1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> 4 * Copyright (c) 2012 Bosch Sensortec GmbH 5 * Copyright (c) 2012 Unixphere AB 6 * Copyright (c) 2014 Intel Corporation 7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> 8 * 9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. 10 * 11 * Datasheet: 12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf 13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf 14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf 15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf 16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf 17 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf 18 * 19 * Notice: 20 * The link to the bmp180 datasheet points to an outdated version missing these changes: 21 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 22 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 23 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 24 */ 25 26 #define pr_fmt(fmt) "bmp280: " fmt 27 28 #include <linux/bitops.h> 29 #include <linux/bitfield.h> 30 #include <linux/cleanup.h> 31 #include <linux/completion.h> 32 #include <linux/delay.h> 33 #include <linux/device.h> 34 #include <linux/gpio/consumer.h> 35 #include <linux/interrupt.h> 36 #include <linux/irq.h> /* For irq_get_irq_data() */ 37 #include <linux/module.h> 38 #include <linux/nvmem-provider.h> 39 #include <linux/pm_runtime.h> 40 #include <linux/random.h> 41 #include <linux/regmap.h> 42 #include <linux/regulator/consumer.h> 43 44 #include <linux/iio/iio.h> 45 46 #include <asm/unaligned.h> 47 48 #include "bmp280.h" 49 50 /* 51 * These enums are used for indexing into the array of calibration 52 * coefficients for BMP180. 53 */ 54 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; 55 56 enum bmp380_odr { 57 BMP380_ODR_200HZ, 58 BMP380_ODR_100HZ, 59 BMP380_ODR_50HZ, 60 BMP380_ODR_25HZ, 61 BMP380_ODR_12_5HZ, 62 BMP380_ODR_6_25HZ, 63 BMP380_ODR_3_125HZ, 64 BMP380_ODR_1_5625HZ, 65 BMP380_ODR_0_78HZ, 66 BMP380_ODR_0_39HZ, 67 BMP380_ODR_0_2HZ, 68 BMP380_ODR_0_1HZ, 69 BMP380_ODR_0_05HZ, 70 BMP380_ODR_0_02HZ, 71 BMP380_ODR_0_01HZ, 72 BMP380_ODR_0_006HZ, 73 BMP380_ODR_0_003HZ, 74 BMP380_ODR_0_0015HZ, 75 }; 76 77 enum bmp580_odr { 78 BMP580_ODR_240HZ, 79 BMP580_ODR_218HZ, 80 BMP580_ODR_199HZ, 81 BMP580_ODR_179HZ, 82 BMP580_ODR_160HZ, 83 BMP580_ODR_149HZ, 84 BMP580_ODR_140HZ, 85 BMP580_ODR_129HZ, 86 BMP580_ODR_120HZ, 87 BMP580_ODR_110HZ, 88 BMP580_ODR_100HZ, 89 BMP580_ODR_89HZ, 90 BMP580_ODR_80HZ, 91 BMP580_ODR_70HZ, 92 BMP580_ODR_60HZ, 93 BMP580_ODR_50HZ, 94 BMP580_ODR_45HZ, 95 BMP580_ODR_40HZ, 96 BMP580_ODR_35HZ, 97 BMP580_ODR_30HZ, 98 BMP580_ODR_25HZ, 99 BMP580_ODR_20HZ, 100 BMP580_ODR_15HZ, 101 BMP580_ODR_10HZ, 102 BMP580_ODR_5HZ, 103 BMP580_ODR_4HZ, 104 BMP580_ODR_3HZ, 105 BMP580_ODR_2HZ, 106 BMP580_ODR_1HZ, 107 BMP580_ODR_0_5HZ, 108 BMP580_ODR_0_25HZ, 109 BMP580_ODR_0_125HZ, 110 }; 111 112 /* 113 * These enums are used for indexing into the array of compensation 114 * parameters for BMP280. 115 */ 116 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; 117 118 enum { 119 /* Temperature calib indexes */ 120 BMP380_T1 = 0, 121 BMP380_T2 = 2, 122 BMP380_T3 = 4, 123 /* Pressure calib indexes */ 124 BMP380_P1 = 5, 125 BMP380_P2 = 7, 126 BMP380_P3 = 9, 127 BMP380_P4 = 10, 128 BMP380_P5 = 11, 129 BMP380_P6 = 13, 130 BMP380_P7 = 15, 131 BMP380_P8 = 16, 132 BMP380_P9 = 17, 133 BMP380_P10 = 19, 134 BMP380_P11 = 20, 135 }; 136 137 static const struct iio_chan_spec bmp280_channels[] = { 138 { 139 .type = IIO_PRESSURE, 140 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 141 