1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2020 InvenSense, Inc. 4 * 5 * Driver for InvenSense ICP-1010xx barometric pressure and temperature sensor. 6 * 7 * Datasheet: 8 * http://www.invensense.com/wp-content/uploads/2018/01/DS-000186-ICP-101xx-v1.2.pdf 9 */ 10 11 #include <linux/device.h> 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/i2c.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/crc8.h> 17 #include <linux/mutex.h> 18 #include <linux/delay.h> 19 #include <linux/log2.h> 20 #include <linux/math64.h> 21 #include <linux/regulator/consumer.h> 22 #include <linux/iio/iio.h> 23 24 #define ICP10100_ID_REG_GET(_reg) ((_reg) & 0x003F) 25 #define ICP10100_ID_REG 0x08 26 #define ICP10100_RESPONSE_WORD_LENGTH 3 27 #define ICP10100_CRC8_WORD_LENGTH 2 28 #define ICP10100_CRC8_POLYNOMIAL 0x31 29 #define ICP10100_CRC8_INIT 0xFF 30 31 enum icp10100_mode { 32 ICP10100_MODE_LP, /* Low power mode: 1x sampling */ 33 ICP10100_MODE_N, /* Normal mode: 2x sampling */ 34 ICP10100_MODE_LN, /* Low noise mode: 4x sampling */ 35 ICP10100_MODE_ULN, /* Ultra low noise mode: 8x sampling */ 36 ICP10100_MODE_NB, 37 }; 38 39 struct icp10100_state { 40 struct mutex lock; 41 struct i2c_client *client; 42 struct regulator *vdd; 43 enum icp10100_mode mode; 44 int16_t cal[4]; 45 }; 46 47 struct icp10100_command { 48 __be16 cmd; 49 unsigned long wait_us; 50 unsigned long wait_max_us; 51 size_t response_word_nb; 52 }; 53 54 static const struct icp10100_command icp10100_cmd_soft_reset = { 55 .cmd = cpu_to_be16(0x805D), 56 .wait_us = 170, 57 .wait_max_us = 200, 58 .response_word_nb = 0, 59 }; 60 61 static const struct icp10100_command icp10100_cmd_read_id = { 62 .cmd = cpu_to_be16(0xEFC8), 63 .wait_us = 0, 64 .response_word_nb = 1, 65 }; 66 67 static const struct icp10100_command icp10100_cmd_read_otp = { 68 .cmd = cpu_to_be16(0xC7F7), 69 .wait_us = 0, 70 .response_word_nb = 1, 71 }; 72 73 static const struct icp10100_command icp10100_cmd_measure[] = { 74 [ICP10100_MODE_LP] = { 75 .cmd = cpu_to_be16(0x401A), 76 .wait_us = 1800, 77 .wait_max_us = 2000, 78 .response_word_nb = 3, 79 }, 80 [ICP10100_MODE_N] = { 81 .cmd = cpu_to_be16(0x48A3), 82 .wait_us = 6300, 83 .wait_max_us = 6500, 84 .response_word_nb = 3, 85 }, 86 [ICP10100_MODE_LN] = { 87 .cmd = cpu_to_be16(0x5059), 88 .wait_us = 23800, 89 .wait_max_us = 24000, 90 .response_word_nb = 3, 91 }, 92 [ICP10100_MODE_ULN] = { 93 .cmd = cpu_to_be16(0x58E0), 94 .wait_us = 94500, 95 .wait_max_us = 94700, 96 .response_word_nb = 3, 97 }, 98 }; 99 100 static const uint8_t icp10100_switch_mode_otp[] = 101 {0xC5, 0x95, 0x00, 0x66, 0x9c}; 102 103 DECLARE_CRC8_TABLE(icp10100_crc8_table); 104 105 static inline int icp10100_i2c_xfer(struct i2c_adapter *adap, 106 struct i2c_msg *msgs, int num) 107 { 108 int ret; 109 110 ret = i2c_transfer(adap, msgs, num); 111 if (ret < 0) 112 return ret; 113 114 if (ret != num) 115 return -EIO; 116 117 return 0; 118 } 119 120 