xref: /linux/drivers/iio/pressure/zpa2326.c (revision 59dc1c8619e9f89987f36f03c5047fc2af642215)
1 /*
2  * Murata ZPA2326 pressure and temperature sensor IIO driver
3  *
4  * Copyright (c) 2016 Parrot S.A.
5  *
6  * Author: Gregor Boirie <gregor.boirie@parrot.com>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  */
17 
18 /**
19  * DOC: ZPA2326 theory of operations
20  *
21  * This driver supports %INDIO_DIRECT_MODE and %INDIO_BUFFER_TRIGGERED IIO
22  * modes.
23  * A internal hardware trigger is also implemented to dispatch registered IIO
24  * trigger consumers upon "sample ready" interrupts.
25  *
26  * ZPA2326 hardware supports 2 sampling mode: one shot and continuous.
27  *
28  * A complete one shot sampling cycle gets device out of low power mode,
29  * performs pressure and temperature measurements, then automatically switches
30  * back to low power mode. It is meant for on demand sampling with optimal power
31  * saving at the cost of lower sampling rate and higher software overhead.
32  * This is a natural candidate for IIO read_raw hook implementation
33  * (%INDIO_DIRECT_MODE). It is also used for triggered buffering support to
34  * ensure explicit synchronization with external trigger events
35  * (%INDIO_BUFFER_TRIGGERED).
36  *
37  * The continuous mode works according to a periodic hardware measurement
38  * process continuously pushing samples into an internal hardware FIFO (for
39  * pressure samples only). Measurement cycle completion may be signaled by a
40  * "sample ready" interrupt.
41  * Typical software sequence of operations :
42  * - get device out of low power mode,
43  * - setup hardware sampling period,
44  * - at end of period, upon data ready interrupt: pop pressure samples out of
45  *   hardware FIFO and fetch temperature sample
46  * - when no longer needed, stop sampling process by putting device into
47  *   low power mode.
48  * This mode is used to implement %INDIO_BUFFER_TRIGGERED mode if device tree
49  * declares a valid interrupt line. In this case, the internal hardware trigger
50  * drives acquisition.
51  *
52  * Note that hardware sampling frequency is taken into account only when
53  * internal hardware trigger is attached as the highest sampling rate seems to
54  * be the most energy efficient.
55  *
56  * TODO:
57  *   preset pressure threshold crossing / IIO events ;
58  *   differential pressure sampling ;
59  *   hardware samples averaging.
60  */
61 
62 #include <linux/module.h>
63 #include <linux/kernel.h>
64 #include <linux/delay.h>
65 #include <linux/interrupt.h>
66 #include <linux/regulator/consumer.h>
67 #include <linux/pm_runtime.h>
68 #include <linux/regmap.h>
69 #include <linux/iio/iio.h>
70 #include <linux/iio/sysfs.h>
71 #include <linux/iio/buffer.h>
72 #include <linux/iio/trigger.h>
73 #include <linux/iio/trigger_consumer.h>
74 #include <linux/iio/triggered_buffer.h>
75 #include "zpa2326.h"
76 
77 /* 200 ms should be enough for the longest conversion time in one-shot mode. */
78 #define ZPA2326_CONVERSION_JIFFIES (HZ / 5)
79 
80 /* There should be a 1 ms delay (Tpup) after getting out of reset. */
81 #define ZPA2326_TPUP_USEC_MIN      (1000)
82 #define ZPA2326_TPUP_USEC_MAX      (2000)
83 
84 /**
85  * struct zpa2326_frequency - Hardware sampling frequency descriptor
86  * @hz : Frequency in Hertz.
87  * @odr: Output Data Rate word as expected by %ZPA2326_CTRL_REG3_REG.
88  */
89 struct zpa2326_frequency {
90 	int hz;
91 	u16 odr;
92 };
93 
94 /*
95  * Keep these in strict ascending order: last array entry is expected to
96  * correspond to the highest sampling frequency.
97  */
98 static const struct zpa2326_frequency zpa2326_sampling_frequencies[] = {
99 	{ .hz = 1,  .odr = 1 << ZPA2326_CTRL_REG3_ODR_SHIFT },
100 	{ .hz = 5,  .odr = 5 << ZPA2326_CTRL_REG3_ODR_SHIFT },
101 	{ .hz = 11, .odr = 6 << ZPA2326_CTRL_REG3_ODR_SHIFT },
102 	{ .hz = 23, .odr = 7 << ZPA2326_CTRL_REG3_ODR_SHIFT },
103 };
104 
105 /* Return the highest hardware sampling frequency available. */
106 static const struct zpa2326_frequency *zpa2326_highest_frequency(void)
107 {
108 	return &zpa2326_sampling_frequencies[
109 		ARRAY_SIZE(zpa2326_sampling_frequencies) - 1];
110 }
111 
112 /**
113  * struct zpa_private - Per-device internal private state
114  * @timestamp:  Buffered samples ready datum.
115  * @regmap:     Underlying I2C / SPI bus adapter used to abstract slave register
116  *              accesses.
117  * @result:     Allows sampling logic to get completion status of operations
118  *              that interrupt handlers perform asynchronously.
119  * @data_ready: Interrupt handler uses this to wake user context up at sampling
120  *              operation completion.
121  * @trigger:    Optional hardware / interrupt driven trigger used to notify
122  *              external devices a new sample is ready.
123  * @waken:      Flag indicating whether or not device has just been powered on.
124  * @irq:        Optional interrupt line: negative or zero if not declared into
125  *              DT, in which case sampling logic keeps polling status register
126  *              to detect completion.
127  * @frequency:  Current hardware sampling frequency.
128  * @vref:       Power / voltage reference.
129  * @vdd:        Power supply.
130  */
131 struct zpa2326_private {
132 	s64                             timestamp;
133 	struct regmap                  *regmap;
134 	int                             result;
135 	struct completion               data_ready;
136 	struct iio_trigger             *trigger;
137 	bool                            waken;
138 	int                             irq;
139 	const struct zpa2326_frequency *frequency;
140 	struct regulator               *vref;
141 	struct regulator               *vdd;
142 };
143 
144 #define zpa2326_err(_idev, _format, _arg...) \
145 	dev_err(_idev->dev.parent, _format, ##_arg)
146 
147 #define zpa2326_warn(_idev, _format, _arg...) \
148 	dev_warn(_idev->dev.parent, _format, ##_arg)
149 
150 #define zpa2326_dbg(_idev, _format, _arg...) \
151 	dev_dbg(_idev->dev.parent, _format, ##_arg)
152 
153 bool zpa2326_isreg_writeable(struct device *dev, unsigned int reg)
154 {
155 	switch (reg) {
156 	case ZPA2326_REF_P_XL_REG:
157 	case ZPA2326_REF_P_L_REG:
158 	case ZPA2326_REF_P_H_REG:
159 	case ZPA2326_RES_CONF_REG:
160 	case ZPA2326_CTRL_REG0_REG:
161 	case ZPA2326_CTRL_REG1_REG:
162 	case ZPA2326_CTRL_REG2_REG:
163 	case ZPA2326_CTRL_REG3_REG:
164 	case ZPA2326_THS_P_LOW_REG:
165 	case ZPA2326_THS_P_HIGH_REG:
166 		return true;
167 
168 	default:
169 		return false;
170 	}
171 }
172 EXPORT_SYMBOL_GPL(zpa2326_isreg_writeable);
173 
174 bool zpa2326_isreg_readable(struct device *dev, unsigned int reg)
175 {
176 	switch (reg) {
177 	case ZPA2326_REF_P_XL_REG:
178 	case ZPA2326_REF_P_L_REG:
179 	case ZPA2326_REF_P_H_REG:
180 	case ZPA2326_DEVICE_ID_REG:
181 	case ZPA2326_RES_CONF_REG:
182 	case ZPA2326_CTRL_REG0_REG:
183 	case ZPA2326_CTRL_REG1_REG:
184 	case ZPA2326_CTRL_REG2_REG:
185 	case ZPA2326_CTRL_REG3_REG:
186 	case ZPA2326_INT_SOURCE_REG:
187 	case ZPA2326_THS_P_LOW_REG:
188 	case ZPA2326_THS_P_HIGH_REG:
189 	case ZPA2326_STATUS_REG:
190 	case ZPA2326_PRESS_OUT_XL_REG:
191 	case ZPA2326_PRESS_OUT_L_REG:
192 	case ZPA2326_PRESS_OUT_H_REG:
193 	case ZPA2326_TEMP_OUT_L_REG:
194 	case ZPA2326_TEMP_OUT_H_REG:
195 		return true;
196 
197 	default:
198 		return false;
199 	}
200 }
201 EXPORT_SYMBOL_GPL(zpa2326_isreg_readable);
202 
203 bool zpa2326_isreg_precious(struct device *dev, unsigned int reg)
204 {
205 	switch (reg) {
206 	case ZPA2326_INT_SOURCE_REG:
207 	case ZPA2326_PRESS_OUT_H_REG:
208 		return true;
209 
210 	default:
211 		return false;
212 	}
213 }
214 EXPORT_SYMBOL_GPL(zpa2326_isreg_precious);
215 
216 /**
217  * zpa2326_enable_device() - Enable device, i.e. get out of low power mode.
