xref: /linux/drivers/iio/pressure/st_pressure_core.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics pressures driver
4  *
5  * Copyright 2013 STMicroelectronics Inc.
6  *
7  * Denis Ciocca <denis.ciocca@st.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/errno.h>
14 #include <linux/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/i2c.h>
17 #include <linux/irq.h>
18 #include <linux/delay.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/buffer.h>
23 #include <asm/unaligned.h>
24 
25 #include <linux/iio/common/st_sensors.h>
26 #include "st_pressure.h"
27 
28 /*
29  * About determining pressure scaling factors
30  * ------------------------------------------
31  *
32  * Datasheets specify typical pressure sensitivity so that pressure is computed
33  * according to the following equation :
34  *     pressure[mBar] = raw / sensitivity
35  * where :
36  *     raw          the 24 bits long raw sampled pressure
37  *     sensitivity  a scaling factor specified by the datasheet in LSB/mBar
38  *
39  * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
40  * computed according to :
41  *     pressure[kPascal] = pressure[mBar] / 10
42  *                       = raw / (sensitivity * 10)                          (1)
43  *
44  * Finally, st_press_read_raw() returns pressure scaling factor as an
45  * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
46  * Therefore, from (1), "gain" becomes :
47  *     gain = 10^9 / (sensitivity * 10)
48  *          = 10^8 / sensitivity
49  *
50  * About determining temperature scaling factors and offsets
51  * ---------------------------------------------------------
52  *
53  * Datasheets specify typical temperature sensitivity and offset so that
54  * temperature is computed according to the following equation :
55  *     temp[Celsius] = offset[Celsius] + (raw / sensitivity)
56  * where :
57  *     raw          the 16 bits long raw sampled temperature
58  *     offset       a constant specified by the datasheet in degree Celsius
59  *                  (sometimes zero)
60  *     sensitivity  a scaling factor specified by the datasheet in LSB/Celsius
61  *
62  * IIO ABI expects temperature to be expressed as milli degree Celsius such as
63  * user space should compute temperature according to :
64  *     temp[mCelsius] = temp[Celsius] * 10^3
65  *                    = (offset[Celsius] + (raw / sensitivity)) * 10^3
66  *                    = ((offset[Celsius] * sensitivity) + raw) *
67  *                      (10^3 / sensitivity)                                 (2)
68  *
69  * IIO ABI expects user space to apply offset and scaling factors to raw samples
70  * according to :
71  *     temp[mCelsius] = (OFFSET + raw) * SCALE
72  * where :
73  *     OFFSET an arbitrary constant exposed by device
74  *     SCALE  an arbitrary scaling factor exposed by device
75  *
76  * Matching OFFSET and SCALE with members of (2) gives :
77  *     OFFSET = offset[Celsius] * sensitivity                                (3)
78  *     SCALE  = 10^3 / sensitivity                                           (4)
79  *
80  * st_press_read_raw() returns temperature scaling factor as an
81  * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
82  * Therefore, from (3), "gain2" becomes :
83  *     gain2 = sensitivity
84  *
85  * When declared within channel, i.e. for a non zero specified offset,
86  * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
87  *     numerator = OFFSET * 10^3
88  *     denominator = 10^3
89  * giving from (4):
90  *     numerator = offset[Celsius] * 10^3 * sensitivity
91  *               = offset[mCelsius] * gain2
92  */
93 
94 #define MCELSIUS_PER_CELSIUS			1000
95 
96 /* Default pressure sensitivity */
97 #define ST_PRESS_LSB_PER_MBAR			4096UL
98 #define ST_PRESS_KPASCAL_NANO_SCALE		(100000000UL / \
99 						 ST_PRESS_LSB_PER_MBAR)
100 
101 /* Default temperature sensitivity */
102 #define ST_PRESS_LSB_PER_CELSIUS		480UL
103 #define ST_PRESS_MILLI_CELSIUS_OFFSET		42500UL
104 
105 /* FULLSCALE */
106 #define ST_PRESS_FS_AVL_1100MB			1100
107 #define ST_PRESS_FS_AVL_1260MB			1260
108 
109 #define ST_PRESS_1_OUT_XL_ADDR			0x28
110 #define ST_TEMP_1_OUT_L_ADDR			0x2b
111 
112 /* LPS001WP pressure resolution */
113 #define ST_PRESS_LPS001WP_LSB_PER_MBAR		16UL
114 /* LPS001WP temperature resolution */
