c5e6dfbdd5b414f048f47f75d64533296ca)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System
4  * driver
5  *
6  * Copyright 2019 Analog Devices Inc.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/kernel.h>
12 #include <linux/iio/iio.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/mod_devicetable.h>
16 #include <linux/module.h>
17 #include <linux/property.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/spi/spi.h>
21 
22 #include <asm/byteorder.h>
23 #include <asm/unaligned.h>
24 
25 /* register map */
26 #define LTC2983_STATUS_REG			0x0000
27 #define LTC2983_TEMP_RES_START_REG		0x0010
28 #define LTC2983_TEMP_RES_END_REG		0x005F
29 #define LTC2983_EEPROM_KEY_REG			0x00B0
30 #define LTC2983_EEPROM_READ_STATUS_REG		0x00D0
31 #define LTC2983_GLOBAL_CONFIG_REG		0x00F0
32 #define LTC2983_MULT_CHANNEL_START_REG		0x00F4
33 #define LTC2983_MULT_CHANNEL_END_REG		0x00F7
34 #define LTC2986_EEPROM_STATUS_REG		0x00F9
35 #define LTC2983_MUX_CONFIG_REG			0x00FF
36 #define LTC2983_CHAN_ASSIGN_START_REG		0x0200
37 #define LTC2983_CHAN_ASSIGN_END_REG		0x024F
38 #define LTC2983_CUST_SENS_TBL_START_REG		0x0250
39 #define LTC2983_CUST_SENS_TBL_END_REG		0x03CF
40 
41 #define LTC2983_DIFFERENTIAL_CHAN_MIN		2
42 #define LTC2983_MIN_CHANNELS_NR			1
43 #define LTC2983_SLEEP				0x97
44 #define LTC2983_CUSTOM_STEINHART_SIZE		24
45 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ		6
46 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ	4
47 
48 #define LTC2983_EEPROM_KEY			0xA53C0F5A
49 #define LTC2983_EEPROM_WRITE_CMD		0x15
50 #define LTC2983_EEPROM_READ_CMD			0x16
51 #define LTC2983_EEPROM_STATUS_FAILURE_MASK	GENMASK(3, 1)
52 #define LTC2983_EEPROM_READ_FAILURE_MASK	GENMASK(7, 0)
53 
54 #define LTC2983_EEPROM_WRITE_TIME_MS		2600
55 #define LTC2983_EEPROM_READ_TIME_MS		20
56 
57 #define LTC2983_CHAN_START_ADDR(chan) \
58 			(((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG)
59 #define LTC2983_CHAN_RES_ADDR(chan) \
60 			(((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG)
61 #define LTC2983_THERMOCOUPLE_DIFF_MASK		BIT(3)
62 #define LTC2983_THERMOCOUPLE_SGL(x) \
63 				FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x)
64 #define LTC2983_THERMOCOUPLE_OC_CURR_MASK	GENMASK(1, 0)
65 #define LTC2983_THERMOCOUPLE_OC_CURR(x) \
66 				FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x)
67 #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK	BIT(2)
68 #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \
69 			FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x)
70 
71 #define LTC2983_THERMISTOR_DIFF_MASK		BIT(2)
72 #define LTC2983_THERMISTOR_SGL(x) \
73 				FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x)
74 #define LTC2983_THERMISTOR_R_SHARE_MASK		BIT(1)
75 #define LTC2983_THERMISTOR_R_SHARE(x) \
76 				FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x)
77 #define LTC2983_THERMISTOR_C_ROTATE_MASK	BIT(0)
78 #define LTC2983_THERMISTOR_C_ROTATE(x) \
79 				FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x)
80 
81 #define LTC2983_DIODE_DIFF_MASK			BIT(2)
82 #define LTC2983_DIODE_SGL(x) \
83 			FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x)
84 #define LTC2983_DIODE_3_CONV_CYCLE_MASK		BIT(1)
85 #define LTC2983_DIODE_3_CONV_CYCLE(x) \
86 				FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x)
87 #define LTC2983_DIODE_AVERAGE_ON_MASK		BIT(0)
88 #define LTC2983_DIODE_AVERAGE_ON(x) \
89 				FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x)
90 
91 #define LTC2983_RTD_4_WIRE_MASK			BIT(3)
92 #define LTC2983_RTD_ROTATION_MASK		BIT(1)
93 #define LTC2983_RTD_C_ROTATE(x) \
94 			FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x)
95 #define LTC2983_RTD_KELVIN_R_SENSE_MASK		GENMASK(3, 2)
96 #define LTC2983_RTD_N_WIRES_MASK		GENMASK(3, 2)
97 #define LTC2983_RTD_N_WIRES(x) \
98 			FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x)
99 #define LTC2983_RTD_R_SHARE_MASK		BIT(0)
100 #define LTC2983_RTD_R_SHARE(x) \
101 			FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1)
102 
103 #define LTC2983_COMMON_HARD_FAULT_MASK	GENMASK(31, 30)
104 #define LTC2983_COMMON_SOFT_FAULT_MASK	GENMASK(27, 25)
105 
106 #define	LTC2983_STATUS_START_MASK	BIT(7)
107 #define	LTC2983_STATUS_START(x)		FIELD_PREP(LTC2983_STATUS_START_MASK, x)
108 #define	LTC2983_STATUS_UP_MASK		GENMASK(7, 6)
109 #define	LTC2983_STATUS_UP(reg)		FIELD_GET(LTC2983_STATUS_UP_MASK, reg)
110 
111 #define	LTC2983_STATUS_CHAN_SEL_MASK	GENMASK(4, 0)
112 #define	LTC2983_STATUS_CHAN_SEL(x) \
113 				FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x)
114 
115 #define LTC2983_TEMP_UNITS_MASK		BIT(2)
116 #define LTC2983_TEMP_UNITS(x)		FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x)
117 
118 #define LTC2983_NOTCH_FREQ_MASK		GENMASK(1, 0)
119 #define LTC2983_NOTCH_FREQ(x)		FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x)
120 
121 #define LTC2983_RES_VALID_MASK		BIT(24)
122 #define LTC2983_DATA_MASK		GENMASK(23, 0)
123 #define LTC2983_DATA_SIGN_BIT		23
124 
125 #define LTC2983_CHAN_TYPE_MASK		GENMASK(31, 27)
126 #define LTC2983_CHAN_TYPE(x)		FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x)
127 
128 /* cold junction for thermocouples and rsense for rtd's and thermistor's */
129 #define LTC2983_CHAN_ASSIGN_MASK	GENMASK(26, 22)
130 #define LTC2983_CHAN_ASSIGN(x)		FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x)
131 
132 #define LTC2983_CUSTOM_LEN_MASK		GENMASK(5, 0)
133 #define LTC2983_CUSTOM_LEN(x)		FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x)
134 
135 #define LTC2983_CUSTOM_ADDR_MASK	GENMASK(11, 6)
136 #define LTC2983_CUSTOM_ADDR(x)		FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x)
137 
138 #define LTC2983_THERMOCOUPLE_CFG_MASK	GENMASK(21, 18)
139 #define LTC2983_THERMOCOUPLE_CFG(x) \
140 				FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x)
141 #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK	GENMASK(31, 29)
142 #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK	GENMASK(28, 25)
143 
144 #define LTC2983_RTD_CFG_MASK		GENMASK(21, 18)
145 #define LTC2983_RTD_CFG(x)		FIELD_PREP(LTC2983_RTD_CFG_MASK, x)
146 #define LTC2983_RTD_EXC_CURRENT_MASK	GENMASK(17, 14)
147 #define LTC2983_RTD_EXC_CURRENT(x) \
148 				FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x)
149 #define LTC2983_RTD_CURVE_MASK		GENMASK(13, 12)
150 #define LTC2983_RTD_CURVE(x)		FIELD_PREP(LTC2983_RTD_CURVE_MASK, x)
151 
152 #define LTC2983_THERMISTOR_CFG_MASK	GENMASK(21, 19)
153 #define LTC2983_THERMISTOR_CFG(x) \
154 				FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x)
155 #define LTC2983_THERMISTOR_EXC_CURRENT_MASK	GENMASK(18, 15)
156 #define LTC2983_THERMISTOR_EXC_CURRENT(x) \
