xref: /linux/drivers/iio/pressure/bmp280-core.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4  * Copyright (c) 2012 Bosch Sensortec GmbH
5  * Copyright (c) 2012 Unixphere AB
6  * Copyright (c) 2014 Intel Corporation
7  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8  *
9  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10  *
11  * Datasheet:
12  * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf
13  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf
14  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf
15  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf
16  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf
17  * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf
18  *
19  * Notice:
20  * The link to the bmp180 datasheet points to an outdated version missing these changes:
21  * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26
22  * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4
23  * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26
24  */
25 
26 #define pr_fmt(fmt) "bmp280: " fmt
27 
28 #include <linux/bitops.h>
29 #include <linux/bitfield.h>
30 #include <linux/cleanup.h>
31 #include <linux/completion.h>
32 #include <linux/delay.h>
33 #include <linux/device.h>
34 #include <linux/gpio/consumer.h>
35 #include <linux/interrupt.h>
36 #include <linux/irq.h> /* For irq_get_irq_data() */
37 #include <linux/module.h>
38 #include <linux/nvmem-provider.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/random.h>
41 #include <linux/regmap.h>
42 #include <linux/regulator/consumer.h>
43 
44 #include <linux/iio/buffer.h>
45 #include <linux/iio/iio.h>
46 #include <linux/iio/trigger_consumer.h>
47 #include <linux/iio/triggered_buffer.h>
48 
49 #include <asm/unaligned.h>
50 
51 #include "bmp280.h"
52 
53 /*
54  * These enums are used for indexing into the array of calibration
55  * coefficients for BMP180.
56  */
57 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
58 
59 enum bmp380_odr {
60 	BMP380_ODR_200HZ,
61 	BMP380_ODR_100HZ,
62 	BMP380_ODR_50HZ,
63 	BMP380_ODR_25HZ,
64 	BMP380_ODR_12_5HZ,
65 	BMP380_ODR_6_25HZ,
66 	BMP380_ODR_3_125HZ,
67 	BMP380_ODR_1_5625HZ,
68 	BMP380_ODR_0_78HZ,
69 	BMP380_ODR_0_39HZ,
70 	BMP380_ODR_0_2HZ,
71 	BMP380_ODR_0_1HZ,
72 	BMP380_ODR_0_05HZ,
73 	BMP380_ODR_0_02HZ,
74 	BMP380_ODR_0_01HZ,
75 	BMP380_ODR_0_006HZ,
76 	BMP380_ODR_0_003HZ,
77 	BMP380_ODR_0_0015HZ,
78 };
79 
80 enum bmp580_odr {
81 	BMP580_ODR_240HZ,
82 	BMP580_ODR_218HZ,
83 	BMP580_ODR_199HZ,
84 	BMP580_ODR_179HZ,
85 	BMP580_ODR_160HZ,
86 	BMP580_ODR_149HZ,
87 	BMP580_ODR_140HZ,
88 	BMP580_ODR_129HZ,
89 	BMP580_ODR_120HZ,
90 	BMP580_ODR_110HZ,
91 	BMP580_ODR_100HZ,
92 	BMP580_ODR_89HZ,
93 	BMP580_ODR_80HZ,
94 	BMP580_ODR_70HZ,
95 	BMP580_ODR_60HZ,
96 	BMP580_ODR_50HZ,
97 	BMP580_ODR_45HZ,
98 	BMP580_ODR_40HZ,
99 	BMP580_ODR_35HZ,
100 	BMP580_ODR_30HZ,
101 	BMP580_ODR_25HZ,
102 	BMP580_ODR_20HZ,
103 	BMP580_ODR_15HZ,
104 	BMP580_ODR_10HZ,
105 	BMP580_ODR_5HZ,
106 	BMP580_ODR_4HZ,
107 	BMP580_ODR_3HZ,
108 	BMP580_ODR_2HZ,
109 	BMP580_ODR_1HZ,
110 	BMP580_ODR_0_5HZ,
111 	BMP580_ODR_0_25HZ,
112 	BMP580_ODR_0_125HZ,
113 };
114 
115 /*
116  * These enums are used for indexing into the array of compensation
117  * parameters for BMP280.
118  */
119 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 };
120 
121 enum {
122 	/* Temperature calib indexes */
123 	BMP380_T1 = 0,
124 	BMP380_T2 = 2,
125 	BMP380_T3 = 4,
126 	/* Pressure calib indexes */
127 	BMP380_P1 = 5,
128 	BMP380_P2 = 7,
129 	BMP380_P3 = 9,
130 	BMP380_P4 = 10,
131 	BMP380_P5 = 11,
132 	BMP380_P6 = 13,
133 	BMP380_P7 = 15,
134 	BMP380_P8 = 16,
135 	BMP380_P9 = 17,
136 	BMP380_P10 = 19,
137 	BMP380_P11 = 20,
138 };
139 
140 enum bmp280_scan {
141 	BMP280_PRESS,
142 	BMP280_TEMP,
143 	BME280_HUMID,
144 };
145 
146 static const struct iio_chan_spec bmp280_channels[] = {
147 	{
148 		.type = IIO_PRESSURE,
149 		/* PROCESSED maintained for ABI backwards compatibility */
150 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
151 				      BIT(IIO_CHAN_INFO_RAW) |
152 				      BIT(IIO_CHAN_INFO_SCALE) |
153 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
154 		.scan_index = 0,
155 		.scan_type = {
156 			.sign = 'u',
157 			.realbits = 32,
158 			.storagebits = 32,
159 			.endianness = IIO_CPU,
160 		},
161 	},
162 	{
163 		.type = IIO_TEMP,
164 		/* PROCESSED maintained for ABI backwards compatibility */
165 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
166 				      BIT(IIO_CHAN_INFO_RAW) |
167 				      BIT(IIO_CHAN_INFO_SCALE) |
168 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
169 		.scan_index = 1,
170 		.scan_type = {
171 			.sign = 's',
172 			.realbits = 32,
173 			.storagebits = 32,
174 			.endianness = IIO_CPU,
175 		},
176 	},
177 	IIO_CHAN_SOFT_TIMESTAMP(2),
178 };
179 
180 static const struct iio_chan_spec bme280_channels[] = {
181 	{
182 		.type = IIO_PRESSURE,
183 		/* PROCESSED maintained for ABI backwards compatibility */
184 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
185 				      BIT(IIO_CHAN_INFO_RAW) |
186 				      BIT(IIO_CHAN_INFO_SCALE) |
187 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
188 		.scan_index = 0,
189 		.scan_type = {
190 			.sign = 'u',
191 			.realbits = 32,
192 			.storagebits = 32,
193 			.endianness = IIO_CPU,
194 		},
195 	},
196 	{
197 		.type = IIO_TEMP,
198 		/* PROCESSED maintained for ABI backwards compatibility */
199 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
200 				      BIT(IIO_CHAN_INFO_RAW) |
201 				      BIT(IIO_CHAN_INFO_SCALE) |
202 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
203 		.scan_index = 1,
204 		.scan_type = {
205 			.sign = 's',
206 			.realbits = 32,
207 			.storagebits = 32,
208 			.endianness = IIO_CPU,
209 		},
210 	},
211 	{
212 		.type = IIO_HUMIDITYRELATIVE,
213 		/* PROCESSED maintained for ABI backwards compatibility */
214 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
215 				      BIT(IIO_CHAN_INFO_RAW) |
216 				      BIT(IIO_CHAN_INFO_SCALE) |
217 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
218 		.scan_index = 2,
219 		.scan_type = {
220 			.sign = 'u',
221 			.realbits = 32,
222 			.storagebits = 32,
223 			.endianness = IIO_CPU,
224 		},
225 	},
226 	IIO_CHAN_SOFT_TIMESTAMP(3),
227 };
228 
229 static const struct iio_chan_spec bmp380_channels[] = {
230 	{
231 		.type = IIO_PRESSURE,
232 		/* PROCESSED maintained for ABI backwards compatibility */
233 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
234 				      BIT(IIO_CHAN_INFO_RAW) |
235 				      BIT(IIO_CHAN_INFO_SCALE) |
236 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
237 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
238 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
239 		.scan_index = 0,
240 		.scan_type = {
241 			.sign = 'u',
242 			.realbits = 32,
243 			.storagebits = 32,
244 			.endianness = IIO_CPU,
245 		},
246 	},
247 	{
248 		.type = IIO_TEMP,
249 		/* PROCESSED maintained for ABI backwards compatibility */
250 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
251 				      BIT(IIO_CHAN_INFO_RAW) |
252 				      BIT(IIO_CHAN_INFO_SCALE) |
253 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
254 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
255 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
256 		.scan_index = 1,
257 		.scan_type = {
258 			.sign = 's',
259 			.realbits = 32,
260 			.storagebits = 32,
261 			.endianness = IIO_CPU,
262 		},
263 	},
264 	IIO_CHAN_SOFT_TIMESTAMP(2),
265 };
266 
267 static const struct iio_chan_spec bmp580_channels[] = {
268 	{
269 		.type = IIO_PRESSURE,
270 		/* PROCESSED maintained for ABI backwards compatibility */
271 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
272 				      BIT(IIO_CHAN_INFO_RAW) |
273 				      BIT(IIO_CHAN_INFO_SCALE) |
274 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
275 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
276 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
277 		.scan_index = 0,
278 		.scan_type = {
279 			.sign = 'u',
280 			.realbits = 24,
281 			.storagebits = 32,
282 			.endianness = IIO_LE,
283 		},
284 	},
285 	{
286 		.type = IIO_TEMP,
287 		/* PROCESSED maintained for ABI backwards compatibility */
288 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
289 				      BIT(IIO_CHAN_INFO_RAW) |
290 				      BIT(IIO_CHAN_INFO_SCALE) |
291 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
292 		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) |
293 					   BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),
294 		.scan_index = 1,
295 		.scan_type = {
296 			.sign = 's',
297 			.realbits = 24,
298 			.storagebits = 32,
299 			.endianness = IIO_LE,
300 		},
301 	},
302 	IIO_CHAN_SOFT_TIMESTAMP(2),
303 };
304 
305 static int bmp280_read_calib(struct bmp280_data *data)
306 {
307 	struct bmp280_calib *calib = &data->calib.bmp280;
308 	int ret;
309 
310 	/* Read temperature and pressure calibration values. */
311 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
312 			       data->bmp280_cal_buf,
313 			       sizeof(data->bmp280_cal_buf));
314 	if (ret) {
315 		dev_err(data->dev,
316 			"failed to read calibration parameters\n");
317 		return ret;
318 	}
319 
320 	/* Toss calibration data into the entropy pool */
321 	add_device_randomness(data->bmp280_cal_buf,
322 			      sizeof(data->bmp280_cal_buf));
323 
324 	/* Parse temperature calibration values. */
325 	calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]);
326 	calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]);
327 	calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]);
328 
329 	/* Parse pressure calibration values. */
330 	calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]);
331 	calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]);
332 	calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]);
333 	calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]);
334 	calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]);
335 	calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]);
336 	calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]);
337 	calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]);
338 	calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]);
339 
340 	return 0;
341 }
342 
343 static int bme280_read_calib(struct bmp280_data *data)
344 {
345 	struct bmp280_calib *calib = &data->calib.bmp280;
346 	struct device *dev = data->dev;
347 	unsigned int tmp;
348 	int ret;
349 
350 	/* Load shared calibration params with bmp280 first */
351 	ret = bmp280_read_calib(data);
352 	if (ret)
353 		return ret;
354 
355 	/*
356 	 * Read humidity calibration values.
357 	 * Due to some odd register addressing we cannot just
358 	 * do a big bulk read. Instead, we have to read each Hx
359 	 * value separately and sometimes do some bit shifting...
360 	 * Humidity data is only available on BME280.
