xref: /linux/drivers/iio/proximity/srf08.c (revision be709d48329a500621d2a05835283150ae137b45)
1 /*
2  * srf08.c - Support for Devantech SRFxx ultrasonic ranger
3  *           with i2c interface
4  * actually supported are srf02, srf08, srf10
5  *
6  * Copyright (c) 2016, 2017 Andreas Klinger <ak@it-klinger.de>
7  *
8  * This file is subject to the terms and conditions of version 2 of
9  * the GNU General Public License. See the file COPYING in the main
10  * directory of this archive for more details.
11  *
12  * For details about the device see:
13  * http://www.robot-electronics.co.uk/htm/srf08tech.html
14  * http://www.robot-electronics.co.uk/htm/srf10tech.htm
15  * http://www.robot-electronics.co.uk/htm/srf02tech.htm
16  */
17 
18 #include <linux/err.h>
19 #include <linux/i2c.h>
20 #include <linux/delay.h>
21 #include <linux/module.h>
22 #include <linux/bitops.h>
23 #include <linux/iio/iio.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/iio/buffer.h>
26 #include <linux/iio/trigger_consumer.h>
27 #include <linux/iio/triggered_buffer.h>
28 
29 /* registers of SRF08 device */
30 #define SRF08_WRITE_COMMAND	0x00	/* Command Register */
31 #define SRF08_WRITE_MAX_GAIN	0x01	/* Max Gain Register: 0 .. 31 */
32 #define SRF08_WRITE_RANGE	0x02	/* Range Register: 0 .. 255 */
33 #define SRF08_READ_SW_REVISION	0x00	/* Software Revision */
34 #define SRF08_READ_LIGHT	0x01	/* Light Sensor during last echo */
35 #define SRF08_READ_ECHO_1_HIGH	0x02	/* Range of first echo received */
36 #define SRF08_READ_ECHO_1_LOW	0x03	/* Range of first echo received */
37 
38 #define SRF08_CMD_RANGING_CM	0x51	/* Ranging Mode - Result in cm */
39 
40 enum srf08_sensor_type {
41 	SRF02,
42 	SRF08,
43 	SRF10,
44 	SRF_MAX_TYPE
45 };
46 
47 struct srf08_chip_info {
48 	const int		*sensitivity_avail;
49 	int			num_sensitivity_avail;
50 	int			sensitivity_default;
51 
52 	/* default value of Range in mm */
53 	int			range_default;
54 };
55 
56 struct srf08_data {
57 	struct i2c_client	*client;
58 
59 	/*
60 	 * Gain in the datasheet is called sensitivity here to distinct it
61 	 * from the gain used with amplifiers of adc's
62 	 */
63 	int			sensitivity;
64 
65 	/* max. Range in mm */
66 	int			range_mm;
67 	struct mutex		lock;
68 
69 	/*
70 	 * triggered buffer
71 	 * 1x16-bit channel + 3x16 padding + 4x16 timestamp
72 	 */
73 	s16			buffer[8];
74 
75 	/* Sensor-Type */
76 	enum srf08_sensor_type	sensor_type;
77 
78 	/* Chip-specific information */
79 	const struct srf08_chip_info	*chip_info;
80 };
81 
82 /*
83  * in the documentation one can read about the "Gain" of the device
84  * which is used here for amplifying the signal and filtering out unwanted
85  * ones.
86  * But with ADC's this term is already used differently and that's why it
87  * is called "Sensitivity" here.
