1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> 4 * Copyright (c) 2012 Bosch Sensortec GmbH 5 * Copyright (c) 2012 Unixphere AB 6 * Copyright (c) 2014 Intel Corporation 7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> 8 * 9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. 10 * 11 * Datasheet: 12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf 13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf 14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf 15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf 16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf 17 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf 18 * 19 * Notice: 20 * The link to the bmp180 datasheet points to an outdated version missing these changes: 21 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 22 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 23 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 24 */ 25 26 #define pr_fmt(fmt) "bmp280: " fmt 27 28 #include <linux/bitops.h> 29 #include <linux/bitfield.h> 30 #include <linux/cleanup.h> 31 #include <linux/completion.h> 32 #include <linux/delay.h> 33 #include <linux/device.h> 34 #include <linux/gpio/consumer.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> /* For irq_get_irq_data() */ 37 #include <linux/module.h> 38 #include <linux/nvmem-provider.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/random.h> 41 #include <linux/regmap.h> 42 #include <linux/regulator/consumer.h> 43 44 #include <linux/iio/buffer.h> 45 #include <linux/iio/iio.h> 46 #include <linux/iio/trigger_consumer.h> 47 #include <linux/iio/triggered_buffer.h> 48 49 #include <asm/unaligned.h> 50 51 #include "bmp280.h" 52 53 /* 54 * These enums are used for indexing into the array of calibration 55 * coefficients for BMP180. 56 */ 57 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; 58 59 enum bmp380_odr { 60 BMP380_ODR_200HZ, 61 BMP380_ODR_100HZ, 62 BMP380_ODR_50HZ, 63 BMP380_ODR_25HZ, 64 BMP380_ODR_12_5HZ, 65 BMP380_ODR_6_25HZ, 66 BMP380_ODR_3_125HZ, 67 BMP380_ODR_1_5625HZ, 68 BMP380_ODR_0_78HZ, 69 BMP380_ODR_0_39HZ, 70 BMP380_ODR_0_2HZ, 71 BMP380_ODR_0_1HZ, 72 BMP380_ODR_0_05HZ, 73 BMP380_ODR_0_02HZ, 74 BMP380_ODR_0_01HZ, 75 BMP380_ODR_0_006HZ, 76 BMP380_ODR_0_003HZ, 77 BMP380_ODR_0_0015HZ, 78 }; 79 80 enum bmp580_odr { 81 BMP580_ODR_240HZ, 82 BMP580_ODR_218HZ, 83 BMP580_ODR_199HZ, 84 BMP580_ODR_179HZ, 85 BMP580_ODR_160HZ, 86 BMP580_ODR_149HZ, 87 BMP580_ODR_140HZ, 88 BMP580_ODR_129HZ, 89 BMP580_ODR_120HZ, 90 BMP580_ODR_110HZ, 91 BMP580_ODR_100HZ, 92 BMP580_ODR_89HZ, 93 BMP580_ODR_80HZ, 94 BMP580_ODR_70HZ, 95 BMP580_ODR_60HZ, 96 BMP580_ODR_50HZ, 97 BMP580_ODR_45HZ, 98 BMP580_ODR_40HZ, 99 BMP580_ODR_35HZ, 100 BMP580_ODR_30HZ, 101 BMP580_ODR_25HZ, 102 BMP580_ODR_20HZ, 103 BMP580_ODR_15HZ, 104 BMP580_ODR_10HZ, 105 BMP580_ODR_5HZ, 106 BMP580_ODR_4HZ, 107 BMP580_ODR_3HZ, 108 BMP580_ODR_2HZ, 109 BMP580_ODR_1HZ, 110 BMP580_ODR_0_5HZ, 111 BMP580_ODR_0_25HZ, 112 BMP580_ODR_0_125HZ, 113 }; 114 115 /* 116 * These enums are used for indexing into the array of compensation 117 * parameters for BMP280. 118 */ 119 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; 120 121 enum { 122 /* Temperature calib indexes */ 123 BMP380_T1 = 0, 124 BMP380_T2 = 2, 125 BMP380_T3 = 4, 126 /* Pressure calib indexes */ 127 BMP380_P1 = 5, 128 BMP380_P2 = 7, 129 BMP380_P3 = 9, 130 BMP380_P4 = 10, 131 BMP380_P5 = 11, 132 BMP380_P6 = 13, 133 BMP380_P7 = 15, 134 BMP380_P8 = 16, 135 BMP380_P9 = 17, 136 BMP380_P10 = 19, 137 BMP380_P11 = 20, 138 }; 139 140 enum bmp280_scan { 141 BMP280_PRESS, 142 BMP280_TEMP, 143 BME280_HUMID, 144 }; 145 146 static const struct iio_chan_spec bmp280_channels[] = { 147 { 148 .type = IIO_PRESSURE, 149 /* PROCESSED maintained for ABI backwards compatibility */ 150 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 151 BIT(IIO_CHAN_INFO_RAW) | 152 BIT(IIO_CHAN_INFO_SCALE) | 153 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 154 .scan_index = 0, 155 .scan_type = { 156 .sign = 'u', 157 .realbits = 32, 158 .storagebits = 32, 159 .endianness = IIO_CPU, 160 }, 161 }, 162 { 163 .type = IIO_TEMP, 164 /* PROCESSED maintained for ABI backwards compatibility */ 165 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 166 BIT(IIO_CHAN_INFO_RAW) | 167 BIT(IIO_CHAN_INFO_SCALE) | 168 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 169 .scan_index = 1, 170 .scan_type = { 171 .sign = 's', 172 .realbits = 32, 173 .storagebits = 32, 174 .endianness = IIO_CPU, 175 }, 176 }, 177 IIO_CHAN_SOFT_TIMESTAMP(2), 178 }; 179 180 static const struct iio_chan_spec bme280_channels[] = { 181 { 182 .type = IIO_PRESSURE, 183 /* PROCESSED maintained for ABI backwards compatibility */ 184 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 185 BIT(IIO_CHAN_INFO_RAW) | 186 BIT(IIO_CHAN_INFO_SCALE) | 187 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 188 .scan_index = 0, 189 .scan_type = { 190 .sign = 'u', 191 .realbits = 32, 192 .storagebits = 32, 193 .endianness = IIO_CPU, 194 }, 195 }, 196 { 197 .type = IIO_TEMP, 198 /* PROCESSED maintained for ABI backwards compatibility */ 199 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 200 BIT(IIO_CHAN_INFO_RAW) | 201 BIT(IIO_CHAN_INFO_SCALE) | 202 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 203 .scan_index = 1, 204 .scan_type = { 205 .sign = 's', 206 .realbits = 32, 207 .storagebits = 32, 208 .endianness = IIO_CPU, 209 }, 210 }, 211 { 212 .type = IIO_HUMIDITYRELATIVE, 213 /* PROCESSED maintained for ABI backwards compatibility */ 214 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 215 BIT(IIO_CHAN_INFO_RAW) | 216 BIT(IIO_CHAN_INFO_SCALE) | 217 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 218 .scan_index = 2, 219 .scan_type = { 220 .sign = 'u', 221 .realbits = 32, 222 .storagebits = 32, 223 .endianness = IIO_CPU, 224 }, 225 }, 226 IIO_CHAN_SOFT_TIMESTAMP(3), 227 }; 228 229 static const struct iio_chan_spec bmp380_channels[] = { 230 { 231 .type = IIO_PRESSURE, 232 /* PROCESSED maintained for ABI backwards compatibility */ 233 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 234 BIT(IIO_CHAN_INFO_RAW) | 235 BIT(IIO_CHAN_INFO_SCALE) | 236 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 237 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 238 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 239 .scan_index = 0, 240 .scan_type = { 241 .sign = 'u', 242 .realbits = 32, 243 .storagebits = 32, 244 .endianness = IIO_CPU, 245 }, 246 }, 247 { 248 .type = IIO_TEMP, 249 /* PROCESSED maintained for ABI backwards compatibility */ 250 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 251 BIT(IIO_CHAN_INFO_RAW) | 252 BIT(IIO_CHAN_INFO_SCALE) | 253 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 254 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 255 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 256 .scan_index = 1, 257 .scan_type = { 258 .sign = 's', 259 .realbits = 32, 260 .storagebits = 32, 261 .endianness = IIO_CPU, 262 }, 263 }, 264 IIO_CHAN_SOFT_TIMESTAMP(2), 265 }; 266 267 static const struct iio_chan_spec bmp580_channels[] = { 268 { 269 .type = IIO_PRESSURE, 270 /* PROCESSED maintained for ABI backwards compatibility */ 271 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 272 BIT(IIO_CHAN_INFO_RAW) | 273 BIT(IIO_CHAN_INFO_SCALE) | 274 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 275 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 276 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 277 .scan_index = 0, 278 .scan_type = { 279 .sign = 'u', 280 .realbits = 24, 281 .storagebits = 32, 282 .endianness = IIO_LE, 283 }, 284 }, 285 { 286 .type = IIO_TEMP, 287 /* PROCESSED maintained for ABI backwards compatibility */ 288 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 289 BIT(IIO_CHAN_INFO_RAW) | 290 BIT(IIO_CHAN_INFO_SCALE) | 291 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 292 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 293 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 294 .scan_index = 1, 295 .scan_type = { 296 .sign = 's', 297 .realbits = 24, 298 .storagebits = 32, 299 .endianness = IIO_LE, 300 }, 301 }, 302 IIO_CHAN_SOFT_TIMESTAMP(2), 303 }; 304 305 static int bmp280_read_calib(struct bmp280_data *data) 306 { 307 struct bmp280_calib *calib = &data->calib.bmp280; 308 int ret; 309 310 /* Read temperature and pressure calibration values. */ 311 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, 312 data->bmp280_cal_buf, 313 sizeof(data->bmp280_cal_buf)); 314 if (ret) { 315 dev_err(data->dev, 316 "failed to read calibration parameters\n"); 317 return ret; 318 } 319 320 /* Toss calibration data into the entropy pool */ 321 add_device_randomness(data->bmp280_cal_buf, 322 sizeof(data->bmp280_cal_buf)); 323 324 /* Parse temperature calibration values. */ 325 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); 326 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); 327 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); 328 329 /* Parse pressure calibration values. */ 330 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); 331 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); 332 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); 333 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); 334 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); 335 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); 336 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); 337 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); 338 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); 339 340 return 0; 341 } 342 343 static int bme280_read_calib(struct bmp280_data *data) 344 { 345 struct bmp280_calib *calib = &data->calib.bmp280; 346 struct device *dev = data->dev; 347 unsigned int tmp; 348 int ret; 349 350 /* Load shared calibration params with bmp280 first */ 351 ret = bmp280_read_calib(data); 352 if (ret) 353 return ret; 354 355 /* 356 * Read humidity calibration values. 357 * Due to some odd register addressing we cannot just 358 * do a big bulk read. Instead, we have to read each Hx 359 * value separately and sometimes do some bit shifting... 360 * Humidity data is only available on BME280. 