115 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS	64UL
116 /* LPS001WP pressure gain */
117 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
118 	(100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
119 /* LPS001WP pressure and temp L addresses */
120 #define ST_PRESS_LPS001WP_OUT_L_ADDR		0x28
121 #define ST_TEMP_LPS001WP_OUT_L_ADDR		0x2a
122 
123 /* LPS25H pressure and temp L addresses */
124 #define ST_PRESS_LPS25H_OUT_XL_ADDR		0x28
125 #define ST_TEMP_LPS25H_OUT_L_ADDR		0x2b
126 
127 /* LPS22HB temperature sensitivity */
128 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS	100UL
129 
130 static const struct iio_chan_spec st_press_1_channels[] = {
131 	{
132 		.type = IIO_PRESSURE,
133 		.address = ST_PRESS_1_OUT_XL_ADDR,
134 		.scan_index = 0,
135 		.scan_type = {
136 			.sign = 's',
137 			.realbits = 24,
138 			.storagebits = 32,
139 			.endianness = IIO_LE,
140 		},
141 		.info_mask_separate =
142 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
143 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
144 	},
145 	{
146 		.type = IIO_TEMP,
147 		.address = ST_TEMP_1_OUT_L_ADDR,
148 		.scan_index = 1,
149 		.scan_type = {
150 			.sign = 's',
151 			.realbits = 16,
152 			.storagebits = 16,
153 			.endianness = IIO_LE,
154 		},
155 		.info_mask_separate =
156 			BIT(IIO_CHAN_INFO_RAW) |
157 			BIT(IIO_CHAN_INFO_SCALE) |
158 			BIT(IIO_CHAN_INFO_OFFSET),
159 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
160 	},
161 	IIO_CHAN_SOFT_TIMESTAMP(2)
162 };
163 
164 static const struct iio_chan_spec st_press_lps001wp_channels[] = {
165 	{
166 		.type = IIO_PRESSURE,
167 		.address = ST_PRESS_LPS001WP_OUT_L_ADDR,
168 		.scan_index = 0,
169 		.scan_type = {
170 			.sign = 's',
171 			.realbits = 16,
172 			.storagebits = 16,
173 			.endianness = IIO_LE,
174 		},
175 		.info_mask_separate =
176 			BIT(IIO_CHAN_INFO_RAW) |
177 			BIT(IIO_CHAN_INFO_SCALE),
178 	},
179 	{
180 		.type = IIO_TEMP,
181 		.address = ST_TEMP_LPS001WP_OUT_L_ADDR,
182 		.scan_index = 1,
183 		.scan_type = {
184 			.sign = 's',
185 			.realbits = 16,
186 			.storagebits = 16,
187 			.endianness = IIO_LE,
188 		},
189 		.info_mask_separate =
190 			BIT(IIO_CHAN_INFO_RAW) |
191 			BIT(IIO_CHAN_INFO_SCALE),
192 	},
193 	IIO_CHAN_SOFT_TIMESTAMP(2)
194 };
195 
196 static const struct iio_chan_spec st_press_lps22hb_channels[] = {
197 	{
198 		.type = IIO_PRESSURE,
199 		.address = ST_PRESS_1_OUT_XL_ADDR,
200 		.scan_index = 0,
201 		.scan_type = {
202 			.sign = 's',
203 			.realbits = 24,
204 			.storagebits = 32,
205 			.endianness = IIO_LE,
206 		},
207 		.info_mask_separate =
208 			BIT(IIO_CHAN_INFO_RAW) |
209 			BIT(IIO_CHAN_INFO_SCALE),
210 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
211 	},
212 	{
213 		.type = IIO_TEMP,
214 		.address = ST_TEMP_1_OUT_L_ADDR,
215 		.scan_index = 1,
216 		.scan_type = {
217 			.sign = 's',
218 			.realbits = 16,
219 			.storagebits = 16,
220 			.endianness = IIO_LE,
221 		},
222 		.info_mask_separate =
223 			BIT(IIO_CHAN_INFO_RAW) |
224 			BIT(IIO_CHAN_INFO_SCALE),
225 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
226 	},
227 	IIO_CHAN_SOFT_TIMESTAMP(2)
228 };
229 
230 static const struct st_sensor_settings st_press_sensors_settings[] = {
231 	{
232 		/*
233 		 * CUSTOM VALUES FOR LPS331AP SENSOR
234 		 * See LPS331AP datasheet:
235 		 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf
236 		 */
237 		.wai = 0xbb,
238 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
239 		.sensors_supported = {
240 			[0] = LPS331AP_PRESS_DEV_NAME,
241 		},
242 		.ch = (struct iio_chan_spec *)st_press_1_channels,
243 		.num_ch = ARRAY_SIZE(st_press_1_channels),
244 		.odr = {
245 			.addr = 0x20,
246 			.mask = 0x70,
247 			.odr_avl = {
248 				{ .hz = 1, .value = 0x01 },
249 				{ .hz = 7, .value = 0x05 },
250 				{ .hz = 13, .value = 0x06 },
251 				{ .hz = 25, .value = 0x07 },
252 			},
253 		},
254 		.pw = {
255 			.addr = 0x20,
256 			.mask = 0x80,
257 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
258 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
259 		},
260 		.fs = {
261 			.addr = 0x23,
262 			.mask = 0x30,
263 			.fs_avl = {
264 				/*
265 				 * Pressure and temperature sensitivity values
266 				 * as defined in table 3 of LPS331AP datasheet.
