1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> 4 * Copyright (c) 2012 Bosch Sensortec GmbH 5 * Copyright (c) 2012 Unixphere AB 6 * Copyright (c) 2014 Intel Corporation 7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> 8 * 9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. 10 * 11 * Datasheet: 12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf 13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf 14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf 15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf 16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf 17 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf 18 * 19 * Notice: 20 * The link to the bmp180 datasheet points to an outdated version missing these changes: 21 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 22 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 23 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 24 */ 25 26 #define pr_fmt(fmt) "bmp280: " fmt 27 28 #include <linux/bitops.h> 29 #include <linux/bitfield.h> 30 #include <linux/cleanup.h> 31 #include <linux/completion.h> 32 #include <linux/delay.h> 33 #include <linux/device.h> 34 #include <linux/gpio/consumer.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> /* For irq_get_irq_data() */ 37 #include <linux/module.h> 38 #include <linux/nvmem-provider.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/random.h> 41 #include <linux/regmap.h> 42 #include <linux/regulator/consumer.h> 43 44 #include <linux/iio/buffer.h> 45 #include <linux/iio/iio.h> 46 #include <linux/iio/trigger_consumer.h> 47 #include <linux/iio/triggered_buffer.h> 48 49 #include <linux/unaligned.h> 50 51 #include "bmp280.h" 52 53 /* 54 * These enums are used for indexing into the array of calibration 55 * coefficients for BMP180. 56 */ 57 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; 58 59 enum bmp380_odr { 60 BMP380_ODR_200HZ, 61 BMP380_ODR_100HZ, 62 BMP380_ODR_50HZ, 63 BMP380_ODR_25HZ, 64 BMP380_ODR_12_5HZ, 65 BMP380_ODR_6_25HZ, 66 BMP380_ODR_3_125HZ, 67 BMP380_ODR_1_5625HZ, 68 BMP380_ODR_0_78HZ, 69 BMP380_ODR_0_39HZ, 70 BMP380_ODR_0_2HZ, 71 BMP380_ODR_0_1HZ, 72 BMP380_ODR_0_05HZ, 73 BMP380_ODR_0_02HZ, 74 BMP380_ODR_0_01HZ, 75 BMP380_ODR_0_006HZ, 76 BMP380_ODR_0_003HZ, 77 BMP380_ODR_0_0015HZ, 78 }; 79 80 enum bmp580_odr { 81 BMP580_ODR_240HZ, 82 BMP580_ODR_218HZ, 83 BMP580_ODR_199HZ, 84 BMP580_ODR_179HZ, 85 BMP580_ODR_160HZ, 86 BMP580_ODR_149HZ, 87 BMP580_ODR_140HZ, 88 BMP580_ODR_129HZ, 89 BMP580_ODR_120HZ, 90 BMP580_ODR_110HZ, 91 BMP580_ODR_100HZ, 92 BMP580_ODR_89HZ, 93 BMP580_ODR_80HZ, 94 BMP580_ODR_70HZ, 95 BMP580_ODR_60HZ, 96 BMP580_ODR_50HZ, 97 BMP580_ODR_45HZ, 98 BMP580_ODR_40HZ, 99 BMP580_ODR_35HZ, 100 BMP580_ODR_30HZ, 101 BMP580_ODR_25HZ, 102 BMP580_ODR_20HZ, 103 BMP580_ODR_15HZ, 104 BMP580_ODR_10HZ, 105 BMP580_ODR_5HZ, 106 BMP580_ODR_4HZ, 107 BMP580_ODR_3HZ, 108 BMP580_ODR_2HZ, 109 BMP580_ODR_1HZ, 110 BMP580_ODR_0_5HZ, 111 BMP580_ODR_0_25HZ, 112 BMP580_ODR_0_125HZ, 113 }; 114 115 /* 116 * These enums are used for indexing into the array of compensation 117 * parameters for BMP280. 118 */ 119 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; 120 121 enum { 122 /* Temperature calib indexes */ 123 BMP380_T1 = 0, 124 BMP380_T2 = 2, 125 BMP380_T3 = 4, 126 /* Pressure calib indexes */ 127 BMP380_P1 = 5, 128 BMP380_P2 = 7, 129 BMP380_P3 = 9, 130 BMP380_P4 = 10, 131 BMP380_P5 = 11, 132 BMP380_P6 = 13, 133 BMP380_P7 = 15, 134 BMP380_P8 = 16, 135 BMP380_P9 = 17, 136 BMP380_P10 = 19, 137 BMP380_P11 = 20, 138 }; 139 140 enum bmp280_scan { 141 BMP280_PRESS, 142 BMP280_TEMP, 143 BME280_HUMID, 144 }; 145 146 static const struct iio_chan_spec bmp280_channels[] = { 147 { 148 .type = IIO_PRESSURE, 149 /* PROCESSED maintained for ABI backwards compatibility */ 150 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 151 BIT(IIO_CHAN_INFO_RAW) | 152 BIT(IIO_CHAN_INFO_SCALE) | 153 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 154 .scan_index = 0, 155 .scan_type = { 156 .sign = 'u', 157 .realbits = 32, 158 .storagebits = 32, 159 .endianness = IIO_CPU, 160 }, 161 }, 162 { 163 .type = IIO_TEMP, 164 /* PROCESSED maintained for ABI backwards compatibility */ 165 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 166 BIT(IIO_CHAN_INFO_RAW) | 167 BIT(IIO_CHAN_INFO_SCALE) | 168 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 169 .scan_index = 1, 170 .scan_type = { 171 .sign = 's', 172 .realbits = 32, 173 .storagebits = 32, 174 .endianness = IIO_CPU, 175 }, 176 }, 177 IIO_CHAN_SOFT_TIMESTAMP(2), 178 }; 179 180 static const struct iio_chan_spec bme280_channels[] = { 181 { 182 .type = IIO_PRESSURE, 183 /* PROCESSED maintained for ABI backwards compatibility */ 184 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 185 BIT(IIO_CHAN_INFO_RAW) | 186 BIT(IIO_CHAN_INFO_SCALE) | 187 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 188 .scan_index = 0, 189 .scan_type = { 190 .sign = 'u', 191 .realbits = 32, 192 .storagebits = 32, 193 .endianness = IIO_CPU, 194 }, 195 }, 196 { 197 .type = IIO_TEMP, 198 /* PROCESSED maintained for ABI backwards compatibility */ 199 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 200 BIT(IIO_CHAN_INFO_RAW) | 201 BIT(IIO_CHAN_INFO_SCALE) | 202 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 203 .scan_index = 1, 204 .scan_type = { 205 .sign = 's', 206 .realbits = 32, 207 .storagebits = 32, 208 .endianness = IIO_CPU, 209 }, 210 }, 211 { 212 .type = IIO_HUMIDITYRELATIVE, 213 /* PROCESSED maintained for ABI backwards compatibility */ 214 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 215 BIT(IIO_CHAN_INFO_RAW) | 216 BIT(IIO_CHAN_INFO_SCALE) | 217 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 218 .scan_index = 2, 219 .scan_type = { 220 .sign = 'u', 221 .realbits = 32, 222 .storagebits = 32, 223 .endianness = IIO_CPU, 224 }, 225 }, 226 IIO_CHAN_SOFT_TIMESTAMP(3), 227 }; 228 229 static const struct iio_chan_spec bmp380_channels[] = { 230 { 231 .type = IIO_PRESSURE, 232 /* PROCESSED maintained for ABI backwards compatibility */ 233 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 234 BIT(IIO_CHAN_INFO_RAW) | 235 BIT(IIO_CHAN_INFO_SCALE) | 236 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 237 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 238 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 239 .scan_index = 0, 240 .scan_type = { 241 .sign = 'u', 242 .realbits = 32, 243 .storagebits = 32, 244 .endianness = IIO_CPU, 245 }, 246 }, 247 { 248 .type = IIO_TEMP, 249 /* PROCESSED maintained for ABI backwards compatibility */ 250 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 251 BIT(IIO_CHAN_INFO_RAW) | 252 BIT(IIO_CHAN_INFO_SCALE) | 253 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 254 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 255 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 256 .scan_index = 1, 257 .scan_type = { 258 .sign = 's', 259 .realbits = 32, 260 .storagebits = 32, 261 .endianness = IIO_CPU, 262 }, 263 }, 264 IIO_CHAN_SOFT_TIMESTAMP(2), 265 }; 266 267 static const struct iio_chan_spec bmp580_channels[] = { 268 { 269 .type = IIO_PRESSURE, 270 /* PROCESSED maintained for ABI backwards compatibility */ 271 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 272 BIT(IIO_CHAN_INFO_RAW) | 273 BIT(IIO_CHAN_INFO_SCALE) | 274 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 275 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 276 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 277 .scan_index = 0, 278 .scan_type = { 279 .sign = 'u', 280 .realbits = 24, 281 .storagebits = 32, 282 .endianness = IIO_LE, 283 }, 284 }, 285 { 286 .type = IIO_TEMP, 287 /* PROCESSED maintained for ABI backwards compatibility */ 288 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 289 BIT(IIO_CHAN_INFO_RAW) | 290 BIT(IIO_CHAN_INFO_SCALE) | 291 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 292 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 293 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 294 .scan_index = 1, 295 .scan_type = { 296 .sign = 's', 297 .realbits = 24, 298 .storagebits = 32, 299 .endianness = IIO_LE, 300 }, 301 }, 302 IIO_CHAN_SOFT_TIMESTAMP(2), 303 }; 304 305 static int bmp280_read_calib(struct bmp280_data *data) 306 { 307 struct bmp280_calib *calib = &data->calib.bmp280; 308 int ret; 309 310 /* Read temperature and pressure calibration values. */ 311 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, 312 data->bmp280_cal_buf, 313 sizeof(data->bmp280_cal_buf)); 314 if (ret) { 315 dev_err(data->dev, 316 "failed to read calibration parameters\n"); 317 return ret; 318 } 319 320 /* Toss calibration data into the entropy pool */ 321 add_device_randomness(data->bmp280_cal_buf, 322 sizeof(data->bmp280_cal_buf)); 323 324 /* Parse temperature calibration values. */ 325 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); 326 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); 327 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); 328 329 /* Parse pressure calibration values. */ 330 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); 331 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); 332 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); 333 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); 334 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); 335 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); 336 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); 337 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); 338 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); 339 340 return 0; 341 } 342 343 /* 344 * These enums are used for indexing into the array of humidity parameters 345 * for BME280. Due to some weird indexing, unaligned BE/LE accesses co-exist in 346 * order to prepare the FIELD_{GET/PREP}() fields. Table 16 in Section 4.2.2 of 347 * the datasheet. 