xref: /linux/drivers/iio/pressure/st_pressure_core.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 /*
2  * STMicroelectronics pressures driver
3  *
4  * Copyright 2013 STMicroelectronics Inc.
5  *
6  * Denis Ciocca <denis.ciocca@st.com>
7  *
8  * Licensed under the GPL-2.
9  */
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/mutex.h>
17 #include <linux/interrupt.h>
18 #include <linux/i2c.h>
19 #include <linux/gpio.h>
20 #include <linux/irq.h>
21 #include <linux/delay.h>
22 #include <linux/iio/iio.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 #include <linux/iio/buffer.h>
26 #include <asm/unaligned.h>
27 
28 #include <linux/iio/common/st_sensors.h>
29 #include "st_pressure.h"
30 
31 /*
32  * About determining pressure scaling factors
33  * ------------------------------------------
34  *
35  * Datasheets specify typical pressure sensitivity so that pressure is computed
36  * according to the following equation :
37  *     pressure[mBar] = raw / sensitivity
38  * where :
39  *     raw          the 24 bits long raw sampled pressure
40  *     sensitivity  a scaling factor specified by the datasheet in LSB/mBar
41  *
42  * IIO ABI expects pressure to be expressed as kPascal, hence pressure should be
43  * computed according to :
44  *     pressure[kPascal] = pressure[mBar] / 10
45  *                       = raw / (sensitivity * 10)                          (1)
46  *
47  * Finally, st_press_read_raw() returns pressure scaling factor as an
48  * IIO_VAL_INT_PLUS_NANO with a zero integral part and "gain" as decimal part.
49  * Therefore, from (1), "gain" becomes :
50  *     gain = 10^9 / (sensitivity * 10)
51  *          = 10^8 / sensitivity
52  *
53  * About determining temperature scaling factors and offsets
54  * ---------------------------------------------------------
55  *
56  * Datasheets specify typical temperature sensitivity and offset so that
57  * temperature is computed according to the following equation :
58  *     temp[Celsius] = offset[Celsius] + (raw / sensitivity)
59  * where :
60  *     raw          the 16 bits long raw sampled temperature
61  *     offset       a constant specified by the datasheet in degree Celsius
62  *                  (sometimes zero)
63  *     sensitivity  a scaling factor specified by the datasheet in LSB/Celsius
64  *
65  * IIO ABI expects temperature to be expressed as milli degree Celsius such as
66  * user space should compute temperature according to :
67  *     temp[mCelsius] = temp[Celsius] * 10^3
68  *                    = (offset[Celsius] + (raw / sensitivity)) * 10^3
69  *                    = ((offset[Celsius] * sensitivity) + raw) *
70  *                      (10^3 / sensitivity)                                 (2)
71  *
72  * IIO ABI expects user space to apply offset and scaling factors to raw samples
73  * according to :
74  *     temp[mCelsius] = (OFFSET + raw) * SCALE
75  * where :
76  *     OFFSET an arbitrary constant exposed by device
77  *     SCALE  an arbitrary scaling factor exposed by device
78  *
79  * Matching OFFSET and SCALE with members of (2) gives :
80  *     OFFSET = offset[Celsius] * sensitivity                                (3)
81  *     SCALE  = 10^3 / sensitivity                                           (4)
82  *
83  * st_press_read_raw() returns temperature scaling factor as an
84  * IIO_VAL_FRACTIONAL with a 10^3 numerator and "gain2" as denominator.