267 				 */
268 				[0] = {
269 					.num = ST_PRESS_FS_AVL_1260MB,
270 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
271 					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
272 				},
273 			},
274 		},
275 		.bdu = {
276 			.addr = 0x20,
277 			.mask = 0x04,
278 		},
279 		.drdy_irq = {
280 			.int1 = {
281 				.addr = 0x22,
282 				.mask = 0x04,
283 				.addr_od = 0x22,
284 				.mask_od = 0x40,
285 			},
286 			.int2 = {
287 				.addr = 0x22,
288 				.mask = 0x20,
289 				.addr_od = 0x22,
290 				.mask_od = 0x40,
291 			},
292 			.addr_ihl = 0x22,
293 			.mask_ihl = 0x80,
294 			.stat_drdy = {
295 				.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
296 				.mask = 0x03,
297 			},
298 		},
299 		.sim = {
300 			.addr = 0x20,
301 			.value = BIT(0),
302 		},
303 		.multi_read_bit = true,
304 		.bootime = 2,
305 	},
306 	{
307 		/*
308 		 * CUSTOM VALUES FOR LPS001WP SENSOR
309 		 */
310 		.wai = 0xba,
311 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
312 		.sensors_supported = {
313 			[0] = LPS001WP_PRESS_DEV_NAME,
314 		},
315 		.ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
316 		.num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
317 		.odr = {
318 			.addr = 0x20,
319 			.mask = 0x30,
320 			.odr_avl = {
321 				{ .hz = 1, .value = 0x01 },
322 				{ .hz = 7, .value = 0x02 },
323 				{ .hz = 13, .value = 0x03 },
324 			},
325 		},
326 		.pw = {
327 			.addr = 0x20,
328 			.mask = 0x40,
329 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
330 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
331 		},
332 		.fs = {
333 			.fs_avl = {
334 				/*
335 				 * Pressure and temperature resolution values
336 				 * as defined in table 3 of LPS001WP datasheet.
337 				 */
338 				[0] = {
339 					.num = ST_PRESS_FS_AVL_1100MB,
340 					.gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
341 					.gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
342 				},
343 			},
344 		},
345 		.bdu = {
346 			.addr = 0x20,
347 			.mask = 0x04,
348 		},
349 		.sim = {
350 			.addr = 0x20,
351 			.value = BIT(0),
352 		},
353 		.multi_read_bit = true,
354 		.bootime = 2,
355 	},
356 	{
357 		/*
358 		 * CUSTOM VALUES FOR LPS25H SENSOR
359 		 * See LPS25H datasheet:
360 		 * http://www2.st.com/resource/en/datasheet/lps25h.pdf
361 		 */
362 		.wai = 0xbd,
363 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
364 		.sensors_supported = {
365 			[0] = LPS25H_PRESS_DEV_NAME,
366 		},
367 		.ch = (struct iio_chan_spec *)st_press_1_channels,
368 		.num_ch = ARRAY_SIZE(st_press_1_channels),
369 		.odr = {
370 			.addr = 0x20,
371 			.mask = 0x70,
372 			.odr_avl = {
373 				{ .hz = 1, .value = 0x01 },
374 				{ .hz = 7, .value = 0x02 },
375 				{ .hz = 13, .value = 0x03 },
376 				{ .hz = 25, .value = 0x04 },
377 			},
378 		},
379 		.pw = {
380 			.addr = 0x20,
381 			.mask = 0x80,
382 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
383 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
384 		},
385 		.fs = {
386 			.fs_avl = {
387 				/*
388 				 * Pressure and temperature sensitivity values
389 				 * as defined in table 3 of LPS25H datasheet.