218  * @indio_dev: The IIO device associated with the hardware to enable.
219  *
220  * Required to access complete register space and to perform any sampling
221  * or control operations.
222  *
223  * Return: Zero when successful, a negative error code otherwise.
224  */
225 static int zpa2326_enable_device(const struct iio_dev *indio_dev)
226 {
227 	int err;
228 
229 	err = regmap_write(((struct zpa2326_private *)
230 			    iio_priv(indio_dev))->regmap,
231 			    ZPA2326_CTRL_REG0_REG, ZPA2326_CTRL_REG0_ENABLE);
232 	if (err) {
233 		zpa2326_err(indio_dev, "failed to enable device (%d)", err);
234 		return err;
235 	}
236 
237 	zpa2326_dbg(indio_dev, "enabled");
238 
239 	return 0;
240 }
241 
242 /**
243  * zpa2326_sleep() - Disable device, i.e. switch to low power mode.
244  * @indio_dev: The IIO device associated with the hardware to disable.
245  *
246  * Only %ZPA2326_DEVICE_ID_REG and %ZPA2326_CTRL_REG0_REG registers may be
247  * accessed once device is in the disabled state.
248  *
249  * Return: Zero when successful, a negative error code otherwise.
250  */
251 static int zpa2326_sleep(const struct iio_dev *indio_dev)
252 {
253 	int err;
254 
255 	err = regmap_write(((struct zpa2326_private *)
256 			    iio_priv(indio_dev))->regmap,
257 			    ZPA2326_CTRL_REG0_REG, 0);
258 	if (err) {
259 		zpa2326_err(indio_dev, "failed to sleep (%d)", err);
260 		return err;
261 	}
262 
263 	zpa2326_dbg(indio_dev, "sleeping");
264 
265 	return 0;
266 }
267 
268 /**
269  * zpa2326_reset_device() - Reset device to default hardware state.
270  * @indio_dev: The IIO device associated with the hardware to reset.
271  *
272  * Disable sampling and empty hardware FIFO.
273  * Device must be enabled before reset, i.e. not in low power mode.
274  *
275  * Return: Zero when successful, a negative error code otherwise.
276  */
277 static int zpa2326_reset_device(const struct iio_dev *indio_dev)
278 {
279 	int err;
280 
281 	err = regmap_write(((struct zpa2326_private *)
282 			    iio_priv(indio_dev))->regmap,
283 			    ZPA2326_CTRL_REG2_REG, ZPA2326_CTRL_REG2_SWRESET);
284 	if (err) {
285 		zpa2326_err(indio_dev, "failed to reset device (%d)", err);
286 		return err;
287 	}
288 
289 	usleep_range(ZPA2326_TPUP_USEC_MIN, ZPA2326_TPUP_USEC_MAX);
290 
291 	zpa2326_dbg(indio_dev, "reset");
292 
293 	return 0;
294 }
295 
296 /**
297  * zpa2326_start_oneshot() - Start a single sampling cycle, i.e. in one shot
298  *                           mode.
299  * @indio_dev: The IIO device associated with the sampling hardware.
300  *
301  * Device must have been previously enabled and configured for one shot mode.
302  * Device will be switched back to low power mode at end of cycle.
303  *
304  * Return: Zero when successful, a negative error code otherwise.
305  */
306 static int zpa2326_start_oneshot(const struct iio_dev *indio_dev)
307 {
308 	int err;
309 
310 	err = regmap_write(((struct zpa2326_private *)
311 			    iio_priv(indio_dev))->regmap,
312 			    ZPA2326_CTRL_REG0_REG,
313 			    ZPA2326_CTRL_REG0_ENABLE |
314 			    ZPA2326_CTRL_REG0_ONE_SHOT);
315 	if (err) {
316 		zpa2326_err(indio_dev, "failed to start one shot cycle (%d)",
317 			    err);
318 		return err;
319 	}
320 
321 	zpa2326_dbg(indio_dev, "one shot cycle started");
322 
323 	return 0;
324 }
325 
326 /**
327  * zpa2326_power_on() - Power on device to allow subsequent configuration.
328  * @indio_dev: The IIO device associated with the sampling hardware.
329  * @private:   Internal private state related to @indio_dev.
330  *
331  * Sampling will be disabled, preventing strange things from happening in our
332  * back. Hardware FIFO content will be cleared.
333  * When successful, device will be left in the enabled state to allow further
334  * configuration.
335  *
336  * Return: Zero when successful, a negative error code otherwise.
337  */
338 static int zpa2326_power_on(const struct iio_dev         *indio_dev,
339 			    const struct zpa2326_private *private)
340 {
341 	int err;
342 
343 	err = regulator_enable(private->vref);
344 	if (err)
345 		return err;
346 
347 	err = regulator_enable(private->vdd);
348 	if (err)
349 		goto vref;
350 
351 	zpa2326_dbg(indio_dev, "powered on");
352 
353 	err = zpa2326_enable_device(indio_dev);
354 	if (err)
355 		goto vdd;
356 
357 	err = zpa2326_reset_device(indio_dev);
358 	if (err)
359 		goto sleep;
360 
361 	return 0;
362 
363 sleep:
364 	zpa2326_sleep(indio_dev);
365 vdd:
366 	regulator_disable(private->vdd);
367 vref:
368 	regulator_disable(private->vref);
369 
370 	zpa2326_dbg(indio_dev, "powered off");
371 
372 	return err;
373 }
374 
375 /**
376  * zpa2326_power_off() - Power off device, i.e. disable attached power
377  *                       regulators.
378  * @indio_dev: The IIO device associated with the sampling hardware.
379  * @private:   Internal private state related to @indio_dev.
380  *
381  * Return: Zero when successful, a negative error code otherwise.
382  */
383 static void zpa2326_power_off(const struct iio_dev         *indio_dev,
384 			      const struct zpa2326_private *private)
385 {
386 	regulator_disable(private->vdd);
387 	regulator_disable(private->vref);
388 
389 	zpa2326_dbg(indio_dev, "powered off");
390 }
391 
392 /**
393  * zpa2326_config_oneshot() - Setup device for one shot / on demand mode.
394  * @indio_dev: The IIO device associated with the sampling hardware.
395  * @irq:       Optional interrupt line the hardware uses to notify new data
396  *             samples are ready. Negative or zero values indicate no interrupts
397  *             are available, meaning polling is required.
398  *
399  * Output Data Rate is configured for the highest possible rate so that
400  * conversion time and power consumption are reduced to a minimum.
401  * Note that hardware internal averaging machinery (not implemented in this
402  * driver) is not applicable in this mode.
403  *
404  * Device must have been previously enabled before calling
405  * zpa2326_config_oneshot().
406  *
407  * Return: Zero when successful, a negative error code otherwise.