static int icp10100_send_cmd(struct icp10100_state *st, 121 const struct icp10100_command *cmd, 122 __be16 *buf, size_t buf_len) 123 { 124 size_t size = cmd->response_word_nb * ICP10100_RESPONSE_WORD_LENGTH; 125 uint8_t data[16]; 126 uint8_t *ptr; 127 uint8_t *buf_ptr = (uint8_t *)buf; 128 struct i2c_msg msgs[2] = { 129 { 130 .addr = st->client->addr, 131 .flags = 0, 132 .len = 2, 133 .buf = (uint8_t *)&cmd->cmd, 134 }, { 135 .addr = st->client->addr, 136 .flags = I2C_M_RD, 137 .len = size, 138 .buf = data, 139 }, 140 }; 141 uint8_t crc; 142 unsigned int i; 143 int ret; 144 145 if (size > sizeof(data)) 146 return -EINVAL; 147 148 if (cmd->response_word_nb > 0 && 149 (buf == NULL || buf_len < (cmd->response_word_nb * 2))) 150 return -EINVAL; 151 152 dev_dbg(&st->client->dev, "sending cmd %#x\n", be16_to_cpu(cmd->cmd)); 153 154 if (cmd->response_word_nb > 0 && cmd->wait_us == 0) { 155 /* direct command-response without waiting */ 156 ret = icp10100_i2c_xfer(st->client->adapter, msgs, 157 ARRAY_SIZE(msgs)); 158 if (ret) 159 return ret; 160 } else { 161 /* transfer command write */ 162 ret = icp10100_i2c_xfer(st->client->adapter, &msgs[0], 1); 163 if (ret) 164 return ret; 165 if (cmd->wait_us > 0) 166 usleep_range(cmd->wait_us, cmd->wait_max_us); 167 /* transfer response read if needed */ 168 if (cmd->response_word_nb > 0) { 169 ret = icp10100_i2c_xfer(st->client->adapter, &msgs[1], 1); 170 if (ret) 171 return ret; 172 } else { 173 return 0; 174 } 175 } 176 177 /* process read words with crc checking */ 178 for (i = 0; i < cmd->response_word_nb; ++i) { 179 ptr = &data[i * ICP10100_RESPONSE_WORD_LENGTH]; 180 crc = crc8(icp10100_crc8_table, ptr, ICP10100_CRC8_WORD_LENGTH, 181 ICP10100_CRC8_INIT); 182 if (crc != ptr[ICP10100_CRC8_WORD_LENGTH]) { 183 dev_err(&st->client->dev, "crc error recv=%#x calc=%#x\n", 184 ptr[ICP10100_CRC8_WORD_LENGTH], crc); 185 return -EIO; 186 } 187 *buf_ptr++ = ptr[0]; 188 *buf_ptr++ = ptr[1]; 189 } 190 191 return 0; 192 } 193 194 static int icp10100_read_cal_otp(struct icp10100_state *st) 195 { 196 __be16 val; 197 int i; 198 int ret; 199 200 /* switch into OTP read mode */ 201 ret = i2c_master_send(st->client, icp10100_switch_mode_otp, 202 ARRAY_SIZE(icp10100_switch_mode_otp)); 203 if (ret < 0) 204 return ret; 205 if (ret != ARRAY_SIZE(icp10100_switch_mode_otp)) 206 return -EIO; 207 208 /* read 4 calibration values */ 209 for (i = 0; i < 4; ++i) { 210 ret = icp10100_send_cmd(st, &icp10100_cmd_read_otp, 211 &val, sizeof(val)); 212 if (ret) 213 return ret; 214 st->cal[i] = be16_to_cpu(val); 215 dev_dbg(&st->client->dev, "cal[%d] = %d\n", i, st->cal[i]); 216 } 217 218 return 0; 219 } 220 221 static int icp10100_init_chip(struct icp10100_state *st) 222 { 223 __be16 val; 224 uint16_t id; 225 int ret; 226 227 /* read and check id */ 228 ret = icp10100_send_cmd(st, &icp10100_cmd_read_id, &val, sizeof(val)); 229 if (ret) 230 return ret; 231 id = ICP10100_ID_REG_GET(be16_to_cpu(val)); 