157 			FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x)
158 
159 #define LTC2983_DIODE_CFG_MASK		GENMASK(26, 24)
160 #define LTC2983_DIODE_CFG(x)		FIELD_PREP(LTC2983_DIODE_CFG_MASK, x)
161 #define LTC2983_DIODE_EXC_CURRENT_MASK	GENMASK(23, 22)
162 #define LTC2983_DIODE_EXC_CURRENT(x) \
163 				FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x)
164 #define LTC2983_DIODE_IDEAL_FACTOR_MASK	GENMASK(21, 0)
165 #define LTC2983_DIODE_IDEAL_FACTOR(x) \
166 				FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x)
167 
168 #define LTC2983_R_SENSE_VAL_MASK	GENMASK(26, 0)
169 #define LTC2983_R_SENSE_VAL(x)		FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x)
170 
171 #define LTC2983_ADC_SINGLE_ENDED_MASK	BIT(26)
172 #define LTC2983_ADC_SINGLE_ENDED(x) \
173 				FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x)
174 
175 enum {
176 	LTC2983_SENSOR_THERMOCOUPLE = 1,
177 	LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9,
178 	LTC2983_SENSOR_RTD = 10,
179 	LTC2983_SENSOR_RTD_CUSTOM = 18,
180 	LTC2983_SENSOR_THERMISTOR = 19,
181 	LTC2983_SENSOR_THERMISTOR_STEINHART = 26,
182 	LTC2983_SENSOR_THERMISTOR_CUSTOM = 27,
183 	LTC2983_SENSOR_DIODE = 28,
184 	LTC2983_SENSOR_SENSE_RESISTOR = 29,
185 	LTC2983_SENSOR_DIRECT_ADC = 30,
186 	LTC2983_SENSOR_ACTIVE_TEMP = 31,
187 };
188 
189 #define to_thermocouple(_sensor) \
190 		container_of(_sensor, struct ltc2983_thermocouple, sensor)
191 
192 #define to_rtd(_sensor) \
193 		container_of(_sensor, struct ltc2983_rtd, sensor)
194 
195 #define to_thermistor(_sensor) \
196 		container_of(_sensor, struct ltc2983_thermistor, sensor)
197 
198 #define to_diode(_sensor) \
199 		container_of(_sensor, struct ltc2983_diode, sensor)
200 
201 #define to_rsense(_sensor) \
202 		container_of(_sensor, struct ltc2983_rsense, sensor)
203 
204 #define to_adc(_sensor) \
205 		container_of(_sensor, struct ltc2983_adc, sensor)
206 
207 #define to_temp(_sensor) \
208 		container_of(_sensor, struct ltc2983_temp, sensor)
209 
210 struct ltc2983_chip_info {
211 	const char *name;
212 	unsigned int max_channels_nr;
213 	bool has_temp;
214 	bool has_eeprom;
215 };
216 
217 struct ltc2983_data {
218 	const struct ltc2983_chip_info *info;
219 	struct regmap *regmap;
220 	struct spi_device *spi;
221 	struct mutex lock;
222 	struct completion completion;
223 	struct iio_chan_spec *iio_chan;
224 	struct ltc2983_sensor **sensors;
225 	u32 mux_delay_config;
226 	u32 filter_notch_freq;
227 	u16 custom_table_size;
228 	u8 num_channels;
229 	u8 iio_channels;
230 	/*
231 	 * DMA (thus cache coherency maintenance) may require the
232 	 * transfer buffers to live in their own cache lines.
233 	 * Holds the converted temperature
234 	 */
235 	__be32 temp __aligned(IIO_DMA_MINALIGN);
236 	__be32 chan_val;
237 	__be32 eeprom_key;
238 };
239 
240 struct ltc2983_sensor {
241 	int (*fault_handler)(const struct ltc2983_data *st, const u32 result);
242 	int (*assign_chan)(struct ltc2983_data *st,
243 			   const struct ltc2983_sensor *sensor);
244 	/* specifies the sensor channel */
245 	u32 chan;
246 	/* sensor type */
247 	u32 type;
248 };
249 
250 struct ltc2983_custom_sensor {
251 	/* raw table sensor data */
252 	void *table;
253 	size_t size;
254 	/* address offset */
255 	s8 offset;
256 	bool is_steinhart;
257 };
258 
259 struct ltc2983_thermocouple {
260 	struct ltc2983_sensor sensor;
261 	struct ltc2983_custom_sensor *custom;
262 	u32 sensor_config;
263 	u32 cold_junction_chan;
264 };
265 
266 struct ltc2983_rtd {
267 	struct ltc2983_sensor sensor;
268 	struct ltc2983_custom_sensor *custom;
269 	u32 sensor_config;
270 	u32 r_sense_chan;
271 	u32 excitation_current;
272 	u32 rtd_curve;
273 };
274 
275 struct ltc2983_thermistor {
276 	struct ltc2983_sensor sensor;
277 	struct ltc2983_custom_sensor *custom;
278 	u32 sensor_config;
279 	u32 r_sense_chan;
280 	u32 excitation_current;
281 };
282 
283 struct ltc2983_diode {
284 	struct ltc2983_sensor sensor;
285 	u32 sensor_config;
286 	u32 excitation_current;
287 	u32 ideal_factor_value;
288 };
289 
290 struct ltc2983_rsense {
291 	struct ltc2983_sensor sensor;
292 	u32 r_sense_val;
293 };
294 
295 struct ltc2983_adc {
296 	struct ltc2983_sensor sensor;
297 	bool single_ended;
298 };
299 
300 struct ltc2983_temp {
301 	struct ltc2983_sensor sensor;
302 	struct ltc2983_custom_sensor *custom;
303 	bool single_ended;
304 };
305 
306 /*
307  * Convert to Q format numbers. These number's are integers where
308  * the number of integer and fractional bits are specified. The resolution
309  * is given by 1/@resolution and tell us the number of fractional bits. For
310  * instance a resolution of 2^-10 means we have 10 fractional bits.
311  */
312 static u32 __convert_to_raw(const u64 val, const u32 resolution)
313 {
314 	u64 __res = val * resolution;
315 
316 	/* all values are multiplied by 1000000 to remove the fraction */
317 	do_div(__res, 1000000);
318 
319 	return __res;
320 }
321 
322 static u32 __convert_to_raw_sign(const u64 val, const u32 resolution)
323 {
324 	s64 __res = -(s32)val;
325 
326 	__res = __convert_to_raw(__res, resolution);
327 
328 	return (u32)-__res;
329 }
330 
331 static int __ltc2983_fault_handler(const struct ltc2983_data *st,
332 				   const u32 result, const u32 hard_mask,
333 				   const u32 soft_mask)
334 {
335 	const struct device *dev = &st->spi->dev;
336 
337 	if (result & hard_mask) {
338 		dev_err(dev, "Invalid conversion: Sensor HARD fault\n");
339 		return -EIO;
340 	} else if (result & soft_mask) {
341 		/* just print a warning */
342 		dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n");
343 	}
344 
345 	return 0;
346 }
347 
348 static int __ltc2983_chan_assign_common(struct ltc2983_data *st,
349 					const struct ltc2983_sensor *sensor,
350 					u32 chan_val)
351 {
352 	u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan);
353 
354 	chan_val |= LTC2983_CHAN_TYPE(sensor->type);
355 	dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg,
356 		chan_val);
357 	st->chan_val = cpu_to_be32(chan_val);
358 	return regmap_bulk_write(st->regmap, reg, &st->chan_val,
359 				 sizeof(st->chan_val));
360 }
361 
362 static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st,
363 					  struct ltc2983_custom_sensor *custom,
364 					  u32 *chan_val)
365 {
366 	u32 reg;
367 	u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ :
368 		LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
369 	const struct device *dev = &st->spi->dev;
370 	/*
371 	 * custom->size holds the raw size of the table. However, when
372 	 * configuring the sensor channel, we must write the number of
373 	 * entries of the table minus 1. For steinhart sensors 0 is written
374 	 * since the size is constant!