361 */ 362 363 ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp); 364 if (ret) { 365 dev_err(dev, "failed to read H1 comp value\n"); 366 return ret; 367 } 368 calib->H1 = tmp; 369 370 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2, 371 &data->le16, sizeof(data->le16)); 372 if (ret) { 373 dev_err(dev, "failed to read H2 comp value\n"); 374 return ret; 375 } 376 calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15); 377 378 ret = regmap_read(data->regmap, BME280_REG_COMP_H3, &tmp); 379 if (ret) { 380 dev_err(dev, "failed to read H3 comp value\n"); 381 return ret; 382 } 383 calib->H3 = tmp; 384 385 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H4, 386 &data->be16, sizeof(data->be16)); 387 if (ret) { 388 dev_err(dev, "failed to read H4 comp value\n"); 389 return ret; 390 } 391 calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) | 392 (be16_to_cpu(data->be16) & 0xf), 11); 393 394 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H5, 395 &data->le16, sizeof(data->le16)); 396 if (ret) { 397 dev_err(dev, "failed to read H5 comp value\n"); 398 return ret; 399 } 400 calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11); 401 402 ret = regmap_read(data->regmap, BME280_REG_COMP_H6, &tmp); 403 if (ret) { 404 dev_err(dev, "failed to read H6 comp value\n"); 405 return ret; 406 } 407 calib->H6 = sign_extend32(tmp, 7); 408 409 return 0; 410 } 411 412 static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity) 413 { 414 u16 value_humidity; 415 int ret; 416 417 ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB, 418 &data->be16, BME280_NUM_HUMIDITY_BYTES); 419 if (ret) { 420 dev_err(data->dev, "failed to read humidity\n"); 421 return ret; 422 } 423 424 value_humidity = be16_to_cpu(data->be16); 425 if (value_humidity == BMP280_HUMIDITY_SKIPPED) { 426 dev_err(data->dev, "reading humidity skipped\n"); 427 return -EIO; 428 } 429 *adc_humidity = value_humidity; 430 431 return 0; 432 } 433 434 /* 435 * Returns humidity in percent, resolution is 0.01 percent. Output value of 436 * "47445" represents 47445/1024 = 46.333 %RH. 437 * 438 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". 439 */ 440 static u32 bme280_compensate_humidity(struct bmp280_data *data, 441 u16 adc_humidity, s32 t_fine) 442 { 443 struct bmp280_calib *calib = &data->calib.bmp280; 444 s32 var; 445 446 var = t_fine - (s32)76800; 447 var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) 448 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) 449 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) 450 + (s32)2097152) * calib->H2 + 8192) >> 14); 451 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; 452 453 var = clamp_val(var, 0, 419430400); 454 455 return var >> 12; 456 } 457 458 static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 459 { 460 u32 value_temp; 461 int ret; 462 463 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, 464 data->buf, BMP280_NUM_TEMP_BYTES); 465 if (ret) { 466 dev_err(data->dev, "failed to read temperature\n"); 467 return ret; 468 } 469 470 value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 471 if (value_temp == BMP280_TEMP_SKIPPED) { 472 dev_err(data->dev, "reading temperature skipped\n"); 473 return -EIO; 474 } 475 *adc_temp = value_temp; 476 477 return 0; 478 } 479 480 /* 481 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of 482 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global 483 * value. 484 * 485 * Taken from datasheet, Section 3.11.3, "Compensation formula". 486 */ 487 static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 488 { 489 struct bmp280_calib *calib = &data->calib.bmp280; 490 s32 var1, var2; 491 492 var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) * 493 ((s32)calib->T2)) >> 11; 494 var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) * 495 ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) * 496 ((s32)calib->T3))) >> 14; 497 return var1 + var2; /* t_fine = var1 + var2 */ 498 } 499 500 static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine) 501 { 502 u32 adc_temp; 503 int ret; 504 505 ret = bmp280_read_temp_adc(data, &adc_temp); 506 if (ret) 507 return ret; 508 509 *t_fine = bmp280_calc_t_fine(data, adc_temp); 510 511 return 0; 512 } 513 514 static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp) 515 { 516 return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256; 517 } 518 519 static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press) 520 { 521 u32 value_press; 522 int ret; 523 524 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 525 data->buf, BMP280_NUM_PRESS_BYTES); 526 if (ret) { 527 dev_err(data->dev, "failed to read pressure\n"); 528 return ret; 529 } 530 531 value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 532 if (value_press == BMP280_PRESS_SKIPPED) { 533 dev_err(data->dev, "reading pressure skipped\n"); 534 return -EIO; 535 } 536 *adc_press = value_press; 537 538 return 0; 539 } 540 541 /* 542 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 543 * integer bits and 8 fractional bits). Output value of "24674867" 544 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa 545 * 546 * Taken from datasheet, Section 3.11.3, "Compensation formula". 547 */ 548 static u32 bmp280_compensate_press(struct bmp280_data *data, 549 u32 adc_press, s32 t_fine) 550 { 551 struct bmp280_calib *calib = &data->calib.bmp280; 552 s64 var1, var2, p; 553 554 var1 = ((s64)t_fine) - 128000; 555 var2 = var1 * var1 * (s64)calib->P6; 556 var2 += (var1 * (s64)calib->P5) << 17; 557 var2 += ((s64)calib->P4) << 35; 558 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + 559 ((var1 * (s64)calib->P2) << 12); 560 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; 561 562 if (var1 == 0) 563 return 0; 564 565 p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125; 566 p = div64_s64(p, var1); 567 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; 568 var2 = ((s64)(calib->P8) * p) >> 19; 569 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); 570 571 return (u32)p; 572 } 573 574 static int bmp280_read_temp(struct bmp280_data *data, s32 *comp_temp) 575 { 576 u32 adc_temp; 577 int ret; 578 579 ret = bmp280_read_temp_adc(data, &adc_temp); 580 if (ret) 581 return ret; 582 583 *comp_temp = bmp280_compensate_temp(data, adc_temp); 584 585 return 0; 586 } 587 588 static int bmp280_read_press(struct bmp280_data *data, u32 *comp_press) 589 { 590 u32 adc_press; 591 s32 t_fine; 592 int ret; 593 594 ret = bmp280_get_t_fine(data, &t_fine); 595 if (ret) 596 return ret; 597 598 ret = bmp280_read_press_adc(data, &adc_press); 599 if (ret) 600 return ret; 601 602 *comp_press = bmp280_compensate_press(data, adc_press, t_fine); 603 604 return 0; 605 } 606 607 static int bme280_read_humid(struct bmp280_data *data, u32 *comp_humidity) 608 { 609 u16 adc_humidity; 610 s32 t_fine; 611 int ret; 612 613 ret = bmp280_get_t_fine(data, &t_fine); 614 if (ret) 615 return ret; 616 617 ret = bme280_read_humid_adc(data, &adc_humidity); 618 if (ret) 619 return ret; 620 621 *comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine); 622 623 return 0; 624 } 625 626 static int bmp280_read_raw_impl(struct iio_dev *indio_dev, 627 struct iio_chan_spec const *chan, 628 int *val, int *val2, long mask) 629 { 630 struct bmp280_data *data = iio_priv(indio_dev); 631 int chan_value; 632 int ret; 633 634 guard(mutex)(&data->lock); 635 636 switch (mask) { 637 case IIO_CHAN_INFO_PROCESSED: 638 switch (chan->type) { 639 case IIO_HUMIDITYRELATIVE: 640 ret = data->chip_info->read_humid(data, &chan_value); 641 if (ret) 642 return ret; 643 644 *val = data->chip_info->humid_coeffs[0] * chan_value; 645 *val2 = data->chip_info->humid_coeffs[1]; 646 return data->chip_info->humid_coeffs_type; 647 case IIO_PRESSURE: 648 ret = data->chip_info->read_press(data, &chan_value); 649 if (ret) 650 return ret; 651 652 *val = data->chip_info->press_coeffs[0] * chan_value; 653 *val2 = data->chip_info->press_coeffs[1]; 654 return data->chip_info->press_coeffs_type; 655 case IIO_TEMP: 656 ret = data->chip_info->read_temp(data, &chan_value); 657 if (ret) 658 return ret; 659 660 *val = data->chip_info->temp_coeffs[0] * chan_value; 661 *val2 = data->chip_info->temp_coeffs[1]; 662 return data->chip_info->temp_coeffs_type; 663 default: 664 return -EINVAL; 665 } 666 case IIO_CHAN_INFO_RAW: 667 switch (chan->type) { 668 case IIO_HUMIDITYRELATIVE: 669 ret = data->chip_info->read_humid(data, &chan_value); 670 if (ret) 671 return ret; 672 673 *val = chan_value; 674 return IIO_VAL_INT; 675 case IIO_PRESSURE: 676 ret = data->chip_info->read_press(data, &chan_value); 677 if (ret) 678 return ret; 679 680 *val = chan_value; 681 return IIO_VAL_INT; 682 case IIO_TEMP: 683 ret = data->chip_info->read_temp(data, &chan_value); 684 if (ret) 685 return ret; 686 687 *val = chan_value; 688 return IIO_VAL_INT; 689 default: 690 return -EINVAL; 691 } 692 case IIO_CHAN_INFO_SCALE: 693 switch (chan->type) { 694 case IIO_HUMIDITYRELATIVE: 695 *val = data->chip_info->humid_coeffs[0]; 696 *val2 = data->chip_info->humid_coeffs[1]; 697 return data->chip_info->humid_coeffs_type; 698 case IIO_PRESSURE: 699 *val = data->chip_info->press_coeffs[0]; 700 *val2 = data->chip_info->press_coeffs[1]; 701 return data->chip_info->press_coeffs_type; 702 case IIO_TEMP: 703 *val = data->chip_info->temp_coeffs[0]; 704 *val2 = data->chip_info->temp_coeffs[1]; 705 return data->chip_info->temp_coeffs_type; 706 default: 707 return -EINVAL; 708 } 709 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 710 switch (chan->type) { 711 case IIO_HUMIDITYRELATIVE: 712 *val = 1 << data->oversampling_humid; 713 return IIO_VAL_INT; 714 case IIO_PRESSURE: 715 *val = 1 << data->oversampling_press; 716 return IIO_VAL_INT; 717 case IIO_TEMP: 718 *val = 1 << data->oversampling_temp; 719 return IIO_VAL_INT; 720 default: 721 return -EINVAL; 722 } 723 case IIO_CHAN_INFO_SAMP_FREQ: 724 if (!data->chip_info->sampling_freq_avail) 725 return -EINVAL; 726 727 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; 728 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; 729 return IIO_VAL_INT_PLUS_MICRO; 730 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 731 if (!data->chip_info->iir_filter_coeffs_avail) 732 return -EINVAL; 733 734 *val = (1 << data->iir_filter_coeff) - 1; 735 return IIO_VAL_INT; 736 default: 737 return -EINVAL; 738 } 739 } 740 741 static int bmp280_read_raw(struct iio_dev *indio_dev, 742 struct iio_chan_spec const *chan, 743 int *val, int *val2, long mask) 744 { 745 struct bmp280_data *data = iio_priv(indio_dev); 746 int ret; 747 748 pm_runtime_get_sync(data->dev); 749 ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask); 750 pm_runtime_mark_last_busy(data->dev); 751 pm_runtime_put_autosuspend(data->dev); 752 753 return ret; 754 } 755 756 