85  * Therefore, from (3), "gain2" becomes :
86  *     gain2 = sensitivity
87  *
88  * When declared within channel, i.e. for a non zero specified offset,
89  * st_press_read_raw() will return the latter as an IIO_VAL_FRACTIONAL such as :
90  *     numerator = OFFSET * 10^3
91  *     denominator = 10^3
92  * giving from (4):
93  *     numerator = offset[Celsius] * 10^3 * sensitivity
94  *               = offset[mCelsius] * gain2
95  */
96 
97 #define MCELSIUS_PER_CELSIUS			1000
98 
99 /* Default pressure sensitivity */
100 #define ST_PRESS_LSB_PER_MBAR			4096UL
101 #define ST_PRESS_KPASCAL_NANO_SCALE		(100000000UL / \
102 						 ST_PRESS_LSB_PER_MBAR)
103 
104 /* Default temperature sensitivity */
105 #define ST_PRESS_LSB_PER_CELSIUS		480UL
106 #define ST_PRESS_MILLI_CELSIUS_OFFSET		42500UL
107 
108 /* FULLSCALE */
109 #define ST_PRESS_FS_AVL_1100MB			1100
110 #define ST_PRESS_FS_AVL_1260MB			1260
111 
112 #define ST_PRESS_1_OUT_XL_ADDR			0x28
113 #define ST_TEMP_1_OUT_L_ADDR			0x2b
114 
115 /* LPS001WP pressure resolution */
116 #define ST_PRESS_LPS001WP_LSB_PER_MBAR		16UL
117 /* LPS001WP temperature resolution */
118 #define ST_PRESS_LPS001WP_LSB_PER_CELSIUS	64UL
119 /* LPS001WP pressure gain */
120 #define ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN \
121 	(100000000UL / ST_PRESS_LPS001WP_LSB_PER_MBAR)
122 /* LPS001WP pressure and temp L addresses */
123 #define ST_PRESS_LPS001WP_OUT_L_ADDR		0x28
124 #define ST_TEMP_LPS001WP_OUT_L_ADDR		0x2a
125 
126 /* LPS25H pressure and temp L addresses */
127 #define ST_PRESS_LPS25H_OUT_XL_ADDR		0x28
128 #define ST_TEMP_LPS25H_OUT_L_ADDR		0x2b
129 
130 /* LPS22HB temperature sensitivity */
131 #define ST_PRESS_LPS22HB_LSB_PER_CELSIUS	100UL
132 
133 static const struct iio_chan_spec st_press_1_channels[] = {
134 	{
135 		.type = IIO_PRESSURE,
136 		.address = ST_PRESS_1_OUT_XL_ADDR,
137 		.scan_index = 0,
138 		.scan_type = {
139 			.sign = 'u',
140 			.realbits = 24,
141 			.storagebits = 32,
142 			.endianness = IIO_LE,
143 		},
144 		.info_mask_separate =
145 			BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
146 	},
147 	{
148 		.type = IIO_TEMP,
149 		.address = ST_TEMP_1_OUT_L_ADDR,
150 		.scan_index = 1,
151 		.scan_type = {
152 			.sign = 'u',
153 			.realbits = 16,
154 			.storagebits = 16,
155 			.endianness = IIO_LE,
156 		},
157 		.info_mask_separate =
158 			BIT(IIO_CHAN_INFO_RAW) |
159 			BIT(IIO_CHAN_INFO_SCALE) |
160 			BIT(IIO_CHAN_INFO_OFFSET),
161 	},
162 	IIO_CHAN_SOFT_TIMESTAMP(2)
163 };
164 
165 static const struct iio_chan_spec st_press_lps001wp_channels[] = {
166 	{
167 		.type = IIO_PRESSURE,
168 		.address = ST_PRESS_LPS001WP_OUT_L_ADDR,
169 		.scan_index = 0,
170 		.scan_type = {
171 			.sign = 'u',
172 			.realbits = 16,
173 			.storagebits = 16,
174 			.endianness = IIO_LE,
175 		},
176 		.info_mask_separate =
177 			BIT(IIO_CHAN_INFO_RAW) |
178 			BIT(IIO_CHAN_INFO_SCALE),
179 	},
180 	{
181 		.type = IIO_TEMP,
182 		.address = ST_TEMP_LPS001WP_OUT_L_ADDR,
183 		.scan_index = 1,
184 		.scan_type = {
185 			.sign = 'u',
186 			.realbits = 16,
187 			.storagebits = 16,
188 			.endianness = IIO_LE,
189 		},
190 		.info_mask_separate =
191 			BIT(IIO_CHAN_INFO_RAW) |
192 			BIT(IIO_CHAN_INFO_SCALE),
193 	},
194 	IIO_CHAN_SOFT_TIMESTAMP(2)
195 };
196 
197 static const struct iio_chan_spec st_press_lps22hb_channels[] = {
198 	{
199 		.type = IIO_PRESSURE,