88  */
89 static const struct srf08_chip_info srf02_chip_info = {
90 	.sensitivity_avail	= NULL,
91 	.num_sensitivity_avail	= 0,
92 	.sensitivity_default	= 0,
93 
94 	.range_default		= 0,
95 };
96 
97 static const int srf08_sensitivity_avail[] = {
98 	 94,  97, 100, 103, 107, 110, 114, 118,
99 	123, 128, 133, 139, 145, 152, 159, 168,
100 	177, 187, 199, 212, 227, 245, 265, 288,
101 	317, 352, 395, 450, 524, 626, 777, 1025
102 	};
103 
104 static const struct srf08_chip_info srf08_chip_info = {
105 	.sensitivity_avail	= srf08_sensitivity_avail,
106 	.num_sensitivity_avail	= ARRAY_SIZE(srf08_sensitivity_avail),
107 	.sensitivity_default	= 1025,
108 
109 	.range_default		= 6020,
110 };
111 
112 static const int srf10_sensitivity_avail[] = {
113 	 40,  40,  50,  60,  70,  80, 100, 120,
114 	140, 200, 250, 300, 350, 400, 500, 600,
115 	700,
116 	};
117 
118 static const struct srf08_chip_info srf10_chip_info = {
119 	.sensitivity_avail	= srf10_sensitivity_avail,
120 	.num_sensitivity_avail	= ARRAY_SIZE(srf10_sensitivity_avail),
121 	.sensitivity_default	= 700,
122 
123 	.range_default		= 6020,
124 };
125 
126 static int srf08_read_ranging(struct srf08_data *data)
127 {
128 	struct i2c_client *client = data->client;
129 	int ret, i;
130 	int waittime;
131 
132 	mutex_lock(&data->lock);
133 
134 	ret = i2c_smbus_write_byte_data(data->client,
135 			SRF08_WRITE_COMMAND, SRF08_CMD_RANGING_CM);
136 	if (ret < 0) {
137 		dev_err(&client->dev, "write command - err: %d\n", ret);
138 		mutex_unlock(&data->lock);
139 		return ret;
140 	}
141 
142 	/*
143 	 * we read here until a correct version number shows up as
144 	 * suggested by the documentation
145 	 *
146 	 * with an ultrasonic speed of 343 m/s and a roundtrip of it
147 	 * sleep the expected duration and try to read from the device
148 	 * if nothing useful is read try it in a shorter grid
149 	 *
150 	 * polling for not more than 20 ms should be enough
151 	 */
152 	waittime = 1 + data->range_mm / 172;
153 	msleep(waittime);
154 	for (i = 0; i < 4; i++) {
155 		ret = i2c_smbus_read_byte_data(data->client,
156 						SRF08_READ_SW_REVISION);
157 
158 		/* check if a valid version number is read */
159 		if (ret < 255 && ret > 0)
160 			break;
161 		msleep(5);
162 	}
163 
164 	if (ret >= 255 || ret <= 0) {
165 		dev_err(&client->dev, "device not ready\n");
166 		mutex_unlock(&data->lock);
167 		return -EIO;
168 	}
169 
170 	ret = i2c_smbus_read_word_swapped(data->client,
171 						SRF08_READ_ECHO_1_HIGH);
172 	if (ret < 0) {
173 		dev_err(&client->dev, "cannot read distance: ret=%d\n", ret);
174 		mutex_unlock(&data->lock);
175 		return ret;
176 	}
177 
178 	mutex_unlock(&data->lock);
179 
180 	return ret;
181 }
182 
183 static irqreturn_t srf08_trigger_handler(int irq, void *p)
184 {
185 	struct iio_poll_func *pf = p;
186 	struct iio_dev *indio_dev = pf->indio_dev;
187 	struct srf08_data *data = iio_priv(indio_dev);
188 	s16 sensor_data;
189 
190 	sensor_data = srf08_read_ranging(data);
191 	if (sensor_data < 0)
192 		goto err;
193 
194 	mutex_lock(&data->lock);
195 
196 	data->buffer[0] = sensor_data;
197 	iio_push_to_buffers_with_timestamp(indio_dev,
198 						data->buffer, pf->timestamp);
199 
200 	mutex_unlock(&data->lock);
201 err:
202 	iio_trigger_notify_done(indio_dev->trig);
203 	return IRQ_HANDLED;
204 }
205 