390 				 */
391 				[0] = {
392 					.num = ST_PRESS_FS_AVL_1260MB,
393 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
394 					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
395 				},
396 			},
397 		},
398 		.bdu = {
399 			.addr = 0x20,
400 			.mask = 0x04,
401 		},
402 		.drdy_irq = {
403 			.int1 = {
404 				.addr = 0x23,
405 				.mask = 0x01,
406 				.addr_od = 0x22,
407 				.mask_od = 0x40,
408 			},
409 			.addr_ihl = 0x22,
410 			.mask_ihl = 0x80,
411 			.stat_drdy = {
412 				.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
413 				.mask = 0x03,
414 			},
415 		},
416 		.sim = {
417 			.addr = 0x20,
418 			.value = BIT(0),
419 		},
420 		.multi_read_bit = true,
421 		.bootime = 2,
422 	},
423 	{
424 		/*
425 		 * CUSTOM VALUES FOR LPS22HB SENSOR
426 		 * See LPS22HB datasheet:
427 		 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf
428 		 */
429 		.wai = 0xb1,
430 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
431 		.sensors_supported = {
432 			[0] = LPS22HB_PRESS_DEV_NAME,
433 			[1] = LPS33HW_PRESS_DEV_NAME,
434 			[2] = LPS35HW_PRESS_DEV_NAME,
435 		},
436 		.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
437 		.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
438 		.odr = {
439 			.addr = 0x10,
440 			.mask = 0x70,
441 			.odr_avl = {
442 				{ .hz = 1, .value = 0x01 },
443 				{ .hz = 10, .value = 0x02 },
444 				{ .hz = 25, .value = 0x03 },
445 				{ .hz = 50, .value = 0x04 },
446 				{ .hz = 75, .value = 0x05 },
447 			},
448 		},
449 		.pw = {
450 			.addr = 0x10,
451 			.mask = 0x70,
452 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
453 		},
454 		.fs = {
455 			.fs_avl = {
456 				/*
457 				 * Pressure and temperature sensitivity values
458 				 * as defined in table 3 of LPS22HB datasheet.
459 				 */
460 				[0] = {
461 					.num = ST_PRESS_FS_AVL_1260MB,
462 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
463 					.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
464 				},
465 			},
466 		},
467 		.bdu = {
468 			.addr = 0x10,
469 			.mask = 0x02,
470 		},
471 		.drdy_irq = {
472 			.int1 = {
473 				.addr = 0x12,
474 				.mask = 0x04,
475 				.addr_od = 0x12,
476 				.mask_od = 0x40,
477 			},
478 			.addr_ihl = 0x12,
479 			.mask_ihl = 0x80,
480 			.stat_drdy = {
481 				.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
482 				.mask = 0x03,
483 			},
484 		},
485 		.sim = {
486 			.addr = 0x10,
487 			.value = BIT(0),
488 		},
489 		.multi_read_bit = false,
490 		.bootime = 2,
491 	},
492 	{
493 		/*
494 		 * CUSTOM VALUES FOR LPS22HH SENSOR
495 		 * See LPS22HH datasheet:
496 		 * http://www2.st.com/resource/en/datasheet/lps22hh.pdf
497 		 */
498 		.wai = 0xb3,
499 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
500 		.sensors_supported = {
501 			[0] = LPS22HH_PRESS_DEV_NAME,
502 		},
503 		.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
504 		.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
505 		.odr = {
506 			.addr = 0x10,
507 			.mask = 0x70,
508 			.odr_avl = {
509 				{ .hz = 1, .value = 0x01 },
510 				{ .hz = 10, .value = 0x02 },
511 				{ .hz = 25, .value = 0x03 },
512 				{ .hz = 50, .value = 0x04 },
513 				{ .hz = 75, .value = 0x05 },
514 				{ .hz = 100, .value = 0x06 },
515 				{ .hz = 200, .value = 0x07 },
516 			},
517 		},
518 		.pw = {
519 			.addr = 0x10,
520 			.mask = 0x70,
521 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
522 		},
523 		.fs = {
524 			.fs_avl = {
525 				/*
526 				 * Pressure and temperature sensitivity values
527 				 * as defined in table 3 of LPS22HH datasheet.