408  */
409 static int zpa2326_config_oneshot(const struct iio_dev *indio_dev,
410 				  int                   irq)
411 {
412 	struct regmap                  *regs = ((struct zpa2326_private *)
413 						iio_priv(indio_dev))->regmap;
414 	const struct zpa2326_frequency *freq = zpa2326_highest_frequency();
415 	int                             err;
416 
417 	/* Setup highest available Output Data Rate for one shot mode. */
418 	err = regmap_write(regs, ZPA2326_CTRL_REG3_REG, freq->odr);
419 	if (err)
420 		return err;
421 
422 	if (irq > 0) {
423 		/* Request interrupt when new sample is available. */
424 		err = regmap_write(regs, ZPA2326_CTRL_REG1_REG,
425 				   (u8)~ZPA2326_CTRL_REG1_MASK_DATA_READY);
426 
427 		if (err) {
428 			dev_err(indio_dev->dev.parent,
429 				"failed to setup one shot mode (%d)", err);
430 			return err;
431 		}
432 	}
433 
434 	zpa2326_dbg(indio_dev, "one shot mode setup @%dHz", freq->hz);
435 
436 	return 0;
437 }
438 
439 /**
440  * zpa2326_clear_fifo() - Clear remaining entries in hardware FIFO.
441  * @indio_dev: The IIO device associated with the sampling hardware.
442  * @min_count: Number of samples present within hardware FIFO.
443  *
444  * @min_count argument is a hint corresponding to the known minimum number of
445  * samples currently living in the FIFO. This allows to reduce the number of bus
446  * accesses by skipping status register read operation as long as we know for
447  * sure there are still entries left.
448  *
449  * Return: Zero when successful, a negative error code otherwise.
450  */
451 static int zpa2326_clear_fifo(const struct iio_dev *indio_dev,
452 			      unsigned int          min_count)
453 {
454 	struct regmap *regs = ((struct zpa2326_private *)
455 			       iio_priv(indio_dev))->regmap;
456 	int            err;
457 	unsigned int   val;
458 
459 	if (!min_count) {
460 		/*
461 		 * No hint: read status register to determine whether FIFO is
462 		 * empty or not.
463 		 */
464 		err = regmap_read(regs, ZPA2326_STATUS_REG, &val);
465 
466 		if (err < 0)
467 			goto err;
468 
469 		if (val & ZPA2326_STATUS_FIFO_E)
470 			/* Fifo is empty: nothing to trash. */
471 			return 0;
472 	}
473 
474 	/* Clear FIFO. */
475 	do {
476 		/*
477 		 * A single fetch from pressure MSB register is enough to pop
478 		 * values out of FIFO.
479 		 */
480 		err = regmap_read(regs, ZPA2326_PRESS_OUT_H_REG, &val);
481 		if (err < 0)
482 			goto err;
483 
484 		if (min_count) {
485 			/*
486 			 * We know for sure there are at least min_count entries
487 			 * left in FIFO. Skip status register read.
488 			 */
489 			min_count--;
490 			continue;
491 		}
492 
493 		err = regmap_read(regs, ZPA2326_STATUS_REG, &val);
494 		if (err < 0)
495 			goto err;
496 
497 	} while (!(val & ZPA2326_STATUS_FIFO_E));
498 
499 	zpa2326_dbg(indio_dev, "FIFO cleared");
500 
501 	return 0;
502 
503 err:
504 	zpa2326_err(indio_dev, "failed to clear FIFO (%d)", err);
505 
506 	return err;
507 }
508 
509 /**
510  * zpa2326_dequeue_pressure() - Retrieve the most recent pressure sample from
511  *                              hardware FIFO.
512  * @indio_dev: The IIO device associated with the sampling hardware.
513  * @pressure:  Sampled pressure output.
514  *
515  * Note that ZPA2326 hardware FIFO stores pressure samples only.
516  *
517  * Return: Zero when successful, a negative error code otherwise.
518  */
519 static int zpa2326_dequeue_pressure(const struct iio_dev *indio_dev,
520 				    u32                  *pressure)
521 {
522 	struct regmap *regs = ((struct zpa2326_private *)
523 			       iio_priv(indio_dev))->regmap;
524 	unsigned int   val;
525 	int            err;
526 	int            cleared = -1;
527 
528 	err = regmap_read(regs, ZPA2326_STATUS_REG, &val);
529 	if (err < 0)
530 		return err;
531 
532 	*pressure = 0;
533 
534 	if (val & ZPA2326_STATUS_P_OR) {
535 		/*
536 		 * Fifo overrun : first sample dequeued from FIFO is the
537 		 * newest.
538 		 */
539 		zpa2326_warn(indio_dev, "FIFO overflow");
540 
541 		err = regmap_bulk_read(regs, ZPA2326_PRESS_OUT_XL_REG, pressure,
542 				       3);
543 		if (err)
544 			return err;
545 
546 #define ZPA2326_FIFO_DEPTH (16U)
547 		/* Hardware FIFO may hold no more than 16 pressure samples. */
548 		return zpa2326_clear_fifo(indio_dev, ZPA2326_FIFO_DEPTH - 1);
549 	}
550 
551 	/*
552 	 * Fifo has not overflown : retrieve newest sample. We need to pop
553 	 * values out until FIFO is empty : last fetched pressure is the newest.
554 	 * In nominal cases, we should find a single queued sample only.
555 	 */
556 	do {
557 		err = regmap_bulk_read(regs, ZPA2326_PRESS_OUT_XL_REG, pressure,
558 				       3);
559 		if (err)
560 			return err;
561 
562 		err = regmap_read(regs, ZPA2326_STATUS_REG, &val);
563 		if (err < 0)
564 			return err;
565 
566 		cleared++;
567 	} while (!(val & ZPA2326_STATUS_FIFO_E));
568 
569 	if (cleared)
570 		/*
571 		 * Samples were pushed by hardware during previous rounds but we
572 		 * didn't consume them fast enough: inform user.
573 		 */
574 		zpa2326_dbg(indio_dev, "cleared %d FIFO entries", cleared);
575 
576 	return 0;
577 }
578 
579 /**
580  * zpa2326_fill_sample_buffer() - Enqueue new channel samples to IIO buffer.
581  * @indio_dev: The IIO device associated with the sampling hardware.
582  * @private:   Internal private state related to @indio_dev.
583  *
584  * Return: Zero when successful, a negative error code otherwise.
585  */
586 static int zpa2326_fill_sample_buffer(struct iio_dev               *indio_dev,
587 				      const struct zpa2326_private *private)
588 {
589 	struct {
590 		u32 pressure;
591 		u16 temperature;
592 		u64 timestamp;
593 	}   sample;
594 	int err;
595 
596 	if (test_bit(0, indio_dev->active_scan_mask)) {
597 		/* Get current pressure from hardware FIFO. */
598 		err = zpa2326_dequeue_pressure(indio_dev, &sample.pressure);
599 		if (err) {
600 			zpa2326_warn(indio_dev, "failed to fetch pressure (%d)",
601 				     err);
602 			return err;
603 		}
604 	}
605 
606 	if (test_bit(1, indio_dev->active_scan_mask)) {
607 		/* Get current temperature. */
608 		err = regmap_bulk_read(private->regmap, ZPA2326_TEMP_OUT_L_REG,
609 				       &sample.temperature, 2);
610 		if (err) {
611 			zpa2326_warn(indio_dev,
612 				     "failed to fetch temperature (%d)", err);
613 			return err;
614 		}
615 	}
616 
617 	/*
618 	 * Now push samples using timestamp stored either :
619 	 *   - by hardware interrupt handler if interrupt is available: see
620 	 *     zpa2326_handle_irq(),
621 	 *   - or oneshot completion polling machinery : see
622 	 *     zpa2326_trigger_handler().
623 	 */
624 	zpa2326_dbg(indio_dev, "filling raw samples buffer");
625 
626 	iio_push_to_buffers_with_timestamp(indio_dev, &sample,
627 					   private->timestamp);
628 
629 	return 0;
630 }
631 
632 #ifdef CONFIG_PM
633 static int zpa2326_runtime_suspend(struct device *parent)
634 {
635 	const struct iio_dev *indio_dev = dev_get_drvdata(parent);
636 
637 	if (pm_runtime_autosuspend_expiration(parent))
638 		/* Userspace changed autosuspend delay. */
639 		return -EAGAIN;
640 
641 	zpa2326_power_off(indio_dev, iio_priv(indio_dev));
642 
643 	return 0;
644 }
645 
646 static int zpa2326_runtime_resume(struct device *parent)
647 {
648 	const struct iio_dev *indio_dev = dev_get_drvdata(parent);
649 
650 	return zpa2326_power_on(indio_dev, iio_priv(indio_dev));
651 }
652 
653 const struct dev_pm_ops zpa2326_pm_ops = {
654 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
655 				pm_runtime_force_resume)
656 	SET_RUNTIME_PM_OPS(zpa2326_runtime_suspend, zpa2326_runtime_resume,
657 			   NULL)
658 };
659 EXPORT_SYMBOL_GPL(zpa2326_pm_ops);
660 
661 /**
662  * zpa2326_resume() - Request the PM layer to power supply the device.