361 	 */
362 
363 	ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp);
364 	if (ret) {
365 		dev_err(dev, "failed to read H1 comp value\n");
366 		return ret;
367 	}
368 	calib->H1 = tmp;
369 
370 	ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2,
371 			       &data->le16, sizeof(data->le16));
372 	if (ret) {
373 		dev_err(dev, "failed to read H2 comp value\n");
374 		return ret;
375 	}
376 	calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15);
377 
378 	ret = regmap_read(data->regmap, BME280_REG_COMP_H3, &tmp);
379 	if (ret) {
380 		dev_err(dev, "failed to read H3 comp value\n");
381 		return ret;
382 	}
383 	calib->H3 = tmp;
384 
385 	ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H4,
386 			       &data->be16, sizeof(data->be16));
387 	if (ret) {
388 		dev_err(dev, "failed to read H4 comp value\n");
389 		return ret;
390 	}
391 	calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) |
392 				  (be16_to_cpu(data->be16) & 0xf), 11);
393 
394 	ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H5,
395 			       &data->le16, sizeof(data->le16));
396 	if (ret) {
397 		dev_err(dev, "failed to read H5 comp value\n");
398 		return ret;
399 	}
400 	calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11);
401 
402 	ret = regmap_read(data->regmap, BME280_REG_COMP_H6, &tmp);
403 	if (ret) {
404 		dev_err(dev, "failed to read H6 comp value\n");
405 		return ret;
406 	}
407 	calib->H6 = sign_extend32(tmp, 7);
408 
409 	return 0;
410 }
411 
412 static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity)
413 {
414 	u16 value_humidity;
415 	int ret;
416 
417 	ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB,
418 			       &data->be16, BME280_NUM_HUMIDITY_BYTES);
419 	if (ret) {
420 		dev_err(data->dev, "failed to read humidity\n");
421 		return ret;
422 	}
423 
424 	value_humidity = be16_to_cpu(data->be16);
425 	if (value_humidity == BMP280_HUMIDITY_SKIPPED) {
426 		dev_err(data->dev, "reading humidity skipped\n");
427 		return -EIO;
428 	}
429 	*adc_humidity = value_humidity;
430 
431 	return 0;
432 }
433 
434 /*
435  * Returns humidity in percent, resolution is 0.01 percent. Output value of
436  * "47445" represents 47445/1024 = 46.333 %RH.
437  *
438  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
439  */
440 static u32 bme280_compensate_humidity(struct bmp280_data *data,
441 				      u16 adc_humidity, s32 t_fine)
442 {
443 	struct bmp280_calib *calib = &data->calib.bmp280;
444 	s32 var;
445 
446 	var = t_fine - (s32)76800;
447 	var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
448 		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
449 		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
450 		+ (s32)2097152) * calib->H2 + 8192) >> 14);
451 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
452 
453 	var = clamp_val(var, 0, 419430400);
454 
455 	return var >> 12;
456 }
457 
458 static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp)
459 {
460 	u32 value_temp;
461 	int ret;
462 
463 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
464 			       data->buf, BMP280_NUM_TEMP_BYTES);
465 	if (ret) {
466 		dev_err(data->dev, "failed to read temperature\n");
467 		return ret;
468 	}
469 
470 	value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
471 	if (value_temp == BMP280_TEMP_SKIPPED) {
472 		dev_err(data->dev, "reading temperature skipped\n");
473 		return -EIO;
474 	}
475 	*adc_temp = value_temp;
476 
477 	return 0;
478 }
479 
480 /*
481  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
482  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
483  * value.
484  *
485  * Taken from datasheet, Section 3.11.3, "Compensation formula".
486  */
487 static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp)
488 {
489 	struct bmp280_calib *calib = &data->calib.bmp280;
490 	s32 var1, var2;
491 
492 	var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) *
493 		((s32)calib->T2)) >> 11;
494 	var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) *
495 		  ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
496 		((s32)calib->T3))) >> 14;
497 	return var1 + var2; /* t_fine = var1 + var2 */
498 }
499 
500 static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine)
501 {
502 	u32 adc_temp;
503 	int ret;
504 
505 	ret = bmp280_read_temp_adc(data, &adc_temp);
506 	if (ret)
507 		return ret;
508 
509 	*t_fine = bmp280_calc_t_fine(data, adc_temp);
510 
511 	return 0;
512 }
513 
514 static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp)
515 {
516 	return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256;
517 }
518 
519 static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press)
520 {
521 	u32 value_press;
522 	int ret;
523 
524 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
525 			       data->buf, BMP280_NUM_PRESS_BYTES);
526 	if (ret) {
527 		dev_err(data->dev, "failed to read pressure\n");
528 		return ret;
529 	}
530 
531 	value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf));
532 	if (value_press == BMP280_PRESS_SKIPPED) {
533 		dev_err(data->dev, "reading pressure skipped\n");
534 		return -EIO;
535 	}
536 	*adc_press = value_press;
537 
538 	return 0;
539 }
540 
541 /*
542  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
543  * integer bits and 8 fractional bits).  Output value of "24674867"
544  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
545  *
546  * Taken from datasheet, Section 3.11.3, "Compensation formula".
547  */
548 static u32 bmp280_compensate_press(struct bmp280_data *data,
549 				   u32 adc_press, s32 t_fine)
550 {
551 	struct bmp280_calib *calib = &data->calib.bmp280;
552 	s64 var1, var2, p;
553 
554 	var1 = ((s64)t_fine) - 128000;
555 	var2 = var1 * var1 * (s64)calib->P6;
556 	var2 += (var1 * (s64)calib->P5) << 17;
557 	var2 += ((s64)calib->P4) << 35;
558 	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
559 		((var1 * (s64)calib->P2) << 12);
560 	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
561 
562 	if (var1 == 0)
563 		return 0;
564 
565 	p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125;
566 	p = div64_s64(p, var1);
567 	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
568 	var2 = ((s64)(calib->P8) * p) >> 19;
569 	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
570 
571 	return (u32)p;
572 }
573 
574 static int bmp280_read_temp(struct bmp280_data *data, s32 *comp_temp)
575 {
576 	u32 adc_temp;
577 	int ret;
578 
579 	ret = bmp280_read_temp_adc(data, &adc_temp);
580 	if (ret)
581 		return ret;
582 
583 	*comp_temp = bmp280_compensate_temp(data, adc_temp);
584 
585 	return 0;
586 }
587 
588 static int bmp280_read_press(struct bmp280_data *data, u32 *comp_press)
589 {
590 	u32 adc_press;
591 	s32 t_fine;
592 	int ret;
593 
594 	ret = bmp280_get_t_fine(data, &t_fine);
595 	if (ret)
596 		return ret;
597 
598 	ret = bmp280_read_press_adc(data, &adc_press);
599 	if (ret)
600 		return ret;
601 
602 	*comp_press = bmp280_compensate_press(data, adc_press, t_fine);
603 
604 	return 0;
605 }
606 
607 static int bme280_read_humid(struct bmp280_data *data, u32 *comp_humidity)
608 {
609 	u16 adc_humidity;
610 	s32 t_fine;
611 	int ret;
612 
613 	ret = bmp280_get_t_fine(data, &t_fine);
614 	if (ret)
615 		return ret;
616 
617 	ret = bme280_read_humid_adc(data, &adc_humidity);
618 	if (ret)
619 		return ret;
620 
621 	*comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine);
622 
623 	return 0;
624 }
625 
626 static int bmp280_read_raw_impl(struct iio_dev *indio_dev,
627 				struct iio_chan_spec const *chan,
628 				int *val, int *val2, long mask)
629 {
630 	struct bmp280_data *data = iio_priv(indio_dev);
631 	int chan_value;
632 	int ret;
633 
634 	guard(mutex)(&data->lock);
635 
636 	switch (mask) {
637 	case IIO_CHAN_INFO_PROCESSED:
638 		switch (chan->type) {
639 		case IIO_HUMIDITYRELATIVE:
640 			ret = data->chip_info->read_humid(data, &chan_value);
641 			if (ret)
642 				return ret;
643 
644 			*val = data->chip_info->humid_coeffs[0] * chan_value;
645 			*val2 = data->chip_info->humid_coeffs[1];
646 			return data->chip_info->humid_coeffs_type;
647 		case IIO_PRESSURE:
648 			ret = data->chip_info->read_press(data, &chan_value);
649 			if (ret)
650 				return ret;
651 
652 			*val = data->chip_info->press_coeffs[0] * chan_value;
653 			*val2 = data->chip_info->press_coeffs[1];
654 			return data->chip_info->press_coeffs_type;
655 		case IIO_TEMP:
656 			ret = data->chip_info->read_temp(data, &chan_value);
657 			if (ret)
658 				return ret;
659 
660 			*val = data->chip_info->temp_coeffs[0] * chan_value;
661 			*val2 = data->chip_info->temp_coeffs[1];
662 			return data->chip_info->temp_coeffs_type;
663 		default:
664 			return -EINVAL;
665 		}
666 	case IIO_CHAN_INFO_RAW:
667 		switch (chan->type) {
668 		case IIO_HUMIDITYRELATIVE:
669 			ret = data->chip_info->read_humid(data, &chan_value);
670 			if (ret)
671 				return ret;
672 
673 			*val = chan_value;
674 			return IIO_VAL_INT;
675 		case IIO_PRESSURE:
676 			ret = data->chip_info->read_press(data, &chan_value);
677 			if (ret)
678 				return ret;
679 
680 			*val = chan_value;
681 			return IIO_VAL_INT;
682 		case IIO_TEMP:
683 			ret = data->chip_info->read_temp(data, &chan_value);
684 			if (ret)
685 				return ret;
686 
687 			*val = chan_value;
688 			return IIO_VAL_INT;
689 		default:
690 			return -EINVAL;
691 		}
692 	case IIO_CHAN_INFO_SCALE:
693 		switch (chan->type) {
694 		case IIO_HUMIDITYRELATIVE:
695 			*val = data->chip_info->humid_coeffs[0];
696 			*val2 = data->chip_info->humid_coeffs[1];
697 			return data->chip_info->humid_coeffs_type;
698 		case IIO_PRESSURE:
699 			*val = data->chip_info->press_coeffs[0];
700 			*val2 = data->chip_info->press_coeffs[1];
701 			return data->chip_info->press_coeffs_type;
702 		case IIO_TEMP:
703 			*val = data->chip_info->temp_coeffs[0];
704 			*val2 = data->chip_info->temp_coeffs[1];
705 			return data->chip_info->temp_coeffs_type;
706 		default:
707 			return -EINVAL;
708 		}
709 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
710 		switch (chan->type) {
711 		case IIO_HUMIDITYRELATIVE:
712 			*val = 1 << data->oversampling_humid;
713 			return IIO_VAL_INT;
714 		case IIO_PRESSURE:
715 			*val = 1 << data->oversampling_press;
716 			return IIO_VAL_INT;
717 		case IIO_TEMP:
718 			*val = 1 << data->oversampling_temp;
719 			return IIO_VAL_INT;
720 		default:
721 			return -EINVAL;
722 		}
723 	case IIO_CHAN_INFO_SAMP_FREQ:
724 		if (!data->chip_info->sampling_freq_avail)
725 			return -EINVAL;
726 
727 		*val = data->chip_info->sampling_freq_avail[data->sampling_freq][0];
728 		*val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1];
729 		return IIO_VAL_INT_PLUS_MICRO;
730 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
731 		if (!data->chip_info->iir_filter_coeffs_avail)
732 			return -EINVAL;
733 
734 		*val = (1 << data->iir_filter_coeff) - 1;
735 		return IIO_VAL_INT;
736 	default:
737 		return -EINVAL;
738 	}
739 }
740 
741 static int bmp280_read_raw(struct iio_dev *indio_dev,
742 			   struct iio_chan_spec const *chan,
743 			   int *val, int *val2, long mask)
744 {
745 	struct bmp280_data *data = iio_priv(indio_dev);
746 	int ret;
747 
748 	pm_runtime_get_sync(data->dev);
749 	ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask);
750 	pm_runtime_mark_last_busy(data->dev);
751 	pm_runtime_put_autosuspend(data->dev);
752 
753 	return ret;
754 }
755 
756 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data,
757 						 int val)
758 {
759 	const int *avail = data->chip_info->oversampling_humid_avail;
760 	const int n = data->chip_info->num_oversampling_humid_avail;
761 	int ret, prev;
762 	int i;
763 
764 	for (i = 0; i < n; i++) {
765 		if (avail[i] == val) {
766 			prev = data->oversampling_humid;
767 			data->oversampling_humid = ilog2(val);
768 
769 			ret = data->chip_info->chip_config(data);
770 			if (ret) {
771 				data->oversampling_humid = prev;
772 				data->chip_info->chip_config(data);
773 				return ret;
774 			}
775 			return 0;
776 		}
777 	}
778 	return -EINVAL;
779 }
780 
781 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
782 						int val)
783 {
784 	const int *avail = data->chip_info->oversampling_temp_avail;
785 	const int n = data->chip_info->num_oversampling_temp_avail;
786 	int ret, prev;
787 	int i;
788 
789 	for (i = 0; i < n; i++) {
790 		if (avail[i] == val) {
791 			prev = data->oversampling_temp;
792 			data->oversampling_temp = ilog2(val);
793 
794 			ret = data->chip_info->chip_config(data);
795 			if (ret) {
796 				data->oversampling_temp = prev;
797 				data->chip_info->chip_config(data);
798 				return ret;
799 			}
800 			return 0;
801 		}
802 	}
803 	return -EINVAL;
804 }
805 
806 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
807 						 int val)
808 {
809 	const int *avail = data->chip_info->oversampling_press_avail;
810 	const int n = data->chip_info->num_oversampling_press_avail;
811 	int ret, prev;
812 	int i;
813 
814 	for (i = 0; i < n; i++) {
815 		if (avail[i] == val) {
816 			prev = data->oversampling_press;
817 			data->oversampling_press = ilog2(val);
818 
819 			ret = data->chip_info->chip_config(data);
820 			if (ret) {
821 				data->oversampling_press = prev;
822 				data->chip_info->chip_config(data);
823 				return ret;
824 			}
825 			return 0;
826 		}
827 	}
828 	return -EINVAL;
829 }
830 
831 static int bmp280_write_sampling_frequency(struct bmp280_data *data,
832 					   int val, int val2)
833 {
834 	const int (*avail)[2] = data->chip_info->sampling_freq_avail;
835 	const int n = data->chip_info->num_sampling_freq_avail;
836 	int ret, prev;
837 	int i;
838 
839 	for (i = 0; i < n; i++) {
840 		if (avail[i][0] == val && avail[i][1] == val2) {
841 			prev = data->sampling_freq;
842 			data->sampling_freq = i;
843 
844 			ret = data->chip_info->chip_config(data);
845 			if (ret) {
846 				data->sampling_freq = prev;
847 				data->chip_info->chip_config(data);
848 				return ret;
849 			}
850 			return 0;
851 		}
852 	}
853 	return -EINVAL;
854 }
855 
856 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val)
857 {
858 	const int *avail = data->chip_info->iir_filter_coeffs_avail;
859 	const int n = data->chip_info->num_iir_filter_coeffs_avail;
860 	int ret, prev;
861 	int i;
862 
863 	for (i = 0; i < n; i++) {
864 		if (avail[i] - 1  == val) {
865 			prev = data->iir_filter_coeff;
866 			data->iir_filter_coeff = i;
867 
868 			ret = data->chip_info->chip_config(data);
869 			if (ret) {
870 				data->iir_filter_coeff = prev;
871 				data->chip_info->chip_config(data);
872 				return ret;
873 
874 			}
875 			return 0;
876 		}
877 	}
878 	return -EINVAL;
879 }
880 
881 static int bmp280_write_raw_impl(struct iio_dev *indio_dev,
882 				 struct iio_chan_spec const *chan,
883 				 int val, int val2, long mask)
884 {
885 	struct bmp280_data *data = iio_priv(indio_dev);
886 
887 	guard(mutex)(&data->lock);
888 
889 	/*
890 	 * Helper functions to update sensor running configuration.