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data, 757 int val) 758 { 759 const int *avail = data->chip_info->oversampling_humid_avail; 760 const int n = data->chip_info->num_oversampling_humid_avail; 761 int ret, prev; 762 int i; 763 764 for (i = 0; i < n; i++) { 765 if (avail[i] == val) { 766 prev = data->oversampling_humid; 767 data->oversampling_humid = ilog2(val); 768 769 ret = data->chip_info->chip_config(data); 770 if (ret) { 771 data->oversampling_humid = prev; 772 data->chip_info->chip_config(data); 773 return ret; 774 } 775 return 0; 776 } 777 } 778 return -EINVAL; 779 } 780 781 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, 782 int val) 783 { 784 const int *avail = data->chip_info->oversampling_temp_avail; 785 const int n = data->chip_info->num_oversampling_temp_avail; 786 int ret, prev; 787 int i; 788 789 for (i = 0; i < n; i++) { 790 if (avail[i] == val) { 791 prev = data->oversampling_temp; 792 data->oversampling_temp = ilog2(val); 793 794 ret = data->chip_info->chip_config(data); 795 if (ret) { 796 data->oversampling_temp = prev; 797 data->chip_info->chip_config(data); 798 return ret; 799 } 800 return 0; 801 } 802 } 803 return -EINVAL; 804 } 805 806 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, 807 int val) 808 { 809 const int *avail = data->chip_info->oversampling_press_avail; 810 const int n = data->chip_info->num_oversampling_press_avail; 811 int ret, prev; 812 int i; 813 814 for (i = 0; i < n; i++) { 815 if (avail[i] == val) { 816 prev = data->oversampling_press; 817 data->oversampling_press = ilog2(val); 818 819 ret = data->chip_info->chip_config(data); 820 if (ret) { 821 data->oversampling_press = prev; 822 data->chip_info->chip_config(data); 823 return ret; 824 } 825 return 0; 826 } 827 } 828 return -EINVAL; 829 } 830 831 static int bmp280_write_sampling_frequency(struct bmp280_data *data, 832 int val, int val2) 833 { 834 const int (*avail)[2] = data->chip_info->sampling_freq_avail; 835 const int n = data->chip_info->num_sampling_freq_avail; 836 int ret, prev; 837 int i; 838 839 for (i = 0; i < n; i++) { 840 if (avail[i][0] == val && avail[i][1] == val2) { 841 prev = data->sampling_freq; 842 data->sampling_freq = i; 843 844 ret = data->chip_info->chip_config(data); 845 if (ret) { 846 data->sampling_freq = prev; 847 data->chip_info->chip_config(data); 848 return ret; 849 } 850 return 0; 851 } 852 } 853 return -EINVAL; 854 } 855 856 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) 857 { 858 const int *avail = data->chip_info->iir_filter_coeffs_avail; 859 const int n = data->chip_info->num_iir_filter_coeffs_avail; 860 int ret, prev; 861 int i; 862 863 for (i = 0; i < n; i++) { 864 if (avail[i] - 1 == val) { 865 prev = data->iir_filter_coeff; 866 data->iir_filter_coeff = i; 867 868 ret = data->chip_info->chip_config(data); 869 if (ret) { 870 data->iir_filter_coeff = prev; 871 data->chip_info->chip_config(data); 872 return ret; 873 874 } 875 return 0; 876 } 877 } 878 return -EINVAL; 879 } 880 881 static int bmp280_write_raw_impl(struct iio_dev *indio_dev, 882 struct iio_chan_spec const *chan, 883 int val, int val2, long mask) 884 { 885 struct bmp280_data *data = iio_priv(indio_dev); 886 887 guard(mutex)(&data->lock); 888 889 /* 890 * Helper functions to update sensor running configuration. 891 * If an error happens applying new settings, will try restore 892 * previous parameters to ensure the sensor is left in a known 893 * working configuration. 894 */ 895 switch (mask) { 896 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 897 switch (chan->type) { 898 case IIO_HUMIDITYRELATIVE: 899 return bme280_write_oversampling_ratio_humid(data, val); 900 case IIO_PRESSURE: 901 return bmp280_write_oversampling_ratio_press(data, val); 902 case IIO_TEMP: 903 return bmp280_write_oversampling_ratio_temp(data, val); 904 default: 905 return -EINVAL; 906 } 907 case IIO_CHAN_INFO_SAMP_FREQ: 908 return bmp280_write_sampling_frequency(data, val, val2); 909 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 910 return bmp280_write_iir_filter_coeffs(data, val); 911 default: 912 return -EINVAL; 913 } 914 } 915 916 static int bmp280_write_raw(struct iio_dev *indio_dev, 917 struct iio_chan_spec const *chan, 918 int val, int val2, long mask) 919 { 920 struct bmp280_data *data = iio_priv(indio_dev); 921 int ret; 922 923 pm_runtime_get_sync(data->dev); 924 ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask); 925 pm_runtime_mark_last_busy(data->dev); 926 pm_runtime_put_autosuspend(data->dev); 927 928 return ret; 929 } 930 931 static int bmp280_read_avail(struct iio_dev *indio_dev, 932 struct iio_chan_spec const *chan, 933 const int **vals, int *type, int *length, 934 long mask) 935 { 936 struct bmp280_data *data = iio_priv(indio_dev); 937 938 switch (mask) { 939 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 940 switch (chan->type) { 941 case IIO_PRESSURE: 942 *vals = data->chip_info->oversampling_press_avail; 943 *length = data->chip_info->num_oversampling_press_avail; 944 break; 945 case IIO_TEMP: 946 *vals = data->chip_info->oversampling_temp_avail; 947 *length = data->chip_info->num_oversampling_temp_avail; 948 break; 949 default: 950 return -EINVAL; 951 } 952 *type = IIO_VAL_INT; 953 return IIO_AVAIL_LIST; 954 case IIO_CHAN_INFO_SAMP_FREQ: 955 *vals = (const int *)data->chip_info->sampling_freq_avail; 956 *type = IIO_VAL_INT_PLUS_MICRO; 957 /* Values are stored in a 2D matrix */ 958 *length = data->chip_info->num_sampling_freq_avail; 959 return IIO_AVAIL_LIST; 960 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 961 *vals = data->chip_info->iir_filter_coeffs_avail; 962 *type = IIO_VAL_INT; 963 *length = data->chip_info->num_iir_filter_coeffs_avail; 964 return IIO_AVAIL_LIST; 965 default: 966 return -EINVAL; 967 } 968 } 969 970 static const struct iio_info bmp280_info = { 971 .read_raw = &bmp280_read_raw, 972 .read_avail = &bmp280_read_avail, 973 .write_raw = &bmp280_write_raw, 974 }; 975 976 static const unsigned long bmp280_avail_scan_masks[] = { 977 BIT(BMP280_TEMP) | BIT(BMP280_PRESS), 978 0 979 }; 980 981 static const unsigned long bme280_avail_scan_masks[] = { 982 BIT(BME280_HUMID) | BIT(BMP280_TEMP) | BIT(BMP280_PRESS), 983 0 984 }; 985 986 static int bmp280_chip_config(struct bmp280_data *data) 987 { 988 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | 989 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); 990 int ret; 991 992 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, 993 BMP280_OSRS_TEMP_MASK | 994 BMP280_OSRS_PRESS_MASK | 995 BMP280_MODE_MASK, 996 osrs | BMP280_MODE_NORMAL); 997 if (ret) { 998 dev_err(data->dev, "failed to write ctrl_meas register\n"); 999 return ret; 1000 } 1001 1002 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, 1003 BMP280_FILTER_MASK, 1004 BMP280_FILTER_4X); 1005 if (ret) { 1006 dev_err(data->dev, "failed to write config register\n"); 1007 return ret; 1008 } 1009 1010 return ret; 1011 } 1012 1013 static irqreturn_t bmp280_trigger_handler(int irq, void *p) 1014 { 1015 struct iio_poll_func *pf = p; 1016 struct iio_dev *indio_dev = pf->indio_dev; 1017 struct bmp280_data *data = iio_priv(indio_dev); 1018 s32 adc_temp, adc_press, t_fine; 1019 int ret; 1020 1021 guard(mutex)(&data->lock); 1022 1023 /* Burst read data registers */ 1024 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 1025 data->buf, BMP280_BURST_READ_BYTES); 1026 if (ret) { 1027 dev_err(data->dev, "failed to burst read sensor data\n"); 1028 goto out; 1029 } 1030 1031 /* Temperature calculations */ 1032 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); 1033 if (adc_temp == BMP280_TEMP_SKIPPED) { 1034 dev_err(data->dev, "reading temperature skipped\n"); 1035 goto out; 1036 } 1037 1038 data->sensor_data[1] = bmp280_compensate_temp(data, adc_temp); 1039 1040 /* Pressure calculations */ 1041 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); 1042 if (adc_press == BMP280_PRESS_SKIPPED) { 1043 dev_err(data->dev, "reading pressure skipped\n"); 1044 goto out; 1045 } 1046 1047 t_fine = bmp280_calc_t_fine(data, adc_temp); 1048 1049 data->sensor_data[0] = bmp280_compensate_press(data, adc_press, t_fine); 1050 1051 iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, 1052 iio_get_time_ns(indio_dev)); 1053 1054 out: 1055 iio_trigger_notify_done(indio_dev->trig); 1056 1057 return IRQ_HANDLED; 1058 } 1059 1060 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; 1061 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; 1062 static const int bmp280_temp_coeffs[] = { 10, 1 }; 1063 static const int bmp280_press_coeffs[] = { 1, 256000 }; 1064 1065 const struct bmp280_chip_info bmp280_chip_info = { 1066 .id_reg = BMP280_REG_ID, 1067 .chip_id = bmp280_chip_ids, 1068 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), 1069 .regmap_config = &bmp280_regmap_config, 1070 .start_up_time = 2000, 1071 .channels = bmp280_channels, 1072 .num_channels = ARRAY_SIZE(bmp280_channels), 1073 .avail_scan_masks = bmp280_avail_scan_masks, 1074 1075 .oversampling_temp_avail = bmp280_oversampling_avail, 1076 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1077 /* 1078 * Oversampling config values on BMx280 have one additional setting 1079 * that other generations of the family don't: 1080 * The value 0 means the measurement is bypassed instead of 1081 * oversampling set to x1. 1082 * 1083 * To account for this difference, and preserve the same common 1084 * config logic, this is handled later on chip_config callback 1085 * incrementing one unit the oversampling setting. 1086 */ 1087 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 1088 1089 .oversampling_press_avail = bmp280_oversampling_avail, 1090 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1091 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 1092 1093 .temp_coeffs = bmp280_temp_coeffs, 1094 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 1095 .press_coeffs = bmp280_press_coeffs, 1096 .press_coeffs_type = IIO_VAL_FRACTIONAL, 1097 1098 .chip_config = bmp280_chip_config, 1099 .read_temp = bmp280_read_temp, 1100 .read_press = bmp280_read_press, 1101 .read_calib = bmp280_read_calib, 1102 1103 .trigger_handler = bmp280_trigger_handler, 1104 }; 1105 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); 1106 1107 static int bme280_chip_config(struct bmp280_data *data) 1108 { 1109 u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); 1110 int ret; 1111 1112 /* 1113 * Oversampling of humidity must be set before oversampling of 1114 * temperature/pressure is set to become effective. 