xref: /linux/drivers/iio/pressure/bmp280-core.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /*
2  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
3  * Copyright (c) 2012 Bosch Sensortec GmbH
4  * Copyright (c) 2012 Unixphere AB
5  * Copyright (c) 2014 Intel Corporation
6  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
7  *
8  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  *
14  * Datasheet:
15  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
16  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
17  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
18  */
19 
20 #define pr_fmt(fmt) "bmp280: " fmt
21 
22 #include <linux/device.h>
23 #include <linux/module.h>
24 #include <linux/regmap.h>
25 #include <linux/delay.h>
26 #include <linux/iio/iio.h>
27 #include <linux/iio/sysfs.h>
28 #include <linux/gpio/consumer.h>
29 #include <linux/regulator/consumer.h>
30 #include <linux/interrupt.h>
31 #include <linux/irq.h> /* For irq_get_irq_data() */
32 #include <linux/completion.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/random.h>
35 
36 #include "bmp280.h"
37 
38 /*
39  * These enums are used for indexing into the array of calibration
40  * coefficients for BMP180.
41  */
42 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
43 
44 struct bmp180_calib {
45 	s16 AC1;
46 	s16 AC2;
47 	s16 AC3;
48 	u16 AC4;
49 	u16 AC5;
50 	u16 AC6;
51 	s16 B1;
52 	s16 B2;
53 	s16 MB;
54 	s16 MC;
55 	s16 MD;
56 };
57 
58 struct bmp280_data {
59 	struct device *dev;
60 	struct mutex lock;
61 	struct regmap *regmap;
62 	struct completion done;
63 	bool use_eoc;
64 	const struct bmp280_chip_info *chip_info;
65 	struct bmp180_calib calib;
66 	struct regulator *vddd;
67 	struct regulator *vdda;
68 	unsigned int start_up_time; /* in microseconds */
69 
70 	/* log of base 2 of oversampling rate */
71 	u8 oversampling_press;
72 	u8 oversampling_temp;
73 	u8 oversampling_humid;
74 
75 	/*
76 	 * Carryover value from temperature conversion, used in pressure
77 	 * calculation.
78 	 */
79 	s32 t_fine;
80 };
81 
82 struct bmp280_chip_info {
83 	const int *oversampling_temp_avail;
84 	int num_oversampling_temp_avail;
85 
86 	const int *oversampling_press_avail;
87 	int num_oversampling_press_avail;
88 
89 	const int *oversampling_humid_avail;
90 	int num_oversampling_humid_avail;
91 
92 	int (*chip_config)(struct bmp280_data *);
93 	int (*read_temp)(struct bmp280_data *, int *);
94 	int (*read_press)(struct bmp280_data *, int *, int *);
95 	int (*read_humid)(struct bmp280_data *, int *, int *);
96 };
97 
98 /*
99  * These enums are used for indexing into the array of compensation
100  * parameters for BMP280.
101  */
102 enum { T1, T2, T3 };
103 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
104 
105 static const struct iio_chan_spec bmp280_channels[] = {
106 	{
107 		.type = IIO_PRESSURE,
108 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
109 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
110 	},
111 	{
112 		.type = IIO_TEMP,
113 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
114 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
115 	},
116 	{
117 		.type = IIO_HUMIDITYRELATIVE,
118 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
119 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
120 	},
121 };
122 
123 /*
124  * Returns humidity in percent, resolution is 0.01 percent. Output value of
125  * "47445" represents 47445/1024 = 46.333 %RH.