375 	 */
376 	const u8 len = custom->is_steinhart ? 0 :
377 		(custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1;
378 	/*
379 	 * Check if the offset was assigned already. It should be for steinhart
380 	 * sensors. When coming from sleep, it should be assigned for all.
381 	 */
382 	if (custom->offset < 0) {
383 		/*
384 		 * This needs to be done again here because, from the moment
385 		 * when this test was done (successfully) for this custom
386 		 * sensor, a steinhart sensor might have been added changing
387 		 * custom_table_size...
388 		 */
389 		if (st->custom_table_size + custom->size >
390 		    (LTC2983_CUST_SENS_TBL_END_REG -
391 		     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
392 			dev_err(dev,
393 				"Not space left(%d) for new custom sensor(%zu)",
394 				st->custom_table_size,
395 				custom->size);
396 			return -EINVAL;
397 		}
398 
399 		custom->offset = st->custom_table_size /
400 					LTC2983_CUSTOM_SENSOR_ENTRY_SZ;
401 		st->custom_table_size += custom->size;
402 	}
403 
404 	reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG;
405 
406 	*chan_val |= LTC2983_CUSTOM_LEN(len);
407 	*chan_val |= LTC2983_CUSTOM_ADDR(custom->offset);
408 	dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu",
409 		reg, custom->offset,
410 		custom->size);
411 	/* write custom sensor table */
412 	return regmap_bulk_write(st->regmap, reg, custom->table, custom->size);
413 }
414 
415 static struct ltc2983_custom_sensor *
416 __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn,
417 			    const char *propname, const bool is_steinhart,
418 			    const u32 resolution, const bool has_signed)
419 {
420 	struct ltc2983_custom_sensor *new_custom;
421 	struct device *dev = &st->spi->dev;
422 	/*
423 	 * For custom steinhart, the full u32 is taken. For all the others
424 	 * the MSB is discarded.
425 	 */
426 	const u8 n_size = is_steinhart ? 4 : 3;
427 	u8 index, n_entries;
428 	int ret;
429 
430 	if (is_steinhart)
431 		n_entries = fwnode_property_count_u32(fn, propname);
432 	else
433 		n_entries = fwnode_property_count_u64(fn, propname);
434 	/* n_entries must be an even number */
435 	if (!n_entries || (n_entries % 2) != 0) {
436 		dev_err(dev, "Number of entries either 0 or not even\n");
437 		return ERR_PTR(-EINVAL);
438 	}
439 
440 	new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL);
441 	if (!new_custom)
442 		return ERR_PTR(-ENOMEM);
443 
444 	new_custom->size = n_entries * n_size;
445 	/* check Steinhart size */
446 	if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) {
447 		dev_err(dev, "Steinhart sensors size(%zu) must be %u\n", new_custom->size,
448 			LTC2983_CUSTOM_STEINHART_SIZE);
449 		return ERR_PTR(-EINVAL);
450 	}
451 	/* Check space on the table. */
452 	if (st->custom_table_size + new_custom->size >
453 	    (LTC2983_CUST_SENS_TBL_END_REG -
454 	     LTC2983_CUST_SENS_TBL_START_REG) + 1) {
455 		dev_err(dev, "No space left(%d) for new custom sensor(%zu)",
456 				st->custom_table_size, new_custom->size);
457 		return ERR_PTR(-EINVAL);
458 	}
459 
460 	/* allocate the table */
461 	if (is_steinhart)
462 		new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL);
463 	else
464 		new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL);
465 	if (!new_custom->table)
466 		return ERR_PTR(-ENOMEM);
467 
468 	/*
469 	 * Steinhart sensors are configured with raw values in the firmware
470 	 * node. For the other sensors we must convert the value to raw.
471 	 * The odd index's correspond to temperatures and always have 1/1024
472 	 * of resolution. Temperatures also come in Kelvin, so signed values
473 	 * are not possible.
474 	 */
475 	if (is_steinhart) {
476 		ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries);
477 		if (ret < 0)
478 			return ERR_PTR(ret);
479 
480 		cpu_to_be32_array(new_custom->table, new_custom->table, n_entries);
481 	} else {
482 		ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries);
483 		if (ret < 0)
484 			return ERR_PTR(ret);
485 
486 		for (index = 0; index < n_entries; index++) {
487 			u64 temp = ((u64 *)new_custom->table)[index];
488 
489 			if ((index % 2) != 0)
490 				temp = __convert_to_raw(temp, 1024);
491 			else if (has_signed && (s64)temp < 0)
492 				temp = __convert_to_raw_sign(temp, resolution);
493 			else
494 				temp = __convert_to_raw(temp, resolution);
495 
496 			put_unaligned_be24(temp, new_custom->table + index * 3);
497 		}
498 	}
499 
500 	new_custom->is_steinhart = is_steinhart;
501 	/*
502 	 * This is done to first add all the steinhart sensors to the table,
503 	 * in order to maximize the table usage. If we mix adding steinhart
504 	 * with the other sensors, we might have to do some roundup to make
505 	 * sure that sensor_addr - 0x250(start address) is a multiple of 4
506 	 * (for steinhart), and a multiple of 6 for all the other sensors.
507 	 * Since we have const 24 bytes for steinhart sensors and 24 is
508 	 * also a multiple of 6, we guarantee that the first non-steinhart
509 	 * sensor will sit in a correct address without the need of filling
510 	 * addresses.