891 	 * If an error happens applying new settings, will try restore
892 	 * previous parameters to ensure the sensor is left in a known
893 	 * working configuration.
894 	 */
895 	switch (mask) {
896 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
897 		switch (chan->type) {
898 		case IIO_HUMIDITYRELATIVE:
899 			return bme280_write_oversampling_ratio_humid(data, val);
900 		case IIO_PRESSURE:
901 			return bmp280_write_oversampling_ratio_press(data, val);
902 		case IIO_TEMP:
903 			return bmp280_write_oversampling_ratio_temp(data, val);
904 		default:
905 			return -EINVAL;
906 		}
907 	case IIO_CHAN_INFO_SAMP_FREQ:
908 		return bmp280_write_sampling_frequency(data, val, val2);
909 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
910 		return bmp280_write_iir_filter_coeffs(data, val);
911 	default:
912 		return -EINVAL;
913 	}
914 }
915 
916 static int bmp280_write_raw(struct iio_dev *indio_dev,
917 			    struct iio_chan_spec const *chan,
918 			    int val, int val2, long mask)
919 {
920 	struct bmp280_data *data = iio_priv(indio_dev);
921 	int ret;
922 
923 	pm_runtime_get_sync(data->dev);
924 	ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask);
925 	pm_runtime_mark_last_busy(data->dev);
926 	pm_runtime_put_autosuspend(data->dev);
927 
928 	return ret;
929 }
930 
931 static int bmp280_read_avail(struct iio_dev *indio_dev,
932 			     struct iio_chan_spec const *chan,
933 			     const int **vals, int *type, int *length,
934 			     long mask)
935 {
936 	struct bmp280_data *data = iio_priv(indio_dev);
937 
938 	switch (mask) {
939 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
940 		switch (chan->type) {
941 		case IIO_PRESSURE:
942 			*vals = data->chip_info->oversampling_press_avail;
943 			*length = data->chip_info->num_oversampling_press_avail;
944 			break;
945 		case IIO_TEMP:
946 			*vals = data->chip_info->oversampling_temp_avail;
947 			*length = data->chip_info->num_oversampling_temp_avail;
948 			break;
949 		default:
950 			return -EINVAL;
951 		}
952 		*type = IIO_VAL_INT;
953 		return IIO_AVAIL_LIST;
954 	case IIO_CHAN_INFO_SAMP_FREQ:
955 		*vals = (const int *)data->chip_info->sampling_freq_avail;
956 		*type = IIO_VAL_INT_PLUS_MICRO;
957 		/* Values are stored in a 2D matrix */
958 		*length = data->chip_info->num_sampling_freq_avail;
959 		return IIO_AVAIL_LIST;
960 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
961 		*vals = data->chip_info->iir_filter_coeffs_avail;
962 		*type = IIO_VAL_INT;
963 		*length = data->chip_info->num_iir_filter_coeffs_avail;
964 		return IIO_AVAIL_LIST;
965 	default:
966 		return -EINVAL;
967 	}
968 }
969 
970 static const struct iio_info bmp280_info = {
971 	.read_raw = &bmp280_read_raw,
972 	.read_avail = &bmp280_read_avail,
973 	.write_raw = &bmp280_write_raw,
974 };
975 
976 static const unsigned long bmp280_avail_scan_masks[] = {
977 	BIT(BMP280_TEMP) | BIT(BMP280_PRESS),
978 	0
979 };
980 
981 static const unsigned long bme280_avail_scan_masks[] = {
982 	BIT(BME280_HUMID) | BIT(BMP280_TEMP) | BIT(BMP280_PRESS),
983 	0
984 };
985 
986 static int bmp280_chip_config(struct bmp280_data *data)
987 {
988 	u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) |
989 		  FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1);
990 	int ret;
991 
992 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
993 				BMP280_OSRS_TEMP_MASK |
994 				BMP280_OSRS_PRESS_MASK |
995 				BMP280_MODE_MASK,
996 				osrs | BMP280_MODE_NORMAL);
997 	if (ret) {
998 		dev_err(data->dev, "failed to write ctrl_meas register\n");
999 		return ret;
1000 	}
1001 
1002 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
1003 				 BMP280_FILTER_MASK,
1004 				 BMP280_FILTER_4X);
1005 	if (ret) {
1006 		dev_err(data->dev, "failed to write config register\n");
1007 		return ret;
1008 	}
1009 
1010 	return ret;
1011 }
1012 
1013 static irqreturn_t bmp280_trigger_handler(int irq, void *p)
1014 {
1015 	struct iio_poll_func *pf = p;
1016 	struct iio_dev *indio_dev = pf->indio_dev;
1017 	struct bmp280_data *data = iio_priv(indio_dev);
1018 	s32 adc_temp, adc_press, t_fine;
1019 	int ret;
1020 
1021 	guard(mutex)(&data->lock);
1022 
1023 	/* Burst read data registers */
1024 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
1025 			       data->buf, BMP280_BURST_READ_BYTES);
1026 	if (ret) {
1027 		dev_err(data->dev, "failed to burst read sensor data\n");
1028 		goto out;
1029 	}
1030 
1031 	/* Temperature calculations */
1032 	adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3]));
1033 	if (adc_temp == BMP280_TEMP_SKIPPED) {
1034 		dev_err(data->dev, "reading temperature skipped\n");
1035 		goto out;
1036 	}
1037 
1038 	data->sensor_data[1] = bmp280_compensate_temp(data, adc_temp);
1039 
1040 	/* Pressure calculations */
1041 	adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0]));
1042 	if (adc_press == BMP280_PRESS_SKIPPED) {
1043 		dev_err(data->dev, "reading pressure skipped\n");
1044 		goto out;
1045 	}
1046 
1047 	t_fine = bmp280_calc_t_fine(data, adc_temp);
1048 
1049 	data->sensor_data[0] = bmp280_compensate_press(data, adc_press, t_fine);
1050 
1051 	iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data,
1052 					   iio_get_time_ns(indio_dev));
1053 
1054 out:
1055 	iio_trigger_notify_done(indio_dev->trig);
1056 
1057 	return IRQ_HANDLED;
1058 }
1059 
1060 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
1061 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID };
1062 static const int bmp280_temp_coeffs[] = { 10, 1 };
1063 static const int bmp280_press_coeffs[] = { 1, 256000 };
1064 
1065 const struct bmp280_chip_info bmp280_chip_info = {
1066 	.id_reg = BMP280_REG_ID,
1067 	.chip_id = bmp280_chip_ids,
1068 	.num_chip_id = ARRAY_SIZE(bmp280_chip_ids),
1069 	.regmap_config = &bmp280_regmap_config,
1070 	.start_up_time = 2000,
1071 	.channels = bmp280_channels,
1072 	.num_channels = ARRAY_SIZE(bmp280_channels),
1073 	.avail_scan_masks = bmp280_avail_scan_masks,
1074 
1075 	.oversampling_temp_avail = bmp280_oversampling_avail,
1076 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1077 	/*
1078 	 * Oversampling config values on BMx280 have one additional setting
1079 	 * that other generations of the family don't:
1080 	 * The value 0 means the measurement is bypassed instead of
1081 	 * oversampling set to x1.
1082 	 *
1083 	 * To account for this difference, and preserve the same common
1084 	 * config logic, this is handled later on chip_config callback
1085 	 * incrementing one unit the oversampling setting.
1086 	 */
1087 	.oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
1088 
1089 	.oversampling_press_avail = bmp280_oversampling_avail,
1090 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1091 	.oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
1092 
1093 	.temp_coeffs = bmp280_temp_coeffs,
1094 	.temp_coeffs_type = IIO_VAL_FRACTIONAL,
1095 	.press_coeffs = bmp280_press_coeffs,
1096 	.press_coeffs_type = IIO_VAL_FRACTIONAL,
1097 
1098 	.chip_config = bmp280_chip_config,
1099 	.read_temp = bmp280_read_temp,
1100 	.read_press = bmp280_read_press,
1101 	.read_calib = bmp280_read_calib,
1102 
1103 	.trigger_handler = bmp280_trigger_handler,
1104 };
1105 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280);
1106 
1107 static int bme280_chip_config(struct bmp280_data *data)
1108 {
1109 	u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1);
1110 	int ret;
1111 
1112 	/*
1113 	 * Oversampling of humidity must be set before oversampling of
1114 	 * temperature/pressure is set to become effective.