528 				 */
529 				[0] = {
530 					.num = ST_PRESS_FS_AVL_1260MB,
531 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
532 					.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
533 				},
534 			},
535 		},
536 		.bdu = {
537 			.addr = 0x10,
538 			.mask = BIT(1),
539 		},
540 		.drdy_irq = {
541 			.int1 = {
542 				.addr = 0x12,
543 				.mask = BIT(2),
544 				.addr_od = 0x11,
545 				.mask_od = BIT(5),
546 			},
547 			.addr_ihl = 0x11,
548 			.mask_ihl = BIT(6),
549 			.stat_drdy = {
550 				.addr = ST_SENSORS_DEFAULT_STAT_ADDR,
551 				.mask = 0x03,
552 			},
553 		},
554 		.sim = {
555 			.addr = 0x10,
556 			.value = BIT(0),
557 		},
558 		.multi_read_bit = false,
559 		.bootime = 2,
560 	},
561 };
562 
563 static int st_press_write_raw(struct iio_dev *indio_dev,
564 			      struct iio_chan_spec const *ch,
565 			      int val,
566 			      int val2,
567 			      long mask)
568 {
569 	int err;
570 
571 	switch (mask) {
572 	case IIO_CHAN_INFO_SAMP_FREQ:
573 		if (val2)
574 			return -EINVAL;
575 		mutex_lock(&indio_dev->mlock);
576 		err = st_sensors_set_odr(indio_dev, val);
577 		mutex_unlock(&indio_dev->mlock);
578 		return err;
579 	default:
580 		return -EINVAL;
581 	}
582 }
583 
584 static int st_press_read_raw(struct iio_dev *indio_dev,
585 			struct iio_chan_spec const *ch, int *val,
586 							int *val2, long mask)
587 {
588 	int err;
589 	struct st_sensor_data *press_data = iio_priv(indio_dev);
590 
591 	switch (mask) {
592 	case IIO_CHAN_INFO_RAW:
593 		err = st_sensors_read_info_raw(indio_dev, ch, val);
594 		if (err < 0)
595 			goto read_error;
596 
597 		return IIO_VAL_INT;
598 	case IIO_CHAN_INFO_SCALE:
599 		switch (ch->type) {
600 		case IIO_PRESSURE:
601 			*val = 0;
602 			*val2 = press_data->current_fullscale->gain;
603 			return IIO_VAL_INT_PLUS_NANO;
604 		case IIO_TEMP:
605 			*val = MCELSIUS_PER_CELSIUS;
606 			*val2 = press_data->current_fullscale->gain2;
607 			return IIO_VAL_FRACTIONAL;
608 		default:
609 			err = -EINVAL;
610 			goto read_error;
611 		}
612 
613 	case IIO_CHAN_INFO_OFFSET:
614 		switch (ch->type) {
615 		case IIO_TEMP:
616 			*val = ST_PRESS_MILLI_CELSIUS_OFFSET *
617 			       press_data->current_fullscale->gain2;
618 			*val2 = MCELSIUS_PER_CELSIUS;
619 			break;
620 		default:
621 			err = -EINVAL;
622 			goto read_error;
623 		}
624 
625 		return IIO_VAL_FRACTIONAL;
626 	case IIO_CHAN_INFO_SAMP_FREQ:
627 		*val = press_data->odr;
628 		return IIO_VAL_INT;
629 	default:
630 		return -EINVAL;
631 	}
632 
633 read_error:
634 	return err;
635 }
636 
637 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
638 
639 static struct attribute *st_press_attributes[] = {
640 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
641 	NULL,
642 };
643 
644 static const struct attribute_group st_press_attribute_group = {
645 	.attrs = st_press_attributes,
646 };
647 
648 static const struct iio_info press_info = {
649 	.attrs = &st_press_attribute_group,
650 	.read_raw = &st_press_read_raw,
651 	.write_raw = &st_press_write_raw,
652 	.debugfs_reg_access = &st_sensors_debugfs_reg_access,
653 };
654 
655 #ifdef CONFIG_IIO_TRIGGER
656 static const struct iio_trigger_ops st_press_trigger_ops = {
657 	.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
658 	.validate_device = st_sensors_validate_device,
659 };
660 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
661 #else
662 #define ST_PRESS_TRIGGER_OPS NULL
663 #endif
664 
665 /*
666  * st_press_get_settings() - get sensor settings from device name
667  * @name: device name buffer reference.