1115 */ 1116 ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY, 1117 BME280_OSRS_HUMIDITY_MASK, osrs); 1118 if (ret) { 1119 dev_err(data->dev, "failed to set humidity oversampling"); 1120 return ret; 1121 } 1122 1123 return bmp280_chip_config(data); 1124 } 1125 1126 static irqreturn_t bme280_trigger_handler(int irq, void *p) 1127 { 1128 struct iio_poll_func *pf = p; 1129 struct iio_dev *indio_dev = pf->indio_dev; 1130 struct bmp280_data *data = iio_priv(indio_dev); 1131 s32 adc_temp, adc_press, adc_humidity, t_fine; 1132 int ret; 1133 1134 guard(mutex)(&data->lock); 1135 1136 /* Burst read data registers */ 1137 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 1138 data->buf, BME280_BURST_READ_BYTES); 1139 if (ret) { 1140 dev_err(data->dev, "failed to burst read sensor data\n"); 1141 goto out; 1142 } 1143 1144 /* Temperature calculations */ 1145 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3])); 1146 if (adc_temp == BMP280_TEMP_SKIPPED) { 1147 dev_err(data->dev, "reading temperature skipped\n"); 1148 goto out; 1149 } 1150 1151 data->sensor_data[1] = bmp280_compensate_temp(data, adc_temp); 1152 1153 /* Pressure calculations */ 1154 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0])); 1155 if (adc_press == BMP280_PRESS_SKIPPED) { 1156 dev_err(data->dev, "reading pressure skipped\n"); 1157 goto out; 1158 } 1159 1160 t_fine = bmp280_calc_t_fine(data, adc_temp); 1161 1162 data->sensor_data[0] = bmp280_compensate_press(data, adc_press, t_fine); 1163 1164 /* Humidity calculations */ 1165 adc_humidity = get_unaligned_be16(&data->buf[6]); 1166 1167 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { 1168 dev_err(data->dev, "reading humidity skipped\n"); 1169 goto out; 1170 } 1171 data->sensor_data[2] = bme280_compensate_humidity(data, adc_humidity, t_fine); 1172 1173 iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, 1174 iio_get_time_ns(indio_dev)); 1175 1176 out: 1177 iio_trigger_notify_done(indio_dev->trig); 1178 1179 return IRQ_HANDLED; 1180 } 1181 1182 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; 1183 static const int bme280_humid_coeffs[] = { 1000, 1024 }; 1184 1185 const struct bmp280_chip_info bme280_chip_info = { 1186 .id_reg = BMP280_REG_ID, 1187 .chip_id = bme280_chip_ids, 1188 .num_chip_id = ARRAY_SIZE(bme280_chip_ids), 1189 .regmap_config = &bme280_regmap_config, 1190 .start_up_time = 2000, 1191 .channels = bme280_channels, 1192 .num_channels = ARRAY_SIZE(bme280_channels), 1193 .avail_scan_masks = bme280_avail_scan_masks, 1194 1195 .oversampling_temp_avail = bmp280_oversampling_avail, 1196 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1197 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 1198 1199 .oversampling_press_avail = bmp280_oversampling_avail, 1200 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1201 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 1202 1203 .oversampling_humid_avail = bmp280_oversampling_avail, 1204 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), 1205 .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1, 1206 1207 .temp_coeffs = bmp280_temp_coeffs, 1208 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 1209 .press_coeffs = bmp280_press_coeffs, 1210 .press_coeffs_type = IIO_VAL_FRACTIONAL, 1211 .humid_coeffs = bme280_humid_coeffs, 1212 .humid_coeffs_type = IIO_VAL_FRACTIONAL, 1213 1214 .chip_config = bme280_chip_config, 1215 .read_temp = bmp280_read_temp, 1216 .read_press = bmp280_read_press, 1217 .read_humid = bme280_read_humid, 1218 .read_calib = bme280_read_calib, 1219 1220 .trigger_handler = bme280_trigger_handler, 1221 }; 1222 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); 1223 1224 /* 1225 * Helper function to send a command to BMP3XX sensors. 1226 * 1227 * Sensor processes commands written to the CMD register and signals 1228 * execution result through "cmd_rdy" and "cmd_error" flags available on 1229 * STATUS and ERROR registers. 1230 */ 1231 static int bmp380_cmd(struct bmp280_data *data, u8 cmd) 1232 { 1233 unsigned int reg; 1234 int ret; 1235 1236 /* Check if device is ready to process a command */ 1237 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); 1238 if (ret) { 1239 dev_err(data->dev, "failed to read error register\n"); 1240 return ret; 1241 } 1242 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { 1243 dev_err(data->dev, "device is not ready to accept commands\n"); 1244 return -EBUSY; 1245 } 1246 1247 /* Send command to process */ 1248 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); 1249 if (ret) { 1250 dev_err(data->dev, "failed to send command to device\n"); 1251 return ret; 1252 } 1253 /* Wait for 2ms for command to be processed */ 1254 usleep_range(data->start_up_time, data->start_up_time + 100); 1255 /* Check for command processing error */ 1256 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); 1257 if (ret) { 1258 dev_err(data->dev, "error reading ERROR reg\n"); 1259 return ret; 1260 } 1261 if (reg & BMP380_ERR_CMD_MASK) { 1262 dev_err(data->dev, "error processing command 0x%X\n", cmd); 1263 return -EINVAL; 1264 } 1265 1266 return 0; 1267 } 1268 1269 static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 1270 { 1271 u32 value_temp; 1272 int ret; 1273 1274 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, 1275 data->buf, BMP280_NUM_TEMP_BYTES); 1276 if (ret) { 1277 dev_err(data->dev, "failed to read temperature\n"); 1278 return ret; 1279 } 1280 1281 value_temp = get_unaligned_le24(data->buf); 1282 if (value_temp == BMP380_TEMP_SKIPPED) { 1283 dev_err(data->dev, "reading temperature skipped\n"); 1284 return -EIO; 1285 } 1286 *adc_temp = value_temp; 1287 1288 return 0; 1289 } 1290 1291 /* 1292 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value 1293 * of "5123" equals 51.2º C. t_fine carries fine temperature as global value. 1294 * 1295 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo 1296 * https://github.com/BoschSensortec/BMP3-Sensor-API. 1297 */ 1298 static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 1299 { 1300 s64 var1, var2, var3, var4, var5, var6; 1301 struct bmp380_calib *calib = &data->calib.bmp380; 1302 1303 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); 1304 var2 = var1 * ((s64) calib->T2); 1305 var3 = var1 * var1; 1306 var4 = var3 * ((s64) calib->T3); 1307 var5 = (var2 << 18) + var4; 1308 var6 = var5 >> 32; 1309 return (s32)var6; /* t_fine = var6 */ 1310 } 1311 1312 static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine) 1313 { 1314 s32 adc_temp; 1315 int ret; 1316 1317 ret = bmp380_read_temp_adc(data, &adc_temp); 1318 if (ret) 1319 return ret; 1320 1321 *t_fine = bmp380_calc_t_fine(data, adc_temp); 1322 1323 return 0; 1324 } 1325 1326 static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) 1327 { 1328 s64 comp_temp; 1329 s32 var6; 1330 1331 var6 = bmp380_calc_t_fine(data, adc_temp); 1332 comp_temp = (var6 * 25) >> 14; 1333 1334 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); 1335 return (s32) comp_temp; 1336 } 1337 1338 static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press) 1339 { 1340 u32 value_press; 1341 int ret; 1342 1343 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1344 data->buf, BMP280_NUM_PRESS_BYTES); 1345 if (ret) { 1346 dev_err(data->dev, "failed to read pressure\n"); 1347 return ret; 1348 } 1349 1350 value_press = get_unaligned_le24(data->buf); 1351 if (value_press == BMP380_PRESS_SKIPPED) { 1352 dev_err(data->dev, "reading pressure skipped\n"); 1353 return -EIO; 1354 } 1355 *adc_press = value_press; 1356 1357 return 0; 1358 } 1359 1360 /* 1361 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. 1362 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. 1363 * 1364 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository 1365 * https://github.com/BoschSensortec/BMP3-Sensor-API. 1366 */ 1367 static u32 bmp380_compensate_press(struct bmp280_data *data, 1368 u32 adc_press, s32 t_fine) 1369 { 1370 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; 1371 struct bmp380_calib *calib = &data->calib.bmp380; 1372 u32 comp_press; 1373 1374 var1 = (s64)t_fine * (s64)t_fine; 1375 var2 = var1 >> 6; 1376 var3 = (var2 * ((s64)t_fine)) >> 8; 1377 var4 = ((s64)calib->P8 * var3) >> 5; 1378 var5 = ((s64)calib->P7 * var1) << 4; 1379 var6 = ((s64)calib->P6 * (s64)t_fine) << 22; 1380 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; 1381 var2 = ((s64)calib->P4 * var3) >> 5; 1382 var4 = ((s64)calib->P3 * var1) << 2; 1383 var5 = ((s64)calib->P2 - ((s64)1 << 14)) * 1384 ((s64)t_fine << 21); 1385 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + 1386 var2 + var4 + var5; 1387 var1 = (sensitivity >> 24) * (s64)adc_press; 1388 var2 = (s64)calib->P10 * (s64)t_fine; 1389 var3 = var2 + ((s64)calib->P9 << 16); 1390 var4 = (var3 * (s64)adc_press) >> 13; 1391 1392 /* 1393 * Dividing by 10 followed by multiplying by 10 to avoid 1394 * possible overflow caused by (uncomp_data->pressure * partial_data4). 