1115 	 */
1116 	ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY,
1117 				 BME280_OSRS_HUMIDITY_MASK, osrs);
1118 	if (ret) {
1119 		dev_err(data->dev, "failed to set humidity oversampling");
1120 		return ret;
1121 	}
1122 
1123 	return bmp280_chip_config(data);
1124 }
1125 
1126 static irqreturn_t bme280_trigger_handler(int irq, void *p)
1127 {
1128 	struct iio_poll_func *pf = p;
1129 	struct iio_dev *indio_dev = pf->indio_dev;
1130 	struct bmp280_data *data = iio_priv(indio_dev);
1131 	s32 adc_temp, adc_press, adc_humidity, t_fine;
1132 	int ret;
1133 
1134 	guard(mutex)(&data->lock);
1135 
1136 	/* Burst read data registers */
1137 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
1138 			       data->buf, BME280_BURST_READ_BYTES);
1139 	if (ret) {
1140 		dev_err(data->dev, "failed to burst read sensor data\n");
1141 		goto out;
1142 	}
1143 
1144 	/* Temperature calculations */
1145 	adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[3]));
1146 	if (adc_temp == BMP280_TEMP_SKIPPED) {
1147 		dev_err(data->dev, "reading temperature skipped\n");
1148 		goto out;
1149 	}
1150 
1151 	data->sensor_data[1] = bmp280_compensate_temp(data, adc_temp);
1152 
1153 	/* Pressure calculations */
1154 	adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(&data->buf[0]));
1155 	if (adc_press == BMP280_PRESS_SKIPPED) {
1156 		dev_err(data->dev, "reading pressure skipped\n");
1157 		goto out;
1158 	}
1159 
1160 	t_fine = bmp280_calc_t_fine(data, adc_temp);
1161 
1162 	data->sensor_data[0] = bmp280_compensate_press(data, adc_press, t_fine);
1163 
1164 	/* Humidity calculations */
1165 	adc_humidity = get_unaligned_be16(&data->buf[6]);
1166 
1167 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
1168 		dev_err(data->dev, "reading humidity skipped\n");
1169 		goto out;
1170 	}
1171 	data->sensor_data[2] = bme280_compensate_humidity(data, adc_humidity, t_fine);
1172 
1173 	iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data,
1174 					   iio_get_time_ns(indio_dev));
1175 
1176 out:
1177 	iio_trigger_notify_done(indio_dev->trig);
1178 
1179 	return IRQ_HANDLED;
1180 }
1181 
1182 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID };
1183 static const int bme280_humid_coeffs[] = { 1000, 1024 };
1184 
1185 const struct bmp280_chip_info bme280_chip_info = {
1186 	.id_reg = BMP280_REG_ID,
1187 	.chip_id = bme280_chip_ids,
1188 	.num_chip_id = ARRAY_SIZE(bme280_chip_ids),
1189 	.regmap_config = &bme280_regmap_config,
1190 	.start_up_time = 2000,
1191 	.channels = bme280_channels,
1192 	.num_channels = ARRAY_SIZE(bme280_channels),
1193 	.avail_scan_masks = bme280_avail_scan_masks,
1194 
1195 	.oversampling_temp_avail = bmp280_oversampling_avail,
1196 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1197 	.oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1,
1198 
1199 	.oversampling_press_avail = bmp280_oversampling_avail,
1200 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1201 	.oversampling_press_default = BMP280_OSRS_PRESS_16X - 1,
1202 
1203 	.oversampling_humid_avail = bmp280_oversampling_avail,
1204 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
1205 	.oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1,
1206 
1207 	.temp_coeffs = bmp280_temp_coeffs,
1208 	.temp_coeffs_type = IIO_VAL_FRACTIONAL,
1209 	.press_coeffs = bmp280_press_coeffs,
1210 	.press_coeffs_type = IIO_VAL_FRACTIONAL,
1211 	.humid_coeffs = bme280_humid_coeffs,
1212 	.humid_coeffs_type = IIO_VAL_FRACTIONAL,
1213 
1214 	.chip_config = bme280_chip_config,
1215 	.read_temp = bmp280_read_temp,
1216 	.read_press = bmp280_read_press,
1217 	.read_humid = bme280_read_humid,
1218 	.read_calib = bme280_read_calib,
1219 
1220 	.trigger_handler = bme280_trigger_handler,
1221 };
1222 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280);
1223 
1224 /*
1225  * Helper function to send a command to BMP3XX sensors.
1226  *
1227  * Sensor processes commands written to the CMD register and signals
1228  * execution result through "cmd_rdy" and "cmd_error" flags available on
1229  * STATUS and ERROR registers.
1230  */
1231 static int bmp380_cmd(struct bmp280_data *data, u8 cmd)
1232 {
1233 	unsigned int reg;
1234 	int ret;
1235 
1236 	/* Check if device is ready to process a command */
1237 	ret = regmap_read(data->regmap, BMP380_REG_STATUS, &reg);
1238 	if (ret) {
1239 		dev_err(data->dev, "failed to read error register\n");
1240 		return ret;
1241 	}
1242 	if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) {
1243 		dev_err(data->dev, "device is not ready to accept commands\n");
1244 		return -EBUSY;
1245 	}
1246 
1247 	/* Send command to process */
1248 	ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd);
1249 	if (ret) {
1250 		dev_err(data->dev, "failed to send command to device\n");
1251 		return ret;
1252 	}
1253 	/* Wait for 2ms for command to be processed */
1254 	usleep_range(data->start_up_time, data->start_up_time + 100);
1255 	/* Check for command processing error */
1256 	ret = regmap_read(data->regmap, BMP380_REG_ERROR, &reg);
1257 	if (ret) {
1258 		dev_err(data->dev, "error reading ERROR reg\n");
1259 		return ret;
1260 	}
1261 	if (reg & BMP380_ERR_CMD_MASK) {
1262 		dev_err(data->dev, "error processing command 0x%X\n", cmd);
1263 		return -EINVAL;
1264 	}
1265 
1266 	return 0;
1267 }
1268 
1269 static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp)
1270 {
1271 	u32 value_temp;
1272 	int ret;
1273 
1274 	ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB,
1275 			       data->buf, BMP280_NUM_TEMP_BYTES);
1276 	if (ret) {
1277 		dev_err(data->dev, "failed to read temperature\n");
1278 		return ret;
1279 	}
1280 
1281 	value_temp = get_unaligned_le24(data->buf);
1282 	if (value_temp == BMP380_TEMP_SKIPPED) {
1283 		dev_err(data->dev, "reading temperature skipped\n");
1284 		return -EIO;
1285 	}
1286 	*adc_temp = value_temp;
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value
1293  * of "5123" equals 51.2º C. t_fine carries fine temperature as global value.
1294  *
1295  * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo
1296  * https://github.com/BoschSensortec/BMP3-Sensor-API.
1297  */
1298 static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp)
1299 {
1300 	s64 var1, var2, var3, var4, var5, var6;
1301 	struct bmp380_calib *calib = &data->calib.bmp380;
1302 
1303 	var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8);
1304 	var2 = var1 * ((s64) calib->T2);
1305 	var3 = var1 * var1;
1306 	var4 = var3 * ((s64) calib->T3);
1307 	var5 = (var2 << 18) + var4;
1308 	var6 = var5 >> 32;
1309 	return (s32)var6; /* t_fine = var6 */
1310 }
1311 
1312 static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine)
1313 {
1314 	s32 adc_temp;
1315 	int ret;
1316 
1317 	ret = bmp380_read_temp_adc(data, &adc_temp);
1318 	if (ret)
1319 		return ret;
1320 
1321 	*t_fine = bmp380_calc_t_fine(data, adc_temp);
1322 
1323 	return 0;
1324 }
1325 
1326 static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp)
1327 {
1328 	s64 comp_temp;
1329 	s32 var6;
1330 
1331 	var6 = bmp380_calc_t_fine(data, adc_temp);
1332 	comp_temp = (var6 * 25) >> 14;
1333 
1334 	comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP);
1335 	return (s32) comp_temp;
1336 }
1337 
1338 static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press)
1339 {
1340 	u32 value_press;
1341 	int ret;
1342 
1343 	ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1344 			       data->buf, BMP280_NUM_PRESS_BYTES);
1345 	if (ret) {
1346 		dev_err(data->dev, "failed to read pressure\n");
1347 		return ret;
1348 	}
1349 
1350 	value_press = get_unaligned_le24(data->buf);
1351 	if (value_press == BMP380_PRESS_SKIPPED) {
1352 		dev_err(data->dev, "reading pressure skipped\n");
1353 		return -EIO;
1354 	}
1355 	*adc_press = value_press;
1356 
1357 	return 0;
1358 }
1359 
1360 /*
1361  * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal.
1362  * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa.
1363  *
1364  * Taken from datasheet, Section 9.3. "Pressure compensation" and repository
1365  * https://github.com/BoschSensortec/BMP3-Sensor-API.
1366  */
1367 static u32 bmp380_compensate_press(struct bmp280_data *data,
1368 				   u32 adc_press, s32 t_fine)
1369 {
1370 	s64 var1, var2, var3, var4, var5, var6, offset, sensitivity;
1371 	struct bmp380_calib *calib = &data->calib.bmp380;
1372 	u32 comp_press;
1373 
1374 	var1 = (s64)t_fine * (s64)t_fine;
1375 	var2 = var1 >> 6;
1376 	var3 = (var2 * ((s64)t_fine)) >> 8;
1377 	var4 = ((s64)calib->P8 * var3) >> 5;
1378 	var5 = ((s64)calib->P7 * var1) << 4;
1379 	var6 = ((s64)calib->P6 * (s64)t_fine) << 22;
1380 	offset = ((s64)calib->P5 << 47) + var4 + var5 + var6;
1381 	var2 = ((s64)calib->P4 * var3) >> 5;
1382 	var4 = ((s64)calib->P3 * var1) << 2;
1383 	var5 = ((s64)calib->P2 - ((s64)1 << 14)) *
1384 	       ((s64)t_fine << 21);
1385 	sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) +
1386 			var2 + var4 + var5;
1387 	var1 = (sensitivity >> 24) * (s64)adc_press;
1388 	var2 = (s64)calib->P10 * (s64)t_fine;
1389 	var3 = var2 + ((s64)calib->P9 << 16);
1390 	var4 = (var3 * (s64)adc_press) >> 13;
1391 
1392 	/*
1393 	 * Dividing by 10 followed by multiplying by 10 to avoid
1394 	 * possible overflow caused by (uncomp_data->pressure * partial_data4).