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 142 }, 143 { 144 .type = IIO_TEMP, 145 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 146 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 147 }, 148 { 149 .type = IIO_HUMIDITYRELATIVE, 150 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 151 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 152 }, 153 }; 154 155 static const struct iio_chan_spec bmp380_channels[] = { 156 { 157 .type = IIO_PRESSURE, 158 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 159 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 160 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 161 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 162 }, 163 { 164 .type = IIO_TEMP, 165 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 166 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 167 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 168 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 169 }, 170 { 171 .type = IIO_HUMIDITYRELATIVE, 172 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 173 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 174 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 175 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 176 }, 177 }; 178 179 static int bmp280_read_calib(struct bmp280_data *data) 180 { 181 struct bmp280_calib *calib = &data->calib.bmp280; 182 int ret; 183 184 /* Read temperature and pressure calibration values. */ 185 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, 186 data->bmp280_cal_buf, 187 sizeof(data->bmp280_cal_buf)); 188 if (ret) { 189 dev_err(data->dev, 190 "failed to read calibration parameters\n"); 191 return ret; 192 } 193 194 /* Toss calibration data into the entropy pool */ 195 add_device_randomness(data->bmp280_cal_buf, 196 sizeof(data->bmp280_cal_buf)); 197 198 /* Parse temperature calibration values. */ 199 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); 200 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); 201 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); 202 203 /* Parse pressure calibration values. */ 204 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); 205 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); 206 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); 207 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); 208 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); 209 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); 210 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); 211 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); 212 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); 213 214 return 0; 215 } 216 217 static int bme280_read_calib(struct bmp280_data *data) 218 { 219 struct bmp280_calib *calib = &data->calib.bmp280; 220 struct device *dev = data->dev; 221 unsigned int tmp; 222 int ret; 223 224 /* Load shared calibration params with bmp280 first */ 225 ret = bmp280_read_calib(data); 226 if (ret) 227 return ret; 228 229 /* 230 * Read humidity calibration values. 231 * Due to some odd register addressing we cannot just 232 * do a big bulk read. Instead, we have to read each Hx 233 * value separately and sometimes do some bit shifting... 234 * Humidity data is only available on BME280. 