200 		.address = ST_PRESS_1_OUT_XL_ADDR,
201 		.scan_index = 0,
202 		.scan_type = {
203 			.sign = 'u',
204 			.realbits = 24,
205 			.storagebits = 32,
206 			.endianness = IIO_LE,
207 		},
208 		.info_mask_separate =
209 			BIT(IIO_CHAN_INFO_RAW) |
210 			BIT(IIO_CHAN_INFO_SCALE),
211 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
212 	},
213 	{
214 		.type = IIO_TEMP,
215 		.address = ST_TEMP_1_OUT_L_ADDR,
216 		.scan_index = 1,
217 		.scan_type = {
218 			.sign = 's',
219 			.realbits = 16,
220 			.storagebits = 16,
221 			.endianness = IIO_LE,
222 		},
223 		.info_mask_separate =
224 			BIT(IIO_CHAN_INFO_RAW) |
225 			BIT(IIO_CHAN_INFO_SCALE),
226 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
227 	},
228 	IIO_CHAN_SOFT_TIMESTAMP(2)
229 };
230 
231 static const struct st_sensor_settings st_press_sensors_settings[] = {
232 	{
233 		/*
234 		 * CUSTOM VALUES FOR LPS331AP SENSOR
235 		 * See LPS331AP datasheet:
236 		 * http://www2.st.com/resource/en/datasheet/lps331ap.pdf
237 		 */
238 		.wai = 0xbb,
239 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
240 		.sensors_supported = {
241 			[0] = LPS331AP_PRESS_DEV_NAME,
242 		},
243 		.ch = (struct iio_chan_spec *)st_press_1_channels,
244 		.num_ch = ARRAY_SIZE(st_press_1_channels),
245 		.odr = {
246 			.addr = 0x20,
247 			.mask = 0x70,
248 			.odr_avl = {
249 				{ .hz = 1, .value = 0x01 },
250 				{ .hz = 7, .value = 0x05 },
251 				{ .hz = 13, .value = 0x06 },
252 				{ .hz = 25, .value = 0x07 },
253 			},
254 		},
255 		.pw = {
256 			.addr = 0x20,
257 			.mask = 0x80,
258 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
259 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
260 		},
261 		.fs = {
262 			.addr = 0x23,
263 			.mask = 0x30,
264 			.fs_avl = {
265 				/*
266 				 * Pressure and temperature sensitivity values
267 				 * as defined in table 3 of LPS331AP datasheet.
268 				 */
269 				[0] = {
270 					.num = ST_PRESS_FS_AVL_1260MB,
271 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
272 					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
273 				},
274 			},
275 		},
276 		.bdu = {
277 			.addr = 0x20,
278 			.mask = 0x04,
279 		},
280 		.drdy_irq = {
281 			.addr = 0x22,
282 			.mask_int1 = 0x04,
283 			.mask_int2 = 0x20,
284 			.addr_ihl = 0x22,
285 			.mask_ihl = 0x80,
286 			.addr_od = 0x22,
287 			.mask_od = 0x40,
288 			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
289 		},
290 		.multi_read_bit = true,
291 		.bootime = 2,
292 	},
293 	{
294 		/*
295 		 * CUSTOM VALUES FOR LPS001WP SENSOR
296 		 */
297 		.wai = 0xba,
298 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
299 		.sensors_supported = {
300 			[0] = LPS001WP_PRESS_DEV_NAME,
301 		},
302 		.ch = (struct iio_chan_spec *)st_press_lps001wp_channels,
303 		.num_ch = ARRAY_SIZE(st_press_lps001wp_channels),
304 		.odr = {
305 			.addr = 0x20,
306 			.mask = 0x30,
307 			.odr_avl = {
308 				{ .hz = 1, .value = 0x01 },
309 				{ .hz = 7, .value = 0x02 },
310 				{ .hz = 13, .value = 0x03 },
311 			},
312 		},
313 		.pw = {
314 			.addr = 0x20,
315 			.mask = 0x40,
316 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
317 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
318 		},
319 		.fs = {
320 			.fs_avl = {
321 				/*
322 				 * Pressure and temperature resolution values
323 				 * as defined in table 3 of LPS001WP datasheet.