1395 	 */
1396 	var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9;
1397 	var5 *= 10;
1398 	var6 = (s64)adc_press * (s64)adc_press;
1399 	var2 = ((s64)calib->P11 * var6) >> 16;
1400 	var3 = (var2 * (s64)adc_press) >> 7;
1401 	var4 = (offset >> 2) + var1 + var5 + var3;
1402 	comp_press = ((u64)var4 * 25) >> 40;
1403 
1404 	comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES);
1405 	return comp_press;
1406 }
1407 
1408 static int bmp380_read_temp(struct bmp280_data *data, s32 *comp_temp)
1409 {
1410 	u32 adc_temp;
1411 	int ret;
1412 
1413 	ret = bmp380_read_temp_adc(data, &adc_temp);
1414 	if (ret)
1415 		return ret;
1416 
1417 	*comp_temp = bmp380_compensate_temp(data, adc_temp);
1418 
1419 	return 0;
1420 }
1421 
1422 static int bmp380_read_press(struct bmp280_data *data, u32 *comp_press)
1423 {
1424 	u32 adc_press, t_fine;
1425 	int ret;
1426 
1427 	ret = bmp380_get_t_fine(data, &t_fine);
1428 	if (ret)
1429 		return ret;
1430 
1431 	ret = bmp380_read_press_adc(data, &adc_press);
1432 	if (ret)
1433 		return ret;
1434 
1435 	*comp_press = bmp380_compensate_press(data, adc_press, t_fine);
1436 
1437 	return 0;
1438 }
1439 
1440 static int bmp380_read_calib(struct bmp280_data *data)
1441 {
1442 	struct bmp380_calib *calib = &data->calib.bmp380;
1443 	int ret;
1444 
1445 	/* Read temperature and pressure calibration data */
1446 	ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START,
1447 			       data->bmp380_cal_buf,
1448 			       sizeof(data->bmp380_cal_buf));
1449 	if (ret) {
1450 		dev_err(data->dev,
1451 			"failed to read calibration parameters\n");
1452 		return ret;
1453 	}
1454 
1455 	/* Toss the temperature calibration data into the entropy pool */
1456 	add_device_randomness(data->bmp380_cal_buf,
1457 			      sizeof(data->bmp380_cal_buf));
1458 
1459 	/* Parse calibration values */
1460 	calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]);
1461 	calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]);
1462 	calib->T3 = data->bmp380_cal_buf[BMP380_T3];
1463 	calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]);
1464 	calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]);
1465 	calib->P3 = data->bmp380_cal_buf[BMP380_P3];
1466 	calib->P4 = data->bmp380_cal_buf[BMP380_P4];
1467 	calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]);
1468 	calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]);
1469 	calib->P7 = data->bmp380_cal_buf[BMP380_P7];
1470 	calib->P8 = data->bmp380_cal_buf[BMP380_P8];
1471 	calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]);
1472 	calib->P10 = data->bmp380_cal_buf[BMP380_P10];
1473 	calib->P11 = data->bmp380_cal_buf[BMP380_P11];
1474 
1475 	return 0;
1476 }
1477 
1478 static const int bmp380_odr_table[][2] = {
1479 	[BMP380_ODR_200HZ]	= {200, 0},
1480 	[BMP380_ODR_100HZ]	= {100, 0},
1481 	[BMP380_ODR_50HZ]	= {50, 0},
1482 	[BMP380_ODR_25HZ]	= {25, 0},
1483 	[BMP380_ODR_12_5HZ]	= {12, 500000},
1484 	[BMP380_ODR_6_25HZ]	= {6, 250000},
1485 	[BMP380_ODR_3_125HZ]	= {3, 125000},
1486 	[BMP380_ODR_1_5625HZ]	= {1, 562500},
1487 	[BMP380_ODR_0_78HZ]	= {0, 781250},
1488 	[BMP380_ODR_0_39HZ]	= {0, 390625},
1489 	[BMP380_ODR_0_2HZ]	= {0, 195313},
1490 	[BMP380_ODR_0_1HZ]	= {0, 97656},
1491 	[BMP380_ODR_0_05HZ]	= {0, 48828},
1492 	[BMP380_ODR_0_02HZ]	= {0, 24414},
1493 	[BMP380_ODR_0_01HZ]	= {0, 12207},
1494 	[BMP380_ODR_0_006HZ]	= {0, 6104},
1495 	[BMP380_ODR_0_003HZ]	= {0, 3052},
1496 	[BMP380_ODR_0_0015HZ]	= {0, 1526},
1497 };
1498 
1499 static int bmp380_preinit(struct bmp280_data *data)
1500 {
1501 	/* BMP3xx requires soft-reset as part of initialization */
1502 	return bmp380_cmd(data, BMP380_CMD_SOFT_RESET);
1503 }
1504 
1505 static int bmp380_chip_config(struct bmp280_data *data)
1506 {
1507 	bool change = false, aux;
1508 	unsigned int tmp;
1509 	u8 osrs;
1510 	int ret;
1511 
1512 	/* Configure power control register */
1513 	ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1514 				 BMP380_CTRL_SENSORS_MASK,
1515 				 BMP380_CTRL_SENSORS_PRESS_EN |
1516 				 BMP380_CTRL_SENSORS_TEMP_EN);
1517 	if (ret) {
1518 		dev_err(data->dev,
1519 			"failed to write operation control register\n");
1520 		return ret;
1521 	}
1522 
1523 	/* Configure oversampling */
1524 	osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) |
1525 	       FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press);
1526 
1527 	ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR,
1528 				       BMP380_OSRS_TEMP_MASK |
1529 				       BMP380_OSRS_PRESS_MASK,
1530 				       osrs, &aux);
1531 	if (ret) {
1532 		dev_err(data->dev, "failed to write oversampling register\n");
1533 		return ret;
1534 	}
1535 	change = change || aux;
1536 
1537 	/* Configure output data rate */
1538 	ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR,
1539 				       BMP380_ODRS_MASK, data->sampling_freq,
1540 				       &aux);
1541 	if (ret) {
1542 		dev_err(data->dev, "failed to write ODR selection register\n");
1543 		return ret;
1544 	}
1545 	change = change || aux;
1546 
1547 	/* Set filter data */
1548 	ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK,
1549 				       FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff),
1550 				       &aux);
1551 	if (ret) {
1552 		dev_err(data->dev, "failed to write config register\n");
1553 		return ret;
1554 	}
1555 	change = change || aux;
1556 
1557 	if (change) {
1558 		/*
1559 		 * The configurations errors are detected on the fly during a
1560 		 * measurement cycle. If the sampling frequency is too low, it's
1561 		 * faster to reset the measurement loop than wait until the next
1562 		 * measurement is due.
1563 		 *
1564 		 * Resets sensor measurement loop toggling between sleep and
1565 		 * normal operating modes.
1566 		 */
1567 		ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1568 					BMP380_MODE_MASK,
1569 					FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP));
1570 		if (ret) {
1571 			dev_err(data->dev, "failed to set sleep mode\n");
1572 			return ret;
1573 		}
1574 		usleep_range(2000, 2500);
1575 		ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL,
1576 					BMP380_MODE_MASK,
1577 					FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL));
1578 		if (ret) {
1579 			dev_err(data->dev, "failed to set normal mode\n");
1580 			return ret;
1581 		}
1582 		/*
1583 		 * Waits for measurement before checking configuration error
1584 		 * flag. Selected longest measurement time, calculated from
1585 		 * formula in datasheet section 3.9.2 with an offset of ~+15%
1586 		 * as it seen as well in table 3.9.1.
1587 		 */
1588 		msleep(150);
1589 
1590 		/* Check config error flag */
1591 		ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp);
1592 		if (ret) {
1593 			dev_err(data->dev, "failed to read error register\n");
1594 			return ret;
1595 		}
1596 		if (tmp & BMP380_ERR_CONF_MASK) {
1597 			dev_warn(data->dev,
1598 				 "sensor flagged configuration as incompatible\n");
1599 			return -EINVAL;
1600 		}
1601 	}
1602 
1603 	return 0;
1604 }
1605 
1606 static irqreturn_t bmp380_trigger_handler(int irq, void *p)
1607 {
1608 	struct iio_poll_func *pf = p;
1609 	struct iio_dev *indio_dev = pf->indio_dev;
1610 	struct bmp280_data *data = iio_priv(indio_dev);
1611 	s32 adc_temp, adc_press, t_fine;
1612 	int ret;
1613 
1614 	guard(mutex)(&data->lock);
1615 
1616 	/* Burst read data registers */
1617 	ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB,
1618 			       data->buf, BMP280_BURST_READ_BYTES);
1619 	if (ret) {
1620 		dev_err(data->dev, "failed to burst read sensor data\n");
1621 		goto out;
1622 	}
1623 
1624 	/* Temperature calculations */
1625 	adc_temp = get_unaligned_le24(&data->buf[3]);
1626 	if (adc_temp == BMP380_TEMP_SKIPPED) {
1627 		dev_err(data->dev, "reading temperature skipped\n");
1628 		goto out;
1629 	}
1630 
1631 	data->sensor_data[1] = bmp380_compensate_temp(data, adc_temp);
1632 
1633 	/* Pressure calculations */
1634 	adc_press = get_unaligned_le24(&data->buf[0]);
1635 	if (adc_press == BMP380_PRESS_SKIPPED) {
1636 		dev_err(data->dev, "reading pressure skipped\n");
1637 		goto out;
1638 	}
1639 
1640 	t_fine = bmp380_calc_t_fine(data, adc_temp);
1641 
1642 	data->sensor_data[0] = bmp380_compensate_press(data, adc_press, t_fine);
1643 
1644 	iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data,
1645 					   iio_get_time_ns(indio_dev));
1646 
1647 out:
1648 	iio_trigger_notify_done(indio_dev->trig);
1649 
1650 	return IRQ_HANDLED;
1651 }
1652 
1653 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 };
1654 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128};
1655 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID };
1656 static const int bmp380_temp_coeffs[] = { 10, 1 };
1657 static const int bmp380_press_coeffs[] = { 1, 100000 };
1658 
1659 const struct bmp280_chip_info bmp380_chip_info = {
1660 	.id_reg = BMP380_REG_ID,
1661 	.chip_id = bmp380_chip_ids,
1662 	.num_chip_id = ARRAY_SIZE(bmp380_chip_ids),
1663 	.regmap_config = &bmp380_regmap_config,
1664 	.spi_read_extra_byte = true,
1665 	.start_up_time = 2000,
1666 	.channels = bmp380_channels,
1667 	.num_channels = ARRAY_SIZE(bmp380_channels),
1668 	.avail_scan_masks = bmp280_avail_scan_masks,
1669 
1670 	.oversampling_temp_avail = bmp380_oversampling_avail,
1671 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1672 	.oversampling_temp_default = ilog2(1),
1673 
1674 	.oversampling_press_avail = bmp380_oversampling_avail,
1675 	.num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail),
1676 	.oversampling_press_default = ilog2(4),
1677 
1678 	.sampling_freq_avail = bmp380_odr_table,
1679 	.num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2,
1680 	.sampling_freq_default = BMP380_ODR_50HZ,
1681 
1682 	.iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
1683 	.num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
1684 	.iir_filter_coeff_default = 2,
1685 
1686 	.temp_coeffs = bmp380_temp_coeffs,
1687 	.temp_coeffs_type = IIO_VAL_FRACTIONAL,
1688 	.press_coeffs = bmp380_press_coeffs,
1689 	.press_coeffs_type = IIO_VAL_FRACTIONAL,
1690 
1691 	.chip_config = bmp380_chip_config,
1692 	.read_temp = bmp380_read_temp,
1693 	.read_press = bmp380_read_press,
1694 	.read_calib = bmp380_read_calib,
1695 	.preinit = bmp380_preinit,
1696 
1697 	.trigger_handler = bmp380_trigger_handler,
1698 };
1699 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280);
1700 
1701 static int bmp580_soft_reset(struct bmp280_data *data)
1702 {
1703 	unsigned int reg;
1704 	int ret;
1705 
1706 	ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET);
1707 	if (ret) {
1708 		dev_err(data->dev, "failed to send reset command to device\n");
1709 		return ret;
1710 	}
1711 	usleep_range(2000, 2500);
1712 
1713 	/* Dummy read of chip_id */
1714 	ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, &reg);
1715 	if (ret) {
1716 		dev_err(data->dev, "failed to reestablish comms after reset\n");
1717 		return ret;
1718 	}
1719 
1720 	ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, &reg);
1721 	if (ret) {
1722 		dev_err(data->dev, "error reading interrupt status register\n");
1723 		return ret;
1724 	}
1725 	if (!(reg & BMP580_INT_STATUS_POR_MASK)) {
1726 		dev_err(data->dev, "error resetting sensor\n");
1727 		return -EINVAL;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  * bmp580_nvm_operation() - Helper function to commit NVM memory operations
1735  * @data: sensor data struct
1736  * @is_write: flag to signal write operation
1737  */
1738 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write)
1739 {
1740 	unsigned long timeout, poll;
1741 	unsigned int reg;
1742 	int ret;
1743 
1744 	/* Check NVM ready flag */
1745 	ret = regmap_read(data->regmap, BMP580_REG_STATUS, &reg);
1746 	if (ret) {
1747 		dev_err(data->dev, "failed to check nvm status\n");
1748 		return ret;
1749 	}
1750 	if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) {
1751 		dev_err(data->dev, "sensor's nvm is not ready\n");
1752 		return -EIO;
1753 	}
1754 
1755 	/* Start NVM operation sequence */
1756 	ret = regmap_write(data->regmap, BMP580_REG_CMD,
1757 			   BMP580_CMD_NVM_OP_SEQ_0);
1758 	if (ret) {
1759 		dev_err(data->dev,
1760 			"failed to send nvm operation's first sequence\n");
1761 		return ret;
1762 	}
1763 	if (is_write) {
1764 		/* Send NVM write sequence */
1765 		ret = regmap_write(data->regmap, BMP580_REG_CMD,
1766 				   BMP580_CMD_NVM_WRITE_SEQ_1);
1767 		if (ret) {
1768 			dev_err(data->dev,
1769 				"failed to send nvm write sequence\n");
1770 			return ret;
1771 		}
1772 		/* Datasheet says on 4.8.1.2 it takes approximately 10ms */
1773 		poll = 2000;
1774 		timeout = 12000;
1775 	} else {
1776 		/* Send NVM read sequence */
1777 		ret = regmap_write(data->regmap, BMP580_REG_CMD,
1778 				   BMP580_CMD_NVM_READ_SEQ_1);
1779 		if (ret) {
1780 			dev_err(data->dev,
1781 				"failed to send nvm read sequence\n");
1782 			return ret;
1783 		}
1784 		/* Datasheet says on 4.8.1.1 it takes approximately 200us */
1785 		poll = 50;
1786 		timeout = 400;
1787 	}
1788 
1789 	/* Wait until NVM is ready again */
1790 	ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg,
1791 				       (reg & BMP580_STATUS_NVM_RDY_MASK),
1792 				       poll, timeout);
1793 	if (ret) {
1794 		dev_err(data->dev, "error checking nvm operation status\n");
1795 		return ret;
1796 	}
1797 
1798 	/* Check NVM error flags */
1799 	if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) {
1800 		dev_err(data->dev, "error processing nvm operation\n");
1801 		return -EIO;
1802 	}
1803 
1804 	return 0;
1805 }
1806 
1807 /*
1808  * Contrary to previous sensors families, compensation algorithm is builtin.