511 	 */
512 	if (is_steinhart) {
513 		new_custom->offset = st->custom_table_size /
514 					LTC2983_CUSTOM_STEINHART_ENTRY_SZ;
515 		st->custom_table_size += new_custom->size;
516 	} else {
517 		/* mark as unset. This is checked later on the assign phase */
518 		new_custom->offset = -1;
519 	}
520 
521 	return new_custom;
522 }
523 
524 static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st,
525 					      const u32 result)
526 {
527 	return __ltc2983_fault_handler(st, result,
528 				       LTC2983_THERMOCOUPLE_HARD_FAULT_MASK,
529 				       LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK);
530 }
531 
532 static int ltc2983_common_fault_handler(const struct ltc2983_data *st,
533 					const u32 result)
534 {
535 	return __ltc2983_fault_handler(st, result,
536 				       LTC2983_COMMON_HARD_FAULT_MASK,
537 				       LTC2983_COMMON_SOFT_FAULT_MASK);
538 }
539 
540 static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st,
541 				const struct ltc2983_sensor *sensor)
542 {
543 	struct ltc2983_thermocouple *thermo = to_thermocouple(sensor);
544 	u32 chan_val;
545 
546 	chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan);
547 	chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config);
548 
549 	if (thermo->custom) {
550 		int ret;
551 
552 		ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom,
553 							  &chan_val);
554 		if (ret)
555 			return ret;
556 	}
557 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
558 }
559 
560 static int ltc2983_rtd_assign_chan(struct ltc2983_data *st,
561 				   const struct ltc2983_sensor *sensor)
562 {
563 	struct ltc2983_rtd *rtd = to_rtd(sensor);
564 	u32 chan_val;
565 
566 	chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan);
567 	chan_val |= LTC2983_RTD_CFG(rtd->sensor_config);
568 	chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current);
569 	chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve);
570 
571 	if (rtd->custom) {
572 		int ret;
573 
574 		ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom,
575 							  &chan_val);
576 		if (ret)
577 			return ret;
578 	}
579 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
580 }
581 
582 static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st,
583 					  const struct ltc2983_sensor *sensor)
584 {
585 	struct ltc2983_thermistor *thermistor = to_thermistor(sensor);
586 	u32 chan_val;
587 
588 	chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan);
589 	chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config);
590 	chan_val |=
591 		LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current);
592 
593 	if (thermistor->custom) {
594 		int ret;
595 
596 		ret = __ltc2983_chan_custom_sensor_assign(st,
597 							  thermistor->custom,
598 							  &chan_val);
599 		if (ret)
600 			return ret;
601 	}
602 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
603 }
604 
605 static int ltc2983_diode_assign_chan(struct ltc2983_data *st,
606 				     const struct ltc2983_sensor *sensor)
607 {
608 	struct ltc2983_diode *diode = to_diode(sensor);
609 	u32 chan_val;
610 
611 	chan_val = LTC2983_DIODE_CFG(diode->sensor_config);
612 	chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current);
613 	chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value);
614 
615 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
616 }
617 
618 static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st,
619 				       const struct ltc2983_sensor *sensor)
620 {
621 	struct ltc2983_rsense *rsense = to_rsense(sensor);
622 	u32 chan_val;
623 
624 	chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val);
625 
626 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
627 }
628 
629 static int ltc2983_adc_assign_chan(struct ltc2983_data *st,
630 				   const struct ltc2983_sensor *sensor)
631 {
632 	struct ltc2983_adc *adc = to_adc(sensor);
633 	u32 chan_val;
634 
635 	chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended);
636 
637 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
638 }
639 
640 static int ltc2983_temp_assign_chan(struct ltc2983_data *st,
641 				    const struct ltc2983_sensor *sensor)
642 {
643 	struct ltc2983_temp *temp = to_temp(sensor);
644 	u32 chan_val;
645 	int ret;
646 
647 	chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended);
648 
649 	ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val);
650 	if (ret)
651 		return ret;
652 
653 	return __ltc2983_chan_assign_common(st, sensor, chan_val);
654 }
655 
656 static struct ltc2983_sensor *
657 ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st,
658 			 const struct ltc2983_sensor *sensor)
659 {
660 	struct ltc2983_thermocouple *thermo;
661 	u32 oc_current;
662 	int ret;
663 
664 	thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL);
665 	if (!thermo)
666 		return ERR_PTR(-ENOMEM);
667 
668 	if (fwnode_property_read_bool(child, "adi,single-ended"))
669 		thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1);
670 
671 	ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current);
672 	if (!ret) {
673 		switch (oc_current) {
674 		case 10:
675 			thermo->sensor_config |=
676 					LTC2983_THERMOCOUPLE_OC_CURR(0);
677 			break;
678 		case 100:
679 			thermo->sensor_config |=
680 					LTC2983_THERMOCOUPLE_OC_CURR(1);
681 			break;
682 		case 500:
683 			thermo->sensor_config |=
684 					LTC2983_THERMOCOUPLE_OC_CURR(2);
685 			break;
686 		case 1000:
687 			thermo->sensor_config |=
688 					LTC2983_THERMOCOUPLE_OC_CURR(3);
689 			break;
690 		default:
691 			dev_err(&st->spi->dev,
692 				"Invalid open circuit current:%u", oc_current);
693 			return ERR_PTR(-EINVAL);
694 		}
695 
696 		thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1);
697 	}
698 	/* validate channel index */
699 	if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) &&
700 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
701 		dev_err(&st->spi->dev,
702 			"Invalid chann:%d for differential thermocouple",
703 			sensor->chan);
704 		return ERR_PTR(-EINVAL);
705 	}
706 
707 	struct fwnode_handle *ref __free(fwnode_handle) =
708 		fwnode_find_reference(child, "adi,cold-junction-handle", 0);
709 	if (IS_ERR(ref)) {
710 		ref = NULL;
711 	} else {
712 		ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan);
713 		if (ret) {
714 			/*
715 			 * This would be catched later but we can just return
716 			 * the error right away.
717 			 */
718 			dev_err(&st->spi->dev, "Property reg must be given\n");
719 			return ERR_PTR(ret);
720 		}
721 	}
722 
723 	/* check custom sensor */
724 	if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
725 		const char *propname = "adi,custom-thermocouple";
726 
727 		thermo->custom = __ltc2983_custom_sensor_new(st, child,
728 							     propname, false,
729 							     16384, true);
730 		if (IS_ERR(thermo->custom))
731 			return ERR_CAST(thermo->custom);
732 	}
733 
734 	/* set common parameters */
735 	thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler;
736 	thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan;
737 
738 	return &thermo->sensor;
739 }
740 
741 static struct ltc2983_sensor *
742 ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st,
743 		const struct ltc2983_sensor *sensor)
744 {
745 	struct ltc2983_rtd *rtd;
746 	int ret = 0;
747 	struct device *dev = &st->spi->dev;
748 	u32 excitation_current = 0, n_wires = 0;
749 
750 	rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL);
751 	if (!rtd)
752 		return ERR_PTR(-ENOMEM);
753 
754 	struct fwnode_handle *ref __free(fwnode_handle) =
755 		fwnode_find_reference(child, "adi,rsense-handle", 0);
756 	if (IS_ERR(ref)) {
757 		dev_err(dev, "Property adi,rsense-handle missing or invalid");
758 		return ERR_CAST(ref);
759 	}
760 
761 	ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan);
762 	if (ret) {
763 		dev_err(dev, "Property reg must be given\n");
764 		return ERR_PTR(ret);
765 	}
766 
767 	ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires);
768 	if (!ret) {
769 		switch (n_wires) {
770 		case 2:
771 			rtd->sensor_config = LTC2983_RTD_N_WIRES(0);
772 			break;
773 		case 3:
774 			rtd->sensor_config = LTC2983_RTD_N_WIRES(1);
775 			break;
776 		case 4:
777 			rtd->sensor_config = LTC2983_RTD_N_WIRES(2);
778 			break;
779 		case 5:
780 			/* 4 wires, Kelvin Rsense */
781 			rtd->sensor_config = LTC2983_RTD_N_WIRES(3);
782 			break;
783 		default:
784 			dev_err(dev, "Invalid number of wires:%u\n", n_wires);
785 			return ERR_PTR(-EINVAL);
786 		}
787 	}
788 
789 	if (fwnode_property_read_bool(child, "adi,rsense-share")) {
790 		/* Current rotation is only available with rsense sharing */
791 		if (fwnode_property_read_bool(child, "adi,current-rotate")) {
792 			if (n_wires == 2 || n_wires == 3) {
793 				dev_err(dev,
794 					"Rotation not allowed for 2/3 Wire RTDs");
795 				return ERR_PTR(-EINVAL);
796 			}
797 			rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1);
798 		} else {
799 			rtd->sensor_config |= LTC2983_RTD_R_SHARE(1);
800 		}
801 	}
802 	/*
803 	 * rtd channel indexes are a bit more complicated to validate.
804 	 * For 4wire RTD with rotation, the channel selection cannot be
805 	 * >=19 since the chann + 1 is used in this configuration.
806 	 * For 4wire RTDs with kelvin rsense, the rsense channel cannot be
807 	 * <=1 since chanel - 1 and channel - 2 are used.