126  *
127  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
128  */
129 
130 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
131 				      s32 adc_humidity)
132 {
133 	struct device *dev = data->dev;
134 	unsigned int H1, H3, tmp;
135 	int H2, H4, H5, H6, ret, var;
136 
137 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &H1);
138 	if (ret < 0) {
139 		dev_err(dev, "failed to read H1 comp value\n");
140 		return ret;
141 	}
142 
143 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &tmp, 2);
144 	if (ret < 0) {
145 		dev_err(dev, "failed to read H2 comp value\n");
146 		return ret;
147 	}
148 	H2 = sign_extend32(le16_to_cpu(tmp), 15);
149 
150 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &H3);
151 	if (ret < 0) {
152 		dev_err(dev, "failed to read H3 comp value\n");
153 		return ret;
154 	}
155 
156 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &tmp, 2);
157 	if (ret < 0) {
158 		dev_err(dev, "failed to read H4 comp value\n");
159 		return ret;
160 	}
161 	H4 = sign_extend32(((be16_to_cpu(tmp) >> 4) & 0xff0) |
162 			  (be16_to_cpu(tmp) & 0xf), 11);
163 
164 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &tmp, 2);
165 	if (ret < 0) {
166 		dev_err(dev, "failed to read H5 comp value\n");
167 		return ret;
168 	}
169 	H5 = sign_extend32(((le16_to_cpu(tmp) >> 4) & 0xfff), 11);
170 
171 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
172 	if (ret < 0) {
173 		dev_err(dev, "failed to read H6 comp value\n");
174 		return ret;
175 	}
176 	H6 = sign_extend32(tmp, 7);
177 
178 	var = ((s32)data->t_fine) - (s32)76800;
179 	var = ((((adc_humidity << 14) - (H4 << 20) - (H5 * var))
180 		+ (s32)16384) >> 15) * (((((((var * H6) >> 10)
181 		* (((var * (s32)H3) >> 11) + (s32)32768)) >> 10)
182 		+ (s32)2097152) * H2 + 8192) >> 14);
183 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)H1) >> 4;
184 
185 	return var >> 12;
186 };
187 
188 /*
189  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
190  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
191  * value.
192  *
193  * Taken from datasheet, Section 3.11.3, "Compensation formula".
194  */
195 static s32 bmp280_compensate_temp(struct bmp280_data *data,
196 				  s32 adc_temp)
197 {
198 	int ret;
199 	s32 var1, var2;
200 	__le16 buf[BMP280_COMP_TEMP_REG_COUNT / 2];
201 
202 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
203 			       buf, BMP280_COMP_TEMP_REG_COUNT);
204 	if (ret < 0) {
205 		dev_err(data->dev,
206 			"failed to read temperature calibration parameters\n");
207 		return ret;
208 	}
209 
210 	/*
211 	 * The double casts are necessary because le16_to_cpu returns an
212 	 * unsigned 16-bit value.  Casting that value directly to a
213 	 * signed 32-bit will not do proper sign extension.
214 	 *
215 	 * Conversely, T1 and P1 are unsigned values, so they can be
216 	 * cast straight to the larger type.
217 	 */
218 	var1 = (((adc_temp >> 3) - ((s32)le16_to_cpu(buf[T1]) << 1)) *
219 		((s32)(s16)le16_to_cpu(buf[T2]))) >> 11;
220 	var2 = (((((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1]))) *
221 		  ((adc_temp >> 4) - ((s32)le16_to_cpu(buf[T1])))) >> 12) *
222 		((s32)(s16)le16_to_cpu(buf[T3]))) >> 14;
223 	data->t_fine = var1 + var2;
224 
225 	return (data->t_fine * 5 + 128) >> 8;
226 }
227 
228 /*
229  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
230  * integer bits and 8 fractional bits).  Output value of "24674867"
231  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
232  *
233  * Taken from datasheet, Section 3.11.3, "Compensation formula".
234  */
235 static u32 bmp280_compensate_press(struct bmp280_data *data,
236 				   s32 adc_press)
237 {
238 	int ret;
239 	s64 var1, var2, p;
240 	__le16 buf[BMP280_COMP_PRESS_REG_COUNT / 2];
241 
242 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
243 			       buf, BMP280_COMP_PRESS_REG_COUNT);
244 	if (ret < 0) {
245 		dev_err(data->dev,
246 			"failed to read pressure calibration parameters\n");
247 		return ret;
248 	}
249 
250 	var1 = ((s64)data->t_fine) - 128000;
251 	var2 = var1 * var1 * (s64)(s16)le16_to_cpu(buf[P6]);
252 	var2 += (var1 * (s64)(s16)le16_to_cpu(buf[P5])) << 17;
253 	var2 += ((s64)(s16)le16_to_cpu(buf[P4])) << 35;
254 	var1 = ((var1 * var1 * (s64)(s16)le16_to_cpu(buf[P3])) >> 8) +
255 		((var1 * (s64)(s16)le16_to_cpu(buf[P2])) << 12);
256 	var1 = ((((s64)1) << 47) + var1) * ((s64)le16_to_cpu(buf[P1])) >> 33;
257 
258 	if (var1 == 0)
259 		return 0;
260 
261 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
262 	p = div64_s64(p, var1);
263 	var1 = (((s64)(s16)le16_to_cpu(buf[P9])) * (p >> 13) * (p >> 13)) >> 25;
264 	var2 = (((s64)(s16)le16_to_cpu(buf[P8])) * p) >> 19;
265 	p = ((p + var1 + var2) >> 8) + (((s64)(s16)le16_to_cpu(buf[P7])) << 4);
266 
267 	return (u32)p;
268 }
269 
270 static int bmp280_read_temp(struct bmp280_data *data,
271 			    int *val)
272 {
273 	int ret;
274 	__be32 tmp = 0;
275 	s32 adc_temp, comp_temp;
276 
277 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
278 			       (u8 *) &tmp, 3);
279 	if (ret < 0) {
280 		dev_err(data->dev, "failed to read temperature\n");
281 		return ret;
282 	}
283 
284 	adc_temp = be32_to_cpu(tmp) >> 12;
285 	comp_temp = bmp280_compensate_temp(data, adc_temp);
286 
287 	/*
288 	 * val might be NULL if we're called by the read_press routine,
289 	 * who only cares about the carry over t_fine value.