1809  * We are only required to read the register raw data and adapt the ranges
1810  * for what is expected on IIO ABI.
1811  */
1812 
1813 static int bmp580_read_temp(struct bmp280_data *data, s32 *raw_temp)
1814 {
1815 	s32 value_temp;
1816 	int ret;
1817 
1818 	ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB,
1819 			       data->buf, BMP280_NUM_TEMP_BYTES);
1820 	if (ret) {
1821 		dev_err(data->dev, "failed to read temperature\n");
1822 		return ret;
1823 	}
1824 
1825 	value_temp = get_unaligned_le24(data->buf);
1826 	if (value_temp == BMP580_TEMP_SKIPPED) {
1827 		dev_err(data->dev, "reading temperature skipped\n");
1828 		return -EIO;
1829 	}
1830 	*raw_temp = sign_extend32(value_temp, 23);
1831 
1832 	return 0;
1833 }
1834 
1835 static int bmp580_read_press(struct bmp280_data *data, u32 *raw_press)
1836 {
1837 	u32 value_press;
1838 	int ret;
1839 
1840 	ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB,
1841 			       data->buf, BMP280_NUM_PRESS_BYTES);
1842 	if (ret) {
1843 		dev_err(data->dev, "failed to read pressure\n");
1844 		return ret;
1845 	}
1846 
1847 	value_press = get_unaligned_le24(data->buf);
1848 	if (value_press == BMP580_PRESS_SKIPPED) {
1849 		dev_err(data->dev, "reading pressure skipped\n");
1850 		return -EIO;
1851 	}
1852 	*raw_press = value_press;
1853 
1854 	return 0;
1855 }
1856 
1857 static const int bmp580_odr_table[][2] = {
1858 	[BMP580_ODR_240HZ] =	{240, 0},
1859 	[BMP580_ODR_218HZ] =	{218, 0},
1860 	[BMP580_ODR_199HZ] =	{199, 0},
1861 	[BMP580_ODR_179HZ] =	{179, 0},
1862 	[BMP580_ODR_160HZ] =	{160, 0},
1863 	[BMP580_ODR_149HZ] =	{149, 0},
1864 	[BMP580_ODR_140HZ] =	{140, 0},
1865 	[BMP580_ODR_129HZ] =	{129, 0},
1866 	[BMP580_ODR_120HZ] =	{120, 0},
1867 	[BMP580_ODR_110HZ] =	{110, 0},
1868 	[BMP580_ODR_100HZ] =	{100, 0},
1869 	[BMP580_ODR_89HZ] =	{89, 0},
1870 	[BMP580_ODR_80HZ] =	{80, 0},
1871 	[BMP580_ODR_70HZ] =	{70, 0},
1872 	[BMP580_ODR_60HZ] =	{60, 0},
1873 	[BMP580_ODR_50HZ] =	{50, 0},
1874 	[BMP580_ODR_45HZ] =	{45, 0},
1875 	[BMP580_ODR_40HZ] =	{40, 0},
1876 	[BMP580_ODR_35HZ] =	{35, 0},
1877 	[BMP580_ODR_30HZ] =	{30, 0},
1878 	[BMP580_ODR_25HZ] =	{25, 0},
1879 	[BMP580_ODR_20HZ] =	{20, 0},
1880 	[BMP580_ODR_15HZ] =	{15, 0},
1881 	[BMP580_ODR_10HZ] =	{10, 0},
1882 	[BMP580_ODR_5HZ] =	{5, 0},
1883 	[BMP580_ODR_4HZ] =	{4, 0},
1884 	[BMP580_ODR_3HZ] =	{3, 0},
1885 	[BMP580_ODR_2HZ] =	{2, 0},
1886 	[BMP580_ODR_1HZ] =	{1, 0},
1887 	[BMP580_ODR_0_5HZ] =	{0, 500000},
1888 	[BMP580_ODR_0_25HZ] =	{0, 250000},
1889 	[BMP580_ODR_0_125HZ] =	{0, 125000},
1890 };
1891 
1892 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 };
1893 
1894 static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val,
1895 				  size_t bytes)
1896 {
1897 	struct bmp280_data *data = priv;
1898 	u16 *dst = val;
1899 	int ret, addr;
1900 
1901 	guard(mutex)(&data->lock);
1902 
1903 	/* Set sensor in standby mode */
1904 	ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1905 				 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1906 				 BMP580_ODR_DEEPSLEEP_DIS |
1907 				 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1908 	if (ret) {
1909 		dev_err(data->dev, "failed to change sensor to standby mode\n");
1910 		goto exit;
1911 	}
1912 	/* Wait standby transition time */
1913 	usleep_range(2500, 3000);
1914 
1915 	while (bytes >= sizeof(*dst)) {
1916 		addr = bmp580_nvmem_addrs[offset / sizeof(*dst)];
1917 
1918 		ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
1919 				   FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1920 		if (ret) {
1921 			dev_err(data->dev, "error writing nvm address\n");
1922 			goto exit;
1923 		}
1924 
1925 		ret = bmp580_nvm_operation(data, false);
1926 		if (ret)
1927 			goto exit;
1928 
1929 		ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB,
1930 				       &data->le16, sizeof(data->le16));
1931 		if (ret) {
1932 			dev_err(data->dev, "error reading nvm data regs\n");
1933 			goto exit;
1934 		}
1935 
1936 		*dst++ = le16_to_cpu(data->le16);
1937 		bytes -= sizeof(*dst);
1938 		offset += sizeof(*dst);
1939 	}
1940 exit:
1941 	/* Restore chip config */
1942 	data->chip_info->chip_config(data);
1943 	return ret;
1944 }
1945 
1946 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val,
1947 			     size_t bytes)
1948 {
1949 	struct bmp280_data *data = priv;
1950 	int ret;
1951 
1952 	pm_runtime_get_sync(data->dev);
1953 	ret = bmp580_nvmem_read_impl(priv, offset, val, bytes);
1954 	pm_runtime_mark_last_busy(data->dev);
1955 	pm_runtime_put_autosuspend(data->dev);
1956 
1957 	return ret;
1958 }
1959 
1960 static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val,
1961 				   size_t bytes)
1962 {
1963 	struct bmp280_data *data = priv;
1964 	u16 *buf = val;
1965 	int ret, addr;
1966 
1967 	guard(mutex)(&data->lock);
1968 
1969 	/* Set sensor in standby mode */
1970 	ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
1971 				 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
1972 				 BMP580_ODR_DEEPSLEEP_DIS |
1973 				 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
1974 	if (ret) {
1975 		dev_err(data->dev, "failed to change sensor to standby mode\n");
1976 		goto exit;
1977 	}
1978 	/* Wait standby transition time */
1979 	usleep_range(2500, 3000);
1980 
1981 	while (bytes >= sizeof(*buf)) {
1982 		addr = bmp580_nvmem_addrs[offset / sizeof(*buf)];
1983 
1984 		ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR,
1985 				   BMP580_NVM_PROG_EN |
1986 				   FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr));
1987 		if (ret) {
1988 			dev_err(data->dev, "error writing nvm address\n");
1989 			goto exit;
1990 		}
1991 		data->le16 = cpu_to_le16(*buf++);
1992 
1993 		ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB,
1994 					&data->le16, sizeof(data->le16));
1995 		if (ret) {
1996 			dev_err(data->dev, "error writing LSB NVM data regs\n");
1997 			goto exit;
1998 		}
1999 
2000 		ret = bmp580_nvm_operation(data, true);
2001 		if (ret)
2002 			goto exit;
2003 
2004 		/* Disable programming mode bit */
2005 		ret = regmap_clear_bits(data->regmap, BMP580_REG_NVM_ADDR,
2006 					BMP580_NVM_PROG_EN);
2007 		if (ret) {
2008 			dev_err(data->dev, "error resetting nvm write\n");
2009 			goto exit;
2010 		}
2011 
2012 		bytes -= sizeof(*buf);
2013 		offset += sizeof(*buf);
2014 	}
2015 exit:
2016 	/* Restore chip config */
2017 	data->chip_info->chip_config(data);
2018 	return ret;
2019 }
2020 
2021 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val,
2022 			      size_t bytes)
2023 {
2024 	struct bmp280_data *data = priv;
2025 	int ret;
2026 
2027 	pm_runtime_get_sync(data->dev);
2028 	ret = bmp580_nvmem_write_impl(priv, offset, val, bytes);
2029 	pm_runtime_mark_last_busy(data->dev);
2030 	pm_runtime_put_autosuspend(data->dev);
2031 
2032 	return ret;
2033 }
2034 
2035 static int bmp580_preinit(struct bmp280_data *data)
2036 {
2037 	struct nvmem_config config = {
2038 		.dev = data->dev,
2039 		.priv = data,
2040 		.name = "bmp580_nvmem",
2041 		.word_size = sizeof(u16),
2042 		.stride = sizeof(u16),
2043 		.size = 3 * sizeof(u16),
2044 		.reg_read = bmp580_nvmem_read,
2045 		.reg_write = bmp580_nvmem_write,
2046 	};
2047 	unsigned int reg;
2048 	int ret;
2049 
2050 	/* Issue soft-reset command */
2051 	ret = bmp580_soft_reset(data);
2052 	if (ret)
2053 		return ret;
2054 
2055 	/* Post powerup sequence */
2056 	ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, &reg);
2057 	if (ret) {
2058 		dev_err(data->dev, "failed to establish comms with the chip\n");
2059 		return ret;
2060 	}
2061 
2062 	/* Print warn message if we don't know the chip id */
2063 	if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT)
2064 		dev_warn(data->dev, "unexpected chip_id\n");
2065 
2066 	ret = regmap_read(data->regmap, BMP580_REG_STATUS, &reg);
2067 	if (ret) {
2068 		dev_err(data->dev, "failed to read nvm status\n");
2069 		return ret;
2070 	}
2071 
2072 	/* Check nvm status */
2073 	if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) {
2074 		dev_err(data->dev, "nvm error on powerup sequence\n");
2075 		return -EIO;
2076 	}
2077 
2078 	/* Register nvmem device */
2079 	return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config));
2080 }
2081 
2082 static int bmp580_chip_config(struct bmp280_data *data)
2083 {
2084 	bool change = false, aux;
2085 	unsigned int tmp;
2086 	u8 reg_val;
2087 	int ret;
2088 
2089 	/* Sets sensor in standby mode */
2090 	ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG,
2091 				 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS,
2092 				 BMP580_ODR_DEEPSLEEP_DIS |
2093 				 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP));
2094 	if (ret) {
2095 		dev_err(data->dev, "failed to change sensor to standby mode\n");
2096 		return ret;
2097 	}
2098 	/* From datasheet's table 4: electrical characteristics */
2099 	usleep_range(2500, 3000);
2100 
2101 	/* Set default DSP mode settings */
2102 	reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) |
2103 		  BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN;
2104 
2105 	ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG,
2106 				 BMP580_DSP_COMP_MASK |
2107 				 BMP580_DSP_SHDW_IIR_TEMP_EN |
2108 				 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val);
2109 	if (ret) {
2110 		dev_err(data->dev, "failed to change DSP mode settings\n");
2111 		return ret;
2112 	}
2113 
2114 	/* Configure oversampling */
2115 	reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) |
2116 		  FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) |
2117 		  BMP580_OSR_PRESS_EN;
2118 
2119 	ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG,
2120 				       BMP580_OSR_TEMP_MASK |
2121 				       BMP580_OSR_PRESS_MASK |
2122 				       BMP580_OSR_PRESS_EN,
2123 				       reg_val, &aux);
2124 	if (ret) {
2125 		dev_err(data->dev, "failed to write oversampling register\n");
2126 		return ret;
2127 	}
2128 	change = change || aux;
2129 
2130 	/* Configure output data rate */
2131 	ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK,
2132 				       FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq),
2133 				       &aux);
2134 	if (ret) {
2135 		dev_err(data->dev, "failed to write ODR configuration register\n");
2136 		return ret;
2137 	}
2138 	change = change || aux;
2139 
2140 	/* Set filter data */
2141 	reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) |
2142 		  FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff);
2143 
2144 	ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR,
2145 				       BMP580_DSP_IIR_PRESS_MASK |
2146 				       BMP580_DSP_IIR_TEMP_MASK,
2147 				       reg_val, &aux);
2148 	if (ret) {
2149 		dev_err(data->dev, "failed to write config register\n");
2150 		return ret;
2151 	}
2152 	change = change || aux;
2153 
2154 	/* Restore sensor to normal operation mode */
2155 	ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG,
2156 				BMP580_MODE_MASK,
2157 				FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL));
2158 	if (ret) {
2159 		dev_err(data->dev, "failed to set normal mode\n");
2160 		return ret;
2161 	}
2162 	/* From datasheet's table 4: electrical characteristics */
2163 	usleep_range(3000, 3500);
2164 
2165 	if (change) {
2166 		/*
2167 		 * Check if ODR and OSR settings are valid or we are
2168 		 * operating in a degraded mode.