663  * @indio_dev: The IIO device associated with the sampling hardware.
664  *
665  * Return:
666  *  < 0 - a negative error code meaning failure ;
667  *    0 - success, device has just been powered up ;
668  *    1 - success, device was already powered.
669  */
670 static int zpa2326_resume(const struct iio_dev *indio_dev)
671 {
672 	int err;
673 
674 	err = pm_runtime_get_sync(indio_dev->dev.parent);
675 	if (err < 0)
676 		return err;
677 
678 	if (err > 0) {
679 		/*
680 		 * Device was already power supplied: get it out of low power
681 		 * mode and inform caller.
682 		 */
683 		zpa2326_enable_device(indio_dev);
684 		return 1;
685 	}
686 
687 	/* Inform caller device has just been brought back to life. */
688 	return 0;
689 }
690 
691 /**
692  * zpa2326_suspend() - Schedule a power down using autosuspend feature of PM
693  *                     layer.
694  * @indio_dev: The IIO device associated with the sampling hardware.
695  *
696  * Device is switched to low power mode at first to save power even when
697  * attached regulator is a "dummy" one.
698  */
699 static void zpa2326_suspend(struct iio_dev *indio_dev)
700 {
701 	struct device *parent = indio_dev->dev.parent;
702 
703 	zpa2326_sleep(indio_dev);
704 
705 	pm_runtime_mark_last_busy(parent);
706 	pm_runtime_put_autosuspend(parent);
707 }
708 
709 static void zpa2326_init_runtime(struct device *parent)
710 {
711 	pm_runtime_get_noresume(parent);
712 	pm_runtime_set_active(parent);
713 	pm_runtime_enable(parent);
714 	pm_runtime_set_autosuspend_delay(parent, 1000);
715 	pm_runtime_use_autosuspend(parent);
716 	pm_runtime_mark_last_busy(parent);
717 	pm_runtime_put_autosuspend(parent);
718 }
719 
720 static void zpa2326_fini_runtime(struct device *parent)
721 {
722 	pm_runtime_disable(parent);
723 	pm_runtime_set_suspended(parent);
724 }
725 #else /* !CONFIG_PM */
726 static int zpa2326_resume(const struct iio_dev *indio_dev)
727 {
728 	zpa2326_enable_device(indio_dev);
729 
730 	return 0;
731 }
732 
733 static void zpa2326_suspend(struct iio_dev *indio_dev)
734 {
735 	zpa2326_sleep(indio_dev);
736 }
737 
738 #define zpa2326_init_runtime(_parent)
739 #define zpa2326_fini_runtime(_parent)
740 #endif /* !CONFIG_PM */
741 
742 /**
743  * zpa2326_handle_irq() - Process hardware interrupts.
744  * @irq:  Interrupt line the hardware uses to notify new data has arrived.
745  * @data: The IIO device associated with the sampling hardware.
746  *
747  * Timestamp buffered samples as soon as possible then schedule threaded bottom
748  * half.
749  *
750  * Return: Always successful.
751  */
752 static irqreturn_t zpa2326_handle_irq(int irq, void *data)
753 {
754 	struct iio_dev *indio_dev = (struct iio_dev *)data;
755 
756 	if (iio_buffer_enabled(indio_dev)) {
757 		/* Timestamping needed for buffered sampling only. */
758 		((struct zpa2326_private *)
759 		 iio_priv(indio_dev))->timestamp = iio_get_time_ns(indio_dev);
760 	}
761 
762 	return IRQ_WAKE_THREAD;
763 }
764 
765 /**
766  * zpa2326_handle_threaded_irq() - Interrupt bottom-half handler.
767  * @irq:  Interrupt line the hardware uses to notify new data has arrived.
768  * @data: The IIO device associated with the sampling hardware.
769  *
770  * Mainly ensures interrupt is caused by a real "new sample available"
771  * condition. This relies upon the ability to perform blocking / sleeping bus
772  * accesses to slave's registers. This is why zpa2326_handle_threaded_irq() is
773  * called from within a thread, i.e. not called from hard interrupt context.
774  *
775  * When device is using its own internal hardware trigger in continuous sampling
776  * mode, data are available into hardware FIFO once interrupt has occurred. All
777  * we have to do is to dispatch the trigger, which in turn will fetch data and
778  * fill IIO buffer.
779  *
780  * When not using its own internal hardware trigger, the device has been
781  * configured in one-shot mode either by an external trigger or the IIO read_raw
782  * hook. This means one of the latter is currently waiting for sampling
783  * completion, in which case we must simply wake it up.
784  *
785  * See zpa2326_trigger_handler().
786  *
787  * Return:
788  *   %IRQ_NONE - no consistent interrupt happened ;
789  *   %IRQ_HANDLED - there was new samples available.
790  */
791 static irqreturn_t zpa2326_handle_threaded_irq(int irq, void *data)
792 {
793 	struct iio_dev         *indio_dev = (struct iio_dev *)data;
794 	struct zpa2326_private *priv = iio_priv(indio_dev);
795 	unsigned int            val;
796 	bool                    cont;
797 	irqreturn_t             ret = IRQ_NONE;
798 
799 	/*
800 	 * Are we using our own internal trigger in triggered buffer mode, i.e.,
801 	 * currently working in continuous sampling mode ?
802 	 */
803 	cont = (iio_buffer_enabled(indio_dev) &&
804 		iio_trigger_using_own(indio_dev));
805 
806 	/*
807 	 * Device works according to a level interrupt scheme: reading interrupt
808 	 * status de-asserts interrupt line.
809 	 */
810 	priv->result = regmap_read(priv->regmap, ZPA2326_INT_SOURCE_REG, &val);
811 	if (priv->result < 0) {
812 		if (cont)
813 			return IRQ_NONE;
814 
815 		goto complete;
816 	}
817 
818 	/* Data ready is the only interrupt source we requested. */
819 	if (!(val & ZPA2326_INT_SOURCE_DATA_READY)) {
820 		/*
821 		 * Interrupt happened but no new sample available: likely caused
822 		 * by spurious interrupts, in which case, returning IRQ_NONE
823 		 * allows to benefit from the generic spurious interrupts
824 		 * handling.
825 		 */
826 		zpa2326_warn(indio_dev, "unexpected interrupt status %02x",
827 			     val);
828 
829 		if (cont)
830 			return IRQ_NONE;
831 
832 		priv->result = -ENODATA;
833 		goto complete;
834 	}
835 
836 	/* New sample available: dispatch internal trigger consumers. */
837 	iio_trigger_poll_chained(priv->trigger);
838 
839 	if (cont)
840 		/*
841 		 * Internal hardware trigger has been scheduled above : it will
842 		 * fetch data on its own.
843 		 */
844 		return IRQ_HANDLED;
845 
846 	ret = IRQ_HANDLED;
847 
848 complete:
849 	/*
850 	 * Wake up direct or externaly triggered buffer mode waiters: see
851 	 * zpa2326_sample_oneshot() and zpa2326_trigger_handler().
852 	 */
853 	complete(&priv->data_ready);
854 
855 	return ret;
856 }
857 
858 /**
859  * zpa2326_wait_oneshot_completion() - Wait for oneshot data ready interrupt.
860  * @indio_dev: The IIO device associated with the sampling hardware.
861  * @private:   Internal private state related to @indio_dev.
862  *
863  * Return: Zero when successful, a negative error code otherwise.
