xref: /linux/drivers/iio/pressure/mprls0025pa.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * MPRLS0025PA - Honeywell MicroPressure pressure sensor series driver
4  *
5  * Copyright (c) Andreas Klinger <ak@it-klinger.de>
6  *
7  * Data sheet:
8  *  https://prod-edam.honeywell.com/content/dam/honeywell-edam/sps/siot/en-us/products/sensors/pressure-sensors/board-mount-pressure-sensors/micropressure-mpr-series/documents/sps-siot-mpr-series-datasheet-32332628-ciid-172626.pdf
9  *
10  */
11 
12 #include <linux/array_size.h>
13 #include <linux/bitfield.h>
14 #include <linux/bits.h>
15 #include <linux/math64.h>
16 #include <linux/mod_devicetable.h>
17 #include <linux/module.h>
18 #include <linux/property.h>
19 #include <linux/units.h>
20 
21 #include <linux/gpio/consumer.h>
22 
23 #include <linux/iio/buffer.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 
27 #include <linux/regulator/consumer.h>
28 
29 #include <linux/unaligned.h>
30 
31 #include "mprls0025pa.h"
32 
33 /* bits in status byte */
34 #define MPR_ST_POWER  BIT(6) /* device is powered */
35 #define MPR_ST_BUSY   BIT(5) /* device is busy */
36 #define MPR_ST_MEMORY BIT(2) /* integrity test passed */
37 #define MPR_ST_MATH   BIT(0) /* internal math saturation */
38 
39 #define MPR_ST_ERR_FLAG  (MPR_ST_BUSY | MPR_ST_MEMORY | MPR_ST_MATH)
40 
41 /*
42  * support _RAW sysfs interface:
43  *
44  * Calculation formula from the datasheet:
45  * pressure = (press_cnt - outputmin) * scale + pmin
46  * with:
47  * * pressure	- measured pressure in Pascal
48  * * press_cnt	- raw value read from sensor
49  * * pmin	- minimum pressure range value of sensor (data->pmin)
50  * * pmax	- maximum pressure range value of sensor (data->pmax)
51  * * outputmin	- minimum numerical range raw value delivered by sensor
52  *						(mpr_func_spec.output_min)
53  * * outputmax	- maximum numerical range raw value delivered by sensor
54  *						(mpr_func_spec.output_max)
55  * * scale	- (pmax - pmin) / (outputmax - outputmin)
56  *
57  * formula of the userspace:
58  * pressure = (raw + offset) * scale
59  *
60  * Values given to the userspace in sysfs interface:
61  * * raw	- press_cnt
62  * * offset	- (-1 * outputmin) - pmin / scale
63  *                note: With all sensors from the datasheet pmin = 0
64  *                which reduces the offset to (-1 * outputmin)
65  */
66 
67 /*
68  * transfer function A: 10%   to 90%   of 2^24
69  * transfer function B:  2.5% to 22.5% of 2^24
70  * transfer function C: 20%   to 80%   of 2^24
71  */
72 struct mpr_func_spec {
73 	u32			output_min;
74 	u32			output_max;
75 };
76 
77 static const struct mpr_func_spec mpr_func_spec[] = {
78 	[MPR_FUNCTION_A] = { .output_min = 1677722, .output_max = 15099494 },
79 	[MPR_FUNCTION_B] = { .output_min =  419430, .output_max =  3774874 },
80 	[MPR_FUNCTION_C] = { .output_min = 3355443, .output_max = 13421773 },
81 };
82 
83 enum mpr_variants {
84 	MPR0001BA = 0x00, MPR01_6BA = 0x01, MPR02_5BA = 0x02, MPR0060MG = 0x03,
85 	MPR0100MG = 0x04, MPR0160MG = 0x05, MPR0250MG = 0x06, MPR0400MG = 0x07,