348 */ 349 enum { H2 = 0, H3 = 2, H4 = 3, H5 = 4, H6 = 6 }; 350 351 static int bme280_read_calib(struct bmp280_data *data) 352 { 353 struct bmp280_calib *calib = &data->calib.bmp280; 354 struct device *dev = data->dev; 355 s16 h4_upper, h4_lower, tmp_1, tmp_2, tmp_3; 356 unsigned int tmp; 357 int ret; 358 359 /* Load shared calibration params with bmp280 first */ 360 ret = bmp280_read_calib(data); 361 if (ret) 362 return ret; 363 364 ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp); 365 if (ret) { 366 dev_err(dev, "failed to read H1 comp value\n"); 367 return ret; 368 } 369 calib->H1 = tmp; 370 371 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2, 372 data->bme280_humid_cal_buf, 373 sizeof(data->bme280_humid_cal_buf)); 374 if (ret) { 375 dev_err(dev, "failed to read humidity calibration values\n"); 376 return ret; 377 } 378 379 calib->H2 = get_unaligned_le16(&data->bme280_humid_cal_buf[H2]); 380 calib->H3 = data->bme280_humid_cal_buf[H3]; 381 tmp_1 = get_unaligned_be16(&data->bme280_humid_cal_buf[H4]); 382 tmp_2 = FIELD_GET(BME280_COMP_H4_GET_MASK_UP, tmp_1); 383 h4_upper = FIELD_PREP(BME280_COMP_H4_PREP_MASK_UP, tmp_2); 384 h4_lower = FIELD_GET(BME280_COMP_H4_MASK_LOW, tmp_1); 385 calib->H4 = sign_extend32(h4_upper | h4_lower, 11); 386 tmp_3 = get_unaligned_le16(&data->bme280_humid_cal_buf[H5]); 387 calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, tmp_3), 11); 388 calib->H6 = data->bme280_humid_cal_buf[H6]; 389 390 return 0; 391 } 392 393 static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity) 394 { 395 u16 value_humidity; 396 int ret; 397 398 ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB, 399 &data->be16, BME280_NUM_HUMIDITY_BYTES); 400 if (ret) { 401 dev_err(data->dev, "failed to read humidity\n"); 402 return ret; 403 } 404 405 value_humidity = be16_to_cpu(data->be16); 406 if (value_humidity == BMP280_HUMIDITY_SKIPPED) { 407 dev_err(data->dev, "reading humidity skipped\n"); 408 return -EIO; 409 } 410 *adc_humidity = value_humidity; 411 412 return 0; 413 } 414 415 /* 416 * Returns humidity in percent, resolution is 0.01 percent. Output value of 417 * "47445" represents 47445/1024 = 46.333 %RH. 418 * 419 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". 420 */ 421 static u32 bme280_compensate_humidity(struct bmp280_data *data, 422 u16 adc_humidity, s32 t_fine) 423 { 424 struct bmp280_calib *calib = &data->calib.bmp280; 425 s32 var; 426 427 var = t_fine - (s32)76800; 428 var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) 429 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) 430 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) 431 + (s32)2097152) * calib->H2 + 8192) >> 14); 432 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; 433 434 var = clamp_val(var, 0, 419430400); 435 436 return var >> 12; 437 } 438 439 static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 440 { 441 u32 value_temp; 442 int ret; 443 444 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, 445 data->buf, BMP280_NUM_TEMP_BYTES); 446 if (ret) { 447 dev_err(data->dev, "failed to read temperature\n"); 448 return ret; 449 } 450 451 value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 452 if (value_temp == BMP280_TEMP_SKIPPED) { 453 dev_err(data->dev, "reading temperature skipped\n"); 454 return -EIO; 455 } 456 *adc_temp = value_temp; 457 458 return 0; 459 } 460 461 /* 462 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of 463 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global 464 * value. 465 * 466 * Taken from datasheet, Section 3.11.3, "Compensation formula". 467 */ 468 static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 469 { 470 struct bmp280_calib *calib = &data->calib.bmp280; 471 s32 var1, var2; 472 473 var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) * 474 ((s32)calib->T2)) >> 11; 475 var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) * 476 ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) * 477 ((s32)calib->T3))) >> 14; 478 return var1 + var2; /* t_fine = var1 + var2 */ 479 } 480 481 static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine) 482 { 483 u32 adc_temp; 484 int ret; 485 486 ret = bmp280_read_temp_adc(data, &adc_temp); 487 if (ret) 488 return ret; 489 490 *t_fine = bmp280_calc_t_fine(data, adc_temp); 491 492 return 0; 493 } 494 495 static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp) 496 { 497 return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256; 498 } 499 500 static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press) 501 { 502 u32 value_press; 503 int ret; 504 505 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 506 data->buf, BMP280_NUM_PRESS_BYTES); 507 if (ret) { 508 dev_err(data->dev, "failed to read pressure\n"); 509 return ret; 510 } 511 512 value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 513 if (value_press == BMP280_PRESS_SKIPPED) { 514 dev_err(data->dev, "reading pressure skipped\n"); 515 return -EIO; 516 } 517 *adc_press = value_press; 518 519 return 0; 520 } 521 522 /* 523 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 524 * integer bits and 8 fractional bits). Output value of "24674867" 525 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa 526 * 527 * Taken from datasheet, Section 3.11.3, "Compensation formula". 528 */ 529 static u32 bmp280_compensate_press(struct bmp280_data *data, 530 u32 adc_press, s32 t_fine) 531 { 532 struct bmp280_calib *calib = &data->calib.bmp280; 533 s64 var1, var2, p; 534 535 var1 = ((s64)t_fine) - 128000; 536 var2 = var1 * var1 * (s64)calib->P6; 537 var2 += (var1 * (s64)calib->P5) << 17; 538 var2 += ((s64)calib->P4) << 35; 539 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + 540 ((var1 * (s64)calib->P2) << 12); 541 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; 542 543 if (var1 == 0) 544 return 0; 545 546 p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125; 547 p = div64_s64(p, var1); 548 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; 549 var2 = ((s64)(calib->P8) * p) >> 19; 550 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); 551 552 return (u32)p; 553 } 554 555 static int bmp280_read_temp(struct bmp280_data *data, s32 *comp_temp) 556 { 557 u32 adc_temp; 558 int ret; 559 560 ret = bmp280_read_temp_adc(data, &adc_temp); 561 if (ret) 562 return ret; 563 564 *comp_temp = bmp280_compensate_temp(data, adc_temp); 565 566 return 0; 567 } 568 569 static int bmp280_read_press(struct bmp280_data *data, u32 *comp_press) 570 { 571 u32 adc_press; 572 s32 t_fine; 573 int ret; 574 575 ret = bmp280_get_t_fine(data, &t_fine); 576 if (ret) 577 return ret; 578 579 ret = bmp280_read_press_adc(data, &adc_press); 580 if (ret) 581 return ret; 582 583 *comp_press = bmp280_compensate_press(data, adc_press, t_fine); 584 585 return 0; 586 } 587 588 static int bme280_read_humid(struct bmp280_data *data, u32 *comp_humidity) 589 { 590 u16 adc_humidity; 591 s32 t_fine; 592 int ret; 593 594 ret = bmp280_get_t_fine(data, &t_fine); 595 if (ret) 596 return ret; 597 598 ret = bme280_read_humid_adc(data, &adc_humidity); 599 if (ret) 600 return ret; 601 602 *comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine); 603 604 return 0; 605 } 606 607 static int bmp280_read_raw_impl(struct iio_dev *indio_dev, 608 struct iio_chan_spec const *chan, 609 int *val, int *val2, long mask) 610 { 611 struct bmp280_data *data = iio_priv(indio_dev); 612 int chan_value; 613 int ret; 614 615 guard(mutex)(&data->lock); 616 617 switch (mask) { 618 case IIO_CHAN_INFO_PROCESSED: 619 switch (chan->type) { 620 case IIO_HUMIDITYRELATIVE: 621 ret = data->chip_info->read_humid(data, &chan_value); 622 if (ret) 623 return ret; 624 625 *val = data->chip_info->humid_coeffs[0] * chan_value; 626 *val2 = data->chip_info->humid_coeffs[1]; 627 return data->chip_info->humid_coeffs_type; 628 case IIO_PRESSURE: 629 ret = data->chip_info->read_press(data, &chan_value); 630 if (ret) 631 return ret; 632 633 *val = data->chip_info->press_coeffs[0] * chan_value; 634 *val2 = data->chip_info->press_coeffs[1]; 635 return data->chip_info->press_coeffs_type; 636 case IIO_TEMP: 637 ret = data->chip_info->read_temp(data, &chan_value); 638 if (ret) 639 return ret; 640 641 *val = data->chip_info->temp_coeffs[0] * chan_value; 642 *val2 = data->chip_info->temp_coeffs[1]; 643 return data->chip_info->temp_coeffs_type; 644 default: 645 return -EINVAL; 646 } 647 case IIO_CHAN_INFO_RAW: 648 switch (chan->type) { 649 case IIO_HUMIDITYRELATIVE: 650 ret = data->chip_info->read_humid(data, &chan_value); 651 if (ret) 652 return ret; 653 654 *val = chan_value; 655 return IIO_VAL_INT; 656 case IIO_PRESSURE: 657 ret = data->chip_info->read_press(data, &chan_value); 658 if (ret) 659 return ret; 660 661 *val = chan_value; 662 return IIO_VAL_INT; 663 case IIO_TEMP: 664 ret = data->chip_info->read_temp(data, &chan_value); 665 if (ret) 666 return ret; 667 668 *val = chan_value; 669 return IIO_VAL_INT; 670 default: 671 return -EINVAL; 672 } 673 case IIO_CHAN_INFO_SCALE: 674 switch (chan->type) { 675 case IIO_HUMIDITYRELATIVE: 676 *val = data->chip_info->humid_coeffs[0]; 677 *val2 = data->chip_info->humid_coeffs[1]; 678 return data->chip_info->humid_coeffs_type; 679 case IIO_PRESSURE: 680 *val = data->chip_info->press_coeffs[0]; 681 *val2 = data->chip_info->press_coeffs[1]; 682 return data->chip_info->press_coeffs_type; 683 case IIO_TEMP: 684 *val = data->chip_info->temp_coeffs[0]; 685 *val2 = data->chip_info->temp_coeffs[1]; 686 return data->chip_info->temp_coeffs_type; 687 default: 688 return -EINVAL; 689 } 690 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 691 switch (chan->type) { 692 case IIO_HUMIDITYRELATIVE: 693 *val = 1 << data->oversampling_humid; 694 return IIO_VAL_INT; 695 case IIO_PRESSURE: 696 *val = 1 << data->oversampling_press; 697 return IIO_VAL_INT; 698 case IIO_TEMP: 699 *val = 1 << data->oversampling_temp; 700 return IIO_VAL_INT; 701 default: 702 return -EINVAL; 703 } 704 case IIO_CHAN_INFO_SAMP_FREQ: 705 if (!data->chip_info->sampling_freq_avail) 706 return -EINVAL; 707 708 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; 709 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; 710 return IIO_VAL_INT_PLUS_MICRO; 711 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 712 if (!data->chip_info->iir_filter_coeffs_avail) 713 return -EINVAL; 714 715 *val = (1 << data->iir_filter_coeff) - 1; 716 return IIO_VAL_INT; 717 default: 718 return -EINVAL; 719 } 720 } 721 722 static int bmp280_read_raw(struct iio_dev *indio_dev, 723 struct iio_chan_spec const *chan, 724 int *val, int *val2, long mask) 725 { 726 struct bmp280_data *data = iio_priv(indio_dev); 727 int ret; 728 729 pm_runtime_get_sync(data->dev); 730 ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask); 731 pm_runtime_mark_last_busy(data->dev); 732 pm_runtime_put_autosuspend(data->dev); 733 734 return ret; 735 } 736 737 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data, 738 int val) 739 { 740 const int *avail = data->chip_info->oversampling_humid_avail; 741 const int n = data->chip_info->num_oversampling_humid_avail; 742 int ret, prev; 743 int i; 744 745 for (i = 0; i < n; i++) { 746 if (avail[i] == val) { 747 prev = data->oversampling_humid; 748 data->oversampling_humid = ilog2(val); 749 750 ret = data->chip_info->chip_config(data); 751 if (ret) { 752 data->oversampling_humid = prev; 753 data->chip_info->chip_config(data); 754 return