232 if (id != ICP10100_ID_REG) { 233 dev_err(&st->client->dev, "invalid id %#x\n", id); 234 return -ENODEV; 235 } 236 237 /* read calibration data from OTP */ 238 ret = icp10100_read_cal_otp(st); 239 if (ret) 240 return ret; 241 242 /* reset chip */ 243 return icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0); 244 } 245 246 static int icp10100_get_measures(struct icp10100_state *st, 247 uint32_t *pressure, uint16_t *temperature) 248 { 249 const struct icp10100_command *cmd; 250 __be16 measures[3]; 251 int ret; 252 253 ret = pm_runtime_resume_and_get(&st->client->dev); 254 if (ret < 0) 255 return ret; 256 257 mutex_lock(&st->lock); 258 cmd = &icp10100_cmd_measure[st->mode]; 259 ret = icp10100_send_cmd(st, cmd, measures, sizeof(measures)); 260 mutex_unlock(&st->lock); 261 if (ret) 262 goto error_measure; 263 264 *pressure = (be16_to_cpu(measures[0]) << 8) | 265 (be16_to_cpu(measures[1]) >> 8); 266 *temperature = be16_to_cpu(measures[2]); 267 268 error_measure: 269 pm_runtime_put_autosuspend(&st->client->dev); 270 return ret; 271 } 272 273 static uint32_t icp10100_get_pressure(struct icp10100_state *st, 274 uint32_t raw_pressure, uint16_t raw_temp) 275 { 276 static int32_t p_calib[] = {45000, 80000, 105000}; 277 static int32_t lut_lower = 3670016; 278 static int32_t lut_upper = 12058624; 279 static int32_t inv_quadr_factor = 16777216; 280 static int32_t offset_factor = 2048; 281 int64_t val1, val2; 282 int32_t p_lut[3]; 283 int32_t t, t_square; 284 int64_t a, b, c; 285 uint32_t pressure_mPa; 286 287 dev_dbg(&st->client->dev, "raw: pressure = %u, temp = %u\n", 288 raw_pressure, raw_temp); 289 290 /* compute p_lut values */ 291 t = (int32_t)raw_temp - 32768; 292 t_square = t * t; 293 val1 = (int64_t)st->cal[0] * (int64_t)t_square; 294 p_lut[0] = lut_lower + (int32_t)div_s64(val1, inv_quadr_factor); 295 val1 = (int64_t)st->cal[1] * (int64_t)t_square; 296 p_lut[1] = offset_factor * st->cal[3] + 297 (int32_t)div_s64(val1, inv_quadr_factor); 298 val1 = (int64_t)st->cal[2] * (int64_t)t_square; 299 p_lut[2] = lut_upper + (int32_t)div_s64(val1, inv_quadr_factor); 300 dev_dbg(&st->client->dev, "p_lut = [%d, %d, %d]\n", 301 p_lut[0], p_lut[1], p_lut[2]); 302 303 /* compute a, b, c factors */ 304 val1 = (int64_t)p_lut[0] * (int64_t)p_lut[1] * 305 (int64_t)(p_calib[0] - p_calib[1]) + 306 (int64_t)p_lut[1] * (int64_t)p_lut[2] * 307 (int64_t)(p_calib[1] - p_calib[2]) + 308 (int64_t)p_lut[2] * (int64_t)p_lut[0] * 309 (int64_t)(p_calib[2] - p_calib[0]); 310 val2 = (int64_t)p_lut[2] * (int64_t)(p_calib[0] - p_calib[1]) + 311 (int64_t)p_lut[0] * (int64_t)(p_calib[1] - p_calib[2]) + 312 (int64_t)p_lut[1] * (int64_t)(p_calib[2] - p_calib[0]); 313 c = div64_s64(val1, val2); 314 dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, c = %lld\n", 315 val1, val2, c); 316 val1 = (int64_t)p_calib[0] * (int64_t)p_lut[0] - 317 (int64_t)p_calib[1] * (int64_t)p_lut[1] - 318 (int64_t)(p_calib[1] - p_calib[0]) * c; 