290 	 */
291 	if (val) {
292 		*val = comp_temp * 10;
293 		return IIO_VAL_INT;
294 	}
295 
296 	return 0;
297 }
298 
299 static int bmp280_read_press(struct bmp280_data *data,
300 			     int *val, int *val2)
301 {
302 	int ret;
303 	__be32 tmp = 0;
304 	s32 adc_press;
305 	u32 comp_press;
306 
307 	/* Read and compensate temperature so we get a reading of t_fine. */
308 	ret = bmp280_read_temp(data, NULL);
309 	if (ret < 0)
310 		return ret;
311 
312 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
313 			       (u8 *) &tmp, 3);
314 	if (ret < 0) {
315 		dev_err(data->dev, "failed to read pressure\n");
316 		return ret;
317 	}
318 
319 	adc_press = be32_to_cpu(tmp) >> 12;
320 	comp_press = bmp280_compensate_press(data, adc_press);
321 
322 	*val = comp_press;
323 	*val2 = 256000;
324 
325 	return IIO_VAL_FRACTIONAL;
326 }
327 
328 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
329 {
330 	int ret;
331 	__be16 tmp = 0;
332 	s32 adc_humidity;
333 	u32 comp_humidity;
334 
335 	/* Read and compensate temperature so we get a reading of t_fine. */
336 	ret = bmp280_read_temp(data, NULL);
337 	if (ret < 0)
338 		return ret;
339 
340 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
341 			       (u8 *) &tmp, 2);
342 	if (ret < 0) {
343 		dev_err(data->dev, "failed to read humidity\n");
344 		return ret;
345 	}
346 
347 	adc_humidity = be16_to_cpu(tmp);
348 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
349 
350 	*val = comp_humidity;
351 	*val2 = 1024;
352 
353 	return IIO_VAL_FRACTIONAL;
354 }
355 
356 static int bmp280_read_raw(struct iio_dev *indio_dev,
357 			   struct iio_chan_spec const *chan,
358 			   int *val, int *val2, long mask)
359 {
360 	int ret;
361 	struct bmp280_data *data = iio_priv(indio_dev);
362 
363 	pm_runtime_get_sync(data->dev);
364 	mutex_lock(&data->lock);
365 
366 	switch (mask) {
367 	case IIO_CHAN_INFO_PROCESSED:
368 		switch (chan->type) {
369 		case IIO_HUMIDITYRELATIVE:
370 			ret = data->chip_info->read_humid(data, val, val2);
371 			break;
372 		case IIO_PRESSURE:
373 			ret = data->chip_info->read_press(data, val, val2);
374 			break;
375 		case IIO_TEMP:
376 			ret = data->chip_info->read_temp(data, val);
377 			break;
378 		default:
379 			ret = -EINVAL;
380 			break;
381 		}
382 		break;
383 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
384 		switch (chan->type) {
385 		case IIO_HUMIDITYRELATIVE:
386 			*val = 1 << data->oversampling_humid;
387 			ret = IIO_VAL_INT;
388 			break;
389 		case IIO_PRESSURE:
390 			*val = 1 << data->oversampling_press;
391 			ret = IIO_VAL_INT;
392 			break;
393 		case IIO_TEMP:
394 			*val = 1 << data->oversampling_temp;
395 			ret = IIO_VAL_INT;
396 			break;
397 		default:
398 			ret = -EINVAL;
399 			break;
400 		}
401 		break;
402 	default:
403 		ret = -EINVAL;
404 		break;
405 	}
406 
407 	mutex_unlock(&data->lock);
408 	pm_runtime_mark_last_busy(data->dev);
409 	pm_runtime_put_autosuspend(data->dev);
410 
411 	return ret;
412 }
413 
414 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
415 					       int val)
416 {
417 	int i;
418 	const int *avail = data->chip_info->oversampling_humid_avail;
419 	const int n = data->chip_info->num_oversampling_humid_avail;
420 
421 	for (i = 0; i < n; i++) {
422 		if (avail[i] == val) {
423 			data->oversampling_humid = ilog2(val);
424 
425 			return data->chip_info->chip_config(data);
426 		}
427 	}
428 	return -EINVAL;
429 }
430 
431 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
432 					       int val)
433 {
434 	int i;
435 	const int *avail = data->chip_info->oversampling_temp_avail;
436 	const int n = data->chip_info->num_oversampling_temp_avail;
437 
438 	for (i = 0; i < n; i++) {
439 		if (avail[i] == val) {
440 			data->oversampling_temp = ilog2(val);
441 
442 			return data->chip_info->chip_config(data);
443 		}
444 	}
445 	return -EINVAL;
446 }
447 
448 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
449 					       int val)
450 {