808 	 */
809 	if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) {
810 		/* 4-wire */
811 		u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN,
812 			max = st->info->max_channels_nr;
813 
814 		if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK)
815 			max = st->info->max_channels_nr - 1;
816 
817 		if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK)
818 		     == LTC2983_RTD_KELVIN_R_SENSE_MASK) &&
819 		    (rtd->r_sense_chan <=  min)) {
820 			/* kelvin rsense*/
821 			dev_err(dev,
822 				"Invalid rsense chann:%d to use in kelvin rsense",
823 				rtd->r_sense_chan);
824 
825 			return ERR_PTR(-EINVAL);
826 		}
827 
828 		if (sensor->chan < min || sensor->chan > max) {
829 			dev_err(dev, "Invalid chann:%d for the rtd config",
830 				sensor->chan);
831 
832 			return ERR_PTR(-EINVAL);
833 		}
834 	} else {
835 		/* same as differential case */
836 		if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
837 			dev_err(&st->spi->dev,
838 				"Invalid chann:%d for RTD", sensor->chan);
839 
840 			return ERR_PTR(-EINVAL);
841 		}
842 	}
843 
844 	/* check custom sensor */
845 	if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) {
846 		rtd->custom = __ltc2983_custom_sensor_new(st, child,
847 							  "adi,custom-rtd",
848 							  false, 2048, false);
849 		if (IS_ERR(rtd->custom))
850 			return ERR_CAST(rtd->custom);
851 	}
852 
853 	/* set common parameters */
854 	rtd->sensor.fault_handler = ltc2983_common_fault_handler;
855 	rtd->sensor.assign_chan = ltc2983_rtd_assign_chan;
856 
857 	ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
858 				       &excitation_current);
859 	if (ret) {
860 		/* default to 5uA */
861 		rtd->excitation_current = 1;
862 	} else {
863 		switch (excitation_current) {
864 		case 5:
865 			rtd->excitation_current = 0x01;
866 			break;
867 		case 10:
868 			rtd->excitation_current = 0x02;
869 			break;
870 		case 25:
871 			rtd->excitation_current = 0x03;
872 			break;
873 		case 50:
874 			rtd->excitation_current = 0x04;
875 			break;
876 		case 100:
877 			rtd->excitation_current = 0x05;
878 			break;
879 		case 250:
880 			rtd->excitation_current = 0x06;
881 			break;
882 		case 500:
883 			rtd->excitation_current = 0x07;
884 			break;
885 		case 1000:
886 			rtd->excitation_current = 0x08;
887 			break;
888 		default:
889 			dev_err(&st->spi->dev,
890 				"Invalid value for excitation current(%u)",
891 				excitation_current);
892 			return ERR_PTR(-EINVAL);
893 		}
894 	}
895 
896 	fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve);
897 
898 	return &rtd->sensor;
899 }
900 
901 static struct ltc2983_sensor *
902 ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st,
903 		       const struct ltc2983_sensor *sensor)
904 {
905 	struct ltc2983_thermistor *thermistor;
906 	struct device *dev = &st->spi->dev;
907 	u32 excitation_current = 0;
908 	int ret = 0;
909 
910 	thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL);
911 	if (!thermistor)
912 		return ERR_PTR(-ENOMEM);
913 
914 	struct fwnode_handle *ref __free(fwnode_handle) =
915 		fwnode_find_reference(child, "adi,rsense-handle", 0);
916 	if (IS_ERR(ref)) {
917 		dev_err(dev, "Property adi,rsense-handle missing or invalid");
918 		return ERR_CAST(ref);
919 	}
920 
921 	ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan);
922 	if (ret) {
923 		dev_err(dev, "rsense channel must be configured...\n");
924 		return ERR_PTR(ret);
925 	}
926 
927 	if (fwnode_property_read_bool(child, "adi,single-ended")) {
928 		thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1);
929 	} else if (fwnode_property_read_bool(child, "adi,rsense-share")) {
930 		/* rotation is only possible if sharing rsense */
931 		if (fwnode_property_read_bool(child, "adi,current-rotate"))
932 			thermistor->sensor_config =
933 						LTC2983_THERMISTOR_C_ROTATE(1);
934 		else
935 			thermistor->sensor_config =
936 						LTC2983_THERMISTOR_R_SHARE(1);
937 	}
938 	/* validate channel index */
939 	if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) &&
940 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
941 		dev_err(&st->spi->dev,
942 			"Invalid chann:%d for differential thermistor",
943 			sensor->chan);
944 		return ERR_PTR(-EINVAL);
945 	}
946 
947 	/* check custom sensor */
948 	if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) {
949 		bool steinhart = false;
950 		const char *propname;
951 
952 		if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) {
953 			steinhart = true;
954 			propname = "adi,custom-steinhart";
955 		} else {
956 			propname = "adi,custom-thermistor";
957 		}
958 
959 		thermistor->custom = __ltc2983_custom_sensor_new(st, child,
960 								 propname,
961 								 steinhart,
962 								 64, false);
963 		if (IS_ERR(thermistor->custom))
964 			return ERR_CAST(thermistor->custom);
965 	}
966 	/* set common parameters */
967 	thermistor->sensor.fault_handler = ltc2983_common_fault_handler;
968 	thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan;
969 
970 	ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp",
971 				       &excitation_current);
972 	if (ret) {
973 		/* Auto range is not allowed for custom sensors */
974 		if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART)
975 			/* default to 1uA */
976 			thermistor->excitation_current = 0x03;
977 		else
978 			/* default to auto-range */
979 			thermistor->excitation_current = 0x0c;
980 	} else {
981 		switch (excitation_current) {
982 		case 0:
983 			/* auto range */
984 			if (sensor->type >=
985 			    LTC2983_SENSOR_THERMISTOR_STEINHART) {
986 				dev_err(&st->spi->dev,
987 					"Auto Range not allowed for custom sensors\n");
988 				return ERR_PTR(-EINVAL);
989 			}
990 			thermistor->excitation_current = 0x0c;
991 			break;
992 		case 250:
993 			thermistor->excitation_current = 0x01;
994 			break;
995 		case 500:
996 			thermistor->excitation_current = 0x02;
997 			break;
998 		case 1000:
999 			thermistor->excitation_current = 0x03;
1000 			break;
1001 		case 5000:
1002 			thermistor->excitation_current = 0x04;
1003 			break;
1004 		case 10000:
1005 			thermistor->excitation_current = 0x05;
1006 			break;
1007 		case 25000:
1008 			thermistor->excitation_current = 0x06;
1009 			break;
1010 		case 50000:
1011 			thermistor->excitation_current = 0x07;
1012 			break;
1013 		case 100000:
1014 			thermistor->excitation_current = 0x08;
1015 			break;
1016 		case 250000:
1017 			thermistor->excitation_current = 0x09;
1018 			break;
1019 		case 500000:
1020 			thermistor->excitation_current = 0x0a;
1021 			break;
1022 		case 1000000:
1023 			thermistor->excitation_current = 0x0b;
1024 			break;
1025 		default:
1026 			dev_err(&st->spi->dev,
1027 				"Invalid value for excitation current(%u)",
1028 				excitation_current);
1029 			return ERR_PTR(-EINVAL);
1030 		}
1031 	}
1032 
1033 	return &thermistor->sensor;
1034 }
1035 
1036 static struct ltc2983_sensor *
1037 ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st,
1038 		  const struct ltc2983_sensor *sensor)
1039 {
1040 	struct ltc2983_diode *diode;
1041 	u32 temp = 0, excitation_current = 0;
1042 	int ret;
1043 
1044 	diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL);
1045 	if (!diode)
1046 		return ERR_PTR(-ENOMEM);
1047 
1048 	if (fwnode_property_read_bool(child, "adi,single-ended"))
1049 		diode->sensor_config = LTC2983_DIODE_SGL(1);
1050 
1051 	if (fwnode_property_read_bool(child, "adi,three-conversion-cycles"))
1052 		diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1);
1053 
1054 	if (fwnode_property_read_bool(child, "adi,average-on"))
1055 		diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1);
1056 
1057 	/* validate channel index */
1058 	if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) &&
1059 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1060 		dev_err(&st->spi->dev,
1061 			"Invalid chann:%d for differential thermistor",
1062 			sensor->chan);
1063 		return ERR_PTR(-EINVAL);
1064 	}
1065 	/* set common parameters */
1066 	diode->sensor.fault_handler = ltc2983_common_fault_handler;
1067 	diode->sensor.assign_chan = ltc2983_diode_assign_chan;
1068 
1069 	ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp",
1070 				       &excitation_current);
1071 	if (!ret) {
1072 		switch (excitation_current) {
1073 		case 10:
1074 			diode->excitation_current = 0x00;
1075 			break;
1076 		case 20:
1077 			diode->excitation_current = 0x01;
1078 			break;
1079 		case 40:
1080 			diode->excitation_current = 0x02;
1081 			break;
1082 		case 80:
1083 			diode->excitation_current = 0x03;
1084 			break;
1085 		default:
1086 			dev_err(&st->spi->dev,
1087 				"Invalid value for excitation current(%u)",
1088 				excitation_current);
1089 			return ERR_PTR(-EINVAL);
1090 		}
1091 	}
1092 
1093 	fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp);
1094 
1095 	/* 2^20 resolution */
1096 	diode->ideal_factor_value = __convert_to_raw(temp, 1048576);
1097 
1098 	return &diode->sensor;
1099 }
1100 
1101 static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child,
1102 					struct ltc2983_data *st,
1103 					const struct ltc2983_sensor *sensor)
1104 {
1105 	struct ltc2983_rsense *rsense;
1106 	int ret;
1107 	u32 temp;
1108 
1109 	rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL);
1110 	if (!rsense)
1111 		return ERR_PTR(-ENOMEM);
1112 
1113 	/* validate channel index */
1114 	if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1115 		dev_err(&st->spi->dev, "Invalid chann:%d for r_sense",
1116 			sensor->chan);
1117 		return ERR_PTR(-EINVAL);
1118 	}
1119 
1120 	ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp);
1121 	if (ret) {
1122 		dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n");
1123 		return ERR_PTR(-EINVAL);
1124 	}
1125 	/*
1126 	 * Times 1000 because we have milli-ohms and __convert_to_raw
1127 	 * expects scales of 1000000 which are used for all other
1128 	 * properties.