ret; 755 } 756 return 0; 757 } 758 } 759 return -EINVAL; 760 } 761 762 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, 763 int val) 764 { 765 const int *avail = data->chip_info->oversampling_temp_avail; 766 const int n = data->chip_info->num_oversampling_temp_avail; 767 int ret, prev; 768 int i; 769 770 for (i = 0; i < n; i++) { 771 if (avail[i] == val) { 772 prev = data->oversampling_temp; 773 data->oversampling_temp = ilog2(val); 774 775 ret = data->chip_info->chip_config(data); 776 if (ret) { 777 data->oversampling_temp = prev; 778 data->chip_info->chip_config(data); 779 return ret; 780 } 781 return 0; 782 } 783 } 784 return -EINVAL; 785 } 786 787 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, 788 int val) 789 { 790 const int *avail = data->chip_info->oversampling_press_avail; 791 const int n = data->chip_info->num_oversampling_press_avail; 792 int ret, prev; 793 int i; 794 795 for (i = 0; i < n; i++) { 796 if (avail[i] == val) { 797 prev = data->oversampling_press; 798 data->oversampling_press = ilog2(val); 799 800 ret = data->chip_info->chip_config(data); 801 if (ret) { 802 data->oversampling_press = prev; 803 data->chip_info->chip_config(data); 804 return ret; 805 } 806 return 0; 807 } 808 } 809 return -EINVAL; 810 } 811 812 static int bmp280_write_sampling_frequency(struct bmp280_data *data, 813 int val, int val2) 814 { 815 const int (*avail)[2] = data->chip_info->sampling_freq_avail; 816 const int n = data->chip_info->num_sampling_freq_avail; 817 int ret, prev; 818 int i; 819 820 for (i = 0; i < n; i++) { 821 if (avail[i][0] == val && avail[i][1] == val2) { 822 prev = data->sampling_freq; 823 data->sampling_freq = i; 824 825 ret = data->chip_info->chip_config(data); 826 if (ret) { 827 data->sampling_freq = prev; 828 data->chip_info->chip_config(data); 829 return ret; 830 } 831 return 0; 832 } 833 } 834 return -EINVAL; 835 } 836 837 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) 838 { 839 const int *avail = data->chip_info->iir_filter_coeffs_avail; 840 const int n = data->chip_info->num_iir_filter_coeffs_avail; 841 int ret, prev; 842 int i; 843 844 for (i = 0; i < n; i++) { 845 if (avail[i] - 1 == val) { 846 prev = data->iir_filter_coeff; 847 data->iir_filter_coeff = i; 848 849 ret = data->chip_info->chip_config(data); 850 if (ret) { 851 data->iir_filter_coeff = prev; 852 data->chip_info->chip_config(data); 853 return ret; 854 855 } 856 return 0; 857 } 858 } 859 return -EINVAL; 860 } 861 862 static int bmp280_write_raw_impl(struct iio_dev *indio_dev, 863 struct iio_chan_spec const *chan, 864 int val, int val2, long mask) 865 { 866 struct bmp280_data *data = iio_priv(indio_dev); 867 868 guard(mutex)(&data->lock); 869 870 /* 871 * Helper functions to update sensor running configuration. 872 * If an error happens applying new settings, will try restore 873 * previous parameters to ensure the sensor is left in a known 874 * working configuration. 875 */ 876 switch (mask) { 877 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 878 switch (chan->type) { 879 case IIO_HUMIDITYRELATIVE: 880 return bme280_write_oversampling_ratio_humid(data, val); 881 case IIO_PRESSURE: 882 return bmp280_write_oversampling_ratio_press(data, val); 883 case IIO_TEMP: 884 return bmp280_write_oversampling_ratio_temp(data, val); 885 default: 886 return -EINVAL; 887 } 888 case IIO_CHAN_INFO_SAMP_FREQ: 889 return bmp280_write_sampling_frequency(data, val, val2); 890 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 891 return bmp280_write_iir_filter_coeffs(data, val); 892 default: 893 return -EINVAL; 894 } 895 } 896 897 static int bmp280_write_raw(struct iio_dev *indio_dev, 898 struct iio_chan_spec const *chan, 899 int val, int val2, long mask) 900 { 901 struct bmp280_data *data = iio_priv(indio_dev); 902 int ret; 903 904 pm_runtime_get_sync(data->dev); 905 ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask); 906 pm_runtime_mark_last_busy(data->dev); 907 pm_runtime_put_autosuspend(data->dev); 908 909 return ret; 910 } 911 912 static int bmp280_read_avail(struct iio_dev *indio_dev, 913 struct iio_chan_spec const *chan, 914 const int **vals, int *type, int *length, 915 long mask) 916 { 917 struct bmp280_data *data = iio_priv(indio_dev); 918 919 switch (mask) { 920 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 921 switch (chan->type) { 922 case IIO_PRESSURE: 923 *vals = data->chip_info->oversampling_press_avail; 924 *length = data->chip_info->num_oversampling_press_avail; 925 break; 926 case IIO_TEMP: 927 *vals = data->chip_info->oversampling_temp_avail; 928 *length = data->chip_info->num_oversampling_temp_avail; 929 break; 930 default: 931 return -EINVAL; 932 } 933 *type = IIO_VAL_INT; 934 return IIO_AVAIL_LIST; 935 case IIO_CHAN_INFO_SAMP_FREQ: 936 *vals = (const int *)data->chip_info->sampling_freq_avail; 937 *type = IIO_VAL_INT_PLUS_MICRO; 938 /* Values are stored in a 2D matrix */ 939 *length = data->chip_info->num_sampling_freq_avail; 940 return IIO_AVAIL_LIST; 941 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 942 *vals = data->chip_info->iir_filter_coeffs_avail; 943 *type = IIO_VAL_INT; 944 *length = data->chip_info->num_iir_filter_coeffs_avail; 945 return IIO_AVAIL_LIST; 946 default: 947 return -EINVAL; 948 } 949 } 950 951 static const struct iio_info bmp280_info = { 952 .read_raw = &bmp280_read_raw, 953 .read_avail = &bmp280_read_avail, 954 .write_raw = &bmp280_write_raw, 955 }; 956 957 static const unsigned long bmp280_avail_scan_masks[] = { 958 BIT(BMP280_TEMP) | BIT(BMP280_PRESS), 959 0 960 }; 961 962 static const unsigned long bme280_avail_scan_masks[] = { 963 BIT(BME280_HUMID) | BIT(BMP280_TEMP) | BIT(BMP280_PRESS), 964 0 965 }; 966 967 static int bmp280_preinit(struct bmp280_data *data) 968 { 969 struct device *dev = data->dev; 970 unsigned int reg; 971 int ret; 972 973 ret = regmap_write(data->regmap, BMP280_REG_RESET, BMP280_RST_SOFT_CMD); 974 if (ret) 975 return dev_err_probe(dev, ret, "Failed to reset device.\n"); 976 977 /* 978 * According to the datasheet in Chapter 1: Specification, Table 2, 979 * after resetting, the device uses the complete power-on sequence so 980 * it needs to wait for the defined start-up time. 981 */ 982 fsleep(data->start_up_time); 983 984 ret = regmap_read(data->regmap, BMP280_REG_STATUS, ®); 985 if (ret) 986 return dev_err_probe(dev, ret, "Failed to read status register.\n"); 987 988 if (reg & BMP280_REG_STATUS_IM_UPDATE) 989 return dev_err_probe(dev, -EIO, "Failed to copy NVM contents.\n"); 990 991 return 0; 992 } 993 994 static int bmp280_chip_config(struct bmp280_data *data) 995 { 996 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | 997 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); 998 int ret; 999 1000 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, 1001 BMP280_OSRS_TEMP_MASK | 1002 BMP280_OSRS_PRESS_MASK | 1003 BMP280_MODE_MASK, 1004 osrs | BMP280_MODE_NORMAL); 1005 if (ret) { 1006 dev_err(data->dev, "failed to write ctrl_meas register\n"); 1007 return ret; 1008 } 1009 1010 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, 1011 BMP280_FILTER_MASK, 1012 BMP280_FILTER_4X); 1013 if (ret) { 1014 dev_err(data->dev, "failed to write config register\n"); 1015 return ret; 1016 } 1017 1018 return ret; 1019 } 1020 1021 static irqreturn_t bmp280_trigger_handler(int irq, void *p) 1022 { 1023 struct iio_poll_func *pf = p; 1024 struct iio_dev *indio_dev = pf->indio_dev; 1025 struct bmp280_data *data = iio_priv(indio_dev); 1026 u32 adc_temp, adc_press, comp_press; 1027 s32 t_fine, comp_temp; 1028 s32 *chans = (s32 *)data->sensor_data; 1029 int ret; 1030 1031 guard(mutex)(&data->lock); 1032 1033 /* Burst read data registers */ 1034 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 1035 data->buf, BMP280_BURST_READ_BYTES); 1036 if (ret) { 1037 dev_err(data->dev, "failed to burst read sensor data\n"); 1038 goto out; 1039 } 1040 1041 /* Temperature calculations */ 1042 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); 1043 if (adc_temp == BMP280_TEMP_SKIPPED) { 1044 dev_err(data->dev, "reading temperature skipped\n"); 1045 goto out; 1046 } 1047 1048 comp_temp = bmp280_compensate_temp(data, adc_temp); 1049 1050 /* Pressure calculations */ 1051 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); 1052 if (adc_press == BMP280_PRESS_SKIPPED) { 1053 dev_err(data->dev, "reading pressure skipped\n"); 1054 goto out; 1055 } 1056 1057 t_fine = bmp280_calc_t_fine(data, adc_temp); 1058 comp_press = bmp280_compensate_press(data, adc_press, t_fine); 1059 1060 chans[0] = comp_press; 1061 chans[1] = comp_temp; 1062 1063 iio_push_to_buffers_with_timestamp(indio_dev, data->sensor_data, 1064 iio_get_time_ns(indio_dev)); 1065 1066 out: 1067 iio_trigger_notify_done(indio_dev->trig); 1068 1069 return IRQ_HANDLED; 1070 } 1071 1072 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; 1073 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; 1074 static const int bmp280_temp_coeffs[] = { 10, 1 }; 1075 static const int bmp280_press_coeffs[] = { 1, 256000 }; 1076 1077 const struct bmp280_chip_info bmp280_chip_info = { 1078 .id_reg = BMP280_REG_ID, 1079 .chip_id = bmp280_chip_ids, 1080 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), 1081 .regmap_config = &bmp280_regmap_config, 1082 .start_up_time = 2000, 1083 .channels = bmp280_channels, 1084 .num_channels = ARRAY_SIZE(bmp280_channels), 1085 .avail_scan_masks = bmp280_avail_scan_masks, 1086 1087 .oversampling_temp_avail = bmp280_oversampling_avail, 1088 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1089 /* 1090 * Oversampling config values on BMx280 have one additional setting 1091 * that other generations of the family don't: 1092 * The value 0 means the measurement is bypassed instead of 1093 * oversampling set to x1. 1094 * 1095 * To account for this difference, and preserve the same common 1096 * config logic, this is handled later on chip_config callback 1097 * incrementing one unit the oversampling setting. 1098 */ 1099 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 1100 1101 .oversampling_press_avail = bmp280_oversampling_avail, 1102 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1103 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 1104 1105 .temp_coeffs = bmp280_temp_coeffs, 1106 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 1107 .press_coeffs = bmp280_press_coeffs, 1108 .press_coeffs_type = IIO_VAL_FRACTIONAL, 1109 1110 .chip_config = bmp280_chip_config, 1111 .read_temp = bmp280_read_temp, 1112 .read_press = bmp280_read_press, 1113 .read_calib = bmp280_read_calib, 1114 .preinit = bmp280_preinit, 1115 1116 .trigger_handler = bmp280_trigger_handler, 1117 }; 1118 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); 1119 1120 static int bme280_chip_config(struct bmp280_data *data) 1121 { 1122 u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); 1123 int ret; 1124 1125 /* 1126 * Oversampling of humidity must be set before oversampling of 1127 * temperature/pressure is set to become effective. 