86 	MPR0600MG = 0x08, MPR0001BG = 0x09, MPR01_6BG = 0x0a, MPR02_5BG = 0x0b,
87 	MPR0100KA = 0x0c, MPR0160KA = 0x0d, MPR0250KA = 0x0e, MPR0006KG = 0x0f,
88 	MPR0010KG = 0x10, MPR0016KG = 0x11, MPR0025KG = 0x12, MPR0040KG = 0x13,
89 	MPR0060KG = 0x14, MPR0100KG = 0x15, MPR0160KG = 0x16, MPR0250KG = 0x17,
90 	MPR0015PA = 0x18, MPR0025PA = 0x19, MPR0030PA = 0x1a, MPR0001PG = 0x1b,
91 	MPR0005PG = 0x1c, MPR0015PG = 0x1d, MPR0030PG = 0x1e, MPR0300YG = 0x1f,
92 	MPR_VARIANTS_MAX
93 };
94 
95 static const char * const mpr_triplet_variants[MPR_VARIANTS_MAX] = {
96 	[MPR0001BA] = "0001BA", [MPR01_6BA] = "01.6BA", [MPR02_5BA] = "02.5BA",
97 	[MPR0060MG] = "0060MG", [MPR0100MG] = "0100MG", [MPR0160MG] = "0160MG",
98 	[MPR0250MG] = "0250MG", [MPR0400MG] = "0400MG", [MPR0600MG] = "0600MG",
99 	[MPR0001BG] = "0001BG", [MPR01_6BG] = "01.6BG", [MPR02_5BG] = "02.5BG",
100 	[MPR0100KA] = "0100KA", [MPR0160KA] = "0160KA", [MPR0250KA] = "0250KA",
101 	[MPR0006KG] = "0006KG", [MPR0010KG] = "0010KG", [MPR0016KG] = "0016KG",
102 	[MPR0025KG] = "0025KG", [MPR0040KG] = "0040KG", [MPR0060KG] = "0060KG",
103 	[MPR0100KG] = "0100KG", [MPR0160KG] = "0160KG", [MPR0250KG] = "0250KG",
104 	[MPR0015PA] = "0015PA", [MPR0025PA] = "0025PA", [MPR0030PA] = "0030PA",
105 	[MPR0001PG] = "0001PG", [MPR0005PG] = "0005PG", [MPR0015PG] = "0015PG",
106 	[MPR0030PG] = "0030PG", [MPR0300YG] = "0300YG"
107 };
108 
109 /**
110  * struct mpr_range_config - list of pressure ranges based on nomenclature
111  * @pmin: lowest pressure that can be measured
112  * @pmax: highest pressure that can be measured
113  */
114 struct mpr_range_config {
115 	const s32 pmin;
116 	const s32 pmax;
117 };
118 
119 /* All min max limits have been converted to pascals */
120 static const struct mpr_range_config mpr_range_config[MPR_VARIANTS_MAX] = {
121 	[MPR0001BA] = { .pmin = 0, .pmax = 100000 },
122 	[MPR01_6BA] = { .pmin = 0, .pmax = 160000 },
123 	[MPR02_5BA] = { .pmin = 0, .pmax = 250000 },
124 	[MPR0060MG] = { .pmin = 0, .pmax =   6000 },
125 	[MPR0100MG] = { .pmin = 0, .pmax =  10000 },
126 	[MPR0160MG] = { .pmin = 0, .pmax =  16000 },
127 	[MPR0250MG] = { .pmin = 0, .pmax =  25000 },
128 	[MPR0400MG] = { .pmin = 0, .pmax =  40000 },
129 	[MPR0600MG] = { .pmin = 0, .pmax =  60000 },
130 	[MPR0001BG] = { .pmin = 0, .pmax = 100000 },
131 	[MPR01_6BG] = { .pmin = 0, .pmax = 160000 },
132 	[MPR02_5BG] = { .pmin = 0, .pmax = 250000 },
133 	[MPR0100KA] = { .pmin = 0, .pmax = 100000 },
134 	[MPR0160KA] = { .pmin = 0, .pmax = 160000 },
135 	[MPR0250KA] = { .pmin = 0, .pmax = 250000 },
136 	[MPR0006KG] = { .pmin = 0, .pmax =   6000 },
137 	[MPR0010KG] = { .pmin = 0, .pmax =  10000 },
138 	[MPR0016KG] = { .pmin = 0, .pmax =  16000 },
139 	[MPR0025KG] = { .pmin = 0, .pmax =  25000 },
140 	[MPR0040KG] = { .pmin = 0, .pmax =  40000 },
141 	[MPR0060KG] = { .pmin = 0, .pmax =  60000 },
142 	[MPR0100KG] = { .pmin = 0, .pmax = 100000 },
143 	[MPR0160KG] = { .pmin = 0, .pmax = 160000 },
144 	[MPR0250KG] = { .pmin = 0, .pmax = 250000 },
145 	[MPR0015PA] = { .pmin = 0, .pmax = 103421 },
146 	[MPR0025PA] = { .pmin = 0, .pmax = 172369 },
147 	[MPR0030PA] = { .pmin = 0, .pmax = 206843 },