451 	int i;
452 	const int *avail = data->chip_info->oversampling_press_avail;
453 	const int n = data->chip_info->num_oversampling_press_avail;
454 
455 	for (i = 0; i < n; i++) {
456 		if (avail[i] == val) {
457 			data->oversampling_press = ilog2(val);
458 
459 			return data->chip_info->chip_config(data);
460 		}
461 	}
462 	return -EINVAL;
463 }
464 
465 static int bmp280_write_raw(struct iio_dev *indio_dev,
466 			    struct iio_chan_spec const *chan,
467 			    int val, int val2, long mask)
468 {
469 	int ret = 0;
470 	struct bmp280_data *data = iio_priv(indio_dev);
471 
472 	switch (mask) {
473 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
474 		pm_runtime_get_sync(data->dev);
475 		mutex_lock(&data->lock);
476 		switch (chan->type) {
477 		case IIO_HUMIDITYRELATIVE:
478 			ret = bmp280_write_oversampling_ratio_humid(data, val);
479 			break;
480 		case IIO_PRESSURE:
481 			ret = bmp280_write_oversampling_ratio_press(data, val);
482 			break;
483 		case IIO_TEMP:
484 			ret = bmp280_write_oversampling_ratio_temp(data, val);
485 			break;
486 		default:
487 			ret = -EINVAL;
488 			break;
489 		}
490 		mutex_unlock(&data->lock);
491 		pm_runtime_mark_last_busy(data->dev);
492 		pm_runtime_put_autosuspend(data->dev);
493 		break;
494 	default:
495 		return -EINVAL;
496 	}
497 
498 	return ret;
499 }
500 
501 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
502 {
503 	size_t len = 0;
504 	int i;
505 
506 	for (i = 0; i < n; i++)
507 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
508 
509 	buf[len - 1] = '\n';
510 
511 	return len;
512 }
513 
514 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
515 				struct device_attribute *attr, char *buf)
516 {
517 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
518 
519 	return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
520 				 data->chip_info->num_oversampling_temp_avail);
521 }
522 
523 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
524 				struct device_attribute *attr, char *buf)
525 {
526 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
527 
528 	return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
529 				 data->chip_info->num_oversampling_press_avail);
530 }
531 
532 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
533 	S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
534 
535 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
536 	S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
537 
538 static struct attribute *bmp280_attributes[] = {
539 	&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
540 	&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
541 	NULL,
542 };
543 
544 static const struct attribute_group bmp280_attrs_group = {
545 	.attrs = bmp280_attributes,
546 };
547 
548 static const struct iio_info bmp280_info = {
549 	.driver_module = THIS_MODULE,
550 	.read_raw = &bmp280_read_raw,
551 	.write_raw = &bmp280_write_raw,
552 	.attrs = &bmp280_attrs_group,
553 };
554 
555 static int bmp280_chip_config(struct bmp280_data *data)
556 {
557 	int ret;
558 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
559 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
560 
561 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_MEAS,
562 				 BMP280_OSRS_TEMP_MASK |
563 				 BMP280_OSRS_PRESS_MASK |
564 				 BMP280_MODE_MASK,
565 				 osrs | BMP280_MODE_NORMAL);
566 	if (ret < 0) {
567 		dev_err(data->dev,
568 			"failed to write ctrl_meas register\n");
569 		return ret;
570 	}
571 
572 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
573 				 BMP280_FILTER_MASK,
574 				 BMP280_FILTER_4X);
575 	if (ret < 0) {
576 		dev_err(data->dev,
577 			"failed to write config register\n");
578 		return ret;
579 	}
580 
581 	return ret;
582 }
583 
584 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
585 
586 static const struct bmp280_chip_info bmp280_chip_info = {
587 	.oversampling_temp_avail = bmp280_oversampling_avail,
588 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