1128 */ 1129 ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY, 1130 BME280_OSRS_HUMIDITY_MASK, osrs); 1131 if (ret) { 1132 dev_err(data->dev, "failed to set humidity oversampling"); 1133 return ret; 1134 } 1135 1136 return bmp280_chip_config(data); 1137 } 1138 1139 static irqreturn_t bme280_trigger_handler(int irq, void *p) 1140 { 1141 struct iio_poll_func *pf = p; 1142 struct iio_dev *indio_dev = pf->indio_dev; 1143 struct bmp280_data *data = iio_priv(indio_dev); 1144 u32 adc_temp, adc_press, adc_humidity, comp_press, comp_humidity; 1145 s32 t_fine, comp_temp; 1146 s32 *chans = (s32 *)data->sensor_data; 1147 int ret; 1148 1149 guard(mutex)(&data->lock); 1150 1151 /* Burst read data registers */ 1152 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 1153 data->buf, BME280_BURST_READ_BYTES); 1154 if (ret) { 1155 dev_err(data->dev, "failed to burst read sensor data\n"); 1156 goto out; 1157 } 1158 1159 /* Temperature calculations */ 1160 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); 1161 if (adc_temp == BMP280_TEMP_SKIPPED) { 1162 dev_err(data->dev, "reading temperature skipped\n"); 1163 goto out; 1164 } 1165 1166 comp_temp = bmp280_compensate_temp(data, adc_temp); 1167 1168 /* Pressure calculations */ 1169 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); 1170 if (adc_press == BMP280_PRESS_SKIPPED) { 1171 dev_err(data->dev, "reading pressure skipped\n"); 1172 goto out; 1173 } 1174 1175 t_fine = bmp280_calc_t_fine(data, adc_temp); 1176 comp_press = bmp280_compensate_press(data, adc_press, t_fine); 1177 1178 /* Humidity calculations */ 1179 adc_humidity = get_unaligned_be16(&data->buf[6]); 1180 1181 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { 1182 dev_err(data->dev, "reading humidity skipped\n"); 1183 goto out; 1184 } 1185 1186 comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine); 1187 1188 chans[0] = comp_press; 1189 chans[1] = comp_temp; 1190 chans[2] = comp_humidity; 1191 1192 iio_push_to_buffers_with_timestamp(indio_dev, data->sensor_data, 1193 iio_get_time_ns(indio_dev)); 1194 1195 out: 1196 iio_trigger_notify_done(indio_dev->trig); 1197 1198 return IRQ_HANDLED; 1199 } 1200 1201 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; 1202 static const int bme280_humid_coeffs[] = { 1000, 1024 }; 1203 1204 const struct bmp280_chip_info bme280_chip_info = { 1205 .id_reg = BMP280_REG_ID, 1206 .chip_id = bme280_chip_ids, 1207 .num_chip_id = ARRAY_SIZE(bme280_chip_ids), 1208 .regmap_config = &bme280_regmap_config, 1209 .start_up_time = 2000, 1210 .channels = bme280_channels, 1211 .num_channels = ARRAY_SIZE(bme280_channels), 1212 .avail_scan_masks = bme280_avail_scan_masks, 1213 1214 .oversampling_temp_avail = bmp280_oversampling_avail, 1215 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1216 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 1217 1218 .oversampling_press_avail = bmp280_oversampling_avail, 1219 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1220 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 1221 1222 .oversampling_humid_avail = bmp280_oversampling_avail, 1223 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1224 .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1, 1225 1226 .temp_coeffs = bmp280_temp_coeffs, 1227 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 1228 .press_coeffs = bmp280_press_coeffs, 1229 .press_coeffs_type = IIO_VAL_FRACTIONAL, 1230 .humid_coeffs = bme280_humid_coeffs, 1231 .humid_coeffs_type = IIO_VAL_FRACTIONAL, 1232 1233 .chip_config = bme280_chip_config, 1234 .read_temp = bmp280_read_temp, 1235 .read_press = bmp280_read_press, 1236 .read_humid = bme280_read_humid, 1237 .read_calib = bme280_read_calib, 1238 .preinit = bmp280_preinit, 1239 1240 .trigger_handler = bme280_trigger_handler, 1241 }; 1242 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); 1243 1244 /* 1245 * Helper function to send a command to BMP3XX sensors. 1246 * 1247 * Sensor processes commands written to the CMD register and signals 1248 * execution result through "cmd_rdy" and "cmd_error" flags available on 1249 * STATUS and ERROR registers. 1250 */ 1251 static int bmp380_cmd(struct bmp280_data *data, u8 cmd) 1252 { 1253 unsigned int reg; 1254 int ret; 1255 1256 /* Check if device is ready to process a command */ 1257 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); 1258 if (ret) { 1259 dev_err(data->dev, "failed to read error register\n"); 1260 return ret; 1261 } 1262 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { 1263 dev_err(data->dev, "device is not ready to accept commands\n"); 1264 return -EBUSY; 1265 } 1266 1267 /* Send command to process */ 1268 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); 1269 if (ret) { 1270 dev_err(data->dev, "failed to send command to device\n"); 1271 return ret; 1272 } 1273 /* Wait for 2ms for command to be processed */ 1274 usleep_range(data->start_up_time, data->start_up_time + 100); 1275 /* Check for command processing error */ 1276 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); 1277 if (ret) { 1278 dev_err(data->dev, "error reading ERROR reg\n"); 1279 return ret; 1280 } 1281 if (reg & BMP380_ERR_CMD_MASK) { 1282 dev_err(data->dev, "error processing command 0x%X\n", cmd); 1283 return -EINVAL; 1284 } 1285 1286 return 0; 1287 } 1288 1289 static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 1290 { 1291 u32 value_temp; 1292 int ret; 1293 1294 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, 1295 data->buf, BMP280_NUM_TEMP_BYTES); 1296 if (ret) { 1297 dev_err(data->dev, "failed to read temperature\n"); 1298 return ret; 1299 } 1300 1301 value_temp = get_unaligned_le24(data->buf); 1302 if (value_temp == BMP380_TEMP_SKIPPED) { 1303 dev_err(data->dev, "reading temperature skipped\n"); 1304 return -EIO; 1305 } 1306 *adc_temp = value_temp; 1307 1308 return 0; 1309 } 1310 1311 /* 1312 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value 1313 * of "5123" equals 51.2º C. t_fine carries fine temperature as global value. 1314 * 1315 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo 1316 * https://github.com/BoschSensortec/BMP3-Sensor-API. 1317 */ 1318 static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 1319 { 1320 s64 var1, var2, var3, var4, var5, var6; 1321 struct bmp380_calib *calib = &data->calib.bmp380; 1322 1323 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); 1324 var2 = var1 * ((s64) calib->T2); 1325 var3 = var1 * var1; 1326 var4 = var3 * ((s64) calib->T3); 1327 var5 = (var2 << 18) + var4; 1328 var6 = var5 >> 32; 1329 return (s32)var6; /* t_fine = var6 */ 1330 } 1331 1332 static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine) 1333 { 1334 s32 adc_temp; 1335 int ret; 1336 1337 ret = bmp380_read_temp_adc(data, &adc_temp); 1338 if (ret) 1339 return ret; 1340 1341 *t_fine = bmp380_calc_t_fine(data, adc_temp); 1342 1343 return 0; 1344 } 1345 1346 static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) 1347 { 1348 s64 comp_temp; 1349 s32 var6; 1350 1351 var6 = bmp380_calc_t_fine(data, adc_temp); 1352 comp_temp = (var6 * 25) >> 14; 1353 1354 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); 1355 return (s32) comp_temp; 1356 } 1357 1358 static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press) 1359 { 1360 u32 value_press; 1361 int ret; 1362 1363 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1364 data->buf, BMP280_NUM_PRESS_BYTES); 1365 if (ret) { 1366 dev_err(data->dev, "failed to read pressure\n"); 1367 return ret; 1368 } 1369 1370 value_press = get_unaligned_le24(data->buf); 1371 if (value_press == BMP380_PRESS_SKIPPED) { 1372 dev_err(data->dev, "reading pressure skipped\n"); 1373 return -EIO; 1374 } 1375 *adc_press = value_press; 1376 1377 return 0; 1378 } 1379 1380 /* 1381 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. 1382 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. 1383 * 1384 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository 1385 * https://github.com/BoschSensortec/BMP3-Sensor-API. 1386 */ 1387 static u32 bmp380_compensate_press(struct bmp280_data *data, 1388 u32 adc_press, s32 t_fine) 1389 { 1390 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; 1391 struct bmp380_calib *calib = &data->calib.bmp380; 1392 u32 comp_press; 1393 1394 var1 = (s64)t_fine * (s64)t_fine; 1395 var2 = var1 >> 6; 1396 var3 = (var2 * ((s64)t_fine)) >> 8; 1397 var4 = ((s64)calib->P8 * var3) >> 5; 1398 var5 = ((s64)calib->P7 * var1) << 4; 1399 var6 = ((s64)calib->P6 * (s64)t_fine) << 22; 1400 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; 1401 var2 = ((s64)calib->P4 * var3) >> 5; 1402 var4 = ((s64)calib->P3 * var1) << 2; 1403 var5 = ((s64)calib->P2 - ((s64)1 << 14)) * 1404 ((s64)t_fine << 21); 1405 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + 1406 var2 + var4 + var5; 1407 var1 = (sensitivity >> 24) * (s64)adc_press; 1408 var2 = (s64)calib->P10 * (s64)t_fine; 1409 var3 = var2 + ((s64)calib->P9 << 16); 1410 var4 = (var3 * (s64)adc_press) >> 13; 1411 1412 /* 1413 * Dividing by 10 followed by multiplying by 10 to avoid 1414 * possible overflow caused by (uncomp_data->pressure * partial_data4). 