1129 	 * 2^10 resolution
1130 	 */
1131 	rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024);
1132 
1133 	/* set common parameters */
1134 	rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan;
1135 
1136 	return &rsense->sensor;
1137 }
1138 
1139 static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child,
1140 					 struct ltc2983_data *st,
1141 					 const struct ltc2983_sensor *sensor)
1142 {
1143 	struct ltc2983_adc *adc;
1144 
1145 	adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL);
1146 	if (!adc)
1147 		return ERR_PTR(-ENOMEM);
1148 
1149 	if (fwnode_property_read_bool(child, "adi,single-ended"))
1150 		adc->single_ended = true;
1151 
1152 	if (!adc->single_ended &&
1153 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1154 		dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n",
1155 			sensor->chan);
1156 		return ERR_PTR(-EINVAL);
1157 	}
1158 	/* set common parameters */
1159 	adc->sensor.assign_chan = ltc2983_adc_assign_chan;
1160 	adc->sensor.fault_handler = ltc2983_common_fault_handler;
1161 
1162 	return &adc->sensor;
1163 }
1164 
1165 static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child,
1166 					       struct ltc2983_data *st,
1167 					       const struct ltc2983_sensor *sensor)
1168 {
1169 	struct ltc2983_temp *temp;
1170 
1171 	temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL);
1172 	if (!temp)
1173 		return ERR_PTR(-ENOMEM);
1174 
1175 	if (fwnode_property_read_bool(child, "adi,single-ended"))
1176 		temp->single_ended = true;
1177 
1178 	if (!temp->single_ended &&
1179 	    sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) {
1180 		dev_err(&st->spi->dev, "Invalid chan:%d for differential temp\n",
1181 			sensor->chan);
1182 		return ERR_PTR(-EINVAL);
1183 	}
1184 
1185 	temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp",
1186 						   false, 4096, true);
1187 	if (IS_ERR(temp->custom))
1188 		return ERR_CAST(temp->custom);
1189 
1190 	/* set common parameters */
1191 	temp->sensor.assign_chan = ltc2983_temp_assign_chan;
1192 	temp->sensor.fault_handler = ltc2983_common_fault_handler;
1193 
1194 	return &temp->sensor;
1195 }
1196 
1197 static int ltc2983_chan_read(struct ltc2983_data *st,
1198 			const struct ltc2983_sensor *sensor, int *val)
1199 {
1200 	u32 start_conversion = 0;
1201 	int ret;
1202 	unsigned long time;
1203 
1204 	start_conversion = LTC2983_STATUS_START(true);
1205 	start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan);
1206 	dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n",
1207 		sensor->chan, start_conversion);
1208 	/* start conversion */
1209 	ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion);
1210 	if (ret)
1211 		return ret;
1212 
1213 	reinit_completion(&st->completion);
1214 	/*
1215 	 * wait for conversion to complete.
1216 	 * 300 ms should be more than enough to complete the conversion.
1217 	 * Depending on the sensor configuration, there are 2/3 conversions
1218 	 * cycles of 82ms.
1219 	 */
1220 	time = wait_for_completion_timeout(&st->completion,
1221 					   msecs_to_jiffies(300));
1222 	if (!time) {
1223 		dev_warn(&st->spi->dev, "Conversion timed out\n");
1224 		return -ETIMEDOUT;
1225 	}
1226 
1227 	/* read the converted data */
1228 	ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan),
1229 			       &st->temp, sizeof(st->temp));
1230 	if (ret)
1231 		return ret;
1232 
1233 	*val = __be32_to_cpu(st->temp);
1234 
1235 	if (!(LTC2983_RES_VALID_MASK & *val)) {
1236 		dev_err(&st->spi->dev, "Invalid conversion detected\n");
1237 		return -EIO;
1238 	}
1239 
1240 	ret = sensor->fault_handler(st, *val);
1241 	if (ret)
1242 		return ret;
1243 
1244 	*val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT);
1245 	return 0;
1246 }
1247 
1248 static int ltc2983_read_raw(struct iio_dev *indio_dev,
1249 			    struct iio_chan_spec const *chan,
1250 			    int *val, int *val2, long mask)
1251 {
1252 	struct ltc2983_data *st = iio_priv(indio_dev);
1253 	int ret;
1254 
1255 	/* sanity check */
1256 	if (chan->address >= st->num_channels) {
1257 		dev_err(&st->spi->dev, "Invalid chan address:%ld",
1258 			chan->address);
1259 		return -EINVAL;
1260 	}
1261 
1262 	switch (mask) {
1263 	case IIO_CHAN_INFO_RAW:
1264 		mutex_lock(&st->lock);
1265 		ret = ltc2983_chan_read(st, st->sensors[chan->address], val);
1266 		mutex_unlock(&st->lock);
1267 		return ret ?: IIO_VAL_INT;
1268 	case IIO_CHAN_INFO_SCALE:
1269 		switch (chan->type) {
1270 		case IIO_TEMP:
1271 			/* value in milli degrees */
1272 			*val = 1000;
1273 			/* 2^10 */
1274 			*val2 = 1024;
1275 			return IIO_VAL_FRACTIONAL;
1276 		case IIO_VOLTAGE:
1277 			/* value in millivolt */
1278 			*val = 1000;
1279 			/* 2^21 */
1280 			*val2 = 2097152;
1281 			return IIO_VAL_FRACTIONAL;
1282 		default:
1283 			return -EINVAL;
1284 		}
1285 	}
1286 
1287 	return -EINVAL;
1288 }
1289 
1290 static int ltc2983_reg_access(struct iio_dev *indio_dev,
1291 			      unsigned int reg,
1292 			      unsigned int writeval,
1293 			      unsigned int *readval)
1294 {
1295 	struct ltc2983_data *st = iio_priv(indio_dev);
1296 
1297 	if (readval)
1298 		return regmap_read(st->regmap, reg, readval);
1299 	else
1300 		return regmap_write(st->regmap, reg, writeval);
1301 }
1302 
1303 static irqreturn_t ltc2983_irq_handler(int irq, void *data)
1304 {
1305 	struct ltc2983_data *st = data;
1306 
1307 	complete(&st->completion);
1308 	return IRQ_HANDLED;
1309 }
1310 
1311 #define LTC2983_CHAN(__type, index, __address) ({ \
1312 	struct iio_chan_spec __chan = { \
1313 		.type = __type, \
1314 		.indexed = 1, \
1315 		.channel = index, \
1316 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
1317 		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
1318 		.address = __address, \
1319 	}; \
1320 	__chan; \
1321 })
1322 
1323 static int ltc2983_parse_fw(struct ltc2983_data *st)
1324 {
1325 	struct device *dev = &st->spi->dev;
1326 	int ret, chan = 0, channel_avail_mask = 0;
1327 
1328 	device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config);
1329 