235 */ 236 237 ret = regmap_read(data->regmap, BME280_REG_COMP_H1, &tmp); 238 if (ret) { 239 dev_err(dev, "failed to read H1 comp value\n"); 240 return ret; 241 } 242 calib->H1 = tmp; 243 244 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H2, 245 &data->le16, sizeof(data->le16)); 246 if (ret) { 247 dev_err(dev, "failed to read H2 comp value\n"); 248 return ret; 249 } 250 calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15); 251 252 ret = regmap_read(data->regmap, BME280_REG_COMP_H3, &tmp); 253 if (ret) { 254 dev_err(dev, "failed to read H3 comp value\n"); 255 return ret; 256 } 257 calib->H3 = tmp; 258 259 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H4, 260 &data->be16, sizeof(data->be16)); 261 if (ret) { 262 dev_err(dev, "failed to read H4 comp value\n"); 263 return ret; 264 } 265 calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) | 266 (be16_to_cpu(data->be16) & 0xf), 11); 267 268 ret = regmap_bulk_read(data->regmap, BME280_REG_COMP_H5, 269 &data->le16, sizeof(data->le16)); 270 if (ret) { 271 dev_err(dev, "failed to read H5 comp value\n"); 272 return ret; 273 } 274 calib->H5 = sign_extend32(FIELD_GET(BME280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11); 275 276 ret = regmap_read(data->regmap, BME280_REG_COMP_H6, &tmp); 277 if (ret) { 278 dev_err(dev, "failed to read H6 comp value\n"); 279 return ret; 280 } 281 calib->H6 = sign_extend32(tmp, 7); 282 283 return 0; 284 } 285 286 static int bme280_read_humid_adc(struct bmp280_data *data, u16 *adc_humidity) 287 { 288 u16 value_humidity; 289 int ret; 290 291 ret = regmap_bulk_read(data->regmap, BME280_REG_HUMIDITY_MSB, 292 &data->be16, sizeof(data->be16)); 293 if (ret) { 294 dev_err(data->dev, "failed to read humidity\n"); 295 return ret; 296 } 297 298 value_humidity = be16_to_cpu(data->be16); 299 if (value_humidity == BMP280_HUMIDITY_SKIPPED) { 300 dev_err(data->dev, "reading humidity skipped\n"); 301 return -EIO; 302 } 303 *adc_humidity = value_humidity; 304 305 return 0; 306 } 307 308 /* 309 * Returns humidity in percent, resolution is 0.01 percent. Output value of 310 * "47445" represents 47445/1024 = 46.333 %RH. 311 * 312 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". 313 */ 314 static u32 bme280_compensate_humidity(struct bmp280_data *data, 315 u16 adc_humidity, s32 t_fine) 316 { 317 struct bmp280_calib *calib = &data->calib.bmp280; 318 s32 var; 319 320 var = t_fine - (s32)76800; 321 var = (((((s32)adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) 322 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) 323 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) 324 + (s32)2097152) * calib->H2 + 8192) >> 14); 325 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; 326 327 var = clamp_val(var, 0, 419430400); 328 329 return var >> 12; 330 } 331 332 static int bmp280_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 333 { 334 u32 value_temp; 335 int ret; 336 337 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, 338 data->buf, sizeof(data->buf)); 339 if (ret) { 340 dev_err(data->dev, "failed to read temperature\n"); 341 return ret; 342 } 343 344 value_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 345 if (value_temp == BMP280_TEMP_SKIPPED) { 346 dev_err(data->dev, "reading temperature skipped\n"); 347 return -EIO; 348 } 349 *adc_temp = value_temp; 350 351 return 0; 352 } 353 354 /* 355 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of 356 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global 357 * value. 358 * 359 * Taken from datasheet, Section 3.11.3, "Compensation formula". 