864  */
865 static int zpa2326_wait_oneshot_completion(const struct iio_dev   *indio_dev,
866 					   struct zpa2326_private *private)
867 {
868 	int          ret;
869 	unsigned int val;
870 
871 	zpa2326_dbg(indio_dev, "waiting for one shot completion interrupt");
872 
873 	ret = wait_for_completion_interruptible_timeout(
874 		&private->data_ready, ZPA2326_CONVERSION_JIFFIES);
875 	if (ret > 0)
876 		/*
877 		 * Interrupt handler completed before timeout: return operation
878 		 * status.
879 		 */
880 		return private->result;
881 
882 	/* Clear all interrupts just to be sure. */
883 	regmap_read(private->regmap, ZPA2326_INT_SOURCE_REG, &val);
884 
885 	if (!ret)
886 		/* Timed out. */
887 		ret = -ETIME;
888 
889 	if (ret != -ERESTARTSYS)
890 		zpa2326_warn(indio_dev, "no one shot interrupt occurred (%d)",
891 			     ret);
892 
893 	return ret;
894 }
895 
896 static int zpa2326_init_managed_irq(struct device          *parent,
897 				    struct iio_dev         *indio_dev,
898 				    struct zpa2326_private *private,
899 				    int                     irq)
900 {
901 	int err;
902 
903 	private->irq = irq;
904 
905 	if (irq <= 0) {
906 		/*
907 		 * Platform declared no interrupt line: device will be polled
908 		 * for data availability.
909 		 */
910 		dev_info(parent, "no interrupt found, running in polling mode");
911 		return 0;
912 	}
913 
914 	init_completion(&private->data_ready);
915 
916 	/* Request handler to be scheduled into threaded interrupt context. */
917 	err = devm_request_threaded_irq(parent, irq, zpa2326_handle_irq,
918 					zpa2326_handle_threaded_irq,
919 					IRQF_TRIGGER_RISING | IRQF_ONESHOT,
920 					dev_name(parent), indio_dev);
921 	if (err) {
922 		dev_err(parent, "failed to request interrupt %d (%d)", irq,
923 			err);
924 		return err;
925 	}
926 
927 	dev_info(parent, "using interrupt %d", irq);
928 
929 	return 0;
930 }
931 
932 /**
933  * zpa2326_poll_oneshot_completion() - Actively poll for one shot data ready.
934  * @indio_dev: The IIO device associated with the sampling hardware.
935  *
936  * Loop over registers content to detect end of sampling cycle. Used when DT
937  * declared no valid interrupt lines.
938  *
939  * Return: Zero when successful, a negative error code otherwise.
940  */
941 static int zpa2326_poll_oneshot_completion(const struct iio_dev *indio_dev)
942 {
943 	unsigned long  tmout = jiffies + ZPA2326_CONVERSION_JIFFIES;
944 	struct regmap *regs = ((struct zpa2326_private *)
945 			       iio_priv(indio_dev))->regmap;
946 	unsigned int   val;
947 	int            err;
948 
949 	zpa2326_dbg(indio_dev, "polling for one shot completion");
950 
951 	/*
952 	 * At least, 100 ms is needed for the device to complete its one-shot
953 	 * cycle.
954 	 */
955 	if (msleep_interruptible(100))
956 		return -ERESTARTSYS;
957 
958 	/* Poll for conversion completion in hardware. */
959 	while (true) {
960 		err = regmap_read(regs, ZPA2326_CTRL_REG0_REG, &val);
961 		if (err < 0)
962 			goto err;
963 
964 		if (!(val & ZPA2326_CTRL_REG0_ONE_SHOT))
965 			/* One-shot bit self clears at conversion end. */
966 			break;
967 
968 		if (time_after(jiffies, tmout)) {
969 			/* Prevent from waiting forever : let's time out. */
970 			err = -ETIME;
971 			goto err;
972 		}
973 
974 		usleep_range(10000, 20000);
975 	}
976 
977 	/*
978 	 * In oneshot mode, pressure sample availability guarantees that
979 	 * temperature conversion has also completed : just check pressure
980 	 * status bit to keep things simple.
981 	 */
982 	err = regmap_read(regs, ZPA2326_STATUS_REG, &val);
983 	if (err < 0)
984 		goto err;
985 
986 	if (!(val & ZPA2326_STATUS_P_DA)) {
987 		/* No sample available. */
988 		err = -ENODATA;
989 		goto err;
990 	}
991 
992 	return 0;
993 
994 err:
995 	zpa2326_warn(indio_dev, "failed to poll one shot completion (%d)", err);
996 
997 	return err;
998 }
999 
1000 /**
1001  * zpa2326_fetch_raw_sample() - Retrieve a raw sample and convert it to CPU
1002  *                              endianness.
1003  * @indio_dev: The IIO device associated with the sampling hardware.
1004  * @type:      Type of measurement / channel to fetch from.
1005  * @value:     Sample output.
1006  *
1007  * Return: Zero when successful, a negative error code otherwise.
1008  */
1009 static int zpa2326_fetch_raw_sample(const struct iio_dev *indio_dev,
1010 				    enum iio_chan_type    type,
1011 				    int                  *value)
1012 {
1013 	struct regmap *regs = ((struct zpa2326_private *)
1014 			       iio_priv(indio_dev))->regmap;
1015 	int            err;
1016 
1017 	switch (type) {
1018 	case IIO_PRESSURE:
1019 		zpa2326_dbg(indio_dev, "fetching raw pressure sample");
1020 
1021 		err = regmap_bulk_read(regs, ZPA2326_PRESS_OUT_XL_REG, value,
1022 				       3);
1023 		if (err) {
1024 			zpa2326_warn(indio_dev, "failed to fetch pressure (%d)",
1025 				     err);
1026 			return err;
1027 		}
1028 
1029 		/* Pressure is a 24 bits wide little-endian unsigned int. */
1030 		*value = (((u8 *)value)[2] << 16) | (((u8 *)value)[1] << 8) |
1031 			 ((u8 *)value)[0];
1032 
1033 		return IIO_VAL_INT;
1034 
1035 	case IIO_TEMP:
1036 		zpa2326_dbg(indio_dev, "fetching raw temperature sample");
1037 
1038 		err = regmap_bulk_read(regs, ZPA2326_TEMP_OUT_L_REG, value, 2);
1039 		if (err) {
1040 			zpa2326_warn(indio_dev,
1041 				     "failed to fetch temperature (%d)", err);
1042 			return err;
1043 		}
1044 
1045 		/* Temperature is a 16 bits wide little-endian signed int. */
1046 		*value = (int)le16_to_cpup((__le16 *)value);
1047 
1048 		return IIO_VAL_INT;
1049 
1050 	default:
1051 		return -EINVAL;
1052 	}
1053 }
1054 
1055 /**
1056  * zpa2326_sample_oneshot() - Perform a complete one shot sampling cycle.
1057  * @indio_dev: The IIO device associated with the sampling hardware.
1058  * @type:      Type of measurement / channel to fetch from.
1059  * @value:     Sample output.
1060  *
1061  * Return: Zero when successful, a negative error code otherwise.
1062  */
1063 static int zpa2326_sample_oneshot(struct iio_dev     *indio_dev,
1064 				  enum iio_chan_type  type,
1065 				  int                *value)
1066 {
1067 	int                     ret;
1068 	struct zpa2326_private *priv;
1069 
1070 	ret = iio_device_claim_direct_mode(indio_dev);
1071 	if (ret)
1072 		return ret;
1073 
1074 	ret = zpa2326_resume(indio_dev);
1075 	if (ret < 0)
1076 		goto release;
1077 
1078 	priv = iio_priv(indio_dev);
1079 
1080 	if (ret > 0) {
1081 		/*
1082 		 * We were already power supplied. Just clear hardware FIFO to
1083 		 * get rid of samples acquired during previous rounds (if any).
1084 		 * Sampling operation always generates both temperature and
1085 		 * pressure samples. The latter are always enqueued into
1086 		 * hardware FIFO. This may lead to situations were pressure
1087 		 * samples still sit into FIFO when previous cycle(s) fetched
1088 		 * temperature data only.
1089 		 * Hence, we need to clear hardware FIFO content to prevent from
1090 		 * getting outdated values at the end of current cycle.
1091 		 */
1092 		if (type == IIO_PRESSURE) {
1093 			ret = zpa2326_clear_fifo(indio_dev, 0);
1094 			if (ret)
1095 				goto suspend;
1096 		}
1097 	} else {
1098 		/*
1099 		 * We have just been power supplied, i.e. device is in default
1100 		 * "out of reset" state, meaning we need to reconfigure it
1101 		 * entirely.