148 	[MPR0001PG] = { .pmin = 0, .pmax =   6895 },
149 	[MPR0005PG] = { .pmin = 0, .pmax =  34474 },
150 	[MPR0015PG] = { .pmin = 0, .pmax = 103421 },
151 	[MPR0030PG] = { .pmin = 0, .pmax = 206843 },
152 	[MPR0300YG] = { .pmin = 0, .pmax =  39997 }
153 };
154 
155 static const struct iio_chan_spec mpr_channels[] = {
156 	{
157 		.type = IIO_PRESSURE,
158 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
159 					BIT(IIO_CHAN_INFO_SCALE) |
160 					BIT(IIO_CHAN_INFO_OFFSET),
161 		.scan_index = 0,
162 		.scan_type = {
163 			.sign = 's',
164 			.realbits = 32,
165 			.storagebits = 32,
166 			.endianness = IIO_CPU,
167 		},
168 	},
169 	IIO_CHAN_SOFT_TIMESTAMP(1),
170 };
171 
172 static void mpr_reset(struct mpr_data *data)
173 {
174 	if (data->gpiod_reset) {
175 		gpiod_set_value(data->gpiod_reset, 0);
176 		udelay(10);
177 		gpiod_set_value(data->gpiod_reset, 1);
178 	}
179 }
180 
181 /**
182  * mpr_read_pressure() - Read pressure value from sensor
183  * @data: Pointer to private data struct.
184  * @press: Output value read from sensor.
185  *
186  * Reading from the sensor by sending and receiving telegrams.
187  *
188  * If there is an end of conversion (EOC) interrupt registered the function
189  * waits for a maximum of one second for the interrupt.
190  *
191  * Context: The function can sleep and data->lock should be held when calling it
192  * Return:
193  * * 0		- OK, the pressure value could be read
194  * * -ETIMEDOUT	- Timeout while waiting for the EOC interrupt or busy flag is
195  *		  still set after nloops attempts of reading
196  */
197 static int mpr_read_pressure(struct mpr_data *data, s32 *press)
198 {
199 	struct device *dev = data->dev;
200 	int ret, i;
201 	int nloops = 10;
202 
203 	reinit_completion(&data->completion);
204 
205 	ret = data->ops->write(data, MPR_CMD_SYNC, MPR_PKT_SYNC_LEN);
206 	if (ret < 0) {
207 		dev_err(dev, "error while writing ret: %d\n", ret);
208 		return ret;
209 	}
210 
211 	if (data->irq > 0) {
212 		ret = wait_for_completion_timeout(&data->completion, HZ);
213 		if (!ret) {
214 			dev_err(dev, "timeout while waiting for eoc irq\n");
215 			return -ETIMEDOUT;
216 		}
217 	} else {
218 		/* wait until status indicates data is ready */
219 		for (i = 0; i < nloops; i++) {
220 			/*
221 			 * datasheet only says to wait at least 5 ms for the
222 			 * data but leave the maximum response time open
223 			 * --> let's try it nloops (10) times which seems to be
224 			 *     quite long
225 			 */
226 			usleep_range(5000, 10000);
227 			ret = data->ops->read(data, MPR_CMD_NOP, 1);
228 			if (ret < 0) {
229 				dev_err(dev,
230 					"error while reading, status: %d\n",
231 					ret);
232 				return ret;
233 			}
234 			if (!(data->buffer[0] & MPR_ST_ERR_FLAG))
235 				break;
236 		}
237 		if (i == nloops) {
238 			dev_err(dev, "timeout while reading\n");
239 			return -ETIMEDOUT;
240 		}
241 	}
242 
243 	ret = data->ops->read(data, MPR_CMD_NOP, MPR_PKT_NOP_LEN);
244 	if (ret < 0)
245 		return ret;
246 
247 	if (data->buffer[0] & MPR_ST_ERR_FLAG) {
248 		dev_err(data->dev,