360 */ 361 static s32 bmp280_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 362 { 363 struct bmp280_calib *calib = &data->calib.bmp280; 364 s32 var1, var2; 365 366 var1 = (((((s32)adc_temp) >> 3) - ((s32)calib->T1 << 1)) * 367 ((s32)calib->T2)) >> 11; 368 var2 = (((((((s32)adc_temp) >> 4) - ((s32)calib->T1)) * 369 ((((s32)adc_temp >> 4) - ((s32)calib->T1))) >> 12) * 370 ((s32)calib->T3))) >> 14; 371 return var1 + var2; /* t_fine = var1 + var2 */ 372 } 373 374 static int bmp280_get_t_fine(struct bmp280_data *data, s32 *t_fine) 375 { 376 u32 adc_temp; 377 int ret; 378 379 ret = bmp280_read_temp_adc(data, &adc_temp); 380 if (ret) 381 return ret; 382 383 *t_fine = bmp280_calc_t_fine(data, adc_temp); 384 385 return 0; 386 } 387 388 static s32 bmp280_compensate_temp(struct bmp280_data *data, u32 adc_temp) 389 { 390 return (bmp280_calc_t_fine(data, adc_temp) * 5 + 128) / 256; 391 } 392 393 static int bmp280_read_press_adc(struct bmp280_data *data, u32 *adc_press) 394 { 395 u32 value_press; 396 int ret; 397 398 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 399 data->buf, sizeof(data->buf)); 400 if (ret) { 401 dev_err(data->dev, "failed to read pressure\n"); 402 return ret; 403 } 404 405 value_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 406 if (value_press == BMP280_PRESS_SKIPPED) { 407 dev_err(data->dev, "reading pressure skipped\n"); 408 return -EIO; 409 } 410 *adc_press = value_press; 411 412 return 0; 413 } 414 415 /* 416 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 417 * integer bits and 8 fractional bits). Output value of "24674867" 418 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa 419 * 420 * Taken from datasheet, Section 3.11.3, "Compensation formula". 421 */ 422 static u32 bmp280_compensate_press(struct bmp280_data *data, 423 u32 adc_press, s32 t_fine) 424 { 425 struct bmp280_calib *calib = &data->calib.bmp280; 426 s64 var1, var2, p; 427 428 var1 = ((s64)t_fine) - 128000; 429 var2 = var1 * var1 * (s64)calib->P6; 430 var2 += (var1 * (s64)calib->P5) << 17; 431 var2 += ((s64)calib->P4) << 35; 432 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + 433 ((var1 * (s64)calib->P2) << 12); 434 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; 435 436 if (var1 == 0) 437 return 0; 438 439 p = ((((s64)1048576 - (s32)adc_press) << 31) - var2) * 3125; 440 p = div64_s64(p, var1); 441 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; 442 var2 = ((s64)(calib->P8) * p) >> 19; 443 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); 444 445 return (u32)p; 446 } 447 448 static int bmp280_read_temp(struct bmp280_data *data, 449 int *val, int *val2) 450 { 451 s32 comp_temp; 452 u32 adc_temp; 453 int ret; 454 455 ret = bmp280_read_temp_adc(data, &adc_temp); 456 if (ret) 457 return ret; 458 459 comp_temp = bmp280_compensate_temp(data, adc_temp); 460 461 *val = comp_temp * 10; 462 return IIO_VAL_INT; 463 } 464 465 static int bmp280_read_press(struct bmp280_data *data, 466 int *val, int *val2) 467 { 468 u32 comp_press, adc_press, t_fine; 469 int ret; 470 471 ret = bmp280_get_t_fine(data, &t_fine); 472 if (ret) 473 return ret; 474 475 ret = bmp280_read_press_adc(data, &adc_press); 476 if (ret) 477 return ret; 478 479 comp_press = bmp280_compensate_press(data, adc_press, t_fine); 480 481 *val = comp_press; 482 *val2 = 256000; 483 484 return IIO_VAL_FRACTIONAL; 485 } 486 487 static int bme280_read_humid(struct bmp280_data *data, int *val, int *val2) 488 { 489 u32 comp_humidity; 490 u16 adc_humidity; 491 s32 t_fine; 492 int ret; 493 494 ret = bmp280_get_t_fine(data, &t_fine); 495 if (ret) 496 return ret; 497 498 ret = bme280_read_humid_adc(data, &adc_humidity); 499 if (ret) 500 return ret; 501 502 comp_humidity = bme280_compensate_humidity(data, adc_humidity, t_fine); 503 504 *val = comp_humidity * 1000 / 1024; 505 506 return IIO_VAL_INT; 507 } 508 509 static int bmp280_read_raw_impl(struct iio_dev *indio_dev, 510 struct iio_chan_spec