1395 */ 1396 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; 1397 var5 *= 10; 1398 var6 = (s64)adc_press * (s64)adc_press; 1399 var2 = ((s64)calib->P11 * var6) >> 16; 1400 var3 = (var2 * (s64)adc_press) >> 7; 1401 var4 = (offset >> 2) + var1 + var5 + var3; 1402 comp_press = ((u64)var4 * 25) >> 40; 1403 1404 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); 1405 return comp_press; 1406 } 1407 1408 static int bmp380_read_temp(struct bmp280_data *data, s32 *comp_temp) 1409 { 1410 u32 adc_temp; 1411 int ret; 1412 1413 ret = bmp380_read_temp_adc(data, &adc_temp); 1414 if (ret) 1415 return ret; 1416 1417 *comp_temp = bmp380_compensate_temp(data, adc_temp); 1418 1419 return 0; 1420 } 1421 1422 static int bmp380_read_press(struct bmp280_data *data, u32 *comp_press) 1423 { 1424 u32 adc_press, t_fine; 1425 int ret; 1426 1427 ret = bmp380_get_t_fine(data, &t_fine); 1428 if (ret) 1429 return ret; 1430 1431 ret = bmp380_read_press_adc(data, &adc_press); 1432 if (ret) 1433 return ret; 1434 1435 *comp_press = bmp380_compensate_press(data, adc_press, t_fine); 1436 1437 return 0; 1438 } 1439 1440 static int bmp380_read_calib(struct bmp280_data *data) 1441 { 1442 struct bmp380_calib *calib = &data->calib.bmp380; 1443 int ret; 1444 1445 /* Read temperature and pressure calibration data */ 1446 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, 1447 data->bmp380_cal_buf, 1448 sizeof(data->bmp380_cal_buf)); 1449 if (ret) { 1450 dev_err(data->dev, 1451 "failed to read calibration parameters\n"); 1452 return ret; 1453 } 1454 1455 /* Toss the temperature calibration data into the entropy pool */ 1456 add_device_randomness(data->bmp380_cal_buf, 1457 sizeof(data->bmp380_cal_buf)); 1458 1459 /* Parse calibration values */ 1460 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); 1461 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); 1462 calib->T3 = data->bmp380_cal_buf[BMP380_T3]; 1463 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); 1464 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); 1465 calib->P3 = data->bmp380_cal_buf[BMP380_P3]; 1466 calib->P4 = data->bmp380_cal_buf[BMP380_P4]; 1467 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); 1468 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); 1469 calib->P7 = data->bmp380_cal_buf[BMP380_P7]; 1470 calib->P8 = data->bmp380_cal_buf[BMP380_P8]; 1471 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); 1472 calib->P10 = data->bmp380_cal_buf[BMP380_P10]; 1473 calib->P11 = data->bmp380_cal_buf[BMP380_P11]; 1474 1475 return 0; 1476 } 1477 1478 static const int bmp380_odr_table[][2] = { 1479 [BMP380_ODR_200HZ] = {200, 0}, 1480 [BMP380_ODR_100HZ] = {100, 0}, 1481 [BMP380_ODR_50HZ] = {50, 0}, 1482 [BMP380_ODR_25HZ] = {25, 0}, 1483 [BMP380_ODR_12_5HZ] = {12, 500000}, 1484 [BMP380_ODR_6_25HZ] = {6, 250000}, 1485 [BMP380_ODR_3_125HZ] = {3, 125000}, 1486 [BMP380_ODR_1_5625HZ] = {1, 562500}, 1487 [BMP380_ODR_0_78HZ] = {0, 781250}, 1488 [BMP380_ODR_0_39HZ] = {0, 390625}, 1489 [BMP380_ODR_0_2HZ] = {0, 195313}, 1490 [BMP380_ODR_0_1HZ] = {0, 97656}, 1491 [BMP380_ODR_0_05HZ] = {0, 48828}, 1492 [BMP380_ODR_0_02HZ] = {0, 24414}, 1493 [BMP380_ODR_0_01HZ] = {0, 12207}, 1494 [BMP380_ODR_0_006HZ] = {0, 6104}, 1495 [BMP380_ODR_0_003HZ] = {0, 3052}, 1496 [BMP380_ODR_0_0015HZ] = {0, 1526}, 1497 }; 1498 1499 static int bmp380_preinit(struct bmp280_data *data) 1500 { 1501 /* BMP3xx requires soft-reset as part of initialization */ 1502 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); 1503 } 1504 1505 static int bmp380_chip_config(struct bmp280_data *data) 1506 { 1507 bool change = false, aux; 1508 unsigned int tmp; 1509 u8 osrs; 1510 int ret; 1511 1512 /* Configure power control register */ 1513 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1514 BMP380_CTRL_SENSORS_MASK, 1515 BMP380_CTRL_SENSORS_PRESS_EN | 1516 BMP380_CTRL_SENSORS_TEMP_EN); 1517 if (ret) { 1518 dev_err(data->dev, 1519 "failed to write operation control register\n"); 1520 return ret; 1521 } 1522 1523 /* Configure oversampling */ 1524 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | 1525 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); 1526 1527 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, 1528 BMP380_OSRS_TEMP_MASK | 1529 BMP380_OSRS_PRESS_MASK, 1530 osrs, &aux); 1531 if (ret) { 1532 dev_err(data->dev, "failed to write oversampling register\n"); 1533 return ret; 1534 } 1535 change = change || aux; 1536 1537 /* Configure output data rate */ 1538 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, 1539 BMP380_ODRS_MASK, data->sampling_freq, 1540 &aux); 1541 if (ret) { 1542 dev_err(data->dev, "failed to write ODR selection register\n"); 1543 return ret; 1544 } 1545 change = change || aux; 1546 1547 /* Set filter data */ 1548 ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, 1549 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), 1550 &aux); 1551 if (ret) { 1552 dev_err(data->dev, "failed to write config register\n"); 1553 return ret; 1554 } 1555 change = change || aux; 1556 1557 if (change) { 1558 /* 1559 * The configurations errors are detected on the fly during a 1560 * measurement cycle. If the sampling frequency is too low, it's 1561 * faster to reset the measurement loop than wait until the next 1562 * measurement is due. 1563 * 1564 * Resets sensor measurement loop toggling between sleep and 1565 * normal operating modes. 1566 */ 1567 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1568 BMP380_MODE_MASK, 1569 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); 1570 if (ret) { 1571 dev_err(data->dev, "failed to set sleep mode\n"); 1572 return ret; 1573 } 1574 usleep_range(2000, 2500); 1575 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1576 BMP380_MODE_MASK, 1577 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); 1578 if (ret) { 1579 dev_err(data->dev, "failed to set normal mode\n"); 1580 return ret; 1581 } 1582 /* 1583 * Waits for measurement before checking configuration error 1584 * flag. Selected longest measurement time, calculated from 1585 * formula in datasheet section 3.9.2 with an offset of ~+15% 1586 * as it seen as well in table 3.9.1. 1587 */ 1588 msleep(150); 1589 1590 /* Check config error flag */ 1591 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); 1592 if (ret) { 1593 dev_err(data->dev, "failed to read error register\n"); 1594 return ret; 1595 } 1596 if (tmp & BMP380_ERR_CONF_MASK) { 1597 dev_warn(data->dev, 1598 "sensor flagged configuration as incompatible\n"); 1599 return -EINVAL; 1600 } 1601 } 1602 1603 return 0; 1604 } 1605 1606 static irqreturn_t bmp380_trigger_handler(int irq, void *p) 1607 { 1608 struct iio_poll_func *pf = p; 1609 struct iio_dev *indio_dev = pf->indio_dev; 1610 struct bmp280_data *data = iio_priv(indio_dev); 1611 s32 adc_temp, adc_press, t_fine; 1612 int ret; 1613 1614 guard(mutex)(&data->lock); 1615 1616 /* Burst read data registers */ 1617 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1618 data->buf, BMP280_BURST_READ_BYTES); 1619 if (ret) { 1620 dev_err(data->dev, "failed to burst read sensor data\n"); 1621 goto out; 1622 } 1623 1624 /* Temperature calculations */ 1625 adc_temp = get_unaligned_le24(&data->buf[3]); 1626 if (adc_temp == BMP380_TEMP_SKIPPED) { 1627 dev_err(data->dev, "reading temperature skipped\n"); 1628 goto out; 1629 } 1630 1631 data->sensor_data[1] = bmp380_compensate_temp(data, adc_temp); 1632 1633 /* Pressure calculations */ 1634 adc_press = get_unaligned_le24(&data->buf[0]); 1635 if (adc_press == BMP380_PRESS_SKIPPED) { 1636 dev_err(data->dev, "reading pressure skipped\n"); 1637 goto out; 1638 } 1639 1640 t_fine = bmp380_calc_t_fine(data, adc_temp); 1641 1642 data->sensor_data[0] = bmp380_compensate_press(data, adc_press, t_fine); 1643 1644 iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, 1645 iio_get_time_ns(indio_dev)); 1646 1647 out: 1648 iio_trigger_notify_done(indio_dev->trig); 1649 1650 return IRQ_HANDLED; 1651 } 1652 1653 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; 1654 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; 1655 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; 1656 static const int bmp380_temp_coeffs[] = { 10, 1 }; 1657 static const int bmp380_press_coeffs[] = { 1, 100000 }; 1658 1659 const struct bmp280_chip_info bmp380_chip_info = { 1660 .id_reg = BMP380_REG_ID, 1661 .chip_id = bmp380_chip_ids, 1662 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), 1663 .regmap_config = &bmp380_regmap_config, 1664 .spi_read_extra_byte = true, 1665 .start_up_time = 2000, 1666 .channels = bmp380_channels, 1667 .num_channels = ARRAY_SIZE(bmp380_channels), 1668 .avail_scan_masks = bmp280_avail_scan_masks, 1669 1670 .oversampling_temp_avail = bmp380_oversampling_avail, 1671 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1672 .oversampling_temp_default = ilog2(1), 1673 1674 .oversampling_press_avail = bmp380_oversampling_avail, 1675 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1676 .oversampling_press_default = ilog2(4), 1677 1678 .sampling_freq_avail = bmp380_odr_table, 1679 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, 1680 .sampling_freq_default = BMP380_ODR_50HZ, 1681 1682 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1683 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1684 .iir_filter_coeff_default = 2, 1685 1686 .temp_coeffs = bmp380_temp_coeffs, 1687 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 1688 .press_coeffs = bmp380_press_coeffs, 1689 .press_coeffs_type = IIO_VAL_FRACTIONAL, 1690 1691 .chip_config = bmp380_chip_config, 1692 .read_temp = bmp380_read_temp, 1693 .read_press = bmp380_read_press, 1694 .read_calib = bmp380_read_calib, 1695 .preinit = bmp380_preinit, 1696 1697 .trigger_handler = bmp380_trigger_handler, 1698 }; 1699 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); 1700 1701 static int bmp580_soft_reset(struct bmp280_data *data) 1702 { 1703 unsigned int reg; 1704 int ret; 1705 1706 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); 1707 if (ret) { 1708 dev_err(data->dev, "failed to send reset command to device\n"); 1709 return ret; 1710 } 1711 usleep_range(2000, 2500); 1712 1713 /* Dummy read of chip_id */ 1714 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1715 if (ret) { 1716 dev_err(data->dev, "failed to reestablish comms after reset\n"); 1717 return ret; 1718 } 1719 1720 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®); 1721 if (ret) { 1722 dev_err(data->dev, "error reading interrupt status register\n"); 1723 return ret; 1724 } 1725 if (!(reg & BMP580_INT_STATUS_POR_MASK)) { 1726 dev_err(data->dev, "error resetting sensor\n"); 1727 return -EINVAL; 1728 } 1729 1730 return 0; 1731 } 1732 1733 /** 1734 * bmp580_nvm_operation() - Helper function to commit NVM memory operations 1735 * @data: sensor data struct 1736 * @is_write: flag to signal write operation 1737 */ 1738 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) 1739 { 1740 unsigned long timeout, poll; 1741 unsigned int reg; 1742 int ret; 1743 1744 /* Check NVM ready flag */ 1745 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1746 if (ret) { 1747 dev_err(data->dev, "failed to check nvm status\n"); 1748 return ret; 1749 } 1750 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { 1751 dev_err(data->dev, "sensor's nvm is not ready\n"); 1752 return -EIO; 1753 } 1754 1755 /* Start NVM operation sequence */ 1756 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1757 BMP580_CMD_NVM_OP_SEQ_0); 1758 if (ret) { 1759 dev_err(data->dev, 1760 "failed to send nvm operation's first sequence\n"); 1761 return ret; 1762 } 1763 if (is_write) { 1764 /* Send NVM write sequence */ 1765 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1766 BMP580_CMD_NVM_WRITE_SEQ_1); 1767 if (ret) { 1768 dev_err(data->dev, 1769 "failed to send nvm write sequence\n"); 1770 return ret; 1771 } 1772 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ 1773 poll = 2000; 1774 timeout = 12000; 1775 } else { 1776 /* Send NVM read sequence */ 1777 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1778 BMP580_CMD_NVM_READ_SEQ_1); 1779 if (ret) { 1780 dev_err(data->dev, 1781 "failed to send nvm read sequence\n"); 1782 return ret; 1783 } 1784 /* Datasheet says on 4.8.1.1 it takes approximately 200us */ 1785 poll = 50; 1786 timeout = 400; 1787 } 1788 1789 /* Wait until NVM is ready again */ 1790 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, 1791 (reg & BMP580_STATUS_NVM_RDY_MASK), 1792 poll, timeout); 1793 if (ret) { 1794 dev_err(data->dev, "error checking nvm operation status\n"); 1795 return ret; 1796 } 1797 1798 /* Check NVM error flags */ 1799 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { 1800 dev_err(data->dev, "error processing nvm operation\n"); 1801 return -EIO; 1802 } 1803 1804 return 0; 1805 } 1806 1807 /* 1808 * Contrary to previous sensors families, compensation algorithm is builtin. 