1330 	device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq);
1331 
1332 	st->num_channels = device_get_child_node_count(dev);
1333 	if (!st->num_channels) {
1334 		dev_err(&st->spi->dev, "At least one channel must be given!");
1335 		return -EINVAL;
1336 	}
1337 
1338 	st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors),
1339 				   GFP_KERNEL);
1340 	if (!st->sensors)
1341 		return -ENOMEM;
1342 
1343 	st->iio_channels = st->num_channels;
1344 	device_for_each_child_node_scoped(dev, child) {
1345 		struct ltc2983_sensor sensor;
1346 
1347 		ret = fwnode_property_read_u32(child, "reg", &sensor.chan);
1348 		if (ret)
1349 			return dev_err_probe(dev, ret,
1350 				"reg property must given for child nodes\n");
1351 
1352 		/* check if we have a valid channel */
1353 		if (sensor.chan < LTC2983_MIN_CHANNELS_NR ||
1354 		    sensor.chan > st->info->max_channels_nr)
1355 			return dev_err_probe(dev, -EINVAL,
1356 					     "chan:%d must be from %u to %u\n",
1357 					     sensor.chan,
1358 					     LTC2983_MIN_CHANNELS_NR,
1359 					     st->info->max_channels_nr);
1360 
1361 		if (channel_avail_mask & BIT(sensor.chan))
1362 			return dev_err_probe(dev, -EINVAL,
1363 					     "chan:%d already in use\n",
1364 					     sensor.chan);
1365 
1366 		ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type);
1367 		if (ret)
1368 			return dev_err_probe(dev, ret,
1369 				"adi,sensor-type property must given for child nodes\n");
1370 
1371 		dev_dbg(dev, "Create new sensor, type %u, chann %u",
1372 			sensor.type, sensor.chan);
1373 
1374 		if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE &&
1375 		    sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) {
1376 			st->sensors[chan] = ltc2983_thermocouple_new(child, st,
1377 								     &sensor);
1378 		} else if (sensor.type >= LTC2983_SENSOR_RTD &&
1379 			   sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) {
1380 			st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor);
1381 		} else if (sensor.type >= LTC2983_SENSOR_THERMISTOR &&
1382 			   sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) {
1383 			st->sensors[chan] = ltc2983_thermistor_new(child, st,
1384 								   &sensor);
1385 		} else if (sensor.type == LTC2983_SENSOR_DIODE) {
1386 			st->sensors[chan] = ltc2983_diode_new(child, st,
1387 							      &sensor);
1388 		} else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) {
1389 			st->sensors[chan] = ltc2983_r_sense_new(child, st,
1390 								&sensor);
1391 			/* don't add rsense to iio */
1392 			st->iio_channels--;
1393 		} else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) {
1394 			st->sensors[chan] = ltc2983_adc_new(child, st, &sensor);
1395 		} else if (st->info->has_temp &&
1396 			   sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) {
1397 			st->sensors[chan] = ltc2983_temp_new(child, st, &sensor);
1398 		} else {
1399 			return dev_err_probe(dev, -EINVAL,
1400 					     "Unknown sensor type %d\n",
1401 					     sensor.type);
1402 		}
1403 
1404 		if (IS_ERR(st->sensors[chan]))
1405 			return dev_err_probe(dev, PTR_ERR(st->sensors[chan]),
1406 					     "Failed to create sensor\n");
1407 
1408 		/* set generic sensor parameters */
1409 		st->sensors[chan]->chan = sensor.chan;
1410 		st->sensors[chan]->type = sensor.type;
1411 
1412 		channel_avail_mask |= BIT(sensor.chan);
1413 		chan++;
1414 	}
1415 
1416 	return 0;
1417 }
1418 
1419 static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd,
1420 			      unsigned int wait_time, unsigned int status_reg,
1421 			      unsigned long status_fail_mask)
1422 {
1423 	unsigned long time;
1424 	unsigned int val;
1425 	int ret;
1426 
1427 	ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG,
1428 				&st->eeprom_key, sizeof(st->eeprom_key));
1429 	if (ret)
1430 		return ret;
1431 
1432 	reinit_completion(&st->completion);
1433 
1434 	ret = regmap_write(st->regmap, LTC2983_STATUS_REG,
1435 			   LTC2983_STATUS_START(true) | cmd);
1436 	if (ret)
1437 		return ret;
1438 
1439 	time = wait_for_completion_timeout(&st->completion,
1440 					   msecs_to_jiffies(wait_time));
1441 	if (!time) {
1442 		dev_err(&st->spi->dev, "EEPROM command timed out\n");
1443 		return -ETIMEDOUT;
1444 	}
1445 
1446 	ret = regmap_read(st->regmap, status_reg, &val);
1447 	if (ret)
1448 		return ret;
1449 
1450 	if (val & status_fail_mask) {
1451 		dev_err(&st->spi->dev, "EEPROM command failed: 0x%02X\n", val);
1452 		return -EINVAL;
1453 	}
1454 
1455 	return 0;
1456 }
1457 
1458 static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio)
1459 {
1460 	u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status;
1461 	int ret;
1462 
1463 	/* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */
1464 	ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status,
1465 				       LTC2983_STATUS_UP(status) == 1, 25000,
1466 				       25000 * 10);
1467 	if (ret) {
1468 		dev_err(&st->spi->dev, "Device startup timed out\n");
1469 		return ret;
1470 	}
1471 
1472 	ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG,
1473 				 LTC2983_NOTCH_FREQ_MASK,
1474 				 LTC2983_NOTCH_FREQ(st->filter_notch_freq));
1475 	if (ret)
1476 		return ret;
1477 
1478 	ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG,
1479 			   st->mux_delay_config);
1480 	if (ret)
1481 		return ret;
1482 
1483 	if (st->info->has_eeprom && !assign_iio) {
1484 		ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD,
1485 					 LTC2983_EEPROM_READ_TIME_MS,
1486 					 LTC2983_EEPROM_READ_STATUS_REG,
1487 					 LTC2983_EEPROM_READ_FAILURE_MASK);
1488 		if (!ret)
1489 			return 0;
1490 	}
1491 
1492 	for (chan = 0; chan < st->num_channels; chan++) {
1493 		u32 chan_type = 0, *iio_chan;
1494 
1495 		ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]);
1496 		if (ret)
1497 			return ret;
1498 		/*
1499 		 * The assign_iio flag is necessary for when the device is
1500 		 * coming out of sleep. In that case, we just need to
1501 		 * re-configure the device channels.
1502 		 * We also don't assign iio channels for rsense.