1102 		 */
1103 		ret = zpa2326_config_oneshot(indio_dev, priv->irq);
1104 		if (ret)
1105 			goto suspend;
1106 	}
1107 
1108 	/* Start a sampling cycle in oneshot mode. */
1109 	ret = zpa2326_start_oneshot(indio_dev);
1110 	if (ret)
1111 		goto suspend;
1112 
1113 	/* Wait for sampling cycle to complete. */
1114 	if (priv->irq > 0)
1115 		ret = zpa2326_wait_oneshot_completion(indio_dev, priv);
1116 	else
1117 		ret = zpa2326_poll_oneshot_completion(indio_dev);
1118 
1119 	if (ret)
1120 		goto suspend;
1121 
1122 	/* Retrieve raw sample value and convert it to CPU endianness. */
1123 	ret = zpa2326_fetch_raw_sample(indio_dev, type, value);
1124 
1125 suspend:
1126 	zpa2326_suspend(indio_dev);
1127 release:
1128 	iio_device_release_direct_mode(indio_dev);
1129 
1130 	return ret;
1131 }
1132 
1133 /**
1134  * zpa2326_trigger_handler() - Perform an IIO buffered sampling round in one
1135  *                             shot mode.
1136  * @irq:  The software interrupt assigned to @data
1137  * @data: The IIO poll function dispatched by external trigger our device is
1138  *        attached to.
1139  *
1140  * Bottom-half handler called by the IIO trigger to which our device is
1141  * currently attached. Allows us to synchronize this device buffered sampling
1142  * either with external events (such as timer expiration, external device sample
1143  * ready, etc...) or with its own interrupt (internal hardware trigger).
1144  *
1145  * When using an external trigger, basically run the same sequence of operations
1146  * as for zpa2326_sample_oneshot() with the following hereafter. Hardware FIFO
1147  * is not cleared since already done at buffering enable time and samples
1148  * dequeueing always retrieves the most recent value.
1149  *
1150  * Otherwise, when internal hardware trigger has dispatched us, just fetch data
1151  * from hardware FIFO.
1152  *
1153  * Fetched data will pushed unprocessed to IIO buffer since samples conversion
1154  * is delegated to userspace in buffered mode (endianness, etc...).
1155  *
1156  * Return:
1157  *   %IRQ_NONE - no consistent interrupt happened ;
1158  *   %IRQ_HANDLED - there was new samples available.
1159  */
1160 static irqreturn_t zpa2326_trigger_handler(int irq, void *data)
1161 {
1162 	struct iio_dev         *indio_dev = ((struct iio_poll_func *)
1163 					     data)->indio_dev;
1164 	struct zpa2326_private *priv = iio_priv(indio_dev);
1165 	bool                    cont;
1166 
1167 	/*
1168 	 * We have been dispatched, meaning we are in triggered buffer mode.
1169 	 * Using our own internal trigger implies we are currently in continuous
1170 	 * hardware sampling mode.
1171 	 */
1172 	cont = iio_trigger_using_own(indio_dev);
1173 
1174 	if (!cont) {
1175 		/* On demand sampling : start a one shot cycle. */
1176 		if (zpa2326_start_oneshot(indio_dev))
1177 			goto out;
1178 
1179 		/* Wait for sampling cycle to complete. */
1180 		if (priv->irq <= 0) {
1181 			/* No interrupt available: poll for completion. */
1182 			if (zpa2326_poll_oneshot_completion(indio_dev))
1183 				goto out;
1184 
1185 			/* Only timestamp sample once it is ready. */
1186 			priv->timestamp = iio_get_time_ns(indio_dev);
1187 		} else {
1188 			/* Interrupt handlers will timestamp for us. */
1189 			if (zpa2326_wait_oneshot_completion(indio_dev, priv))
1190 				goto out;
1191 		}
1192 	}
1193 
1194 	/* Enqueue to IIO buffer / userspace. */
1195 	zpa2326_fill_sample_buffer(indio_dev, priv);
1196 
1197 out:
1198 	if (!cont)
1199 		/* Don't switch to low power if sampling continuously. */
1200 		zpa2326_sleep(indio_dev);
1201 
1202 	/* Inform attached trigger we are done. */
1203 	iio_trigger_notify_done(indio_dev->trig);
1204 
1205 	return IRQ_HANDLED;
1206 }
1207 
1208 /**
1209  * zpa2326_preenable_buffer() - Prepare device for configuring triggered
1210  *                              sampling
1211  * modes.
1212  * @indio_dev: The IIO device associated with the sampling hardware.
1213  *
1214  * Basically power up device.
1215  * Called with IIO device's lock held.
1216  *
1217  * Return: Zero when successful, a negative error code otherwise.
1218  */
1219 static int zpa2326_preenable_buffer(struct iio_dev *indio_dev)
1220 {
1221 	int ret = zpa2326_resume(indio_dev);
1222 
1223 	if (ret < 0)
1224 		return ret;
1225 
1226 	/* Tell zpa2326_postenable_buffer() if we have just been powered on. */
1227 	((struct zpa2326_private *)
1228 	 iio_priv(indio_dev))->waken = iio_priv(indio_dev);
1229 
1230 	return 0;
1231 }
1232 
1233 /**
1234  * zpa2326_postenable_buffer() - Configure device for triggered sampling.
1235  * @indio_dev: The IIO device associated with the sampling hardware.
1236  *
1237  * Basically setup one-shot mode if plugging external trigger.
1238  * Otherwise, let internal trigger configure continuous sampling :
1239  * see zpa2326_set_trigger_state().
1240  *
1241  * If an error is returned, IIO layer will call our postdisable hook for us,
1242  * i.e. no need to explicitly power device off here.
1243  * Called with IIO device's lock held.
1244  *
1245  * Called with IIO device's lock held.
1246  *
1247  * Return: Zero when successful, a negative error code otherwise.
1248  */
1249 static int zpa2326_postenable_buffer(struct iio_dev *indio_dev)
1250 {
1251 	const struct zpa2326_private *priv = iio_priv(indio_dev);
1252 	int                           err;
1253 
1254 	if (!priv->waken) {
1255 		/*
1256 		 * We were already power supplied. Just clear hardware FIFO to
1257 		 * get rid of samples acquired during previous rounds (if any).
1258 		 */
1259 		err = zpa2326_clear_fifo(indio_dev, 0);
1260 		if (err)
1261 			goto err;
1262 	}
1263 
1264 	if (!iio_trigger_using_own(indio_dev) && priv->waken) {
1265 		/*
1266 		 * We are using an external trigger and we have just been
1267 		 * powered up: reconfigure one-shot mode.
1268 		 */
1269 		err = zpa2326_config_oneshot(indio_dev, priv->irq);
1270 		if (err)
1271 			goto err;
1272 	}
1273 
1274 	/* Plug our own trigger event handler. */
1275 	err = iio_triggered_buffer_postenable(indio_dev);
1276 	if (err)
1277 		goto err;
1278 
1279 	return 0;
1280 
1281 err:
1282 	zpa2326_err(indio_dev, "failed to enable buffering (%d)", err);
1283 
1284 	return err;
1285 }
1286 
1287 static int zpa2326_postdisable_buffer(struct iio_dev *indio_dev)
1288 {
1289 	zpa2326_suspend(indio_dev);
1290 
1291 	return 0;
1292 }
1293 
1294 static const struct iio_buffer_setup_ops zpa2326_buffer_setup_ops = {
1295 	.preenable   = zpa2326_preenable_buffer,
1296 	.postenable  = zpa2326_postenable_buffer,
1297 	.predisable  = iio_triggered_buffer_predisable,
1298 	.postdisable = zpa2326_postdisable_buffer
1299 };
1300 
1301 /**
1302  * zpa2326_set_trigger_state() - Start / stop continuous sampling.
1303  * @trig:  The trigger being attached to IIO device associated with the sampling
1304  *         hardware.
1305  * @state: Tell whether to start (true) or stop (false)
1306  *
1307  * Basically enable / disable hardware continuous sampling mode.