589 
590 	.oversampling_press_avail = bmp280_oversampling_avail,
591 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
592 
593 	.chip_config = bmp280_chip_config,
594 	.read_temp = bmp280_read_temp,
595 	.read_press = bmp280_read_press,
596 };
597 
598 static int bme280_chip_config(struct bmp280_data *data)
599 {
600 	int ret = bmp280_chip_config(data);
601 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
602 
603 	if (ret < 0)
604 		return ret;
605 
606 	return regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
607 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
608 }
609 
610 static const struct bmp280_chip_info bme280_chip_info = {
611 	.oversampling_temp_avail = bmp280_oversampling_avail,
612 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
613 
614 	.oversampling_press_avail = bmp280_oversampling_avail,
615 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
616 
617 	.oversampling_humid_avail = bmp280_oversampling_avail,
618 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
619 
620 	.chip_config = bme280_chip_config,
621 	.read_temp = bmp280_read_temp,
622 	.read_press = bmp280_read_press,
623 	.read_humid = bmp280_read_humid,
624 };
625 
626 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
627 {
628 	int ret;
629 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
630 	unsigned int delay_us;
631 	unsigned int ctrl;
632 
633 	if (data->use_eoc)
634 		init_completion(&data->done);
635 
636 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
637 	if (ret)
638 		return ret;
639 
640 	if (data->use_eoc) {
641 		/*
642 		 * If we have a completion interrupt, use it, wait up to
643 		 * 100ms. The longest conversion time listed is 76.5 ms for
644 		 * advanced resolution mode.
645 		 */
646 		ret = wait_for_completion_timeout(&data->done,
647 						  1 + msecs_to_jiffies(100));
648 		if (!ret)
649 			dev_err(data->dev, "timeout waiting for completion\n");
650 	} else {
651 		if (ctrl_meas == BMP180_MEAS_TEMP)
652 			delay_us = 4500;
653 		else
654 			delay_us =
655 				conversion_time_max[data->oversampling_press];
656 
657 		usleep_range(delay_us, delay_us + 1000);
658 	}
659 
660 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
661 	if (ret)
662 		return ret;
663 
664 	/* The value of this bit reset to "0" after conversion is complete */
665 	if (ctrl & BMP180_MEAS_SCO)
666 		return -EIO;
667 
668 	return 0;
669 }
670 
671 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
672 {
673 	int ret;
674 	__be16 tmp = 0;
675 
676 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
677 	if (ret)
678 		return ret;
679 
680 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
681 	if (ret)
682 		return ret;
683 
684 	*val = be16_to_cpu(tmp);
685 
686 	return 0;
687 }
688 
689 static int bmp180_read_calib(struct bmp280_data *data,
690 			     struct bmp180_calib *calib)
691 {
692 	int ret;
693 	int i;
694 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
695 
696 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
697 			       sizeof(buf));
698 
699 	if (ret < 0)
700 		return ret;
701 
702 	/* None of the words has the value 0 or 0xFFFF */
703 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
704 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
705 			return -EIO;
706 	}
707 
708 	/* Toss the calibration data into the entropy pool */
709 	add_device_randomness(buf, sizeof(buf));
710 
711 	calib->AC1 = be16_to_cpu(buf[AC1]);
712 	calib->AC2 = be16_to_cpu(buf[AC2]);
713 	calib->AC3 = be16_to_cpu(buf[AC3]);
714 	calib->AC4 = be16_to_cpu(buf[AC4]);
715 	calib->AC5 = be16_to_cpu(buf[AC5]);
716 	calib->AC6 = be16_to_cpu(buf[AC6]);
717 	calib->B1 = be16_to_cpu(buf[B1]);
718 	calib->B2 = be16_to_cpu(buf[B2]);
719 	calib->MB = be16_to_cpu(buf[MB]);
720 	calib->MC = be16_to_cpu(buf[MC]);
721 	calib->MD = be16_to_cpu(buf[MD]);
722 
723 	return 0;
724 }
725 
726 /*
727  * Returns temperature in DegC, resolution is 0.1 DegC.