319 val2 = (int64_t)p_lut[0] - (int64_t)p_lut[1]; 320 a = div64_s64(val1, val2); 321 dev_dbg(&st->client->dev, "val1 = %lld, val2 = %lld, a = %lld\n", 322 val1, val2, a); 323 b = ((int64_t)p_calib[0] - a) * ((int64_t)p_lut[0] + c); 324 dev_dbg(&st->client->dev, "b = %lld\n", b); 325 326 /* 327 * pressure_Pa = a + (b / (c + raw_pressure)) 328 * pressure_mPa = 1000 * pressure_Pa 329 */ 330 pressure_mPa = 1000LL * a + div64_s64(1000LL * b, c + raw_pressure); 331 332 return pressure_mPa; 333 } 334 335 static int icp10100_read_raw_measures(struct iio_dev *indio_dev, 336 struct iio_chan_spec const *chan, 337 int *val, int *val2) 338 { 339 struct icp10100_state *st = iio_priv(indio_dev); 340 uint32_t raw_pressure; 341 uint16_t raw_temp; 342 uint32_t pressure_mPa; 343 int ret; 344 345 if (!iio_device_claim_direct(indio_dev)) 346 return -EBUSY; 347 348 ret = icp10100_get_measures(st, &raw_pressure, &raw_temp); 349 if (ret) 350 goto error_release; 351 352 switch (chan->type) { 353 case IIO_PRESSURE: 354 pressure_mPa = icp10100_get_pressure(st, raw_pressure, 355 raw_temp); 356 /* mPa to kPa */ 357 *val = pressure_mPa / 1000000; 358 *val2 = pressure_mPa % 1000000; 359 ret = IIO_VAL_INT_PLUS_MICRO; 360 break; 361 case IIO_TEMP: 362 *val = raw_temp; 363 ret = IIO_VAL_INT; 364 break; 365 default: 366 ret = -EINVAL; 367 break; 368 } 369 370 error_release: 371 iio_device_release_direct(indio_dev); 372 return ret; 373 } 374 375 static int icp10100_read_raw(struct iio_dev *indio_dev, 376 struct iio_chan_spec const *chan, 377 int *val, int *val2, long mask) 378 { 379 struct icp10100_state *st = iio_priv(indio_dev); 380 381 switch (mask) { 382 case IIO_CHAN_INFO_RAW: 383 case IIO_CHAN_INFO_PROCESSED: 384 return icp10100_read_raw_measures(indio_dev, chan, val, val2); 385 case IIO_CHAN_INFO_SCALE: 386 switch (chan->type) { 387 case IIO_TEMP: 388 /* 1000 * 175°C / 65536 in m°C */ 389 *val = 2; 390 *val2 = 670288; 391 return IIO_VAL_INT_PLUS_MICRO; 392 default: 393 return -EINVAL; 394 } 395 break; 396 case IIO_CHAN_INFO_OFFSET: 397 switch (chan->type) { 398 case IIO_TEMP: 399 /* 1000 * -45°C in m°C */ 400 *val = -45000; 401 return IIO_VAL_INT; 402 default: 403 return -EINVAL; 404 } 405 break; 406 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 407 mutex_lock(&st->lock); 408 *val = 1 << st->mode; 409 mutex_unlock(&st->lock); 410 return IIO_VAL_INT; 411 default: 412 return -EINVAL; 413 } 414 } 415 416 static int icp10100_read_avail(struct iio_dev *indio_dev, 417 struct iio_chan_spec const *chan, 418 const int **vals, int *type, int *length, 419 long mask) 420 { 421 static int oversamplings[] = {1, 2, 4, 8}; 422 423 switch (mask) { 424 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 425 *vals = oversamplings; 426 *type = IIO_VAL_INT; 427 *length = ARRAY_SIZE(oversamplings); 428 return IIO_AVAIL_LIST; 429 default: 430 return -EINVAL; 431 } 432 } 433 434 static int icp10100_write_raw(struct