324 				 */
325 				[0] = {
326 					.num = ST_PRESS_FS_AVL_1100MB,
327 					.gain = ST_PRESS_LPS001WP_FS_AVL_PRESS_GAIN,
328 					.gain2 = ST_PRESS_LPS001WP_LSB_PER_CELSIUS,
329 				},
330 			},
331 		},
332 		.bdu = {
333 			.addr = 0x20,
334 			.mask = 0x04,
335 		},
336 		.drdy_irq = {
337 			.addr = 0,
338 		},
339 		.multi_read_bit = true,
340 		.bootime = 2,
341 	},
342 	{
343 		/*
344 		 * CUSTOM VALUES FOR LPS25H SENSOR
345 		 * See LPS25H datasheet:
346 		 * http://www2.st.com/resource/en/datasheet/lps25h.pdf
347 		 */
348 		.wai = 0xbd,
349 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
350 		.sensors_supported = {
351 			[0] = LPS25H_PRESS_DEV_NAME,
352 		},
353 		.ch = (struct iio_chan_spec *)st_press_1_channels,
354 		.num_ch = ARRAY_SIZE(st_press_1_channels),
355 		.odr = {
356 			.addr = 0x20,
357 			.mask = 0x70,
358 			.odr_avl = {
359 				{ .hz = 1, .value = 0x01 },
360 				{ .hz = 7, .value = 0x02 },
361 				{ .hz = 13, .value = 0x03 },
362 				{ .hz = 25, .value = 0x04 },
363 			},
364 		},
365 		.pw = {
366 			.addr = 0x20,
367 			.mask = 0x80,
368 			.value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
369 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
370 		},
371 		.fs = {
372 			.fs_avl = {
373 				/*
374 				 * Pressure and temperature sensitivity values
375 				 * as defined in table 3 of LPS25H datasheet.
376 				 */
377 				[0] = {
378 					.num = ST_PRESS_FS_AVL_1260MB,
379 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
380 					.gain2 = ST_PRESS_LSB_PER_CELSIUS,
381 				},
382 			},
383 		},
384 		.bdu = {
385 			.addr = 0x20,
386 			.mask = 0x04,
387 		},
388 		.drdy_irq = {
389 			.addr = 0x23,
390 			.mask_int1 = 0x01,
391 			.mask_int2 = 0x10,
392 			.addr_ihl = 0x22,
393 			.mask_ihl = 0x80,
394 			.addr_od = 0x22,
395 			.mask_od = 0x40,
396 			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
397 		},
398 		.multi_read_bit = true,
399 		.bootime = 2,
400 	},
401 	{
402 		/*
403 		 * CUSTOM VALUES FOR LPS22HB SENSOR
404 		 * See LPS22HB datasheet:
405 		 * http://www2.st.com/resource/en/datasheet/lps22hb.pdf
406 		 */
407 		.wai = 0xb1,
408 		.wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
409 		.sensors_supported = {
410 			[0] = LPS22HB_PRESS_DEV_NAME,
411 		},
412 		.ch = (struct iio_chan_spec *)st_press_lps22hb_channels,
413 		.num_ch = ARRAY_SIZE(st_press_lps22hb_channels),
414 		.odr = {
415 			.addr = 0x10,
416 			.mask = 0x70,
417 			.odr_avl = {
418 				{ .hz = 1, .value = 0x01 },
419 				{ .hz = 10, .value = 0x02 },
420 				{ .hz = 25, .value = 0x03 },
421 				{ .hz = 50, .value = 0x04 },
422 				{ .hz = 75, .value = 0x05 },
423 			},
424 		},
425 		.pw = {
426 			.addr = 0x10,
427 			.mask = 0x70,
428 			.value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
429 		},
430 		.fs = {
431 			.fs_avl = {
432 				/*
433 				 * Pressure and temperature sensitivity values
434 				 * as defined in table 3 of LPS22HB datasheet.