1415 */ 1416 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; 1417 var5 *= 10; 1418 var6 = (s64)adc_press * (s64)adc_press; 1419 var2 = ((s64)calib->P11 * var6) >> 16; 1420 var3 = (var2 * (s64)adc_press) >> 7; 1421 var4 = (offset >> 2) + var1 + var5 + var3; 1422 comp_press = ((u64)var4 * 25) >> 40; 1423 1424 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); 1425 return comp_press; 1426 } 1427 1428 static int bmp380_read_temp(struct bmp280_data *data, s32 *comp_temp) 1429 { 1430 u32 adc_temp; 1431 int ret; 1432 1433 ret = bmp380_read_temp_adc(data, &adc_temp); 1434 if (ret) 1435 return ret; 1436 1437 *comp_temp = bmp380_compensate_temp(data, adc_temp); 1438 1439 return 0; 1440 } 1441 1442 static int bmp380_read_press(struct bmp280_data *data, u32 *comp_press) 1443 { 1444 u32 adc_press, t_fine; 1445 int ret; 1446 1447 ret = bmp380_get_t_fine(data, &t_fine); 1448 if (ret) 1449 return ret; 1450 1451 ret = bmp380_read_press_adc(data, &adc_press); 1452 if (ret) 1453 return ret; 1454 1455 *comp_press = bmp380_compensate_press(data, adc_press, t_fine); 1456 1457 return 0; 1458 } 1459 1460 static int bmp380_read_calib(struct bmp280_data *data) 1461 { 1462 struct bmp380_calib *calib = &data->calib.bmp380; 1463 int ret; 1464 1465 /* Read temperature and pressure calibration data */ 1466 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, 1467 data->bmp380_cal_buf, 1468 sizeof(data->bmp380_cal_buf)); 1469 if (ret) { 1470 dev_err(data->dev, 1471 "failed to read calibration parameters\n"); 1472 return ret; 1473 } 1474 1475 /* Toss the temperature calibration data into the entropy pool */ 1476 add_device_randomness(data->bmp380_cal_buf, 1477 sizeof(data->bmp380_cal_buf)); 1478 1479 /* Parse calibration values */ 1480 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); 1481 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); 1482 calib->T3 = data->bmp380_cal_buf[BMP380_T3]; 1483 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); 1484 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); 1485 calib->P3 = data->bmp380_cal_buf[BMP380_P3]; 1486 calib->P4 = data->bmp380_cal_buf[BMP380_P4]; 1487 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); 1488 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); 1489 calib->P7 = data->bmp380_cal_buf[BMP380_P7]; 1490 calib->P8 = data->bmp380_cal_buf[BMP380_P8]; 1491 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); 1492 calib->P10 = data->bmp380_cal_buf[BMP380_P10]; 1493 calib->P11 = data->bmp380_cal_buf[BMP380_P11]; 1494 1495 return 0; 1496 } 1497 1498 static const int bmp380_odr_table[][2] = { 1499 [BMP380_ODR_200HZ] = {200, 0}, 1500 [BMP380_ODR_100HZ] = {100, 0}, 1501 [BMP380_ODR_50HZ] = {50, 0}, 1502 [BMP380_ODR_25HZ] = {25, 0}, 1503 [BMP380_ODR_12_5HZ] = {12, 500000}, 1504 [BMP380_ODR_6_25HZ] = {6, 250000}, 1505 [BMP380_ODR_3_125HZ] = {3, 125000}, 1506 [BMP380_ODR_1_5625HZ] = {1, 562500}, 1507 [BMP380_ODR_0_78HZ] = {0, 781250}, 1508 [BMP380_ODR_0_39HZ] = {0, 390625}, 1509 [BMP380_ODR_0_2HZ] = {0, 195313}, 1510 [BMP380_ODR_0_1HZ] = {0, 97656}, 1511 [BMP380_ODR_0_05HZ] = {0, 48828}, 1512 [BMP380_ODR_0_02HZ] = {0, 24414}, 1513 [BMP380_ODR_0_01HZ] = {0, 12207}, 1514 [BMP380_ODR_0_006HZ] = {0, 6104}, 1515 [BMP380_ODR_0_003HZ] = {0, 3052}, 1516 [BMP380_ODR_0_0015HZ] = {0, 1526}, 1517 }; 1518 1519 static int bmp380_preinit(struct bmp280_data *data) 1520 { 1521 /* BMP3xx requires soft-reset as part of initialization */ 1522 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); 1523 } 1524 1525 static int bmp380_chip_config(struct bmp280_data *data) 1526 { 1527 bool change = false, aux; 1528 unsigned int tmp; 1529 u8 osrs; 1530 int ret; 1531 1532 /* Configure power control register */ 1533 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1534 BMP380_CTRL_SENSORS_MASK, 1535 BMP380_CTRL_SENSORS_PRESS_EN | 1536 BMP380_CTRL_SENSORS_TEMP_EN); 1537 if (ret) { 1538 dev_err(data->dev, 1539 "failed to write operation control register\n"); 1540 return ret; 1541 } 1542 1543 /* Configure oversampling */ 1544 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | 1545 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); 1546 1547 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, 1548 BMP380_OSRS_TEMP_MASK | 1549 BMP380_OSRS_PRESS_MASK, 1550 osrs, &aux); 1551 if (ret) { 1552 dev_err(data->dev, "failed to write oversampling register\n"); 1553 return ret; 1554 } 1555 change = change || aux; 1556 1557 /* Configure output data rate */ 1558 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, 1559 BMP380_ODRS_MASK, data->sampling_freq, 1560 &aux); 1561 if (ret) { 1562 dev_err(data->dev, "failed to write ODR selection register\n"); 1563 return ret; 1564 } 1565 change = change || aux; 1566 1567 /* Set filter data */ 1568 ret = regmap_update_bits(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, 1569 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff)); 1570 if (ret) { 1571 dev_err(data->dev, "failed to write config register\n"); 1572 return ret; 1573 } 1574 1575 if (change) { 1576 /* 1577 * The configurations errors are detected on the fly during a 1578 * measurement cycle. If the sampling frequency is too low, it's 1579 * faster to reset the measurement loop than wait until the next 1580 * measurement is due. 1581 * 1582 * Resets sensor measurement loop toggling between sleep and 1583 * normal operating modes. 1584 */ 1585 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1586 BMP380_MODE_MASK, 1587 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); 1588 if (ret) { 1589 dev_err(data->dev, "failed to set sleep mode\n"); 1590 return ret; 1591 } 1592 usleep_range(2000, 2500); 1593 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1594 BMP380_MODE_MASK, 1595 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); 1596 if (ret) { 1597 dev_err(data->dev, "failed to set normal mode\n"); 1598 return ret; 1599 } 1600 /* 1601 * Waits for measurement before checking configuration error 1602 * flag. Selected longest measurement time, calculated from 1603 * formula in datasheet section 3.9.2 with an offset of ~+15% 1604 * as it seen as well in table 3.9.1. 1605 */ 1606 msleep(150); 1607 1608 /* Check config error flag */ 1609 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); 1610 if (ret) { 1611 dev_err(data->dev, "failed to read error register\n"); 1612 return ret; 1613 } 1614 if (tmp & BMP380_ERR_CONF_MASK) { 1615 dev_warn(data->dev, 1616 "sensor flagged configuration as incompatible\n"); 1617 return -EINVAL; 1618 } 1619 } 1620 1621 return 0; 1622 } 1623 1624 static irqreturn_t bmp380_trigger_handler(int irq, void *p) 1625 { 1626 struct iio_poll_func *pf = p; 1627 struct iio_dev *indio_dev = pf->indio_dev; 1628 struct bmp280_data *data = iio_priv(indio_dev); 1629 u32 adc_temp, adc_press, comp_press; 1630 s32 t_fine, comp_temp; 1631 s32 *chans = (s32 *)data->sensor_data; 1632 int ret; 1633 1634 guard(mutex)(&data->lock); 1635 1636 /* Burst read data registers */ 1637 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1638 data->buf, BMP280_BURST_READ_BYTES); 1639 if (ret) { 1640 dev_err(data->dev, "failed to burst read sensor data\n"); 1641 goto out; 1642 } 1643 1644 /* Temperature calculations */ 1645 adc_temp = get_unaligned_le24(&data->buf[3]); 1646 if (adc_temp == BMP380_TEMP_SKIPPED) { 1647 dev_err(data->dev, "reading temperature skipped\n"); 1648 goto out; 1649 } 1650 1651 comp_temp = bmp380_compensate_temp(data, adc_temp); 1652 1653 /* Pressure calculations */ 1654 adc_press = get_unaligned_le24(&data->buf[0]); 1655 if (adc_press == BMP380_PRESS_SKIPPED) { 1656 dev_err(data->dev, "reading pressure skipped\n"); 1657 goto out; 1658 } 1659 1660 t_fine = bmp380_calc_t_fine(data, adc_temp); 1661 comp_press = bmp380_compensate_press(data, adc_press, t_fine); 1662 1663 chans[0] = comp_press; 1664 chans[1] = comp_temp; 1665 1666 iio_push_to_buffers_with_timestamp(indio_dev, data->sensor_data, 1667 iio_get_time_ns(indio_dev)); 1668 1669 out: 1670 iio_trigger_notify_done(indio_dev->trig); 1671 1672 return IRQ_HANDLED; 1673 } 1674 1675 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; 1676 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; 1677 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; 1678 static const int bmp380_temp_coeffs[] = { 10, 1 }; 1679 static const int bmp380_press_coeffs[] = { 1, 100000 }; 1680 1681 const struct bmp280_chip_info bmp380_chip_info = { 1682 .id_reg = BMP380_REG_ID, 1683 .chip_id = bmp380_chip_ids, 1684 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), 1685 .regmap_config = &bmp380_regmap_config, 1686 .spi_read_extra_byte = true, 1687 .start_up_time = 2000, 1688 .channels = bmp380_channels, 1689 .num_channels = ARRAY_SIZE(bmp380_channels), 1690 .avail_scan_masks = bmp280_avail_scan_masks, 1691 1692 .oversampling_temp_avail = bmp380_oversampling_avail, 1693 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1694 .oversampling_temp_default = ilog2(1), 1695 1696 .oversampling_press_avail = bmp380_oversampling_avail, 1697 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1698 .oversampling_press_default = ilog2(4), 1699 1700 .sampling_freq_avail = bmp380_odr_table, 1701 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, 1702 .sampling_freq_default = BMP380_ODR_50HZ, 1703 1704 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1705 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1706 .iir_filter_coeff_default = 2, 1707 1708 .temp_coeffs = bmp380_temp_coeffs, 1709 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 1710 .press_coeffs = bmp380_press_coeffs, 1711 .press_coeffs_type = IIO_VAL_FRACTIONAL, 1712 1713 .chip_config = bmp380_chip_config, 1714 .read_temp = bmp380_read_temp, 1715 .read_press = bmp380_read_press, 1716 .read_calib = bmp380_read_calib, 1717 .preinit = bmp380_preinit, 1718 1719 .trigger_handler = bmp380_trigger_handler, 1720 }; 1721 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); 1722 1723 static int bmp580_soft_reset(struct bmp280_data *data) 1724 { 1725 unsigned int reg; 1726 int ret; 1727 1728 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); 1729 if (ret) { 1730 dev_err(data->dev, "failed to send reset command to device\n"); 1731 return ret; 1732 } 1733 usleep_range(2000, 2500); 1734 1735 /* Dummy read of chip_id */ 1736 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1737 if (ret) { 1738 dev_err(data->dev, "failed to reestablish comms after reset\n"); 1739 return ret; 1740 } 1741 1742 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®); 1743 if (ret) { 1744 dev_err(data->dev, "error reading interrupt status register\n"); 1745 return ret; 1746 } 1747 if (!(reg & BMP580_INT_STATUS_POR_MASK)) { 1748 dev_err(data->dev, "error resetting sensor\n"); 1749 return -EINVAL; 1750 } 1751 1752 return 0; 1753 } 1754 1755 /** 1756 * bmp580_nvm_operation() - Helper function to commit NVM memory operations 1757 * @data: sensor data struct 1758 * @is_write: flag to signal write operation 1759 */ 1760 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) 1761 { 1762 unsigned long timeout, poll; 1763 unsigned int reg; 1764 int ret; 1765 1766 /* Check NVM ready flag */ 1767 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1768 if (ret) { 1769 dev_err(data->dev, "failed to check nvm status\n"); 1770 return ret; 1771 } 1772 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { 1773 dev_err(data->dev, "sensor's nvm is not ready\n"); 1774 return -EIO; 1775 } 1776 1777 /* Start NVM operation sequence */ 1778 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1779 BMP580_CMD_NVM_OP_SEQ_0); 1780 if (ret) { 1781 dev_err(data->dev, 1782 "failed to send nvm operation's first sequence\n"); 1783 return ret; 1784 } 1785 if (is_write) { 1786 /* Send NVM write sequence */ 1787 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1788 BMP580_CMD_NVM_WRITE_SEQ_1); 1789 if (ret) { 1790 dev_err(data->dev, 1791 "failed to send nvm write sequence\n"); 1792 return ret; 1793 } 1794 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ 1795 poll = 2000; 1796 timeout = 12000; 1797 } else { 1798 /* Send NVM read sequence */ 1799 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1800 BMP580_CMD_NVM_READ_SEQ_1); 1801 if (ret) { 1802 dev_err(data->dev, 1803 "failed to send nvm read sequence\n"); 1804 return ret; 1805 } 1806 /* Datasheet says on 4.8.1.1 it takes approximately 200us */ 1807 poll = 50; 1808 timeout = 400; 1809 } 1810 1811 /* Wait until NVM is ready again */ 1812 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, 1813 (reg & BMP580_STATUS_NVM_RDY_MASK), 1814 poll, timeout); 1815 if (ret) { 1816 dev_err(data->dev, "error checking nvm operation status\n"); 1817 return ret; 1818 } 1819 1820 /* Check NVM error flags */ 1821 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { 1822 dev_err(data->dev, "error processing nvm operation\n"); 1823 return -EIO; 1824 } 1825 1826 return 0; 1827 } 1828 1829 /* 1830 * Contrary to previous sensors families, compensation algorithm is builtin. 