1809 * We are only required to read the register raw data and adapt the ranges 1810 * for what is expected on IIO ABI. 1811 */ 1812 1813 static int bmp580_read_temp(struct bmp280_data *data, s32 *raw_temp) 1814 { 1815 s32 value_temp; 1816 int ret; 1817 1818 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, 1819 data->buf, BMP280_NUM_TEMP_BYTES); 1820 if (ret) { 1821 dev_err(data->dev, "failed to read temperature\n"); 1822 return ret; 1823 } 1824 1825 value_temp = get_unaligned_le24(data->buf); 1826 if (value_temp == BMP580_TEMP_SKIPPED) { 1827 dev_err(data->dev, "reading temperature skipped\n"); 1828 return -EIO; 1829 } 1830 *raw_temp = sign_extend32(value_temp, 23); 1831 1832 return 0; 1833 } 1834 1835 static int bmp580_read_press(struct bmp280_data *data, u32 *raw_press) 1836 { 1837 u32 value_press; 1838 int ret; 1839 1840 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, 1841 data->buf, BMP280_NUM_PRESS_BYTES); 1842 if (ret) { 1843 dev_err(data->dev, "failed to read pressure\n"); 1844 return ret; 1845 } 1846 1847 value_press = get_unaligned_le24(data->buf); 1848 if (value_press == BMP580_PRESS_SKIPPED) { 1849 dev_err(data->dev, "reading pressure skipped\n"); 1850 return -EIO; 1851 } 1852 *raw_press = value_press; 1853 1854 return 0; 1855 } 1856 1857 static const int bmp580_odr_table[][2] = { 1858 [BMP580_ODR_240HZ] = {240, 0}, 1859 [BMP580_ODR_218HZ] = {218, 0}, 1860 [BMP580_ODR_199HZ] = {199, 0}, 1861 [BMP580_ODR_179HZ] = {179, 0}, 1862 [BMP580_ODR_160HZ] = {160, 0}, 1863 [BMP580_ODR_149HZ] = {149, 0}, 1864 [BMP580_ODR_140HZ] = {140, 0}, 1865 [BMP580_ODR_129HZ] = {129, 0}, 1866 [BMP580_ODR_120HZ] = {120, 0}, 1867 [BMP580_ODR_110HZ] = {110, 0}, 1868 [BMP580_ODR_100HZ] = {100, 0}, 1869 [BMP580_ODR_89HZ] = {89, 0}, 1870 [BMP580_ODR_80HZ] = {80, 0}, 1871 [BMP580_ODR_70HZ] = {70, 0}, 1872 [BMP580_ODR_60HZ] = {60, 0}, 1873 [BMP580_ODR_50HZ] = {50, 0}, 1874 [BMP580_ODR_45HZ] = {45, 0}, 1875 [BMP580_ODR_40HZ] = {40, 0}, 1876 [BMP580_ODR_35HZ] = {35, 0}, 1877 [BMP580_ODR_30HZ] = {30, 0}, 1878 [BMP580_ODR_25HZ] = {25, 0}, 1879 [BMP580_ODR_20HZ] = {20, 0}, 1880 [BMP580_ODR_15HZ] = {15, 0}, 1881 [BMP580_ODR_10HZ] = {10, 0}, 1882 [BMP580_ODR_5HZ] = {5, 0}, 1883 [BMP580_ODR_4HZ] = {4, 0}, 1884 [BMP580_ODR_3HZ] = {3, 0}, 1885 [BMP580_ODR_2HZ] = {2, 0}, 1886 [BMP580_ODR_1HZ] = {1, 0}, 1887 [BMP580_ODR_0_5HZ] = {0, 500000}, 1888 [BMP580_ODR_0_25HZ] = {0, 250000}, 1889 [BMP580_ODR_0_125HZ] = {0, 125000}, 1890 }; 1891 1892 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; 1893 1894 static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val, 1895 size_t bytes) 1896 { 1897 struct bmp280_data *data = priv; 1898 u16 *dst = val; 1899 int ret, addr; 1900 1901 guard(mutex)(&data->lock); 1902 1903 /* Set sensor in standby mode */ 1904 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1905 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1906 BMP580_ODR_DEEPSLEEP_DIS | 1907 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1908 if (ret) { 1909 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1910 goto exit; 1911 } 1912 /* Wait standby transition time */ 1913 usleep_range(2500, 3000); 1914 1915 while (bytes >= sizeof(*dst)) { 1916 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; 1917 1918 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1919 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1920 if (ret) { 1921 dev_err(data->dev, "error writing nvm address\n"); 1922 goto exit; 1923 } 1924 1925 ret = bmp580_nvm_operation(data, false); 1926 if (ret) 1927 goto exit; 1928 1929 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, 1930 &data->le16, sizeof(data->le16)); 1931 if (ret) { 1932 dev_err(data->dev, "error reading nvm data regs\n"); 1933 goto exit; 1934 } 1935 1936 *dst++ = le16_to_cpu(data->le16); 1937 bytes -= sizeof(*dst); 1938 offset += sizeof(*dst); 1939 } 1940 exit: 1941 /* Restore chip config */ 1942 data->chip_info->chip_config(data); 1943 return ret; 1944 } 1945 1946 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, 1947 size_t bytes) 1948 { 1949 struct bmp280_data *data = priv; 1950 int ret; 1951 1952 pm_runtime_get_sync(data->dev); 1953 ret = bmp580_nvmem_read_impl(priv, offset, val, bytes); 1954 pm_runtime_mark_last_busy(data->dev); 1955 pm_runtime_put_autosuspend(data->dev); 1956 1957 return ret; 1958 } 1959 1960 static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val, 1961 size_t bytes) 1962 { 1963 struct bmp280_data *data = priv; 1964 u16 *buf = val; 1965 int ret, addr; 1966 1967 guard(mutex)(&data->lock); 1968 1969 /* Set sensor in standby mode */ 1970 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1971 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1972 BMP580_ODR_DEEPSLEEP_DIS | 1973 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1974 if (ret) { 1975 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1976 goto exit; 1977 } 1978 /* Wait standby transition time */ 1979 usleep_range(2500, 3000); 1980 1981 while (bytes >= sizeof(*buf)) { 1982 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; 1983 1984 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1985 BMP580_NVM_PROG_EN | 1986 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1987 if (ret) { 1988 dev_err(data->dev, "error writing nvm address\n"); 1989 goto exit; 1990 } 1991 data->le16 = cpu_to_le16(*buf++); 1992 1993 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, 1994 &data->le16, sizeof(data->le16)); 1995 if (ret) { 1996 dev_err(data->dev, "error writing LSB NVM data regs\n"); 1997 goto exit; 1998 } 1999 2000 ret = bmp580_nvm_operation(data, true); 2001 if (ret) 2002 goto exit; 2003 2004 /* Disable programming mode bit */ 2005 ret = regmap_clear_bits(data->regmap, BMP580_REG_NVM_ADDR, 2006 BMP580_NVM_PROG_EN); 2007 if (ret) { 2008 dev_err(data->dev, "error resetting nvm write\n"); 2009 goto exit; 2010 } 2011 2012 bytes -= sizeof(*buf); 2013 offset += sizeof(*buf); 2014 } 2015 exit: 2016 /* Restore chip config */ 2017 data->chip_info->chip_config(data); 2018 return ret; 2019 } 2020 2021 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, 2022 size_t bytes) 2023 { 2024 struct bmp280_data *data = priv; 2025 int ret; 2026 2027 pm_runtime_get_sync(data->dev); 2028 ret = bmp580_nvmem_write_impl(priv, offset, val, bytes); 2029 pm_runtime_mark_last_busy(data->dev); 2030 pm_runtime_put_autosuspend(data->dev); 2031 2032 return ret; 2033 } 2034 2035 static int bmp580_preinit(struct bmp280_data *data) 2036 { 2037 struct nvmem_config config = { 2038 .dev = data->dev, 2039 .priv = data, 2040 .name = "bmp580_nvmem", 2041 .word_size = sizeof(u16), 2042 .stride = sizeof(u16), 2043 .size = 3 * sizeof(u16), 2044 .reg_read = bmp580_nvmem_read, 2045 .reg_write = bmp580_nvmem_write, 2046 }; 2047 unsigned int reg; 2048 int ret; 2049 2050 /* Issue soft-reset command */ 2051 ret = bmp580_soft_reset(data); 2052 if (ret) 2053 return ret; 2054 2055 /* Post powerup sequence */ 2056 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 2057 if (ret) { 2058 dev_err(data->dev, "failed to establish comms with the chip\n"); 2059 return ret; 2060 } 2061 2062 /* Print warn message if we don't know the chip id */ 2063 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) 2064 dev_warn(data->dev, "unexpected chip_id\n"); 2065 2066 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 2067 if (ret) { 2068 dev_err(data->dev, "failed to read nvm status\n"); 2069 return ret; 2070 } 2071 2072 /* Check nvm status */ 2073 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { 2074 dev_err(data->dev, "nvm error on powerup sequence\n"); 2075 return -EIO; 2076 } 2077 2078 /* Register nvmem device */ 2079 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config)); 2080 } 2081 2082 static int bmp580_chip_config(struct bmp280_data *data) 2083 { 2084 bool change = false, aux; 2085 unsigned int tmp; 2086 u8 reg_val; 2087 int ret; 2088 2089 /* Sets sensor in standby mode */ 2090 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 2091 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 2092 BMP580_ODR_DEEPSLEEP_DIS | 2093 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 2094 if (ret) { 2095 dev_err(data->dev, "failed to change sensor to standby mode\n"); 2096 return ret; 2097 } 2098 /* From datasheet's table 4: electrical characteristics */ 2099 usleep_range(2500, 3000); 2100 2101 /* Set default DSP mode settings */ 2102 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | 2103 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; 2104 2105 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG, 2106 BMP580_DSP_COMP_MASK | 2107 BMP580_DSP_SHDW_IIR_TEMP_EN | 2108 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val); 2109 if (ret) { 2110 dev_err(data->dev, "failed to change DSP mode settings\n"); 2111 return ret; 2112 } 2113 2114 /* Configure oversampling */ 2115 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | 2116 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | 2117 BMP580_OSR_PRESS_EN; 2118 2119 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG, 2120 BMP580_OSR_TEMP_MASK | 2121 BMP580_OSR_PRESS_MASK | 2122 BMP580_OSR_PRESS_EN, 2123 reg_val, &aux); 2124 if (ret) { 2125 dev_err(data->dev, "failed to write oversampling register\n"); 2126 return ret; 2127 } 2128 change = change || aux; 2129 2130 /* Configure output data rate */ 2131 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, 2132 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), 2133 &aux); 2134 if (ret) { 2135 dev_err(data->dev, "failed to write ODR configuration register\n"); 2136 return ret; 2137 } 2138 change = change || aux; 2139 2140 /* Set filter data */ 2141 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | 2142 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); 2143 2144 ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR, 2145 BMP580_DSP_IIR_PRESS_MASK | 2146 BMP580_DSP_IIR_TEMP_MASK, 2147 reg_val, &aux); 2148 if (ret) { 2149 dev_err(data->dev, "failed to write config register\n"); 2150 return ret; 2151 } 2152 change = change || aux; 2153 2154 /* Restore sensor to normal operation mode */ 2155 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG, 2156 BMP580_MODE_MASK, 2157 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); 2158 if (ret) { 2159 dev_err(data->dev, "failed to set normal mode\n"); 2160 return ret; 2161 } 2162 /* From datasheet's table 4: electrical characteristics */ 2163 usleep_range(3000, 3500); 2164 2165 if (change) { 2166 /* 2167 * Check if ODR and OSR settings are valid or we are 2168 * operating in a degraded mode. 2169 */ 2170 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp); 2171 if (ret) { 2172 dev_err(data->dev, 2173 "error reading effective OSR register\n"); 2174 return ret; 2175 } 2176 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { 2177 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); 2178 /* Set current OSR settings from data on effective OSR */ 2179 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); 2180 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); 2181 return -EINVAL; 2182 } 2183 } 2184 2185 return 0; 2186 } 2187 2188 static irqreturn_t bmp580_trigger_handler(int irq, void *p) 2189 { 2190 struct iio_poll_func *pf = p; 2191 struct iio_dev *indio_dev = pf->indio_dev; 2192 struct bmp280_data *data = iio_priv(indio_dev); 2193 int ret; 2194 2195 guard(mutex)(&data->lock); 2196 2197 /* Burst read data registers */ 2198 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, 2199 data->buf, BMP280_BURST_READ_BYTES); 2200 if (ret) { 2201 dev_err(data->dev, "failed to burst read sensor data\n"); 2202 goto out; 2203 } 2204 2205 /* Temperature calculations */ 2206 memcpy(&data->sensor_data[1], &data->buf[0], 3); 2207 2208 /* Pressure calculations */ 2209 memcpy(&data->sensor_data[0], &data->buf[3], 3); 2210 2211 iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, 2212 iio_get_time_ns(indio_dev)); 2213 2214 out: 2215 iio_trigger_notify_done(indio_dev->trig); 2216 2217 return IRQ_HANDLED; 2218 } 2219 2220 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; 2221 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; 2222 /* Instead of { 1000, 16 } we do this, to avoid overflow issues */ 2223 static const int bmp580_temp_coeffs[] = { 125, 13 }; 2224 static const int bmp580_press_coeffs[] = { 1, 64000}; 2225 2226 const struct bmp280_chip_info bmp580_chip_info = { 2227 .id_reg = BMP580_REG_CHIP_ID, 2228 .chip_id = bmp580_chip_ids, 2229 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), 2230 .regmap_config = &bmp580_regmap_config, 2231 .start_up_time = 2000, 2232 .channels = bmp580_channels, 2233 .num_channels = ARRAY_SIZE(bmp580_channels), 2234 .avail_scan_masks = bmp280_avail_scan_masks, 2235 2236 .oversampling_temp_avail = bmp580_oversampling_avail, 2237 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), 2238 .oversampling_temp_default = ilog2(1), 2239 2240 .oversampling_press_avail = bmp580_oversampling_avail, 2241 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), 2242 .oversampling_press_default = ilog2(4), 2243 2244 .sampling_freq_avail = bmp580_odr_table, 2245 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, 2246 .sampling_freq_default = BMP580_ODR_50HZ, 2247 2248 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 2249 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 2250 .iir_filter_coeff_default = 2, 2251 2252 .temp_coeffs = bmp580_temp_coeffs, 2253 .temp_coeffs_type = IIO_VAL_FRACTIONAL_LOG2, 2254 .press_coeffs = bmp580_press_coeffs, 2255 .press_coeffs_type = IIO_VAL_FRACTIONAL, 2256 2257 .chip_config = bmp580_chip_config, 2258 .read_temp = bmp580_read_temp, 2259 .read_press = bmp580_read_press, 2260 .preinit = bmp580_preinit, 2261 2262 .trigger_handler = bmp580_trigger_handler, 2263 }; 2264 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); 2265 2266 static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas) 2267 { 2268 static const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; 2269 unsigned int delay_us; 2270 unsigned int ctrl; 2271 int ret; 2272 2273 if (data->use_eoc) 2274 reinit_completion(&data->done); 2275 2276 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); 2277 if (ret) { 2278 dev_err(data->dev, "failed to write crtl_meas register\n"); 2279 return ret; 2280 } 2281 2282 if (data->use_eoc) { 2283 /* 2284 * If we have a completion interrupt, use it, wait up to 2285 * 100ms. The longest conversion time listed is 76.5 ms for 2286 * advanced resolution mode. 2287 */ 2288 ret = wait_for_completion_timeout(&data->done, 2289 1 + msecs_to_jiffies(100)); 2290 if (!ret) 2291 dev_err(data->dev, "timeout waiting for completion\n"); 2292 } else { 2293 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) 2294 delay_us = 4500; 2295 else 2296 delay_us = 2297 conversion_time_max[data->oversampling_press]; 2298 2299 usleep_range(delay_us, delay_us + 1000); 2300 } 2301 2302 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); 2303 if (ret) { 2304 dev_err(data->dev, "failed to read ctrl_meas register\n"); 2305 return ret; 2306 } 2307 2308 /* The value of this bit reset to "0" after conversion is complete */ 2309 if (ctrl & BMP180_MEAS_SCO) { 2310 dev_err(data->dev, "conversion didn't complete\n"); 2311 return -EIO; 2312 } 2313 2314 return 0; 2315 } 2316 2317 static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 2318 { 2319 int ret; 2320 2321 ret = bmp180_wait_for_eoc(data, 2322 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | 2323 BMP180_MEAS_SCO); 2324 if (ret) 2325 return ret; 2326 2327 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 2328 &data->be16, sizeof(data->be16)); 2329 if (ret) { 2330 dev_err(data->dev, "failed to read temperature\n"); 2331 return ret; 2332 } 2333 2334 *adc_temp = be16_to_cpu(data->be16); 2335 2336 return 0; 2337 } 2338 2339 static int bmp180_read_calib(struct bmp280_data *data) 2340 { 2341 struct bmp180_calib *calib = &data->calib.bmp180; 2342 int ret; 2343 int i; 2344 2345 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, 2346 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); 2347 if (ret) { 2348 dev_err(data->dev, "failed to read calibration parameters\n"); 2349 return ret; 2350 } 2351 2352 /* None of the words has the value 0 or 0xFFFF */ 2353 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { 2354 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || 2355 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) 2356 return -EIO; 2357 } 2358 2359 /* Toss the calibration data into the entropy pool */ 2360 add_device_randomness(data->bmp180_cal_buf, 2361 sizeof(data->bmp180_cal_buf)); 2362 2363 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); 2364 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); 2365 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); 2366 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); 2367 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); 2368 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); 2369 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); 2370 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); 2371 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); 2372 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); 2373 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); 2374 2375 return 0; 2376 } 2377 2378 /* 2379 * Returns temperature in DegC, resolution is 0.1 DegC. 2380 * t_fine carries fine temperature as global value. 2381 * 2382 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 2383 */ 2384 2385 static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 2386 { 2387 struct bmp180_calib *calib = &data->calib.bmp180; 2388 s32 x1, x2; 2389 2390 x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15; 2391 x2 = (calib->MC << 11) / (x1 + calib->MD); 2392 return x1 + x2; /* t_fine = x1 + x2; */ 2393 } 2394 2395 static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine) 2396 { 2397 s32 adc_temp; 2398 int ret; 2399 2400 ret = bmp180_read_temp_adc(data, &adc_temp); 2401 if (ret) 2402 return ret; 2403 2404 *t_fine = bmp180_calc_t_fine(data, adc_temp); 2405 2406 return 0; 2407 } 2408 2409 static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp) 2410 { 2411 return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16; 2412 } 2413 2414 static int bmp180_read_temp(struct bmp280_data *data, s32 *comp_temp) 2415 { 2416 u32 adc_temp; 2417 int ret; 2418 2419 ret = bmp180_read_temp_adc(data, &adc_temp); 2420 if (ret) 2421 return ret; 2422 2423 *comp_temp = bmp180_compensate_temp(data, adc_temp); 2424 2425 return 0; 2426 } 2427 2428 static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press) 2429 { 2430 u8 oss = data->oversampling_press; 2431 int ret; 2432 2433 ret = bmp180_wait_for_eoc(data, 2434 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | 2435 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | 2436 BMP180_MEAS_SCO); 2437 if (ret) 2438 return ret; 2439 2440 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 2441 data->buf, BMP280_NUM_PRESS_BYTES); 2442 if (ret) { 2443 dev_err(data->dev, "failed to read pressure\n"); 2444 return ret; 2445 } 2446 2447 *adc_press = get_unaligned_be24(data->buf) >> (8 - oss); 2448 2449 return 0; 2450 } 2451 2452 /* 2453 * Returns pressure in Pa, resolution is 1 Pa. 2454 * 2455 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 2456 */ 2457 static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press, 2458 s32 t_fine) 2459 { 2460 struct bmp180_calib *calib = &data->calib.bmp180; 2461 s32 oss = data->oversampling_press; 2462 s32 x1, x2, x3, p; 2463 s32 b3, b6; 2464 u32 b4, b7; 2465 2466 b6 = t_fine - 4000; 2467 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; 2468 x2 = calib->AC2 * b6 >> 11; 2469 x3 = x1 + x2; 2470 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; 2471 x1 = calib->AC3 * b6 >> 13; 2472 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; 2473 x3 = (x1 + x2 + 2) >> 2; 2474 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; 2475 b7 = (adc_press - b3) * (50000 >> oss); 2476 if (b7 < 0x80000000) 2477 p = (b7 * 2) / b4; 2478 else 2479 p = (b7 / b4) * 2; 2480 2481 x1 = (p >> 8) * (p >> 8); 2482 x1 = (x1 * 3038) >> 16; 2483 