iio_dev *indio_dev, 435 struct iio_chan_spec const *chan, 436 int val, int val2, long mask) 437 { 438 struct icp10100_state *st = iio_priv(indio_dev); 439 unsigned int mode; 440 441 switch (mask) { 442 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 443 /* oversampling is always positive and a power of 2 */ 444 if (val <= 0 || !is_power_of_2(val)) 445 return -EINVAL; 446 mode = ilog2(val); 447 if (mode >= ICP10100_MODE_NB) 448 return -EINVAL; 449 if (!iio_device_claim_direct(indio_dev)) 450 return -EBUSY; 451 mutex_lock(&st->lock); 452 st->mode = mode; 453 mutex_unlock(&st->lock); 454 iio_device_release_direct(indio_dev); 455 return 0; 456 default: 457 return -EINVAL; 458 } 459 } 460 461 static int icp10100_write_raw_get_fmt(struct iio_dev *indio_dev, 462 struct iio_chan_spec const *chan, 463 long mask) 464 { 465 switch (mask) { 466 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 467 return IIO_VAL_INT; 468 default: 469 return -EINVAL; 470 } 471 } 472 473 static const struct iio_info icp10100_info = { 474 .read_raw = icp10100_read_raw, 475 .read_avail = icp10100_read_avail, 476 .write_raw = icp10100_write_raw, 477 .write_raw_get_fmt = icp10100_write_raw_get_fmt, 478 }; 479 480 static const struct iio_chan_spec icp10100_channels[] = { 481 { 482 .type = IIO_PRESSURE, 483 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 484 .info_mask_shared_by_all = 485 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 486 .info_mask_shared_by_all_available = 487 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 488 }, { 489 .type = IIO_TEMP, 490 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 491 BIT(IIO_CHAN_INFO_SCALE) | 492 BIT(IIO_CHAN_INFO_OFFSET), 493 .info_mask_shared_by_all = 494 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 495 .info_mask_shared_by_all_available = 496 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 497 }, 498 }; 499 500 static int icp10100_enable_regulator(struct icp10100_state *st) 501 { 502 int ret; 503 504 ret = regulator_enable(st->vdd); 505 if (ret) 506 return ret; 507 msleep(100); 508 509 return 0; 510 } 511 512 static void icp10100_disable_regulator_action(void *data) 513 { 514 struct icp10100_state *st = data; 515 int ret; 516 517 ret = regulator_disable(st->vdd); 518 if (ret) 519 dev_err(&st->client->dev, "error %d disabling vdd\n", ret); 520 } 521 522 static void icp10100_pm_disable(void *data) 523 { 524 struct device *dev = data; 525 526 pm_runtime_disable(dev); 527 } 528 529 static int icp10100_probe(struct i2c_client *client) 530 { 531 struct iio_dev *indio_dev; 532 struct icp10100_state *st; 533 int ret; 534 535 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { 536 dev_err(&client->dev, "plain i2c transactions not supported\n"); 537 return -ENODEV; 538 } 539 540 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*st)); 541 if (!indio_dev) 542 return -ENOMEM; 543 544 i2c_set_clientdata(client, indio_dev); 