1308  *
1309  * Called with IIO device's lock held at postenable() or predisable() time.
1310  *
1311  * Return: Zero when successful, a negative error code otherwise.
1312  */
1313 static int zpa2326_set_trigger_state(struct iio_trigger *trig, bool state)
1314 {
1315 	const struct iio_dev         *indio_dev = dev_get_drvdata(
1316 							trig->dev.parent);
1317 	const struct zpa2326_private *priv = iio_priv(indio_dev);
1318 	int                           err;
1319 
1320 	if (!state) {
1321 		/*
1322 		 * Switch trigger off : in case of failure, interrupt is left
1323 		 * disabled in order to prevent handler from accessing released
1324 		 * resources.
1325 		 */
1326 		unsigned int val;
1327 
1328 		/*
1329 		 * As device is working in continuous mode, handlers may be
1330 		 * accessing resources we are currently freeing...
1331 		 * Prevent this by disabling interrupt handlers and ensure
1332 		 * the device will generate no more interrupts unless explicitly
1333 		 * required to, i.e. by restoring back to default one shot mode.
1334 		 */
1335 		disable_irq(priv->irq);
1336 
1337 		/*
1338 		 * Disable continuous sampling mode to restore settings for
1339 		 * one shot / direct sampling operations.
1340 		 */
1341 		err = regmap_write(priv->regmap, ZPA2326_CTRL_REG3_REG,
1342 				   zpa2326_highest_frequency()->odr);
1343 		if (err)
1344 			return err;
1345 
1346 		/*
1347 		 * Now that device won't generate interrupts on its own,
1348 		 * acknowledge any currently active interrupts (may happen on
1349 		 * rare occasions while stopping continuous mode).
1350 		 */
1351 		err = regmap_read(priv->regmap, ZPA2326_INT_SOURCE_REG, &val);
1352 		if (err < 0)
1353 			return err;
1354 
1355 		/*
1356 		 * Re-enable interrupts only if we can guarantee the device will
1357 		 * generate no more interrupts to prevent handlers from
1358 		 * accessing released resources.
1359 		 */
1360 		enable_irq(priv->irq);
1361 
1362 		zpa2326_dbg(indio_dev, "continuous mode stopped");
1363 	} else {
1364 		/*
1365 		 * Switch trigger on : start continuous sampling at required
1366 		 * frequency.
1367 		 */
1368 
1369 		if (priv->waken) {
1370 			/* Enable interrupt if getting out of reset. */
1371 			err = regmap_write(priv->regmap, ZPA2326_CTRL_REG1_REG,
1372 					   (u8)
1373 					   ~ZPA2326_CTRL_REG1_MASK_DATA_READY);
1374 			if (err)
1375 				return err;
1376 		}
1377 
1378 		/* Enable continuous sampling at specified frequency. */
1379 		err = regmap_write(priv->regmap, ZPA2326_CTRL_REG3_REG,
1380 				   ZPA2326_CTRL_REG3_ENABLE_MEAS |
1381 				   priv->frequency->odr);
1382 		if (err)
1383 			return err;
1384 
1385 		zpa2326_dbg(indio_dev, "continuous mode setup @%dHz",
1386 			    priv->frequency->hz);
1387 	}
1388 
1389 	return 0;
1390 }
1391 
1392 static const struct iio_trigger_ops zpa2326_trigger_ops = {
1393 	.owner             = THIS_MODULE,
1394 	.set_trigger_state = zpa2326_set_trigger_state,
1395 };
1396 
1397 /**
1398  * zpa2326_init_trigger() - Create an interrupt driven / hardware trigger
1399  *                          allowing to notify external devices a new sample is
1400  *                          ready.
1401  * @parent:    Hardware sampling device @indio_dev is a child of.
1402  * @indio_dev: The IIO device associated with the sampling hardware.
1403  * @private:   Internal private state related to @indio_dev.
1404  * @irq:       Optional interrupt line the hardware uses to notify new data
1405  *             samples are ready. Negative or zero values indicate no interrupts
1406  *             are available, meaning polling is required.
1407  *
1408  * Only relevant when DT declares a valid interrupt line.
1409  *
1410  * Return: Zero when successful, a negative error code otherwise.
1411  */
1412 static int zpa2326_init_managed_trigger(struct device          *parent,
1413 					struct iio_dev         *indio_dev,
1414 					struct zpa2326_private *private,
1415 					int                     irq)
1416 {
1417 	struct iio_trigger *trigger;
1418 	int                 ret;
1419 
1420 	if (irq <= 0)
1421 		return 0;
1422 
1423 	trigger = devm_iio_trigger_alloc(parent, "%s-dev%d",
1424 					 indio_dev->name, indio_dev->id);
1425 	if (!trigger)
1426 		return -ENOMEM;
1427 
1428 	/* Basic setup. */
1429 	trigger->dev.parent = parent;
1430 	trigger->ops = &zpa2326_trigger_ops;
1431 
1432 	private->trigger = trigger;
1433 
1434 	/* Register to triggers space. */
1435 	ret = devm_iio_trigger_register(parent, trigger);
1436 	if (ret)
1437 		dev_err(parent, "failed to register hardware trigger (%d)",
1438 			ret);
1439 
1440 	return ret;
1441 }
1442 
1443 static int zpa2326_get_frequency(const struct iio_dev *indio_dev)
1444 {
1445 	return ((struct zpa2326_private *)iio_priv(indio_dev))->frequency->hz;
1446 }
1447 
1448 static int zpa2326_set_frequency(struct iio_dev *indio_dev, int hz)
1449 {
1450 	struct zpa2326_private *priv = iio_priv(indio_dev);
1451 	int                     freq;
1452 	int                     err;
1453 
1454 	/* Check if requested frequency is supported. */
1455 	for (freq = 0; freq < ARRAY_SIZE(zpa2326_sampling_frequencies); freq++)
1456 		if (zpa2326_sampling_frequencies[freq].hz == hz)
1457 			break;
1458 	if (freq == ARRAY_SIZE(zpa2326_sampling_frequencies))
1459 		return -EINVAL;
1460 
1461 	/* Don't allow changing frequency if buffered sampling is ongoing. */
1462 	err = iio_device_claim_direct_mode(indio_dev);
1463 	if (err)
1464 		return err;
1465 
1466 	priv->frequency = &zpa2326_sampling_frequencies[freq];
1467 
1468 	iio_device_release_direct_mode(indio_dev);
1469 
1470 	return 0;
1471 }
1472 
1473 /* Expose supported hardware sampling frequencies (Hz) through sysfs. */
1474 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("1 5 11 23");
1475 
1476 static struct attribute *zpa2326_attributes[] = {
1477 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1478 	NULL
1479 };
1480 
1481 static const struct attribute_group zpa2326_attribute_group = {
1482 	.attrs = zpa2326_attributes,
1483 };
1484 
1485 static int zpa2326_read_raw(struct iio_dev             *indio_dev,
1486 			    struct iio_chan_spec const *chan,
1487 			    int                        *val,
1488 			    int                        *val2,
1489 			    long                        mask)
1490 {
1491 	switch (mask) {
1492 	case IIO_CHAN_INFO_RAW:
1493 		return zpa2326_sample_oneshot(indio_dev, chan->type, val);
1494 
1495 	case IIO_CHAN_INFO_SCALE:
1496 		switch (chan->type) {
1497 		case IIO_PRESSURE:
1498 			/*
1499 			 * Pressure resolution is 1/64 Pascal. Scale to kPascal
1500 			 * as required by IIO ABI.
1501 			 */
1502 			*val = 1;
1503 			*val2 = 64000;
1504 			return IIO_VAL_FRACTIONAL;
1505 
1506 		case IIO_TEMP:
1507 			/*
1508 			 * Temperature follows the equation:
1509 			 *     Temp[degC] = Tempcode * 0.00649 - 176.83
1510 			 * where:
1511 			 *     Tempcode is composed the raw sampled 16 bits.