2169 		 */
2170 		ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp);
2171 		if (ret) {
2172 			dev_err(data->dev,
2173 				"error reading effective OSR register\n");
2174 			return ret;
2175 		}
2176 		if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) {
2177 			dev_warn(data->dev, "OSR and ODR incompatible settings detected\n");
2178 			/* Set current OSR settings from data on effective OSR */
2179 			data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp);
2180 			data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp);
2181 			return -EINVAL;
2182 		}
2183 	}
2184 
2185 	return 0;
2186 }
2187 
2188 static irqreturn_t bmp580_trigger_handler(int irq, void *p)
2189 {
2190 	struct iio_poll_func *pf = p;
2191 	struct iio_dev *indio_dev = pf->indio_dev;
2192 	struct bmp280_data *data = iio_priv(indio_dev);
2193 	int ret;
2194 
2195 	guard(mutex)(&data->lock);
2196 
2197 	/* Burst read data registers */
2198 	ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB,
2199 			       data->buf, BMP280_BURST_READ_BYTES);
2200 	if (ret) {
2201 		dev_err(data->dev, "failed to burst read sensor data\n");
2202 		goto out;
2203 	}
2204 
2205 	/* Temperature calculations */
2206 	memcpy(&data->sensor_data[1], &data->buf[0], 3);
2207 
2208 	/* Pressure calculations */
2209 	memcpy(&data->sensor_data[0], &data->buf[3], 3);
2210 
2211 	iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data,
2212 					   iio_get_time_ns(indio_dev));
2213 
2214 out:
2215 	iio_trigger_notify_done(indio_dev->trig);
2216 
2217 	return IRQ_HANDLED;
2218 }
2219 
2220 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 };
2221 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT };
2222 /* Instead of { 1000, 16 } we do this, to avoid overflow issues */
2223 static const int bmp580_temp_coeffs[] = { 125, 13 };
2224 static const int bmp580_press_coeffs[] = { 1, 64000};
2225 
2226 const struct bmp280_chip_info bmp580_chip_info = {
2227 	.id_reg = BMP580_REG_CHIP_ID,
2228 	.chip_id = bmp580_chip_ids,
2229 	.num_chip_id = ARRAY_SIZE(bmp580_chip_ids),
2230 	.regmap_config = &bmp580_regmap_config,
2231 	.start_up_time = 2000,
2232 	.channels = bmp580_channels,
2233 	.num_channels = ARRAY_SIZE(bmp580_channels),
2234 	.avail_scan_masks = bmp280_avail_scan_masks,
2235 
2236 	.oversampling_temp_avail = bmp580_oversampling_avail,
2237 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail),
2238 	.oversampling_temp_default = ilog2(1),
2239 
2240 	.oversampling_press_avail = bmp580_oversampling_avail,
2241 	.num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail),
2242 	.oversampling_press_default = ilog2(4),
2243 
2244 	.sampling_freq_avail = bmp580_odr_table,
2245 	.num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2,
2246 	.sampling_freq_default = BMP580_ODR_50HZ,
2247 
2248 	.iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail,
2249 	.num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail),
2250 	.iir_filter_coeff_default = 2,
2251 
2252 	.temp_coeffs = bmp580_temp_coeffs,
2253 	.temp_coeffs_type = IIO_VAL_FRACTIONAL_LOG2,
2254 	.press_coeffs = bmp580_press_coeffs,
2255 	.press_coeffs_type = IIO_VAL_FRACTIONAL,
2256 
2257 	.chip_config = bmp580_chip_config,
2258 	.read_temp = bmp580_read_temp,
2259 	.read_press = bmp580_read_press,
2260 	.preinit = bmp580_preinit,
2261 
2262 	.trigger_handler = bmp580_trigger_handler,
2263 };
2264 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280);
2265 
2266 static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas)
2267 {
2268 	static const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
2269 	unsigned int delay_us;
2270 	unsigned int ctrl;
2271 	int ret;
2272 
2273 	if (data->use_eoc)
2274 		reinit_completion(&data->done);
2275 
2276 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
2277 	if (ret) {
2278 		dev_err(data->dev, "failed to write crtl_meas register\n");
2279 		return ret;
2280 	}
2281 
2282 	if (data->use_eoc) {
2283 		/*
2284 		 * If we have a completion interrupt, use it, wait up to
2285 		 * 100ms. The longest conversion time listed is 76.5 ms for
2286 		 * advanced resolution mode.
2287 		 */
2288 		ret = wait_for_completion_timeout(&data->done,
2289 						  1 + msecs_to_jiffies(100));
2290 		if (!ret)
2291 			dev_err(data->dev, "timeout waiting for completion\n");
2292 	} else {
2293 		if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP)
2294 			delay_us = 4500;
2295 		else
2296 			delay_us =
2297 				conversion_time_max[data->oversampling_press];
2298 
2299 		usleep_range(delay_us, delay_us + 1000);
2300 	}
2301 
2302 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
2303 	if (ret) {
2304 		dev_err(data->dev, "failed to read ctrl_meas register\n");
2305 		return ret;
2306 	}
2307 
2308 	/* The value of this bit reset to "0" after conversion is complete */
2309 	if (ctrl & BMP180_MEAS_SCO) {
2310 		dev_err(data->dev, "conversion didn't complete\n");
2311 		return -EIO;
2312 	}
2313 
2314 	return 0;
2315 }
2316 
2317 static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp)
2318 {
2319 	int ret;
2320 
2321 	ret = bmp180_wait_for_eoc(data,
2322 				  FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) |
2323 				  BMP180_MEAS_SCO);
2324 	if (ret)
2325 		return ret;
2326 
2327 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
2328 			       &data->be16, sizeof(data->be16));
2329 	if (ret) {
2330 		dev_err(data->dev, "failed to read temperature\n");
2331 		return ret;
2332 	}
2333 
2334 	*adc_temp = be16_to_cpu(data->be16);
2335 
2336 	return 0;
2337 }
2338 
2339 static int bmp180_read_calib(struct bmp280_data *data)
2340 {
2341 	struct bmp180_calib *calib = &data->calib.bmp180;
2342 	int ret;
2343 	int i;
2344 
2345 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START,
2346 			       data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf));
2347 	if (ret) {
2348 		dev_err(data->dev, "failed to read calibration parameters\n");
2349 		return ret;
2350 	}
2351 
2352 	/* None of the words has the value 0 or 0xFFFF */
2353 	for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) {
2354 		if (data->bmp180_cal_buf[i] == cpu_to_be16(0) ||
2355 		    data->bmp180_cal_buf[i] == cpu_to_be16(0xffff))
2356 			return -EIO;
2357 	}
2358 
2359 	/* Toss the calibration data into the entropy pool */
2360 	add_device_randomness(data->bmp180_cal_buf,
2361 			      sizeof(data->bmp180_cal_buf));
2362 
2363 	calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]);
2364 	calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]);
2365 	calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]);
2366 	calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]);
2367 	calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]);
2368 	calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]);
2369 	calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]);
2370 	calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]);
2371 	calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]);
2372 	calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]);
2373 	calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]);
2374 
2375 	return 0;
2376 }
2377 
2378 /*
2379  * Returns temperature in DegC, resolution is 0.1 DegC.
2380  * t_fine carries fine temperature as global value.
2381  *
2382  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
2383  */
2384 
2385 static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp)
2386 {
2387 	struct bmp180_calib *calib = &data->calib.bmp180;
2388 	s32 x1, x2;
2389 
2390 	x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15;
2391 	x2 = (calib->MC << 11) / (x1 + calib->MD);
2392 	return x1 + x2; /* t_fine = x1 + x2; */
2393 }
2394 
2395 static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine)
2396 {
2397 	s32 adc_temp;
2398 	int ret;
2399 
2400 	ret = bmp180_read_temp_adc(data, &adc_temp);
2401 	if (ret)
2402 		return ret;
2403 
2404 	*t_fine = bmp180_calc_t_fine(data, adc_temp);
2405 
2406 	return 0;
2407 }
2408 
2409 static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp)
2410 {
2411 	return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16;
2412 }
2413 
2414 static int bmp180_read_temp(struct bmp280_data *data, s32 *comp_temp)
2415 {
2416 	u32 adc_temp;
2417 	int ret;
2418 
2419 	ret = bmp180_read_temp_adc(data, &adc_temp);
2420 	if (ret)
2421 		return ret;
2422 
2423 	*comp_temp = bmp180_compensate_temp(data, adc_temp);
2424 
2425 	return 0;
2426 }
2427 
2428 static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press)
2429 {
2430 	u8 oss = data->oversampling_press;
2431 	int ret;
2432 
2433 	ret = bmp180_wait_for_eoc(data,
2434 				  FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) |
2435 				  FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) |
2436 				  BMP180_MEAS_SCO);
2437 	if (ret)
2438 		return ret;
2439 
2440 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB,
2441 			       data->buf, BMP280_NUM_PRESS_BYTES);
2442 	if (ret) {
2443 		dev_err(data->dev, "failed to read pressure\n");
2444 		return ret;
2445 	}
2446 
2447 	*adc_press = get_unaligned_be24(data->buf) >> (8 - oss);
2448 
2449 	return 0;
2450 }
2451 
2452 /*
2453  * Returns pressure in Pa, resolution is 1 Pa.