668  *
669  * Return: valid reference on success, NULL otherwise.
670  */
671 const struct st_sensor_settings *st_press_get_settings(const char *name)
672 {
673 	int index = st_sensors_get_settings_index(name,
674 					st_press_sensors_settings,
675 					ARRAY_SIZE(st_press_sensors_settings));
676 	if (index < 0)
677 		return NULL;
678 
679 	return &st_press_sensors_settings[index];
680 }
681 EXPORT_SYMBOL(st_press_get_settings);
682 
683 int st_press_common_probe(struct iio_dev *indio_dev)
684 {
685 	struct st_sensor_data *press_data = iio_priv(indio_dev);
686 	struct st_sensors_platform_data *pdata = dev_get_platdata(press_data->dev);
687 	int err;
688 
689 	indio_dev->modes = INDIO_DIRECT_MODE;
690 	indio_dev->info = &press_info;
691 
692 	err = st_sensors_power_enable(indio_dev);
693 	if (err)
694 		return err;
695 
696 	err = st_sensors_verify_id(indio_dev);
697 	if (err < 0)
698 		goto st_press_power_off;
699 
700 	/*
701 	 * Skip timestamping channel while declaring available channels to
702 	 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
703 	 * see how timestamps are explicitly pushed as last samples block
704 	 * element.
705 	 */
706 	press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
707 	indio_dev->channels = press_data->sensor_settings->ch;
708 	indio_dev->num_channels = press_data->sensor_settings->num_ch;
709 
710 	press_data->current_fullscale = &press_data->sensor_settings->fs.fs_avl[0];
711 
712 	press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
713 
714 	/* Some devices don't support a data ready pin. */
715 	if (!pdata && (press_data->sensor_settings->drdy_irq.int1.addr ||
716 		       press_data->sensor_settings->drdy_irq.int2.addr))
717 		pdata =	(struct st_sensors_platform_data *)&default_press_pdata;
718 
719 	err = st_sensors_init_sensor(indio_dev, pdata);
720 	if (err < 0)
721 		goto st_press_power_off;
722 
723 	err = st_press_allocate_ring(indio_dev);
724 	if (err < 0)
725 		goto st_press_power_off;
726 
727 	if (press_data->irq > 0) {
728 		err = st_sensors_allocate_trigger(indio_dev,
729 						  ST_PRESS_TRIGGER_OPS);
730 		if (err < 0)
731 			goto st_press_probe_trigger_error;
732 	}
733 
734 	err = iio_device_register(indio_dev);
735 	if (err)
736 		goto st_press_device_register_error;
737 
738 	dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
739 		 indio_dev->name);
740 
741 	return err;
742 
743 st_press_device_register_error:
744 	if (press_data->irq > 0)
745 		st_sensors_deallocate_trigger(indio_dev);
746 st_press_probe_trigger_error:
747 	st_press_deallocate_ring(indio_dev);
748 st_press_power_off:
749 	st_sensors_power_disable(indio_dev);
750 
751 	return err;
752 }
753 EXPORT_SYMBOL(st_press_common_probe);
754 
755 void st_press_common_remove(struct iio_dev *indio_dev)
756 {
757 	struct st_sensor_data *press_data = iio_priv(indio_dev);
758 
759 	st_sensors_power_disable(indio_dev);
760 
761 	iio_device_unregister(indio_dev);
762 	if (press_data->irq > 0)
763 		st_sensors_deallocate_trigger(indio_dev);
764 
765 	st_press_deallocate_ring(indio_dev);
766 }
767 EXPORT_SYMBOL(st_press_common_remove);
768 
769 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
770 MODULE_DESCRIPTION("STMicroelectronics pressures driver");
771 MODULE_LICENSE("GPL v2");
772