1831 * We are only required to read the register raw data and adapt the ranges 1832 * for what is expected on IIO ABI. 1833 */ 1834 1835 static int bmp580_read_temp(struct bmp280_data *data, s32 *raw_temp) 1836 { 1837 s32 value_temp; 1838 int ret; 1839 1840 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, 1841 data->buf, BMP280_NUM_TEMP_BYTES); 1842 if (ret) { 1843 dev_err(data->dev, "failed to read temperature\n"); 1844 return ret; 1845 } 1846 1847 value_temp = get_unaligned_le24(data->buf); 1848 if (value_temp == BMP580_TEMP_SKIPPED) { 1849 dev_err(data->dev, "reading temperature skipped\n"); 1850 return -EIO; 1851 } 1852 *raw_temp = sign_extend32(value_temp, 23); 1853 1854 return 0; 1855 } 1856 1857 static int bmp580_read_press(struct bmp280_data *data, u32 *raw_press) 1858 { 1859 u32 value_press; 1860 int ret; 1861 1862 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, 1863 data->buf, BMP280_NUM_PRESS_BYTES); 1864 if (ret) { 1865 dev_err(data->dev, "failed to read pressure\n"); 1866 return ret; 1867 } 1868 1869 value_press = get_unaligned_le24(data->buf); 1870 if (value_press == BMP580_PRESS_SKIPPED) { 1871 dev_err(data->dev, "reading pressure skipped\n"); 1872 return -EIO; 1873 } 1874 *raw_press = value_press; 1875 1876 return 0; 1877 } 1878 1879 static const int bmp580_odr_table[][2] = { 1880 [BMP580_ODR_240HZ] = {240, 0}, 1881 [BMP580_ODR_218HZ] = {218, 0}, 1882 [BMP580_ODR_199HZ] = {199, 0}, 1883 [BMP580_ODR_179HZ] = {179, 0}, 1884 [BMP580_ODR_160HZ] = {160, 0}, 1885 [BMP580_ODR_149HZ] = {149, 0}, 1886 [BMP580_ODR_140HZ] = {140, 0}, 1887 [BMP580_ODR_129HZ] = {129, 0}, 1888 [BMP580_ODR_120HZ] = {120, 0}, 1889 [BMP580_ODR_110HZ] = {110, 0}, 1890 [BMP580_ODR_100HZ] = {100, 0}, 1891 [BMP580_ODR_89HZ] = {89, 0}, 1892 [BMP580_ODR_80HZ] = {80, 0}, 1893 [BMP580_ODR_70HZ] = {70, 0}, 1894 [BMP580_ODR_60HZ] = {60, 0}, 1895 [BMP580_ODR_50HZ] = {50, 0}, 1896 [BMP580_ODR_45HZ] = {45, 0}, 1897 [BMP580_ODR_40HZ] = {40, 0}, 1898 [BMP580_ODR_35HZ] = {35, 0}, 1899 [BMP580_ODR_30HZ] = {30, 0}, 1900 [BMP580_ODR_25HZ] = {25, 0}, 1901 [BMP580_ODR_20HZ] = {20, 0}, 1902 [BMP580_ODR_15HZ] = {15, 0}, 1903 [BMP580_ODR_10HZ] = {10, 0}, 1904 [BMP580_ODR_5HZ] = {5, 0}, 1905 [BMP580_ODR_4HZ] = {4, 0}, 1906 [BMP580_ODR_3HZ] = {3, 0}, 1907 [BMP580_ODR_2HZ] = {2, 0}, 1908 [BMP580_ODR_1HZ] = {1, 0}, 1909 [BMP580_ODR_0_5HZ] = {0, 500000}, 1910 [BMP580_ODR_0_25HZ] = {0, 250000}, 1911 [BMP580_ODR_0_125HZ] = {0, 125000}, 1912 }; 1913 1914 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; 1915 1916 static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val, 1917 size_t bytes) 1918 { 1919 struct bmp280_data *data = priv; 1920 u16 *dst = val; 1921 int ret, addr; 1922 1923 guard(mutex)(&data->lock); 1924 1925 /* Set sensor in standby mode */ 1926 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1927 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1928 BMP580_ODR_DEEPSLEEP_DIS | 1929 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1930 if (ret) { 1931 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1932 goto exit; 1933 } 1934 /* Wait standby transition time */ 1935 usleep_range(2500, 3000); 1936 1937 while (bytes >= sizeof(*dst)) { 1938 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; 1939 1940 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1941 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1942 if (ret) { 1943 dev_err(data->dev, "error writing nvm address\n"); 1944 goto exit; 1945 } 1946 1947 ret = bmp580_nvm_operation(data, false); 1948 if (ret) 1949 goto exit; 1950 1951 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, 1952 &data->le16, sizeof(data->le16)); 1953 if (ret) { 1954 dev_err(data->dev, "error reading nvm data regs\n"); 1955 goto exit; 1956 } 1957 1958 *dst++ = le16_to_cpu(data->le16); 1959 bytes -= sizeof(*dst); 1960 offset += sizeof(*dst); 1961 } 1962 exit: 1963 /* Restore chip config */ 1964 data->chip_info->chip_config(data); 1965 return ret; 1966 } 1967 1968 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, 1969 size_t bytes) 1970 { 1971 struct bmp280_data *data = priv; 1972 int ret; 1973 1974 pm_runtime_get_sync(data->dev); 1975 ret = bmp580_nvmem_read_impl(priv, offset, val, bytes); 1976 pm_runtime_mark_last_busy(data->dev); 1977 pm_runtime_put_autosuspend(data->dev); 1978 1979 return ret; 1980 } 1981 1982 static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val, 1983 size_t bytes) 1984 { 1985 struct bmp280_data *data = priv; 1986 u16 *buf = val; 1987 int ret, addr; 1988 1989 guard(mutex)(&data->lock); 1990 1991 /* Set sensor in standby mode */ 1992 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1993 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1994 BMP580_ODR_DEEPSLEEP_DIS | 1995 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1996 if (ret) { 1997 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1998 goto exit; 1999 } 2000 /* Wait standby transition time */ 2001 usleep_range(2500, 3000); 2002 2003 while (bytes >= sizeof(*buf)) { 2004 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; 2005 2006 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 2007 BMP580_NVM_PROG_EN | 2008 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 2009 if (ret) { 2010 dev_err(data->dev, "error writing nvm address\n"); 2011 goto exit; 2012 } 2013 data->le16 = cpu_to_le16(*buf++); 2014 2015 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, 2016 &data->le16, sizeof(data->le16)); 2017 if (ret) { 2018 dev_err(data->dev, "error writing LSB NVM data regs\n"); 2019 goto exit; 2020 } 2021 2022 ret = bmp580_nvm_operation(data, true); 2023 if (ret) 2024 goto exit; 2025 2026 /* Disable programming mode bit */ 2027 ret = regmap_clear_bits(data->regmap, BMP580_REG_NVM_ADDR, 2028 BMP580_NVM_PROG_EN); 2029 if (ret) { 2030 dev_err(data->dev, "error resetting nvm write\n"); 2031 goto exit; 2032 } 2033 2034 bytes -= sizeof(*buf); 2035 offset += sizeof(*buf); 2036 } 2037 exit: 2038 /* Restore chip config */ 2039 data->chip_info->chip_config(data); 2040 return ret; 2041 } 2042 2043 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, 2044 size_t bytes) 2045 { 2046 struct bmp280_data *data = priv; 2047 int ret; 2048 2049 pm_runtime_get_sync(data->dev); 2050 ret = bmp580_nvmem_write_impl(priv, offset, val, bytes); 2051 pm_runtime_mark_last_busy(data->dev); 2052 pm_runtime_put_autosuspend(data->dev); 2053 2054 return ret; 2055 } 2056 2057 static int bmp580_preinit(struct bmp280_data *data) 2058 { 2059 struct nvmem_config config = { 2060 .dev = data->dev, 2061 .priv = data, 2062 .name = "bmp580_nvmem", 2063 .word_size = sizeof(u16), 2064 .stride = sizeof(u16), 2065 .size = 3 * sizeof(u16), 2066 .reg_read = bmp580_nvmem_read, 2067 .reg_write = bmp580_nvmem_write, 2068 }; 2069 unsigned int reg; 2070 int ret; 2071 2072 /* Issue soft-reset command */ 2073 ret = bmp580_soft_reset(data); 2074 if (ret) 2075 return ret; 2076 2077 /* Post powerup sequence */ 2078 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 2079 if (ret) { 2080 dev_err(data->dev, "failed to establish comms with the chip\n"); 2081 return ret; 2082 } 2083 2084 /* Print warn message if we don't know the chip id */ 2085 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) 2086 dev_warn(data->dev, "unexpected chip_id\n"); 2087 2088 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 2089 if (ret) { 2090 dev_err(data->dev, "failed to read nvm status\n"); 2091 return ret; 2092 } 2093 2094 /* Check nvm status */ 2095 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { 2096 dev_err(data->dev, "nvm error on powerup sequence\n"); 2097 return -EIO; 2098 } 2099 2100 /* Register nvmem device */ 2101 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config)); 2102 } 2103 2104 static int bmp580_chip_config(struct bmp280_data *data) 2105 { 2106 bool change = false, aux; 2107 unsigned int tmp; 2108 u8 reg_val; 2109 int ret; 2110 2111 /* Sets sensor in standby mode */ 2112 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 2113 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 2114 BMP580_ODR_DEEPSLEEP_DIS | 2115 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 2116 if (ret) { 2117 dev_err(data->dev, "failed to change sensor to standby mode\n"); 2118 return ret; 2119 } 2120 /* From datasheet's table 4: electrical characteristics */ 2121 usleep_range(2500, 3000); 2122 2123 /* Set default DSP mode settings */ 2124 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | 2125 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; 2126 2127 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG, 2128 BMP580_DSP_COMP_MASK | 2129 BMP580_DSP_SHDW_IIR_TEMP_EN | 2130 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val); 2131 if (ret) { 2132 dev_err(data->dev, "failed to change DSP mode settings\n"); 2133 return ret; 2134 } 2135 2136 /* Configure oversampling */ 2137 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | 2138 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | 2139 BMP580_OSR_PRESS_EN; 2140 2141 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG, 2142 BMP580_OSR_TEMP_MASK | 2143 BMP580_OSR_PRESS_MASK | 2144 BMP580_OSR_PRESS_EN, 2145 reg_val, &aux); 2146 if (ret) { 2147 dev_err(data->dev, "failed to write oversampling register\n"); 2148 return ret; 2149 } 2150 change = change || aux; 2151 2152 /* Configure output data rate */ 2153 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, 2154 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), 2155 &aux); 2156 