435 				 */
436 				[0] = {
437 					.num = ST_PRESS_FS_AVL_1260MB,
438 					.gain = ST_PRESS_KPASCAL_NANO_SCALE,
439 					.gain2 = ST_PRESS_LPS22HB_LSB_PER_CELSIUS,
440 				},
441 			},
442 		},
443 		.bdu = {
444 			.addr = 0x10,
445 			.mask = 0x02,
446 		},
447 		.drdy_irq = {
448 			.addr = 0x12,
449 			.mask_int1 = 0x04,
450 			.mask_int2 = 0x08,
451 			.addr_ihl = 0x12,
452 			.mask_ihl = 0x80,
453 			.addr_od = 0x12,
454 			.mask_od = 0x40,
455 			.addr_stat_drdy = ST_SENSORS_DEFAULT_STAT_ADDR,
456 		},
457 		.multi_read_bit = true,
458 	},
459 };
460 
461 static int st_press_write_raw(struct iio_dev *indio_dev,
462 			      struct iio_chan_spec const *ch,
463 			      int val,
464 			      int val2,
465 			      long mask)
466 {
467 	int err;
468 
469 	switch (mask) {
470 	case IIO_CHAN_INFO_SAMP_FREQ:
471 		if (val2)
472 			return -EINVAL;
473 		mutex_lock(&indio_dev->mlock);
474 		err = st_sensors_set_odr(indio_dev, val);
475 		mutex_unlock(&indio_dev->mlock);
476 		return err;
477 	default:
478 		return -EINVAL;
479 	}
480 }
481 
482 static int st_press_read_raw(struct iio_dev *indio_dev,
483 			struct iio_chan_spec const *ch, int *val,
484 							int *val2, long mask)
485 {
486 	int err;
487 	struct st_sensor_data *press_data = iio_priv(indio_dev);
488 
489 	switch (mask) {
490 	case IIO_CHAN_INFO_RAW:
491 		err = st_sensors_read_info_raw(indio_dev, ch, val);
492 		if (err < 0)
493 			goto read_error;
494 
495 		return IIO_VAL_INT;
496 	case IIO_CHAN_INFO_SCALE:
497 		switch (ch->type) {
498 		case IIO_PRESSURE:
499 			*val = 0;
500 			*val2 = press_data->current_fullscale->gain;
501 			return IIO_VAL_INT_PLUS_NANO;
502 		case IIO_TEMP:
503 			*val = MCELSIUS_PER_CELSIUS;
504 			*val2 = press_data->current_fullscale->gain2;
505 			return IIO_VAL_FRACTIONAL;
506 		default:
507 			err = -EINVAL;
508 			goto read_error;
509 		}
510 
511 	case IIO_CHAN_INFO_OFFSET:
512 		switch (ch->type) {
513 		case IIO_TEMP:
514 			*val = ST_PRESS_MILLI_CELSIUS_OFFSET *
515 			       press_data->current_fullscale->gain2;
516 			*val2 = MCELSIUS_PER_CELSIUS;
517 			break;
518 		default:
519 			err = -EINVAL;
520 			goto read_error;
521 		}
522 
523 		return IIO_VAL_FRACTIONAL;
524 	case IIO_CHAN_INFO_SAMP_FREQ:
525 		*val = press_data->odr;
526 		return IIO_VAL_INT;
527 	default:
528 		return -EINVAL;
529 	}
530 
531 read_error:
532 	return err;
533 }
534 
535 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
536 
537 static struct attribute *st_press_attributes[] = {
538 	&iio_dev_attr_sampling_frequency_available.dev_attr.attr,
539 	NULL,
540 };
541 
542 static const struct attribute_group st_press_attribute_group = {
543 	.attrs = st_press_attributes,
544 };
545 
546 static const struct iio_info press_info = {
547 	.driver_module = THIS_MODULE,
548 	.attrs = &st_press_attribute_group,
549 	.read_raw = &st_press_read_raw,
550 	.write_raw = &st_press_write_raw,
551 	.debugfs_reg_access = &st_sensors_debugfs_reg_access,
552 };
553 
554 #ifdef CONFIG_IIO_TRIGGER
555 static const struct iio_trigger_ops st_press_trigger_ops = {
556 	.owner = THIS_MODULE,
557 	.set_trigger_state = ST_PRESS_TRIGGER_SET_STATE,
558 	.validate_device = st_sensors_validate_device,
559 };