728  * t_fine carries fine temperature as global value.
729  *
730  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
731  */
732 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
733 {
734 	s32 x1, x2;
735 	struct bmp180_calib *calib = &data->calib;
736 
737 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
738 	x2 = (calib->MC << 11) / (x1 + calib->MD);
739 	data->t_fine = x1 + x2;
740 
741 	return (data->t_fine + 8) >> 4;
742 }
743 
744 static int bmp180_read_temp(struct bmp280_data *data, int *val)
745 {
746 	int ret;
747 	s32 adc_temp, comp_temp;
748 
749 	ret = bmp180_read_adc_temp(data, &adc_temp);
750 	if (ret)
751 		return ret;
752 
753 	comp_temp = bmp180_compensate_temp(data, adc_temp);
754 
755 	/*
756 	 * val might be NULL if we're called by the read_press routine,
757 	 * who only cares about the carry over t_fine value.
758 	 */
759 	if (val) {
760 		*val = comp_temp * 100;
761 		return IIO_VAL_INT;
762 	}
763 
764 	return 0;
765 }
766 
767 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
768 {
769 	int ret;
770 	__be32 tmp = 0;
771 	u8 oss = data->oversampling_press;
772 
773 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
774 	if (ret)
775 		return ret;
776 
777 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
778 	if (ret)
779 		return ret;
780 
781 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
782 
783 	return 0;
784 }
785 
786 /*
787  * Returns pressure in Pa, resolution is 1 Pa.
788  *
789  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
790  */
791 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
792 {
793 	s32 x1, x2, x3, p;
794 	s32 b3, b6;
795 	u32 b4, b7;
796 	s32 oss = data->oversampling_press;
797 	struct bmp180_calib *calib = &data->calib;
798 
799 	b6 = data->t_fine - 4000;
800 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
801 	x2 = calib->AC2 * b6 >> 11;
802 	x3 = x1 + x2;
803 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
804 	x1 = calib->AC3 * b6 >> 13;
805 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
806 	x3 = (x1 + x2 + 2) >> 2;
807 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
808 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
809 	if (b7 < 0x80000000)
810 		p = (b7 * 2) / b4;
811 	else
812 		p = (b7 / b4) * 2;
813 
814 	x1 = (p >> 8) * (p >> 8);
815 	x1 = (x1 * 3038) >> 16;
816 	x2 = (-7357 * p) >> 16;
817 
818 	return p + ((x1 + x2 + 3791) >> 4);
819 }
820 
821 static int bmp180_read_press(struct bmp280_data *data,
822 			     int *val, int *val2)
823 {
824 	int ret;
825 	s32 adc_press;
826 	u32 comp_press;
827 
828 	/* Read and compensate temperature so we get a reading of t_fine. */
829 	ret = bmp180_read_temp(data, NULL);
830 	if (ret)
831 		return ret;
832 
833 	ret = bmp180_read_adc_press(data, &adc_press);
834 	if (ret)
835 		return ret;
836 
837 	comp_press = bmp180_compensate_press(data, adc_press);
838 
839 	*val = comp_press;
840 	*val2 = 1000;
841 
842 	return IIO_VAL_FRACTIONAL;
843 }
844 
845 static int bmp180_chip_config(struct bmp280_data *data)
846 {
847 	return 0;
848 }
849 
850 static const int bmp180_oversampling_temp_avail[] = { 1 };
851 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
852 
853 static const struct bmp280_chip_info bmp180_chip_info = {
854 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
855 	.num_oversampling_temp_avail =
856 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
857 
858 	.oversampling_press_avail = bmp180_oversampling_press_avail,
859 	.num_oversampling_press_avail =
860 		ARRAY_SIZE(bmp180_oversampling_press_avail),
861 
862 	.chip_config = bmp180_chip_config,
863 	.read_temp = bmp180_read_temp,
864 	.read_press = bmp180_read_press,
865 };
866 
867 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
868 {
869 	struct bmp280_data *data = d;
870 
871 	complete(&data->done);
872 
873 	return IRQ_HANDLED;
874 }
875 
876 static int bmp085_fetch_eoc_irq(struct device *dev,