if (ret) { 2157 dev_err(data->dev, "failed to write ODR configuration register\n"); 2158 return ret; 2159 } 2160 change = change || aux; 2161 2162 /* Set filter data */ 2163 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | 2164 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); 2165 2166 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_IIR, 2167 BMP580_DSP_IIR_PRESS_MASK | BMP580_DSP_IIR_TEMP_MASK, 2168 reg_val); 2169 if (ret) { 2170 dev_err(data->dev, "failed to write config register\n"); 2171 return ret; 2172 } 2173 2174 /* Restore sensor to normal operation mode */ 2175 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG, 2176 BMP580_MODE_MASK, 2177 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); 2178 if (ret) { 2179 dev_err(data->dev, "failed to set normal mode\n"); 2180 return ret; 2181 } 2182 /* From datasheet's table 4: electrical characteristics */ 2183 usleep_range(3000, 3500); 2184 2185 if (change) { 2186 /* 2187 * Check if ODR and OSR settings are valid or we are 2188 * operating in a degraded mode. 2189 */ 2190 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp); 2191 if (ret) { 2192 dev_err(data->dev, 2193 "error reading effective OSR register\n"); 2194 return ret; 2195 } 2196 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { 2197 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); 2198 /* Set current OSR settings from data on effective OSR */ 2199 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); 2200 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); 2201 return -EINVAL; 2202 } 2203 } 2204 2205 return 0; 2206 } 2207 2208 static irqreturn_t bmp580_trigger_handler(int irq, void *p) 2209 { 2210 struct iio_poll_func *pf = p; 2211 struct iio_dev *indio_dev = pf->indio_dev; 2212 struct bmp280_data *data = iio_priv(indio_dev); 2213 int ret, offset; 2214 2215 guard(mutex)(&data->lock); 2216 2217 /* Burst read data registers */ 2218 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, 2219 data->buf, BMP280_BURST_READ_BYTES); 2220 if (ret) { 2221 dev_err(data->dev, "failed to burst read sensor data\n"); 2222 goto out; 2223 } 2224 2225 offset = 0; 2226 2227 /* Pressure calculations */ 2228 memcpy(&data->sensor_data[offset], &data->buf[3], 3); 2229 2230 offset += sizeof(s32); 2231 2232 /* Temperature calculations */ 2233 memcpy(&data->sensor_data[offset], &data->buf[0], 3); 2234 2235 iio_push_to_buffers_with_timestamp(indio_dev, data->sensor_data, 2236 iio_get_time_ns(indio_dev)); 2237 2238 out: 2239 iio_trigger_notify_done(indio_dev->trig); 2240 2241 return IRQ_HANDLED; 2242 } 2243 2244 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; 2245 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; 2246 /* Instead of { 1000, 16 } we do this, to avoid overflow issues */ 2247 static const int bmp580_temp_coeffs[] = { 125, 13 }; 2248 static const int bmp580_press_coeffs[] = { 1, 64000}; 2249 2250 const struct bmp280_chip_info bmp580_chip_info = { 2251 .id_reg = BMP580_REG_CHIP_ID, 2252 .chip_id = bmp580_chip_ids, 2253 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), 2254 .regmap_config = &bmp580_regmap_config, 2255 .start_up_time = 2000, 2256 .channels = bmp580_channels, 2257 .num_channels = ARRAY_SIZE(bmp580_channels), 2258 .avail_scan_masks = bmp280_avail_scan_masks, 2259 2260 .oversampling_temp_avail = bmp580_oversampling_avail, 2261 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), 2262 .oversampling_temp_default = ilog2(1), 2263 2264 .oversampling_press_avail = bmp580_oversampling_avail, 2265 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), 2266 .oversampling_press_default = ilog2(4), 2267 2268 .sampling_freq_avail = bmp580_odr_table, 2269 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, 2270 .sampling_freq_default = BMP580_ODR_50HZ, 2271 2272 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 2273 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 2274 .iir_filter_coeff_default = 2, 2275 2276 .temp_coeffs = bmp580_temp_coeffs, 2277 .temp_coeffs_type = IIO_VAL_FRACTIONAL_LOG2, 2278 .press_coeffs = bmp580_press_coeffs, 2279 .press_coeffs_type = IIO_VAL_FRACTIONAL, 2280 2281 .chip_config = bmp580_chip_config, 2282 .read_temp = bmp580_read_temp, 2283 .read_press = bmp580_read_press, 2284 .preinit = bmp580_preinit, 2285 2286 .trigger_handler = bmp580_trigger_handler, 2287 }; 2288 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); 2289 2290 static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas) 2291 { 2292 static const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; 2293 unsigned int delay_us; 2294 unsigned int ctrl; 2295 int ret; 2296 2297 if (data->use_eoc) 2298 reinit_completion(&data->done); 2299 2300 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); 2301 if (ret) { 2302 dev_err(data->dev, "failed to write crtl_meas register\n"); 2303 return ret; 2304 } 2305 2306 if (data->use_eoc) { 2307 /* 2308 * If we have a completion interrupt, use it, wait up to 2309 * 100ms. The longest conversion time listed is 76.5 ms for 2310 * advanced resolution mode. 2311 */ 2312 ret = wait_for_completion_timeout(&data->done, 2313 1 + msecs_to_jiffies(100)); 2314 if (!ret) 2315 dev_err(data->dev, "timeout waiting for completion\n"); 2316 } else { 2317 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) 2318 delay_us = 4500; 2319 else 2320 delay_us = 2321 conversion_time_max[data->oversampling_press]; 2322 2323 usleep_range(delay_us, delay_us + 1000); 2324 } 2325 2326 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); 2327 if (ret) { 2328 dev_err(data->dev, "failed to read ctrl_meas register\n"); 2329 return ret; 2330 } 2331 2332 /* The value of this bit reset to "0" after conversion is complete */ 2333 if (ctrl & BMP180_MEAS_SCO) { 2334 dev_err(data->dev, "conversion didn't complete\n"); 2335 return -EIO; 2336 } 2337 2338 return 0; 2339 } 2340 2341 static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 2342 { 2343 int ret; 2344 2345 ret = bmp180_wait_for_eoc(data, 2346 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | 2347 BMP180_MEAS_SCO); 2348 if (ret) 2349 return ret; 2350 2351 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 2352 &data->be16, sizeof(data->be16)); 2353 if (ret) { 2354 dev_err(data->dev, "failed to read temperature\n"); 2355 return ret; 2356 } 2357 2358 *adc_temp = be16_to_cpu(data->be16); 2359 2360 return 0; 2361 } 2362 2363 static int bmp180_read_calib(struct bmp280_data *data) 2364 { 2365 struct bmp180_calib *calib = &data->calib.bmp180; 2366 int ret; 2367 int i; 2368 2369 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, 2370 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); 2371 if (ret) { 2372 dev_err(data->dev, "failed to read calibration parameters\n"); 2373 return ret; 2374 } 2375 2376 /* None of the words has the value 0 or 0xFFFF */ 2377 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { 2378 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || 2379 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) 2380 return -EIO; 2381 } 2382 2383 /* Toss the calibration data into the entropy pool */ 2384 add_device_randomness(data->bmp180_cal_buf, 2385 sizeof(data->bmp180_cal_buf)); 2386 2387 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); 2388 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); 2389 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); 2390 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); 2391 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); 2392 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); 2393 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); 2394 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); 2395 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); 2396 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); 2397 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); 2398 2399 return 0; 2400 } 2401 2402 /* 2403 * Returns temperature in DegC, resolution is 0.1 DegC. 2404 * t_fine carries fine temperature as global value. 2405 * 2406 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 2407 */ 2408 2409 static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 2410 { 2411 struct bmp180_calib *calib = &data->calib.bmp180; 2412 s32 x1, x2; 2413 2414 x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15; 2415 x2 = (calib->MC << 11) / (x1 + calib->MD); 2416 return x1 + x2; /* t_fine = x1 + x2; */ 2417 } 2418 2419 static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine) 2420 { 2421 s32 adc_temp; 2422 int ret; 2423 2424 ret = bmp180_read_temp_adc(data, &adc_temp); 2425 if (ret) 2426 return ret; 2427 2428 *t_fine = bmp180_calc_t_fine(data, adc_temp); 2429 2430 return 0; 2431 } 2432 2433 static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp) 2434 { 2435 return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16; 2436 } 2437 2438 static int bmp180_read_temp(struct bmp280_data *data, s32 *comp_temp) 2439 { 2440 u32 adc_temp; 2441 int ret; 2442 2443 ret = bmp180_read_temp_adc(data, &adc_temp); 2444 if (ret) 2445 return ret; 2446 2447 *comp_temp = bmp180_compensate_temp(data, adc_temp); 2448 2449 return 0; 2450 } 2451 2452 static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press) 2453 { 2454 u8 oss = data->oversampling_press; 2455 int ret; 2456 2457 ret = bmp180_wait_for_eoc(data, 2458 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | 2459 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | 2460 BMP180_MEAS_SCO); 2461 if (ret) 2462 return ret; 2463 2464 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 2465 data->buf, BMP280_NUM_PRESS_BYTES); 2466 if (ret) { 2467 dev_err(data->dev, "failed to read pressure\n"); 2468 return ret; 2469 } 2470 2471 *adc_press = get_unaligned_be24(data->buf) >> (8 - oss); 2472 2473 return 0; 2474 } 2475 2476 /* 2477 * Returns pressure in Pa, resolution is 1 Pa. 2478 * 2479 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 2480 */ 2481 static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press, 2482 s32 t_fine) 2483 { 2484 struct bmp180_calib *calib = &data->calib.bmp180; 2485 s32 oss = data->oversampling_press; 2486 s32 x1, x2, x3, p; 2487 s32 b3, b6; 2488 u32 b4, b7; 2489 2490 b6 = t_fine - 4000; 2491 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; 2492 x2 = calib->AC2 * b6 >> 11; 2493 x3 = x1 + x2; 2494 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; 2495 x1 = calib->AC3 * b6 >> 13; 2496 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; 2497 x3 = (x1 + x2 + 2) >> 2; 2498 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; 2499 b7 = (adc_press - b3) * (50000 >> oss); 2500 if (b7 < 0x80000000) 2501 p = (b7 * 