2454  *
2455  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
2456  */
2457 static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press,
2458 				   s32 t_fine)
2459 {
2460 	struct bmp180_calib *calib = &data->calib.bmp180;
2461 	s32 oss = data->oversampling_press;
2462 	s32 x1, x2, x3, p;
2463 	s32 b3, b6;
2464 	u32 b4, b7;
2465 
2466 	b6 = t_fine - 4000;
2467 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
2468 	x2 = calib->AC2 * b6 >> 11;
2469 	x3 = x1 + x2;
2470 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
2471 	x1 = calib->AC3 * b6 >> 13;
2472 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
2473 	x3 = (x1 + x2 + 2) >> 2;
2474 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
2475 	b7 = (adc_press - b3) * (50000 >> oss);
2476 	if (b7 < 0x80000000)
2477 		p = (b7 * 2) / b4;
2478 	else
2479 		p = (b7 / b4) * 2;
2480 
2481 	x1 = (p >> 8) * (p >> 8);
2482 	x1 = (x1 * 3038) >> 16;
2483 	x2 = (-7357 * p) >> 16;
2484 
2485 	return p + ((x1 + x2 + 3791) >> 4);
2486 }
2487 
2488 static int bmp180_read_press(struct bmp280_data *data, u32 *comp_press)
2489 {
2490 	u32 adc_press;
2491 	s32 t_fine;
2492 	int ret;
2493 
2494 	ret = bmp180_get_t_fine(data, &t_fine);
2495 	if (ret)
2496 		return ret;
2497 
2498 	ret = bmp180_read_press_adc(data, &adc_press);
2499 	if (ret)
2500 		return ret;
2501 
2502 	*comp_press = bmp180_compensate_press(data, adc_press, t_fine);
2503 
2504 	return 0;
2505 }
2506 
2507 static int bmp180_chip_config(struct bmp280_data *data)
2508 {
2509 	return 0;
2510 }
2511 
2512 static irqreturn_t bmp180_trigger_handler(int irq, void *p)
2513 {
2514 	struct iio_poll_func *pf = p;
2515 	struct iio_dev *indio_dev = pf->indio_dev;
2516 	struct bmp280_data *data = iio_priv(indio_dev);
2517 	int ret, chan_value;
2518 
2519 	guard(mutex)(&data->lock);
2520 
2521 	ret = bmp180_read_temp(data, &chan_value);
2522 	if (ret)
2523 		goto out;
2524 
2525 	data->sensor_data[1] = chan_value;
2526 
2527 	ret = bmp180_read_press(data, &chan_value);
2528 	if (ret)
2529 		goto out;
2530 
2531 	data->sensor_data[0] = chan_value;
2532 
2533 	iio_push_to_buffers_with_timestamp(indio_dev, &data->sensor_data,
2534 					   iio_get_time_ns(indio_dev));
2535 
2536 out:
2537 	iio_trigger_notify_done(indio_dev->trig);
2538 
2539 	return IRQ_HANDLED;
2540 }
2541 
2542 static const int bmp180_oversampling_temp_avail[] = { 1 };
2543 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
2544 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID };
2545 static const int bmp180_temp_coeffs[] = { 100, 1 };
2546 static const int bmp180_press_coeffs[] = { 1, 1000 };
2547 
2548 const struct bmp280_chip_info bmp180_chip_info = {
2549 	.id_reg = BMP280_REG_ID,
2550 	.chip_id = bmp180_chip_ids,
2551 	.num_chip_id = ARRAY_SIZE(bmp180_chip_ids),
2552 	.regmap_config = &bmp180_regmap_config,
2553 	.start_up_time = 2000,
2554 	.channels = bmp280_channels,
2555 	.num_channels = ARRAY_SIZE(bmp280_channels),
2556 	.avail_scan_masks = bmp280_avail_scan_masks,
2557 
2558 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
2559 	.num_oversampling_temp_avail =
2560 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
2561 	.oversampling_temp_default = 0,
2562 
2563 	.oversampling_press_avail = bmp180_oversampling_press_avail,
2564 	.num_oversampling_press_avail =
2565 		ARRAY_SIZE(bmp180_oversampling_press_avail),
2566 	.oversampling_press_default = BMP180_MEAS_PRESS_8X,
2567 
2568 	.temp_coeffs = bmp180_temp_coeffs,
2569 	.temp_coeffs_type = IIO_VAL_FRACTIONAL,
2570 	.press_coeffs = bmp180_press_coeffs,
2571 	.press_coeffs_type = IIO_VAL_FRACTIONAL,
2572 
2573 	.chip_config = bmp180_chip_config,
2574 	.read_temp = bmp180_read_temp,
2575 	.read_press = bmp180_read_press,
2576 	.read_calib = bmp180_read_calib,
2577 
2578 	.trigger_handler = bmp180_trigger_handler,
2579 };
2580 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280);
2581 
2582 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
2583 {
2584 	struct bmp280_data *data = d;
2585 
2586 	complete(&data->done);
2587 
2588 	return IRQ_HANDLED;
2589 }
2590 
2591 static int bmp085_fetch_eoc_irq(struct device *dev,
2592 				const char *name,
2593 				int irq,
2594 				struct bmp280_data *data)
2595 {
2596 	unsigned long irq_trig;
2597 	int ret;
2598 
2599 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
2600 	if (irq_trig != IRQF_TRIGGER_RISING) {
2601 		dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n");
2602 		irq_trig = IRQF_TRIGGER_RISING;
2603 	}
2604 
2605 	init_completion(&data->done);
2606 
2607 	ret = devm_request_threaded_irq(dev,
2608 			irq,
2609 			bmp085_eoc_irq,
2610 			NULL,
2611 			irq_trig,
2612 			name,
2613 			data);
2614 	if (ret) {
2615 		/* Bail out without IRQ but keep the driver in place */
2616 		dev_err(dev, "unable to request DRDY IRQ\n");
2617 		return 0;
2618 	}
2619 
2620 	data->use_eoc = true;
2621 	return 0;
2622 }
2623 
2624 static int bmp280_buffer_preenable(struct iio_dev *indio_dev)
2625 {
2626 	struct bmp280_data *data = iio_priv(indio_dev);
2627 
2628 	pm_runtime_get_sync(data->dev);
2629 
2630 	return 0;
2631 }
2632 
2633 static int bmp280_buffer_postdisable(struct iio_dev *indio_dev)
2634 {
2635 	struct bmp280_data *data = iio_priv(indio_dev);
2636 
2637 	pm_runtime_mark_last_busy(data->dev);
2638 	pm_runtime_put_autosuspend(data->dev);
2639 
2640 	return 0;
2641 }
2642 
2643 static const struct iio_buffer_setup_ops bmp280_buffer_setup_ops = {
2644 	.preenable = bmp280_buffer_preenable,
2645 	.postdisable = bmp280_buffer_postdisable,
2646 };
2647 
2648 static void bmp280_pm_disable(void *data)
2649 {
2650 	struct device *dev = data;
2651 
2652 	pm_runtime_get_sync(dev);
2653 	pm_runtime_put_noidle(dev);
2654 	pm_runtime_disable(dev);
2655 }
2656 
2657 static void bmp280_regulators_disable(void *data)
2658 {
2659 	struct regulator_bulk_data *supplies = data;
2660 
2661 	regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
2662 }
2663 
2664 int bmp280_common_probe(struct device *dev,
2665 			struct regmap *regmap,
2666 			const struct bmp280_chip_info *chip_info,
2667 			const char *name,
2668 			int irq)
2669 {
2670 	struct iio_dev *indio_dev;
2671 	struct bmp280_data *data;
2672 	struct gpio_desc *gpiod;
2673 	unsigned int chip_id;
2674 	unsigned int i;
2675 	int ret;
2676 
2677 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
2678 	if (!indio_dev)
2679 		return -ENOMEM;
2680 
2681 	data = iio_priv(indio_dev);
2682 	mutex_init(&data->lock);
2683 	data->dev = dev;
2684 
2685 	indio_dev->name = name;
2686 	indio_dev->info = &bmp280_info;
2687 	indio_dev->modes = INDIO_DIRECT_MODE;
2688 
2689 	data->chip_info = chip_info;
2690 
2691 	/* Apply initial values from chip info structure */
2692 	indio_dev->channels = chip_info->channels;
2693 	indio_dev->num_channels = chip_info->num_channels;
2694 	indio_dev->available_scan_masks = chip_info->avail_scan_masks;
2695 	data->oversampling_press = chip_info->oversampling_press_default;
2696 	data->oversampling_humid = chip_info->oversampling_humid_default;
2697 	data->oversampling_temp = chip_info->oversampling_temp_default;
2698 	data->iir_filter_coeff = chip_info->iir_filter_coeff_default;
2699 	data->sampling_freq = chip_info->sampling_freq_default;
2700 	data->start_up_time = chip_info->start_up_time;
2701 
2702 	/* Bring up regulators */
2703 	regulator_bulk_set_supply_names(data->supplies,
2704 					bmp280_supply_names,
2705 					BMP280_NUM_SUPPLIES);
2706 
2707 	ret = devm_regulator_bulk_get(dev,
2708 				      BMP280_NUM_SUPPLIES, data->supplies);
2709 	if (ret) {
2710 		dev_err(dev, "failed to get regulators\n");
2711 		return ret;
2712 	}
2713 
2714 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2715 	if (ret) {
2716 		dev_err(dev, "failed to enable regulators\n");
2717 		return ret;
2718 	}
2719 
2720 	ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
2721 				       data->supplies);
2722 	if (ret)
2723 		return ret;
2724 
2725 	/* Wait to make sure we started up properly */
2726 	usleep_range(data->start_up_time, data->start_up_time + 100);
2727 
2728 	/* Bring chip out of reset if there is an assigned GPIO line */
2729 	gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
2730 	/* Deassert the signal */
2731 	if (gpiod) {
2732 		dev_info(dev, "release reset\n");
2733 		gpiod_set_value(gpiod, 0);
2734 	}
2735 
2736 	data->regmap = regmap;
2737 
2738 	ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id);
2739 	if (ret) {
2740 		dev_err(data->dev, "failed to read chip id\n");
2741 		return ret;
2742 	}
2743 
2744 	for (i = 0; i < data->chip_info->num_chip_id; i++) {
2745 		if (chip_id == data->chip_info->chip_id[i]) {
2746 			dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name);
2747 			break;
2748 		}
2749 	}
2750 
2751 	if (i == data->chip_info->num_chip_id)
2752 		dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id);
2753 
2754 	if (data->chip_info->preinit) {
2755 		ret = data->chip_info->preinit(data);
2756 		if (ret)
2757 			return dev_err_probe(data->dev, ret,
2758 					     "error running preinit tasks\n");
2759 	}
2760 
2761 	ret = data->chip_info->chip_config(data);
2762 	if (ret)
2763 		return ret;
2764 
2765 	dev_set_drvdata(dev, indio_dev);
2766 
2767 	/*
2768 	 * Some chips have calibration parameters "programmed into the devices'
2769 	 * non-volatile memory during production". Let's read them out at probe
2770 	 * time once. They will not change.
2771 	 */
2772 
2773 	if (data->chip_info->read_calib) {
2774 		ret = data->chip_info->read_calib(data);
2775 		if (ret)
2776 			return dev_err_probe(data->dev, ret,
2777 					     "failed to read calibration coefficients\n");
2778 	}
2779 
2780 	ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev,
2781 					      iio_pollfunc_store_time,
2782 					      data->chip_info->trigger_handler,
2783 					      &bmp280_buffer_setup_ops);
2784 	if (ret)
2785 		return dev_err_probe(data->dev, ret,
2786 				     "iio triggered buffer setup failed\n");
2787 
2788 	/*
2789 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
2790 	 * however as it happens, the BMP085 shares the chip ID of BMP180
2791 	 * so we look for an IRQ if we have that.
2792 	 */
2793 	if (irq > 0 && (chip_id  == BMP180_CHIP_ID)) {
2794 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
2795 		if (ret)
2796 			return ret;
2797 	}
2798 
2799 	/* Enable runtime PM */
2800 	pm_runtime_get_noresume(dev);
2801 	pm_runtime_set_active(dev);
2802 	pm_runtime_enable(dev);
2803 	/*
2804 	 * Set autosuspend to two orders of magnitude larger than the
2805 	 * start-up time.
2806 	 */
2807 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
2808 	pm_runtime_use_autosuspend(dev);
2809 	pm_runtime_put(dev);
2810 
2811 	ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
2812 	if (ret)
2813 		return ret;
2814 
2815 	return devm_iio_device_register(dev, indio_dev);
2816 }
2817 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280);
2818 
2819 static int bmp280_runtime_suspend(struct device *dev)
2820 {
2821 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2822 	struct bmp280_data *data = iio_priv(indio_dev);
2823 
2824 	return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
2825 }
2826 
2827 static int bmp280_runtime_resume(struct device *dev)
2828 {
2829 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
2830 	struct bmp280_data *data = iio_priv(indio_dev);
2831 	int ret;
2832 
2833 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
2834 	if (ret)
2835 		return ret;
2836 
2837 	usleep_range(data->start_up_time, data->start_up_time + 100);
2838 	return data->chip_info->chip_config(data);
2839 }
2840 
2841 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend,
2842 			  bmp280_runtime_resume, NULL);
2843 
2844 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
2845 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
2846 MODULE_LICENSE("GPL v2");
2847