249 			"unexpected status byte %02x\n", data->buffer[0]);
250 		return -ETIMEDOUT;
251 	}
252 
253 	*press = get_unaligned_be24(&data->buffer[1]);
254 
255 	dev_dbg(dev, "received: %*ph cnt: %d\n", ret, data->buffer, *press);
256 
257 	return 0;
258 }
259 
260 static irqreturn_t mpr_eoc_handler(int irq, void *p)
261 {
262 	struct mpr_data *data = p;
263 
264 	complete(&data->completion);
265 
266 	return IRQ_HANDLED;
267 }
268 
269 static irqreturn_t mpr_trigger_handler(int irq, void *p)
270 {
271 	int ret;
272 	struct iio_poll_func *pf = p;
273 	struct iio_dev *indio_dev = pf->indio_dev;
274 	struct mpr_data *data = iio_priv(indio_dev);
275 
276 	mutex_lock(&data->lock);
277 	ret = mpr_read_pressure(data, &data->chan.pres);
278 	if (ret < 0)
279 		goto err;
280 
281 	iio_push_to_buffers_with_timestamp(indio_dev, &data->chan,
282 					   iio_get_time_ns(indio_dev));
283 
284 err:
285 	mutex_unlock(&data->lock);
286 	iio_trigger_notify_done(indio_dev->trig);
287 
288 	return IRQ_HANDLED;
289 }
290 
291 static int mpr_read_raw(struct iio_dev *indio_dev,
292 	struct iio_chan_spec const *chan, int *val, int *val2, long mask)
293 {
294 	int ret;
295 	s32 pressure;
296 	struct mpr_data *data = iio_priv(indio_dev);
297 
298 	if (chan->type != IIO_PRESSURE)
299 		return -EINVAL;
300 
301 	switch (mask) {
302 	case IIO_CHAN_INFO_RAW:
303 		mutex_lock(&data->lock);
304 		ret = mpr_read_pressure(data, &pressure);
305 		mutex_unlock(&data->lock);
306 		if (ret < 0)
307 			return ret;
308 		*val = pressure;
309 		return IIO_VAL_INT;
310 	case IIO_CHAN_INFO_SCALE:
311 		*val = data->scale;
312 		*val2 = data->scale2;
313 		return IIO_VAL_INT_PLUS_NANO;
314 	case IIO_CHAN_INFO_OFFSET:
315 		*val = data->offset;
316 		*val2 = data->offset2;
317 		return IIO_VAL_INT_PLUS_NANO;
318 	default:
319 		return -EINVAL;
320 	}
321 }
322 
323 static const struct iio_info mpr_info = {
324 	.read_raw = &mpr_read_raw,
325 };
326 
327 int mpr_common_probe(struct device *dev, const struct mpr_ops *ops, int irq)
328 {
329 	int ret;
330 	struct mpr_data *data;
331 	struct iio_dev *indio_dev;
332 	const char *triplet;
333 	s64 scale, offset;
334 	u32 func;
335 
336 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
337 	if (!indio_dev)
338 		return -ENOMEM;
339 
340 	data = iio_priv(indio_dev);
341 	data->dev = dev;
342 	data->ops = ops;
343 	data->irq = irq;
344 
345 	mutex_init(&data->lock);
346 	init_completion(&data->completion);
347 
348 	indio_dev->name = "mprls0025pa";
349 	indio_dev->info = &mpr_info;
350 	indio_dev->channels = mpr_channels;
351 	indio_dev->num_channels = ARRAY_SIZE(mpr_channels);
352 	indio_dev->modes = INDIO_DIRECT_MODE;
353 
354 	ret = devm_regulator_get_enable(dev, "vdd");
355 	if (ret)
356 		return dev_err_probe(dev, ret,
357 				     "can't get and enable vdd supply\n");
358 
359 	ret = data->ops->init(data->dev);
360 	if (ret)
361 		return ret;
362 
363 	ret = device_property_read_u32(dev,
364 				       "honeywell,transfer-function", &func);
365 	if (ret)
366 		return dev_err_probe(dev, ret,
367 			     "honeywell,transfer-function could not be read\n");