2) / b4; 2502 else 2503 p = (b7 / b4) * 2; 2504 2505 x1 = (p >> 8) * (p >> 8); 2506 x1 = (x1 * 3038) >> 16; 2507 x2 = (-7357 * p) >> 16; 2508 2509 return p + ((x1 + x2 + 3791) >> 4); 2510 } 2511 2512 static int bmp180_read_press(struct bmp280_data *data, u32 *comp_press) 2513 { 2514 u32 adc_press; 2515 s32 t_fine; 2516 int ret; 2517 2518 ret = bmp180_get_t_fine(data, &t_fine); 2519 if (ret) 2520 return ret; 2521 2522 ret = bmp180_read_press_adc(data, &adc_press); 2523 if (ret) 2524 return ret; 2525 2526 *comp_press = bmp180_compensate_press(data, adc_press, t_fine); 2527 2528 return 0; 2529 } 2530 2531 static int bmp180_chip_config(struct bmp280_data *data) 2532 { 2533 return 0; 2534 } 2535 2536 static irqreturn_t bmp180_trigger_handler(int irq, void *p) 2537 { 2538 struct iio_poll_func *pf = p; 2539 struct iio_dev *indio_dev = pf->indio_dev; 2540 struct bmp280_data *data = iio_priv(indio_dev); 2541 int ret, comp_temp, comp_press; 2542 s32 *chans = (s32 *)data->sensor_data; 2543 2544 guard(mutex)(&data->lock); 2545 2546 ret = bmp180_read_temp(data, &comp_temp); 2547 if (ret) 2548 goto out; 2549 2550 2551 ret = bmp180_read_press(data, &comp_press); 2552 if (ret) 2553 goto out; 2554 2555 chans[0] = comp_press; 2556 chans[1] = comp_temp; 2557 2558 iio_push_to_buffers_with_timestamp(indio_dev, data->sensor_data, 2559 iio_get_time_ns(indio_dev)); 2560 2561 out: 2562 iio_trigger_notify_done(indio_dev->trig); 2563 2564 return IRQ_HANDLED; 2565 } 2566 2567 static const int bmp180_oversampling_temp_avail[] = { 1 }; 2568 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; 2569 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; 2570 static const int bmp180_temp_coeffs[] = { 100, 1 }; 2571 static const int bmp180_press_coeffs[] = { 1, 1000 }; 2572 2573 const struct bmp280_chip_info bmp180_chip_info = { 2574 .id_reg = BMP280_REG_ID, 2575 .chip_id = bmp180_chip_ids, 2576 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), 2577 .regmap_config = &bmp180_regmap_config, 2578 .start_up_time = 2000, 2579 .channels = bmp280_channels, 2580 .num_channels = ARRAY_SIZE(bmp280_channels), 2581 .avail_scan_masks = bmp280_avail_scan_masks, 2582 2583 .oversampling_temp_avail = bmp180_oversampling_temp_avail, 2584 .num_oversampling_temp_avail = 2585 ARRAY_SIZE(bmp180_oversampling_temp_avail), 2586 .oversampling_temp_default = 0, 2587 2588 .oversampling_press_avail = bmp180_oversampling_press_avail, 2589 .num_oversampling_press_avail = 2590 ARRAY_SIZE(bmp180_oversampling_press_avail), 2591 .oversampling_press_default = BMP180_MEAS_PRESS_8X, 2592 2593 .temp_coeffs = bmp180_temp_coeffs, 2594 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 2595 .press_coeffs = bmp180_press_coeffs, 2596 .press_coeffs_type = IIO_VAL_FRACTIONAL, 2597 2598 .chip_config = bmp180_chip_config, 2599 .read_temp = bmp180_read_temp, 2600 .read_press = bmp180_read_press, 2601 .read_calib = bmp180_read_calib, 2602 2603 .trigger_handler = bmp180_trigger_handler, 2604 }; 2605 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); 2606 2607 static irqreturn_t bmp085_eoc_irq(int irq, void *d) 2608 { 2609 struct bmp280_data *data = d; 2610 2611 complete(&data->done); 2612 2613 return IRQ_HANDLED; 2614 } 2615 2616 static int bmp085_fetch_eoc_irq(struct device *dev, 2617 const char *name, 2618 int irq, 2619 struct bmp280_data *data) 2620 { 2621 unsigned long irq_trig; 2622 int ret; 2623 2624 irq_trig = irq_get_trigger_type(irq); 2625 if (irq_trig != IRQF_TRIGGER_RISING) { 2626 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); 2627 irq_trig = IRQF_TRIGGER_RISING; 2628 } 2629 2630 init_completion(&data->done); 2631 2632 ret = devm_request_threaded_irq(dev, 2633 irq, 2634 bmp085_eoc_irq, 2635 NULL, 2636 irq_trig, 2637 name, 2638 data); 2639 if (ret) { 2640 /* Bail out without IRQ but keep the driver in place */ 2641 dev_err(dev, "unable to request DRDY IRQ\n"); 2642 return 0; 2643 } 2644 2645 data->use_eoc = true; 2646 return 0; 2647 } 2648 2649 static int bmp280_buffer_preenable(struct iio_dev *indio_dev) 2650 { 2651 struct bmp280_data *data = iio_priv(indio_dev); 2652 2653 pm_runtime_get_sync(data->dev); 2654 2655 return 0; 2656 } 2657 2658 static int bmp280_buffer_postdisable(struct iio_dev *indio_dev) 2659 { 2660 struct bmp280_data *data = iio_priv(indio_dev); 2661 2662 pm_runtime_mark_last_busy(data->dev); 2663 pm_runtime_put_autosuspend(data->dev); 2664 2665 return 0; 2666 } 2667 2668 static const struct iio_buffer_setup_ops bmp280_buffer_setup_ops = { 2669 .preenable = bmp280_buffer_preenable, 2670 .postdisable = bmp280_buffer_postdisable, 2671 }; 2672 2673 static void bmp280_pm_disable(void *data) 2674 { 2675 struct device *dev = data; 2676 2677 pm_runtime_get_sync(dev); 2678 pm_runtime_put_noidle(dev); 2679 pm_runtime_disable(dev); 2680 } 2681 2682 static void bmp280_regulators_disable(void *data) 2683 { 2684 struct regulator_bulk_data *supplies = data; 2685 2686 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); 2687 } 2688 2689 int bmp280_common_probe(struct device *dev, 2690 struct regmap *regmap, 2691 const struct bmp280_chip_info *chip_info, 2692 const char *name, 2693 int irq) 2694 { 2695 struct iio_dev *indio_dev; 2696 struct bmp280_data *data; 2697 struct gpio_desc *gpiod; 2698 unsigned int chip_id; 2699 unsigned int i; 2700 int ret; 2701 2702 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 2703 if (!indio_dev) 2704 return -ENOMEM; 2705 2706 data = iio_priv(indio_dev); 2707 mutex_init(&data->lock); 2708 data->dev = dev; 2709 2710 indio_dev->name = name; 2711 indio_dev->info = &bmp280_info; 2712 indio_dev->modes = INDIO_DIRECT_MODE; 2713 2714 data->chip_info = chip_info; 2715 2716 /* Apply initial values from chip info structure */ 2717 indio_dev->channels = chip_info->channels; 2718 indio_dev->num_channels = chip_info->num_channels; 2719 indio_dev->available_scan_masks = chip_info->avail_scan_masks; 2720 data->oversampling_press = chip_info->oversampling_press_default; 2721 data->oversampling_humid = chip_info->oversampling_humid_default; 2722 data->oversampling_temp = chip_info->oversampling_temp_default; 2723 data->iir_filter_coeff = chip_info->iir_filter_coeff_default; 2724 data->sampling_freq = chip_info->sampling_freq_default; 2725 data->start_up_time = chip_info->start_up_time; 2726 2727 /* Bring up regulators */ 2728 regulator_bulk_set_supply_names(data->supplies, 2729 bmp280_supply_names, 2730 BMP280_NUM_SUPPLIES); 2731 2732 ret = devm_regulator_bulk_get(dev, 2733 BMP280_NUM_SUPPLIES, data->supplies); 2734 if (ret) { 2735 dev_err(dev, "failed to get regulators\n"); 2736 return ret; 2737 } 2738 2739 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2740 if (ret) { 2741 dev_err(dev, "failed to enable regulators\n"); 2742 return ret; 2743 } 2744 2745 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, 2746 data->supplies); 2747 if (ret) 2748 return ret; 2749 2750 /* Wait to make sure we started up properly */ 2751 usleep_range(data->start_up_time, data->start_up_time + 100); 2752 2753 /* Bring chip out of reset if there is an assigned GPIO line */ 2754 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 2755 /* Deassert the signal */ 2756 if (gpiod) { 2757 dev_info(dev, "release reset\n"); 2758 gpiod_set_value(gpiod, 0); 2759 } 2760 2761 data->regmap = regmap; 2762 2763 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); 2764 if (ret) { 2765 dev_err(data->dev, "failed to read chip id\n"); 2766 return ret; 2767 } 2768 2769 for (i = 0; i < data->chip_info->num_chip_id; i++) { 2770 if (chip_id == data->chip_info->chip_id[i]) { 2771 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); 2772 break; 2773 } 2774 } 2775 2776 if (i == data->chip_info->num_chip_id) 2777 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); 2778 2779 if (data->chip_info->preinit) { 2780 ret = data->chip_info->preinit(data); 2781 if (ret) 2782 return dev_err_probe(data->dev, ret, 2783 "error running preinit tasks\n"); 2784 } 2785 2786 ret = data->chip_info->chip_config(data); 2787 if (ret) 2788 return ret; 2789 2790 dev_set_drvdata(dev, indio_dev); 2791 2792 /* 2793 * Some chips have calibration parameters "programmed into the devices' 2794 * non-volatile memory during production". Let's read them out at probe 2795 * time once. They will not change. 2796 */ 2797 2798 if (data->chip_info->read_calib) { 2799 ret = data->chip_info->read_calib(data); 2800 if (ret) 2801 return dev_err_probe(data->dev, ret, 2802 "failed to read calibration coefficients\n"); 2803 } 2804 2805 ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, 2806 iio_pollfunc_store_time, 2807 data->chip_info->trigger_handler, 2808 &bmp280_buffer_setup_ops); 2809 if (ret) 2810 return dev_err_probe(data->dev, ret, 2811 "iio triggered buffer setup failed\n"); 2812 2813 /* 2814 * Attempt to grab an optional EOC IRQ - only the BMP085 has this 2815 * however as it happens, the BMP085 shares the chip ID of BMP180 2816 * so we look for an IRQ if we have that. 2817 */ 2818 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { 2819 ret = bmp085_fetch_eoc_irq(dev, name, irq, data); 2820 if (ret) 2821 return ret; 2822 } 2823 2824 /* Enable runtime PM */ 2825 pm_runtime_get_noresume(dev); 2826 pm_runtime_set_active(dev); 2827 pm_runtime_enable(dev); 2828 /* 2829 * Set autosuspend to two orders of magnitude larger than the 2830 * start-up time. 2831 */ 2832 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); 2833 pm_runtime_use_autosuspend(dev); 2834 pm_runtime_put(dev); 2835 2836 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); 2837 if (ret) 2838 return ret; 2839 2840 return devm_iio_device_register(dev, indio_dev); 2841 } 2842 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); 2843 2844 static int bmp280_runtime_suspend(struct device *dev) 2845 { 2846 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2847 struct bmp280_data *data = iio_priv(indio_dev); 2848 2849 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); 2850 } 2851 2852 static int bmp280_runtime_resume(struct device *dev) 2853 { 2854 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2855 struct bmp280_data *data = iio_priv(indio_dev); 2856 int ret; 2857 2858 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2859 if (ret) 2860 return ret; 2861 2862 usleep_range(data->start_up_time, data->start_up_time + 100); 2863 return data->chip_info->chip_config(data); 2864 } 2865 2866 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, 2867 bmp280_runtime_resume, NULL); 2868 2869 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); 2870 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); 2871 MODULE_LICENSE("GPL v2"); 2872