206 static int srf08_read_raw(struct iio_dev *indio_dev,
207 			    struct iio_chan_spec const *channel, int *val,
208 			    int *val2, long mask)
209 {
210 	struct srf08_data *data = iio_priv(indio_dev);
211 	int ret;
212 
213 	if (channel->type != IIO_DISTANCE)
214 		return -EINVAL;
215 
216 	switch (mask) {
217 	case IIO_CHAN_INFO_RAW:
218 		ret = srf08_read_ranging(data);
219 		if (ret < 0)
220 			return ret;
221 		*val = ret;
222 		return IIO_VAL_INT;
223 	case IIO_CHAN_INFO_SCALE:
224 		/* 1 LSB is 1 cm */
225 		*val = 0;
226 		*val2 = 10000;
227 		return IIO_VAL_INT_PLUS_MICRO;
228 	default:
229 		return -EINVAL;
230 	}
231 }
232 
233 static ssize_t srf08_show_range_mm_available(struct device *dev,
234 				struct device_attribute *attr, char *buf)
235 {
236 	return sprintf(buf, "[0.043 0.043 11.008]\n");
237 }
238 
239 static IIO_DEVICE_ATTR(sensor_max_range_available, S_IRUGO,
240 				srf08_show_range_mm_available, NULL, 0);
241 
242 static ssize_t srf08_show_range_mm(struct device *dev,
243 				struct device_attribute *attr, char *buf)
244 {
245 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
246 	struct srf08_data *data = iio_priv(indio_dev);
247 
248 	return sprintf(buf, "%d.%03d\n", data->range_mm / 1000,
249 						data->range_mm % 1000);
250 }
251 
252 /*
253  * set the range of the sensor to an even multiple of 43 mm
254  * which corresponds to 1 LSB in the register
255  *
256  * register value    corresponding range
257  *         0x00             43 mm
258  *         0x01             86 mm
259  *         0x02            129 mm
260  *         ...
261  *         0xFF          11008 mm
262  */
263 static ssize_t srf08_write_range_mm(struct srf08_data *data, unsigned int val)
264 {
265 	int ret;
266 	struct i2c_client *client = data->client;
267 	unsigned int mod;
268 	u8 regval;
269 
270 	ret = val / 43 - 1;
271 	mod = val % 43;
272 
273 	if (mod || (ret < 0) || (ret > 255))
274 		return -EINVAL;
275 
276 	regval = ret;
277 
278 	mutex_lock(&data->lock);
279 
280 	ret = i2c_smbus_write_byte_data(client, SRF08_WRITE_RANGE, regval);
281 	if (ret < 0) {
282 		dev_err(&client->dev, "write_range - err: %d\n", ret);
283 		mutex_unlock(&data->lock);
284 		return ret;
285 	}
286 
287 	data->range_mm = val;
288 
289 	mutex_unlock(&data->lock);
290 
291 	return 0;
292 }
293 
294 static ssize_t srf08_store_range_mm(struct device *dev,
295 					struct device_attribute *attr,
296 					const char *buf, size_t len)
297 {
298 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
299 	struct srf08_data *data = iio_priv(indio_dev);
300 	int ret;
301 	int integer, fract;
302 
303 	ret = iio_str_to_fixpoint(buf, 100, &integer, &fract);
304 	if (ret)
305 		return ret;
306 
307 	ret = srf08_write_range_mm(data, integer * 1000 + fract);
308 	if (ret < 0)
309 		return ret;
310 
311 	return len;
312 }
313 
314 static IIO_DEVICE_ATTR(sensor_max_range, S_IRUGO | S_IWUSR,
315 			srf08_show_range_mm, srf08_store_range_mm, 0);
316 
317 static ssize_t srf08_show_sensitivity_available(struct device *dev,
318 				struct device_attribute *attr, char *buf)
319 {
320 	int i, len = 0;
321 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
322 	struct srf08_data *data = iio_priv(indio_dev);
323 
324 	for (i = 0; i < data->chip_info->num_sensitivity_avail; i++)
325 		if (data->chip_info->sensitivity_avail[i])