545 indio_dev->name = client->name; 546 indio_dev->modes = INDIO_DIRECT_MODE; 547 indio_dev->channels = icp10100_channels; 548 indio_dev->num_channels = ARRAY_SIZE(icp10100_channels); 549 indio_dev->info = &icp10100_info; 550 551 st = iio_priv(indio_dev); 552 mutex_init(&st->lock); 553 st->client = client; 554 st->mode = ICP10100_MODE_N; 555 556 st->vdd = devm_regulator_get(&client->dev, "vdd"); 557 if (IS_ERR(st->vdd)) 558 return PTR_ERR(st->vdd); 559 560 ret = icp10100_enable_regulator(st); 561 if (ret) 562 return ret; 563 564 ret = devm_add_action_or_reset(&client->dev, 565 icp10100_disable_regulator_action, st); 566 if (ret) 567 return ret; 568 569 /* has to be done before the first i2c communication */ 570 crc8_populate_msb(icp10100_crc8_table, ICP10100_CRC8_POLYNOMIAL); 571 572 ret = icp10100_init_chip(st); 573 if (ret) { 574 dev_err(&client->dev, "init chip error %d\n", ret); 575 return ret; 576 } 577 578 /* enable runtime pm with autosuspend delay of 2s */ 579 pm_runtime_get_noresume(&client->dev); 580 pm_runtime_set_active(&client->dev); 581 pm_runtime_enable(&client->dev); 582 pm_runtime_set_autosuspend_delay(&client->dev, 2000); 583 pm_runtime_use_autosuspend(&client->dev); 584 pm_runtime_put(&client->dev); 585 ret = devm_add_action_or_reset(&client->dev, icp10100_pm_disable, 586 &client->dev); 587 if (ret) 588 return ret; 589 590 return devm_iio_device_register(&client->dev, indio_dev); 591 } 592 593 static int icp10100_suspend(struct device *dev) 594 { 595 struct icp10100_state *st = iio_priv(dev_get_drvdata(dev)); 596 int ret; 597 598 mutex_lock(&st->lock); 599 ret = regulator_disable(st->vdd); 600 mutex_unlock(&st->lock); 601 602 return ret; 603 } 604 605 static int icp10100_resume(struct device *dev) 606 { 607 struct icp10100_state *st = iio_priv(dev_get_drvdata(dev)); 608 int ret; 609 610 mutex_lock(&st->lock); 611 612 ret = icp10100_enable_regulator(st); 613 if (ret) 614 goto out_unlock; 615 616 /* reset chip */ 617 ret = icp10100_send_cmd(st, &icp10100_cmd_soft_reset, NULL, 0); 618 619 out_unlock: 620 mutex_unlock(&st->lock); 621 return ret; 622 } 623 624 static DEFINE_RUNTIME_DEV_PM_OPS(icp10100_pm, icp10100_suspend, icp10100_resume, 625 NULL); 626 627 static const struct of_device_id icp10100_of_match[] = { 628 { 629 .compatible = "invensense,icp10100", 630 }, 631 { } 632 }; 633 MODULE_DEVICE_TABLE(of, icp10100_of_match); 634 635 static const struct i2c_device_id icp10100_id[] = { 636 { "icp10100" }, 637 { } 638 }; 639 MODULE_DEVICE_TABLE(i2c, icp10100_id); 640 641 static struct i2c_driver icp10100_driver = { 642 .driver = { 643 .name = "icp10100", 644 .pm = pm_ptr(&icp10100_pm), 645 .of_match_table = icp10100_of_match, 646 }, 647 .probe = icp10100_probe, 648 .id_table = icp10100_id, 649 }; 650 module_i2c_driver(icp10100_driver); 651 652 MODULE_AUTHOR("InvenSense, Inc."); 653 MODULE_DESCRIPTION("InvenSense icp10100 driver"); 654 MODULE_LICENSE("GPL"); 655