877 				const char *name,
878 				int irq,
879 				struct bmp280_data *data)
880 {
881 	unsigned long irq_trig;
882 	int ret;
883 
884 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
885 	if (irq_trig != IRQF_TRIGGER_RISING) {
886 		dev_err(dev, "non-rising trigger given for EOC interrupt, "
887 			"trying to enforce it\n");
888 		irq_trig = IRQF_TRIGGER_RISING;
889 	}
890 	ret = devm_request_threaded_irq(dev,
891 			irq,
892 			bmp085_eoc_irq,
893 			NULL,
894 			irq_trig,
895 			name,
896 			data);
897 	if (ret) {
898 		/* Bail out without IRQ but keep the driver in place */
899 		dev_err(dev, "unable to request DRDY IRQ\n");
900 		return 0;
901 	}
902 
903 	data->use_eoc = true;
904 	return 0;
905 }
906 
907 int bmp280_common_probe(struct device *dev,
908 			struct regmap *regmap,
909 			unsigned int chip,
910 			const char *name,
911 			int irq)
912 {
913 	int ret;
914 	struct iio_dev *indio_dev;
915 	struct bmp280_data *data;
916 	unsigned int chip_id;
917 	struct gpio_desc *gpiod;
918 
919 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
920 	if (!indio_dev)
921 		return -ENOMEM;
922 
923 	data = iio_priv(indio_dev);
924 	mutex_init(&data->lock);
925 	data->dev = dev;
926 
927 	indio_dev->dev.parent = dev;
928 	indio_dev->name = name;
929 	indio_dev->channels = bmp280_channels;
930 	indio_dev->info = &bmp280_info;
931 	indio_dev->modes = INDIO_DIRECT_MODE;
932 
933 	switch (chip) {
934 	case BMP180_CHIP_ID:
935 		indio_dev->num_channels = 2;
936 		data->chip_info = &bmp180_chip_info;
937 		data->oversampling_press = ilog2(8);
938 		data->oversampling_temp = ilog2(1);
939 		data->start_up_time = 10000;
940 		break;
941 	case BMP280_CHIP_ID:
942 		indio_dev->num_channels = 2;
943 		data->chip_info = &bmp280_chip_info;
944 		data->oversampling_press = ilog2(16);
945 		data->oversampling_temp = ilog2(2);
946 		data->start_up_time = 2000;
947 		break;
948 	case BME280_CHIP_ID:
949 		indio_dev->num_channels = 3;
950 		data->chip_info = &bme280_chip_info;
951 		data->oversampling_press = ilog2(16);
952 		data->oversampling_humid = ilog2(16);
953 		data->oversampling_temp = ilog2(2);
954 		data->start_up_time = 2000;
955 		break;
956 	default:
957 		return -EINVAL;
958 	}
959 
960 	/* Bring up regulators */
961 	data->vddd = devm_regulator_get(dev, "vddd");
962 	if (IS_ERR(data->vddd)) {
963 		dev_err(dev, "failed to get VDDD regulator\n");
964 		return PTR_ERR(data->vddd);
965 	}
966 	ret = regulator_enable(data->vddd);
967 	if (ret) {
968 		dev_err(dev, "failed to enable VDDD regulator\n");
969 		return ret;
970 	}
971 	data->vdda = devm_regulator_get(dev, "vdda");
972 	if (IS_ERR(data->vdda)) {
973 		dev_err(dev, "failed to get VDDA regulator\n");
974 		ret = PTR_ERR(data->vdda);
975 		goto out_disable_vddd;
976 	}
977 	ret = regulator_enable(data->vdda);
978 	if (ret) {
979 		dev_err(dev, "failed to enable VDDA regulator\n");
980 		goto out_disable_vddd;
981 	}
982 	/* Wait to make sure we started up properly */
983 	usleep_range(data->start_up_time, data->start_up_time + 100);
984 
985 	/* Bring chip out of reset if there is an assigned GPIO line */
986 	gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
987 	/* Deassert the signal */
988 	if (!IS_ERR(gpiod)) {
989 		dev_info(dev, "release reset\n");
990 		gpiod_set_value(gpiod, 0);
991 	}
992 
993 	data->regmap = regmap;
994 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
995 	if (ret < 0)
996 		goto out_disable_vdda;
997 	if (chip_id != chip) {
998 		dev_err(dev, "bad chip id: expected %x got %x\n",
999 			chip, chip_id);
1000 		ret = -EINVAL;
1001 		goto out_disable_vdda;
1002 	}
1003 
1004 	ret = data->chip_info->chip_config(data);
1005 	if (ret < 0)
1006 		goto out_disable_vdda;
1007 
1008 	dev_set_drvdata(dev, indio_dev);
1009 
1010 	/*
1011 	 * The BMP085 and BMP180 has calibration in an E2PROM, read it out
1012 	 * at probe time. It will not change.