1512 			 *
1513 			 * Hence, to produce a temperature in milli-degrees
1514 			 * Celsius according to IIO ABI, we need to apply the
1515 			 * following equation to raw samples:
1516 			 *     Temp[milli degC] = (Tempcode + Offset) * Scale
1517 			 * where:
1518 			 *     Offset = -176.83 / 0.00649
1519 			 *     Scale = 0.00649 * 1000
1520 			 */
1521 			*val = 6;
1522 			*val2 = 490000;
1523 			return IIO_VAL_INT_PLUS_MICRO;
1524 
1525 		default:
1526 			return -EINVAL;
1527 		}
1528 
1529 	case IIO_CHAN_INFO_OFFSET:
1530 		switch (chan->type) {
1531 		case IIO_TEMP:
1532 			*val = -17683000;
1533 			*val2 = 649;
1534 			return IIO_VAL_FRACTIONAL;
1535 
1536 		default:
1537 			return -EINVAL;
1538 		}
1539 
1540 	case IIO_CHAN_INFO_SAMP_FREQ:
1541 		*val = zpa2326_get_frequency(indio_dev);
1542 		return IIO_VAL_INT;
1543 
1544 	default:
1545 		return -EINVAL;
1546 	}
1547 }
1548 
1549 static int zpa2326_write_raw(struct iio_dev             *indio_dev,
1550 			     const struct iio_chan_spec *chan,
1551 			     int                         val,
1552 			     int                         val2,
1553 			     long                        mask)
1554 {
1555 	if ((mask != IIO_CHAN_INFO_SAMP_FREQ) || val2)
1556 		return -EINVAL;
1557 
1558 	return zpa2326_set_frequency(indio_dev, val);
1559 }
1560 
1561 static const struct iio_chan_spec zpa2326_channels[] = {
1562 	[0] = {
1563 		.type                    = IIO_PRESSURE,
1564 		.scan_index              = 0,
1565 		.scan_type               = {
1566 			.sign                   = 'u',
1567 			.realbits               = 24,
1568 			.storagebits            = 32,
1569 			.endianness             = IIO_LE,
1570 		},
1571 		.info_mask_separate      = BIT(IIO_CHAN_INFO_RAW) |
1572 					   BIT(IIO_CHAN_INFO_SCALE),
1573 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1574 	},
1575 	[1] = {
1576 		.type                    = IIO_TEMP,
1577 		.scan_index              = 1,
1578 		.scan_type               = {
1579 			.sign                   = 's',
1580 			.realbits               = 16,
1581 			.storagebits            = 16,
1582 			.endianness             = IIO_LE,
1583 		},
1584 		.info_mask_separate      = BIT(IIO_CHAN_INFO_RAW) |
1585 					   BIT(IIO_CHAN_INFO_SCALE) |
1586 					   BIT(IIO_CHAN_INFO_OFFSET),
1587 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
1588 	},
1589 	[2] = IIO_CHAN_SOFT_TIMESTAMP(2),
1590 };
1591 
1592 static const struct iio_info zpa2326_info = {
1593 	.driver_module = THIS_MODULE,
1594 	.attrs         = &zpa2326_attribute_group,
1595 	.read_raw      = zpa2326_read_raw,
1596 	.write_raw     = zpa2326_write_raw,
1597 };
1598 
1599 static struct iio_dev *zpa2326_create_managed_iiodev(struct device *device,
1600 						     const char    *name,
1601 						     struct regmap *regmap)
1602 {
1603 	struct iio_dev *indio_dev;
1604 
1605 	/* Allocate space to hold IIO device internal state. */
1606 	indio_dev = devm_iio_device_alloc(device,
1607 					  sizeof(struct zpa2326_private));
1608 	if (!indio_dev)
1609 		return NULL;
1610 
1611 	/* Setup for userspace synchronous on demand sampling. */
1612 	indio_dev->modes = INDIO_DIRECT_MODE;
1613 	indio_dev->dev.parent = device;
1614 	indio_dev->channels = zpa2326_channels;
1615 	indio_dev->num_channels = ARRAY_SIZE(zpa2326_channels);
1616 	indio_dev->name = name;
1617 	indio_dev->info = &zpa2326_info;
1618 
1619 	return indio_dev;
1620 }
1621 
1622 int zpa2326_probe(struct device *parent,
1623 		  const char    *name,
1624 		  int            irq,
1625 		  unsigned int   hwid,
1626 		  struct regmap *regmap)
1627 {
1628 	struct iio_dev         *indio_dev;
1629 	struct zpa2326_private *priv;
1630 	int                     err;
1631 	unsigned int            id;
1632 
1633 	indio_dev = zpa2326_create_managed_iiodev(parent, name, regmap);
1634 	if (!indio_dev)
1635 		return -ENOMEM;
1636 
1637 	priv = iio_priv(indio_dev);
1638 
1639 	priv->vref = devm_regulator_get(parent, "vref");
1640 	if (IS_ERR(priv->vref))
1641 		return PTR_ERR(priv->vref);
1642 
1643 	priv->vdd = devm_regulator_get(parent, "vdd");
1644 	if (IS_ERR(priv->vdd))
1645 		return PTR_ERR(priv->vdd);
1646 
1647 	/* Set default hardware sampling frequency to highest rate supported. */
1648 	priv->frequency = zpa2326_highest_frequency();
1649 
1650 	/*
1651 	 * Plug device's underlying bus abstraction : this MUST be set before
1652 	 * registering interrupt handlers since an interrupt might happen if
1653 	 * power up sequence is not properly applied.
1654 	 */
1655 	priv->regmap = regmap;
1656 
1657 	err = devm_iio_triggered_buffer_setup(parent, indio_dev, NULL,
1658 					      zpa2326_trigger_handler,
1659 					      &zpa2326_buffer_setup_ops);
1660 	if (err)
1661 		return err;
1662 
1663 	err = zpa2326_init_managed_trigger(parent, indio_dev, priv, irq);
1664 	if (err)
1665 		return err;
1666 
1667 	err = zpa2326_init_managed_irq(parent, indio_dev, priv, irq);
1668 	if (err)
1669 		return err;
1670 
1671 	/* Power up to check device ID and perform initial hardware setup. */
1672 	err = zpa2326_power_on(indio_dev, priv);
1673 	if (err)
1674 		return err;
1675 
1676 	/* Read id register to check we are talking to the right slave. */
1677 	err = regmap_read(regmap, ZPA2326_DEVICE_ID_REG, &id);
1678 	if (err)
1679 		goto sleep;
1680 
1681 	if (id != hwid) {
1682 		dev_err(parent, "found device with unexpected id %02x", id);
1683 		err = -ENODEV;
1684 		goto sleep;
1685 	}
1686 
1687 	err = zpa2326_config_oneshot(indio_dev, irq);
1688 	if (err)
1689 		goto sleep;
1690 
1691 	/* Setup done : go sleeping. Device will be awaken upon user request. */
1692 	err = zpa2326_sleep(indio_dev);
1693 	if (err)
1694 		goto poweroff;
1695 
1696 	dev_set_drvdata(parent, indio_dev);
1697 
1698 	zpa2326_init_runtime(parent);
1699 
1700 	err = iio_device_register(indio_dev);
1701 	if (err) {
1702 		zpa2326_fini_runtime(parent);
1703 		goto poweroff;
1704 	}
1705 
1706 	return 0;
1707 
1708 sleep:
1709 	/* Put to sleep just in case power regulators are "dummy" ones. */
1710 	zpa2326_sleep(indio_dev);
1711 poweroff:
1712 	zpa2326_power_off(indio_dev, priv);
1713 
1714 	return err;
1715 }
1716 EXPORT_SYMBOL_GPL(zpa2326_probe);
1717 
1718 void zpa2326_remove(const struct device *parent)
1719 {
1720 	struct iio_dev *indio_dev = dev_get_drvdata(parent);
1721 
1722 	iio_device_unregister(indio_dev);
1723 	zpa2326_fini_runtime(indio_dev->dev.parent);
1724 	zpa2326_sleep(indio_dev);
1725 	zpa2326_power_off(indio_dev, iio_priv(indio_dev));
1726 }
1727 EXPORT_SYMBOL_GPL(zpa2326_remove);
1728 
1729 MODULE_AUTHOR("Gregor Boirie <gregor.boirie@parrot.com>");
1730 MODULE_DESCRIPTION("Core driver for Murata ZPA2326 pressure sensor");
1731 MODULE_LICENSE("GPL v2");
1732