368 	data->function = func - 1;
369 	if (data->function > MPR_FUNCTION_C)
370 		return dev_err_probe(dev, -EINVAL,
371 				     "honeywell,transfer-function %d invalid\n",
372 				     data->function);
373 
374 	ret = device_property_read_string(dev, "honeywell,pressure-triplet",
375 					  &triplet);
376 	if (ret) {
377 		ret = device_property_read_u32(dev, "honeywell,pmin-pascal",
378 					       &data->pmin);
379 		if (ret)
380 			return dev_err_probe(dev, ret,
381 				   "honeywell,pmin-pascal could not be read\n");
382 
383 		ret = device_property_read_u32(dev, "honeywell,pmax-pascal",
384 					       &data->pmax);
385 		if (ret)
386 			return dev_err_probe(dev, ret,
387 				   "honeywell,pmax-pascal could not be read\n");
388 	} else {
389 		ret = device_property_match_property_string(dev,
390 						   "honeywell,pressure-triplet",
391 						   mpr_triplet_variants,
392 						   MPR_VARIANTS_MAX);
393 		if (ret < 0)
394 			return dev_err_probe(dev, -EINVAL,
395 				     "honeywell,pressure-triplet is invalid\n");
396 
397 		data->pmin = mpr_range_config[ret].pmin;
398 		data->pmax = mpr_range_config[ret].pmax;
399 	}
400 
401 	if (data->pmin >= data->pmax)
402 		return dev_err_probe(dev, -EINVAL,
403 				     "pressure limits are invalid\n");
404 
405 	data->outmin = mpr_func_spec[data->function].output_min;
406 	data->outmax = mpr_func_spec[data->function].output_max;
407 
408 	/* use 64 bit calculation for preserving a reasonable precision */
409 	scale = div_s64(((s64)(data->pmax - data->pmin)) * NANO,
410 			data->outmax - data->outmin);
411 	data->scale = div_s64_rem(scale, NANO, &data->scale2);
412 	/*
413 	 * multiply with NANO before dividing by scale and later divide by NANO
414 	 * again.
415 	 */
416 	offset = ((-1LL) * (s64)data->outmin) * NANO -
417 		  div_s64(div_s64((s64)data->pmin * NANO, scale), NANO);
418 	data->offset = div_s64_rem(offset, NANO, &data->offset2);
419 
420 	if (data->irq > 0) {
421 		ret = devm_request_irq(dev, data->irq, mpr_eoc_handler,
422 				       IRQF_TRIGGER_RISING,
423 				       dev_name(dev),
424 				       data);
425 		if (ret)
426 			return dev_err_probe(dev, ret,
427 					  "request irq %d failed\n", data->irq);
428 	}
429 
430 	data->gpiod_reset = devm_gpiod_get_optional(dev, "reset",
431 						    GPIOD_OUT_HIGH);
432 	if (IS_ERR(data->gpiod_reset))
433 		return dev_err_probe(dev, PTR_ERR(data->gpiod_reset),
434 				     "request reset-gpio failed\n");
435 
436 	mpr_reset(data);
437 
438 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
439 					      mpr_trigger_handler, NULL);
440 	if (ret)
441 		return dev_err_probe(dev, ret,
442 				     "iio triggered buffer setup failed\n");
443 
444 	ret = devm_iio_device_register(dev, indio_dev);
445 	if (ret)
446 		return dev_err_probe(dev, ret,
447 				     "unable to register iio device\n");
448 
449 	return 0;
450 }
451 EXPORT_SYMBOL_NS(mpr_common_probe, IIO_HONEYWELL_MPRLS0025PA);
452 
453 MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
454 MODULE_DESCRIPTION("Honeywell MPR pressure sensor core driver");
455 MODULE_LICENSE("GPL");
456