326 			len += sprintf(buf + len, "%d ",
327 				data->chip_info->sensitivity_avail[i]);
328 
329 	len += sprintf(buf + len, "\n");
330 
331 	return len;
332 }
333 
334 static IIO_DEVICE_ATTR(sensor_sensitivity_available, S_IRUGO,
335 				srf08_show_sensitivity_available, NULL, 0);
336 
337 static ssize_t srf08_show_sensitivity(struct device *dev,
338 				struct device_attribute *attr, char *buf)
339 {
340 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
341 	struct srf08_data *data = iio_priv(indio_dev);
342 	int len;
343 
344 	len = sprintf(buf, "%d\n", data->sensitivity);
345 
346 	return len;
347 }
348 
349 static ssize_t srf08_write_sensitivity(struct srf08_data *data,
350 							unsigned int val)
351 {
352 	struct i2c_client *client = data->client;
353 	int ret, i;
354 	u8 regval;
355 
356 	if (!val)
357 		return -EINVAL;
358 
359 	for (i = 0; i < data->chip_info->num_sensitivity_avail; i++)
360 		if (val && (val == data->chip_info->sensitivity_avail[i])) {
361 			regval = i;
362 			break;
363 		}
364 
365 	if (i >= data->chip_info->num_sensitivity_avail)
366 		return -EINVAL;
367 
368 	mutex_lock(&data->lock);
369 
370 	ret = i2c_smbus_write_byte_data(client, SRF08_WRITE_MAX_GAIN, regval);
371 	if (ret < 0) {
372 		dev_err(&client->dev, "write_sensitivity - err: %d\n", ret);
373 		mutex_unlock(&data->lock);
374 		return ret;
375 	}
376 
377 	data->sensitivity = val;
378 
379 	mutex_unlock(&data->lock);
380 
381 	return 0;
382 }
383 
384 static ssize_t srf08_store_sensitivity(struct device *dev,
385 						struct device_attribute *attr,
386 						const char *buf, size_t len)
387 {
388 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
389 	struct srf08_data *data = iio_priv(indio_dev);
390 	int ret;
391 	unsigned int val;
392 
393 	ret = kstrtouint(buf, 10, &val);
394 	if (ret)
395 		return ret;
396 
397 	ret = srf08_write_sensitivity(data, val);
398 	if (ret < 0)
399 		return ret;
400 
401 	return len;
402 }
403 
404 static IIO_DEVICE_ATTR(sensor_sensitivity, S_IRUGO | S_IWUSR,
405 			srf08_show_sensitivity, srf08_store_sensitivity, 0);
406 
407 static struct attribute *srf08_attributes[] = {
408 	&iio_dev_attr_sensor_max_range.dev_attr.attr,
409 	&iio_dev_attr_sensor_max_range_available.dev_attr.attr,
410 	&iio_dev_attr_sensor_sensitivity.dev_attr.attr,
411 	&iio_dev_attr_sensor_sensitivity_available.dev_attr.attr,
412 	NULL,
413 };
414 
415 static const struct attribute_group srf08_attribute_group = {
416 	.attrs = srf08_attributes,
417 };
418 
419 static const struct iio_chan_spec srf08_channels[] = {
420 	{
421 		.type = IIO_DISTANCE,
422 		.info_mask_separate =
423 				BIT(IIO_CHAN_INFO_RAW) |
424 				BIT(IIO_CHAN_INFO_SCALE),
425 		.scan_index = 0,
426 		.scan_type = {
427 			.sign = 's',
428 			.realbits = 16,
429 			.storagebits = 16,
430 			.endianness = IIO_CPU,
431 		},
432 	},
433 	IIO_CHAN_SOFT_TIMESTAMP(1),
434 };
435 
436 static const struct iio_info srf08_info = {
437 	.read_raw = srf08_read_raw,
438 	.attrs = &srf08_attribute_group,
439 };
440 
441 /*
442  * srf02 don't have an adjustable range or sensitivity,
443  * so we don't need attributes at all
444  */
445 static const struct iio_info srf02_info = {
446 	.read_raw = srf08_read_raw,
447 };
448 
449 static int srf08_probe(struct i2c_client *client,
450 					 const struct i2c_device_id *id)