1013 	 */
1014 	if (chip_id  == BMP180_CHIP_ID) {
1015 		ret = bmp180_read_calib(data, &data->calib);
1016 		if (ret < 0) {
1017 			dev_err(data->dev,
1018 				"failed to read calibration coefficients\n");
1019 			goto out_disable_vdda;
1020 		}
1021 	}
1022 
1023 	/*
1024 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1025 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1026 	 * so we look for an IRQ if we have that.
1027 	 */
1028 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1029 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1030 		if (ret)
1031 			goto out_disable_vdda;
1032 	}
1033 
1034 	/* Enable runtime PM */
1035 	pm_runtime_get_noresume(dev);
1036 	pm_runtime_set_active(dev);
1037 	pm_runtime_enable(dev);
1038 	/*
1039 	 * Set autosuspend to two orders of magnitude larger than the
1040 	 * start-up time.
1041 	 */
1042 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1043 	pm_runtime_use_autosuspend(dev);
1044 	pm_runtime_put(dev);
1045 
1046 	ret = iio_device_register(indio_dev);
1047 	if (ret)
1048 		goto out_runtime_pm_disable;
1049 
1050 
1051 	return 0;
1052 
1053 out_runtime_pm_disable:
1054 	pm_runtime_get_sync(data->dev);
1055 	pm_runtime_put_noidle(data->dev);
1056 	pm_runtime_disable(data->dev);
1057 out_disable_vdda:
1058 	regulator_disable(data->vdda);
1059 out_disable_vddd:
1060 	regulator_disable(data->vddd);
1061 	return ret;
1062 }
1063 EXPORT_SYMBOL(bmp280_common_probe);
1064 
1065 int bmp280_common_remove(struct device *dev)
1066 {
1067 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1068 	struct bmp280_data *data = iio_priv(indio_dev);
1069 
1070 	iio_device_unregister(indio_dev);
1071 	pm_runtime_get_sync(data->dev);
1072 	pm_runtime_put_noidle(data->dev);
1073 	pm_runtime_disable(data->dev);
1074 	regulator_disable(data->vdda);
1075 	regulator_disable(data->vddd);
1076 	return 0;
1077 }
1078 EXPORT_SYMBOL(bmp280_common_remove);
1079 
1080 #ifdef CONFIG_PM
1081 static int bmp280_runtime_suspend(struct device *dev)
1082 {
1083 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1084 	struct bmp280_data *data = iio_priv(indio_dev);
1085 	int ret;
1086 
1087 	ret = regulator_disable(data->vdda);
1088 	if (ret)
1089 		return ret;
1090 	return regulator_disable(data->vddd);
1091 }
1092 
1093 static int bmp280_runtime_resume(struct device *dev)
1094 {
1095 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1096 	struct bmp280_data *data = iio_priv(indio_dev);
1097 	int ret;
1098 
1099 	ret = regulator_enable(data->vddd);
1100 	if (ret)
1101 		return ret;
1102 	ret = regulator_enable(data->vdda);
1103 	if (ret)
1104 		return ret;
1105 	usleep_range(data->start_up_time, data->start_up_time + 100);
1106 	return data->chip_info->chip_config(data);
1107 }
1108 #endif /* CONFIG_PM */
1109 
1110 const struct dev_pm_ops bmp280_dev_pm_ops = {
1111 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1112 				pm_runtime_force_resume)
1113 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1114 			   bmp280_runtime_resume, NULL)
1115 };
1116 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1117 
1118 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1119 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1120 MODULE_LICENSE("GPL v2");
1121