560 #define ST_PRESS_TRIGGER_OPS (&st_press_trigger_ops)
561 #else
562 #define ST_PRESS_TRIGGER_OPS NULL
563 #endif
564 
565 int st_press_common_probe(struct iio_dev *indio_dev)
566 {
567 	struct st_sensor_data *press_data = iio_priv(indio_dev);
568 	int irq = press_data->get_irq_data_ready(indio_dev);
569 	int err;
570 
571 	indio_dev->modes = INDIO_DIRECT_MODE;
572 	indio_dev->info = &press_info;
573 	mutex_init(&press_data->tb.buf_lock);
574 
575 	err = st_sensors_power_enable(indio_dev);
576 	if (err)
577 		return err;
578 
579 	err = st_sensors_check_device_support(indio_dev,
580 					ARRAY_SIZE(st_press_sensors_settings),
581 					st_press_sensors_settings);
582 	if (err < 0)
583 		goto st_press_power_off;
584 
585 	/*
586 	 * Skip timestamping channel while declaring available channels to
587 	 * common st_sensor layer. Look at st_sensors_get_buffer_element() to
588 	 * see how timestamps are explicitly pushed as last samples block
589 	 * element.
590 	 */
591 	press_data->num_data_channels = press_data->sensor_settings->num_ch - 1;
592 	press_data->multiread_bit = press_data->sensor_settings->multi_read_bit;
593 	indio_dev->channels = press_data->sensor_settings->ch;
594 	indio_dev->num_channels = press_data->sensor_settings->num_ch;
595 
596 	press_data->current_fullscale =
597 		(struct st_sensor_fullscale_avl *)
598 			&press_data->sensor_settings->fs.fs_avl[0];
599 
600 	press_data->odr = press_data->sensor_settings->odr.odr_avl[0].hz;
601 
602 	/* Some devices don't support a data ready pin. */
603 	if (!press_data->dev->platform_data &&
604 				press_data->sensor_settings->drdy_irq.addr)
605 		press_data->dev->platform_data =
606 			(struct st_sensors_platform_data *)&default_press_pdata;
607 
608 	err = st_sensors_init_sensor(indio_dev, press_data->dev->platform_data);
609 	if (err < 0)
610 		goto st_press_power_off;
611 
612 	err = st_press_allocate_ring(indio_dev);
613 	if (err < 0)
614 		goto st_press_power_off;
615 
616 	if (irq > 0) {
617 		err = st_sensors_allocate_trigger(indio_dev,
618 						  ST_PRESS_TRIGGER_OPS);
619 		if (err < 0)
620 			goto st_press_probe_trigger_error;
621 	}
622 
623 	err = iio_device_register(indio_dev);
624 	if (err)
625 		goto st_press_device_register_error;
626 
627 	dev_info(&indio_dev->dev, "registered pressure sensor %s\n",
628 		 indio_dev->name);
629 
630 	return err;
631 
632 st_press_device_register_error:
633 	if (irq > 0)
634 		st_sensors_deallocate_trigger(indio_dev);
635 st_press_probe_trigger_error:
636 	st_press_deallocate_ring(indio_dev);
637 st_press_power_off:
638 	st_sensors_power_disable(indio_dev);
639 
640 	return err;
641 }
642 EXPORT_SYMBOL(st_press_common_probe);
643 
644 void st_press_common_remove(struct iio_dev *indio_dev)
645 {
646 	struct st_sensor_data *press_data = iio_priv(indio_dev);
647 
648 	st_sensors_power_disable(indio_dev);
649 
650 	iio_device_unregister(indio_dev);
651 	if (press_data->get_irq_data_ready(indio_dev) > 0)
652 		st_sensors_deallocate_trigger(indio_dev);
653 
654 	st_press_deallocate_ring(indio_dev);
655 }
656 EXPORT_SYMBOL(st_press_common_remove);
657 
658 MODULE_AUTHOR("Denis Ciocca <denis.ciocca@st.com>");
659 MODULE_DESCRIPTION("STMicroelectronics pressures driver");
660 MODULE_LICENSE("GPL v2");
661