451 {
452 	struct iio_dev *indio_dev;
453 	struct srf08_data *data;
454 	int ret;
455 
456 	if (!i2c_check_functionality(client->adapter,
457 					I2C_FUNC_SMBUS_READ_BYTE_DATA |
458 					I2C_FUNC_SMBUS_WRITE_BYTE_DATA |
459 					I2C_FUNC_SMBUS_READ_WORD_DATA))
460 		return -ENODEV;
461 
462 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
463 	if (!indio_dev)
464 		return -ENOMEM;
465 
466 	data = iio_priv(indio_dev);
467 	i2c_set_clientdata(client, indio_dev);
468 	data->client = client;
469 	data->sensor_type = (enum srf08_sensor_type)id->driver_data;
470 
471 	switch (data->sensor_type) {
472 	case SRF02:
473 		data->chip_info = &srf02_chip_info;
474 		indio_dev->info = &srf02_info;
475 		break;
476 	case SRF08:
477 		data->chip_info = &srf08_chip_info;
478 		indio_dev->info = &srf08_info;
479 		break;
480 	case SRF10:
481 		data->chip_info = &srf10_chip_info;
482 		indio_dev->info = &srf08_info;
483 		break;
484 	default:
485 		return -EINVAL;
486 	}
487 
488 	indio_dev->name = id->name;
489 	indio_dev->dev.parent = &client->dev;
490 	indio_dev->modes = INDIO_DIRECT_MODE;
491 	indio_dev->channels = srf08_channels;
492 	indio_dev->num_channels = ARRAY_SIZE(srf08_channels);
493 
494 	mutex_init(&data->lock);
495 
496 	ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev,
497 			iio_pollfunc_store_time, srf08_trigger_handler, NULL);
498 	if (ret < 0) {
499 		dev_err(&client->dev, "setup of iio triggered buffer failed\n");
500 		return ret;
501 	}
502 
503 	if (data->chip_info->range_default) {
504 		/*
505 		 * set default range of device in mm here
506 		 * these register values cannot be read from the hardware
507 		 * therefore set driver specific default values
508 		 *
509 		 * srf02 don't have a default value so it'll be omitted
510 		 */
511 		ret = srf08_write_range_mm(data,
512 					data->chip_info->range_default);
513 		if (ret < 0)
514 			return ret;
515 	}
516 
517 	if (data->chip_info->sensitivity_default) {
518 		/*
519 		 * set default sensitivity of device here
520 		 * these register values cannot be read from the hardware
521 		 * therefore set driver specific default values
522 		 *
523 		 * srf02 don't have a default value so it'll be omitted
524 		 */
525 		ret = srf08_write_sensitivity(data,
526 				data->chip_info->sensitivity_default);
527 		if (ret < 0)
528 			return ret;
529 	}
530 
531 	return devm_iio_device_register(&client->dev, indio_dev);
532 }
533 
534 static const struct of_device_id of_srf08_match[] = {
535 	{ .compatible = "devantech,srf02", (void *)SRF02},
536 	{ .compatible = "devantech,srf08", (void *)SRF08},
537 	{ .compatible = "devantech,srf10", (void *)SRF10},
538 	{},
539 };
540 
541 MODULE_DEVICE_TABLE(of, of_srf08_match);
542 
543 static const struct i2c_device_id srf08_id[] = {
544 	{ "srf02", SRF02 },
545 	{ "srf08", SRF08 },
546 	{ "srf10", SRF10 },
547 	{ }
548 };
549 MODULE_DEVICE_TABLE(i2c, srf08_id);
550 
551 static struct i2c_driver srf08_driver = {
552 	.driver = {
553 		.name	= "srf08",
554 		.of_match_table	= of_srf08_match,
555 	},
556 	.probe = srf08_probe,
557 	.id_table = srf08_id,
558 };
559 module_i2c_driver(srf08_driver);
560 
561 MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
562 MODULE_DESCRIPTION("Devantech SRF02/SRF08/SRF10 i2c ultrasonic ranger driver");
563 MODULE_LICENSE("GPL");
564