x2 = (-7357 * p) >> 16; 2484 2485 return p + ((x1 + x2 + 3791) >> 4); 2486 } 2487 2488 static int bmp180_read_press(struct bmp280_data *data, u32 *comp_press) 2489 { 2490 u32 adc_press; 2491 s32 t_fine; 2492 int ret; 2493 2494 ret = bmp180_get_t_fine(data, &t_fine); 2495 if (ret) 2496 return ret; 2497 2498 ret = bmp180_read_press_adc(data, &adc_press); 2499 if (ret) 2500 return ret; 2501 2502 *comp_press = bmp180_compensate_press(data, adc_press, t_fine); 2503 2504 return 0; 2505 } 2506 2507 static int bmp180_chip_config(struct bmp280_data *data) 2508 { 2509 return 0; 2510 } 2511 2512 static irqreturn_t bmp180_trigger_handler(int irq, void *p) 2513 { 2514 struct iio_poll_func *pf = p; 2515 struct iio_dev *indio_dev = pf->indio_dev; 2516 struct bmp280_data *data = iio_priv(indio_dev); 2517 int ret, chan_value; 2518 2519 guard(mutex)(&data->lock); 2520 2521 ret = bmp180_read_temp(data, &chan_value); 2522 if (ret) 2523 goto out; 2524 2525 data->sensor_data[1] = chan_value; 2526 2527 ret = bmp180_read_press(data, &chan_value); 2528 if (ret) 2529 goto out; 2530 2531 data->sensor_data[0] = chan_value; 2532 2533 iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data, 2534 iio_get_time_ns(indio_dev)); 2535 2536 out: 2537 iio_trigger_notify_done(indio_dev->trig); 2538 2539 return IRQ_HANDLED; 2540 } 2541 2542 static const int bmp180_oversampling_temp_avail[] = { 1 }; 2543 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; 2544 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; 2545 static const int bmp180_temp_coeffs[] = { 100, 1 }; 2546 static const int bmp180_press_coeffs[] = { 1, 1000 }; 2547 2548 const struct bmp280_chip_info bmp180_chip_info = { 2549 .id_reg = BMP280_REG_ID, 2550 .chip_id = bmp180_chip_ids, 2551 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), 2552 .regmap_config = &bmp180_regmap_config, 2553 .start_up_time = 2000, 2554 .channels = bmp280_channels, 2555 .num_channels = ARRAY_SIZE(bmp280_channels), 2556 .avail_scan_masks = bmp280_avail_scan_masks, 2557 2558 .oversampling_temp_avail = bmp180_oversampling_temp_avail, 2559 .num_oversampling_temp_avail = 2560 ARRAY_SIZE(bmp180_oversampling_temp_avail), 2561 .oversampling_temp_default = 0, 2562 2563 .oversampling_press_avail = bmp180_oversampling_press_avail, 2564 .num_oversampling_press_avail = 2565 ARRAY_SIZE(bmp180_oversampling_press_avail), 2566 .oversampling_press_default = BMP180_MEAS_PRESS_8X, 2567 2568 .temp_coeffs = bmp180_temp_coeffs, 2569 .temp_coeffs_type = IIO_VAL_FRACTIONAL, 2570 .press_coeffs = bmp180_press_coeffs, 2571 .press_coeffs_type = IIO_VAL_FRACTIONAL, 2572 2573 .chip_config = bmp180_chip_config, 2574 .read_temp = bmp180_read_temp, 2575 .read_press = bmp180_read_press, 2576 .read_calib = bmp180_read_calib, 2577 2578 .trigger_handler = bmp180_trigger_handler, 2579 }; 2580 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); 2581 2582 static irqreturn_t bmp085_eoc_irq(int irq, void *d) 2583 { 2584 struct bmp280_data *data = d; 2585 2586 complete(&data->done); 2587 2588 return IRQ_HANDLED; 2589 } 2590 2591 static int bmp085_fetch_eoc_irq(struct device *dev, 2592 const char *name, 2593 int irq, 2594 struct bmp280_data *data) 2595 { 2596 unsigned long irq_trig; 2597 int ret; 2598 2599 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); 2600 if (irq_trig != IRQF_TRIGGER_RISING) { 2601 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); 2602 irq_trig = IRQF_TRIGGER_RISING; 2603 } 2604 2605 init_completion(&data->done); 2606 2607 ret = devm_request_threaded_irq(dev, 2608 irq, 2609 bmp085_eoc_irq, 2610 NULL, 2611 irq_trig, 2612 name, 2613 data); 2614 if (ret) { 2615 /* Bail out without IRQ but keep the driver in place */ 2616 dev_err(dev, "unable to request DRDY IRQ\n"); 2617 return 0; 2618 } 2619 2620 data->use_eoc = true; 2621 return 0; 2622 } 2623 2624 static int bmp280_buffer_preenable(struct iio_dev *indio_dev) 2625 { 2626 struct bmp280_data *data = iio_priv(indio_dev); 2627 2628 pm_runtime_get_sync(data->dev); 2629 2630 return 0; 2631 } 2632 2633 static int bmp280_buffer_postdisable(struct iio_dev *indio_dev) 2634 { 2635 struct bmp280_data *data = iio_priv(indio_dev); 2636 2637 pm_runtime_mark_last_busy(data->dev); 2638 pm_runtime_put_autosuspend(data->dev); 2639 2640 return 0; 2641 } 2642 2643 static const struct iio_buffer_setup_ops bmp280_buffer_setup_ops = { 2644 .preenable = bmp280_buffer_preenable, 2645 .postdisable = bmp280_buffer_postdisable, 2646 }; 2647 2648 static void bmp280_pm_disable(void *data) 2649 { 2650 struct device *dev = data; 2651 2652 pm_runtime_get_sync(dev); 2653 pm_runtime_put_noidle(dev); 2654 pm_runtime_disable(dev); 2655 } 2656 2657 static void bmp280_regulators_disable(void *data) 2658 { 2659 struct regulator_bulk_data *supplies = data; 2660 2661 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); 2662 } 2663 2664 int bmp280_common_probe(struct device *dev, 2665 struct regmap *regmap, 2666 const struct bmp280_chip_info *chip_info, 2667 const char *name, 2668 int irq) 2669 { 2670 struct iio_dev *indio_dev; 2671 struct bmp280_data *data; 2672 struct gpio_desc *gpiod; 2673 unsigned int chip_id; 2674 unsigned int i; 2675 int ret; 2676 2677 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 2678 if (!indio_dev) 2679 return -ENOMEM; 2680 2681 data = iio_priv(indio_dev); 2682 mutex_init(&data->lock); 2683 data->dev = dev; 2684 2685 indio_dev->name = name; 2686 indio_dev->info = &bmp280_info; 2687 indio_dev->modes = INDIO_DIRECT_MODE; 2688 2689 data->chip_info = chip_info; 2690 2691 /* Apply initial values from chip info structure */ 2692 indio_dev->channels = chip_info->channels; 2693 indio_dev->num_channels = chip_info->num_channels; 2694 indio_dev->available_scan_masks = chip_info->avail_scan_masks; 2695 data->oversampling_press = chip_info->oversampling_press_default; 2696 data->oversampling_humid = chip_info->oversampling_humid_default; 2697 data->oversampling_temp = chip_info->oversampling_temp_default; 2698 data->iir_filter_coeff = chip_info->iir_filter_coeff_default; 2699 data->sampling_freq = chip_info->sampling_freq_default; 2700 data->start_up_time = chip_info->start_up_time; 2701 2702 /* Bring up regulators */ 2703 regulator_bulk_set_supply_names(data->supplies, 2704 bmp280_supply_names, 2705 BMP280_NUM_SUPPLIES); 2706 2707 ret = devm_regulator_bulk_get(dev, 2708 BMP280_NUM_SUPPLIES, data->supplies); 2709 if (ret) { 2710 dev_err(dev, "failed to get regulators\n"); 2711 return ret; 2712 } 2713 2714 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2715 if (ret) { 2716 dev_err(dev, "failed to enable regulators\n"); 2717 return ret; 2718 } 2719 2720 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, 2721 data->supplies); 2722 if (ret) 2723 return ret; 2724 2725 /* Wait to make sure we started up properly */ 2726 usleep_range(data->start_up_time, data->start_up_time + 100); 2727 2728 /* Bring chip out of reset if there is an assigned GPIO line */ 2729 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 2730 /* Deassert the signal */ 2731 if (gpiod) { 2732 dev_info(dev, "release reset\n"); 2733 gpiod_set_value(gpiod, 0); 2734 } 2735 2736 data->regmap = regmap; 2737 2738 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); 2739 if (ret) { 2740 dev_err(data->dev, "failed to read chip id\n"); 2741 return ret; 2742 } 2743 2744 for (i = 0; i < data->chip_info->num_chip_id; i++) { 2745 if (chip_id == data->chip_info->chip_id[i]) { 2746 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); 2747 break; 2748 } 2749 } 2750 2751 if (i == data->chip_info->num_chip_id) 2752 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); 2753 2754 if (data->chip_info->preinit) { 2755 ret = data->chip_info->preinit(data); 2756 if (ret) 2757 return dev_err_probe(data->dev, ret, 2758 "error running preinit tasks\n"); 2759 } 2760 2761 ret = data->chip_info->chip_config(data); 2762 if (ret) 2763 return ret; 2764 2765 dev_set_drvdata(dev, indio_dev); 2766 2767 /* 2768 * Some chips have calibration parameters "programmed into the devices' 2769 * non-volatile memory during production". Let's read them out at probe 2770 * time once. They will not change. 2771 */ 2772 2773 if (data->chip_info->read_calib) { 2774 ret = data->chip_info->read_calib(data); 2775 if (ret) 2776 return dev_err_probe(data->dev, ret, 2777 "failed to read calibration coefficients\n"); 2778 } 2779 2780 ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, 2781 iio_pollfunc_store_time, 2782 data->chip_info->trigger_handler, 2783 &bmp280_buffer_setup_ops); 2784 if (ret) 2785 return dev_err_probe(data->dev, ret, 2786 "iio triggered buffer setup failed\n"); 2787 2788 /* 2789 * Attempt to grab an optional EOC IRQ - only the BMP085 has this 2790 * however as it happens, the BMP085 shares the chip ID of BMP180 2791 * so we look for an IRQ if we have that. 2792 */ 2793 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { 2794 ret = bmp085_fetch_eoc_irq(dev, name, irq, data); 2795 if (ret) 2796 return ret; 2797 } 2798 2799 /* Enable runtime PM */ 2800 pm_runtime_get_noresume(dev); 2801 pm_runtime_set_active(dev); 2802 pm_runtime_enable(dev); 2803 /* 2804 * Set autosuspend to two orders of magnitude larger than the 2805 * start-up time. 2806 */ 2807 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); 2808 pm_runtime_use_autosuspend(dev); 2809 pm_runtime_put(dev); 2810 2811 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); 2812 if (ret) 2813 return ret; 2814 2815 return devm_iio_device_register(dev, indio_dev); 2816 } 2817 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); 2818 2819 static int bmp280_runtime_suspend(struct device *dev) 2820 { 2821 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2822 struct bmp280_data *data = iio_priv(indio_dev); 2823 2824 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); 2825 } 2826 2827 static int bmp280_runtime_resume(struct device *dev) 2828 { 2829 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2830 struct bmp280_data *data = iio_priv(indio_dev); 2831 int ret; 2832 2833 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2834 if (ret) 2835 return ret; 2836 2837 usleep_range(data->start_up_time, data->start_up_time + 100); 2838 return data->chip_info->chip_config(data); 2839 } 2840 2841 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, 2842 bmp280_runtime_resume, NULL); 2843 2844 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); 2845 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); 2846 MODULE_LICENSE("GPL v2"); 2847