1503 		 */
1504 		if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR ||
1505 		    !assign_iio)
1506 			continue;
1507 
1508 		/* assign iio channel */
1509 		if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) {
1510 			chan_type = IIO_TEMP;
1511 			iio_chan = &iio_chan_t;
1512 		} else {
1513 			chan_type = IIO_VOLTAGE;
1514 			iio_chan = &iio_chan_v;
1515 		}
1516 
1517 		/*
1518 		 * add chan as the iio .address so that, we can directly
1519 		 * reference the sensor given the iio_chan_spec
1520 		 */
1521 		st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++,
1522 						       chan);
1523 	}
1524 
1525 	return 0;
1526 }
1527 
1528 static const struct regmap_range ltc2983_reg_ranges[] = {
1529 	regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG),
1530 	regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG),
1531 	regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG),
1532 	regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG,
1533 			 LTC2983_EEPROM_READ_STATUS_REG),
1534 	regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG),
1535 	regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG,
1536 			 LTC2983_MULT_CHANNEL_END_REG),
1537 	regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG),
1538 	regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG),
1539 	regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG,
1540 			 LTC2983_CHAN_ASSIGN_END_REG),
1541 	regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG,
1542 			 LTC2983_CUST_SENS_TBL_END_REG),
1543 };
1544 
1545 static const struct regmap_access_table ltc2983_reg_table = {
1546 	.yes_ranges = ltc2983_reg_ranges,
1547 	.n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges),
1548 };
1549 
1550 /*
1551  *  The reg_bits are actually 12 but the device needs the first *complete*
1552  *  byte for the command (R/W).
1553  */
1554 static const struct regmap_config ltc2983_regmap_config = {
1555 	.reg_bits = 24,
1556 	.val_bits = 8,
1557 	.wr_table = &ltc2983_reg_table,
1558 	.rd_table = &ltc2983_reg_table,
1559 	.read_flag_mask = GENMASK(1, 0),
1560 	.write_flag_mask = BIT(1),
1561 };
1562 
1563 static const struct  iio_info ltc2983_iio_info = {
1564 	.read_raw = ltc2983_read_raw,
1565 	.debugfs_reg_access = ltc2983_reg_access,
1566 };
1567 
1568 static int ltc2983_probe(struct spi_device *spi)
1569 {
1570 	struct ltc2983_data *st;
1571 	struct iio_dev *indio_dev;
1572 	struct gpio_desc *gpio;
1573 	int ret;
1574 
1575 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
1576 	if (!indio_dev)
1577 		return -ENOMEM;
1578 
1579 	st = iio_priv(indio_dev);
1580 
1581 	st->info = spi_get_device_match_data(spi);
1582 	if (!st->info)
1583 		return -ENODEV;
1584 
1585 	st->regmap = devm_regmap_init_spi(spi, &ltc2983_regmap_config);
1586 	if (IS_ERR(st->regmap)) {
1587 		dev_err(&spi->dev, "Failed to initialize regmap\n");
1588 		return PTR_ERR(st->regmap);
1589 	}
1590 
1591 	mutex_init(&st->lock);
1592 	init_completion(&st->completion);
1593 	st->spi = spi;
1594 	st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY);
1595 	spi_set_drvdata(spi, st);
1596 
1597 	ret = ltc2983_parse_fw(st);
1598 	if (ret)
1599 		return ret;
1600 
1601 	ret = devm_regulator_get_enable(&spi->dev, "vdd");
1602 	if (ret)
1603 		return ret;
1604 
1605 	gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH);
1606 	if (IS_ERR(gpio))
1607 		return PTR_ERR(gpio);
1608 
1609 	if (gpio) {
1610 		/* bring the device out of reset */
1611 		usleep_range(1000, 1200);
1612 		gpiod_set_value_cansleep(gpio, 0);
1613 	}
1614 
1615 	st->iio_chan = devm_kzalloc(&spi->dev,
1616 				    st->iio_channels * sizeof(*st->iio_chan),
1617 				    GFP_KERNEL);
1618 	if (!st->iio_chan)
1619 		return -ENOMEM;
1620 
1621 	ret = ltc2983_setup(st, true);
1622 	if (ret)
1623 		return ret;
1624 
1625 	ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler,
1626 			       IRQF_TRIGGER_RISING, st->info->name, st);
1627 	if (ret) {
1628 		dev_err(&spi->dev, "failed to request an irq, %d", ret);
1629 		return ret;
1630 	}
1631 
1632 	if (st->info->has_eeprom) {
1633 		ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD,
1634 					 LTC2983_EEPROM_WRITE_TIME_MS,
1635 					 LTC2986_EEPROM_STATUS_REG,
1636 					 LTC2983_EEPROM_STATUS_FAILURE_MASK);
1637 		if (ret)
1638 			return ret;
1639 	}
1640 
1641 	indio_dev->name = st->info->name;
1642 	indio_dev->num_channels = st->iio_channels;
1643 	indio_dev->channels = st->iio_chan;
1644 	indio_dev->modes = INDIO_DIRECT_MODE;
1645 	indio_dev->info = &ltc2983_iio_info;
1646 
1647 	return devm_iio_device_register(&spi->dev, indio_dev);
1648 }
1649 
1650 static int ltc2983_resume(struct device *dev)
1651 {
1652 	struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1653 	int dummy;
1654 
1655 	/* dummy read to bring the device out of sleep */
1656 	regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy);
1657 	/* we need to re-assign the channels */
1658 	return ltc2983_setup(st, false);
1659 }
1660 
1661 static int ltc2983_suspend(struct device *dev)
1662 {
1663 	struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev));
1664 
1665 	return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP);
1666 }
1667 
1668 static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend,
1669 				ltc2983_resume);
1670 
1671 static const struct ltc2983_chip_info ltc2983_chip_info_data = {
1672 	.name = "ltc2983",
1673 	.max_channels_nr = 20,
1674 };
1675 
1676 static const struct ltc2983_chip_info ltc2984_chip_info_data = {
1677 	.name = "ltc2984",
1678 	.max_channels_nr = 20,
1679 	.has_eeprom = true,
1680 };
1681 
1682 static const struct ltc2983_chip_info ltc2986_chip_info_data = {
1683 	.name = "ltc2986",
1684 	.max_channels_nr = 10,
1685 	.has_temp = true,
1686 	.has_eeprom = true,
1687 };
1688 
1689 static const struct ltc2983_chip_info ltm2985_chip_info_data = {
1690 	.name = "ltm2985",
1691 	.max_channels_nr = 10,
1692 	.has_temp = true,
1693 	.has_eeprom = true,
1694 };
1695 
1696 static const struct spi_device_id ltc2983_id_table[] = {
1697 	{ "ltc2983", (kernel_ulong_t)&ltc2983_chip_info_data },
1698 	{ "ltc2984", (kernel_ulong_t)&ltc2984_chip_info_data },
1699 	{ "ltc2986", (kernel_ulong_t)&ltc2986_chip_info_data },
1700 	{ "ltm2985", (kernel_ulong_t)&ltm2985_chip_info_data },
1701 	{},
1702 };
1703 MODULE_DEVICE_TABLE(spi, ltc2983_id_table);
1704 
1705 static const struct of_device_id ltc2983_of_match[] = {
1706 	{ .compatible = "adi,ltc2983", .data = &ltc2983_chip_info_data },
1707 	{ .compatible = "adi,ltc2984", .data = &ltc2984_chip_info_data },
1708 	{ .compatible = "adi,ltc2986", .data = &ltc2986_chip_info_data },
1709 	{ .compatible = "adi,ltm2985", .data = &ltm2985_chip_info_data },
1710 	{},
1711 };
1712 MODULE_DEVICE_TABLE(of, ltc2983_of_match);
1713 
1714 static struct spi_driver ltc2983_driver = {
1715 	.driver = {
1716 		.name = "ltc2983",
1717 		.of_match_table = ltc2983_of_match,
1718 		.pm = pm_sleep_ptr(&ltc2983_pm_ops),
1719 	},
1720 	.probe = ltc2983_probe,
1721 	.id_table = ltc2983_id_table,
1722 };
1723 
1724 module_spi_driver(ltc2983_driver);
1725 
1726 MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
1727 MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors");
1728 MODULE_LICENSE("GPL");
1729