const *chan, 511 int *val, int *val2, long mask) 512 { 513 struct bmp280_data *data = iio_priv(indio_dev); 514 515 guard(mutex)(&data->lock); 516 517 switch (mask) { 518 case IIO_CHAN_INFO_PROCESSED: 519 switch (chan->type) { 520 case IIO_HUMIDITYRELATIVE: 521 return data->chip_info->read_humid(data, val, val2); 522 case IIO_PRESSURE: 523 return data->chip_info->read_press(data, val, val2); 524 case IIO_TEMP: 525 return data->chip_info->read_temp(data, val, val2); 526 default: 527 return -EINVAL; 528 } 529 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 530 switch (chan->type) { 531 case IIO_HUMIDITYRELATIVE: 532 *val = 1 << data->oversampling_humid; 533 return IIO_VAL_INT; 534 case IIO_PRESSURE: 535 *val = 1 << data->oversampling_press; 536 return IIO_VAL_INT; 537 case IIO_TEMP: 538 *val = 1 << data->oversampling_temp; 539 return IIO_VAL_INT; 540 default: 541 return -EINVAL; 542 } 543 case IIO_CHAN_INFO_SAMP_FREQ: 544 if (!data->chip_info->sampling_freq_avail) 545 return -EINVAL; 546 547 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; 548 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; 549 return IIO_VAL_INT_PLUS_MICRO; 550 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 551 if (!data->chip_info->iir_filter_coeffs_avail) 552 return -EINVAL; 553 554 *val = (1 << data->iir_filter_coeff) - 1; 555 return IIO_VAL_INT; 556 default: 557 return -EINVAL; 558 } 559 } 560 561 static int bmp280_read_raw(struct iio_dev *indio_dev, 562 struct iio_chan_spec const *chan, 563 int *val, int *val2, long mask) 564 { 565 struct bmp280_data *data = iio_priv(indio_dev); 566 int ret; 567 568 pm_runtime_get_sync(data->dev); 569 ret = bmp280_read_raw_impl(indio_dev, chan, val, val2, mask); 570 pm_runtime_mark_last_busy(data->dev); 571 pm_runtime_put_autosuspend(data->dev); 572 573 return ret; 574 } 575 576 static int bme280_write_oversampling_ratio_humid(struct bmp280_data *data, 577 int val) 578 { 579 const int *avail = data->chip_info->oversampling_humid_avail; 580 const int n = data->chip_info->num_oversampling_humid_avail; 581 int ret, prev; 582 int i; 583 584 for (i = 0; i < n; i++) { 585 if (avail[i] == val) { 586 prev = data->oversampling_humid; 587 data->oversampling_humid = ilog2(val); 588 589 ret = data->chip_info->chip_config(data); 590 if (ret) { 591 data->oversampling_humid = prev; 592 data->chip_info->chip_config(data); 593 return ret; 594 } 595 return 0; 596 } 597 } 598 return -EINVAL; 599 } 600 601 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, 602 int val) 603 { 604 const int *avail = data->chip_info->oversampling_temp_avail; 605 const int n = data->chip_info->num_oversampling_temp_avail; 606 int ret, prev; 607 int i; 608 609 for (i = 0; i < n; i++) { 610 if (avail[i] == val) { 611 prev = data->oversampling_temp; 612 data->oversampling_temp = ilog2(val); 613 614 ret = data->chip_info->chip_config(data); 615 if (ret) { 616 data->oversampling_temp = prev; 617 data->chip_info->chip_config(data); 618 return ret; 619 } 620 return 0; 621 } 622 } 623 return -EINVAL; 624 } 625 626 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, 627 int val) 628 { 629 const int *avail = data->chip_info->oversampling_press_avail; 630 const int n = data->chip_info->num_oversampling_press_avail; 631 int ret, prev; 632 int i; 633 634 for (i = 0; i < n; i++) { 635 if (avail[i] == val) { 636 prev = data->oversampling_press; 637 data->oversampling_press = ilog2(val); 638 639 ret = data->chip_info->chip_config(data); 640 if (ret) { 641 data->oversampling_press = prev; 642 data->chip_info->chip_config(data); 643 return ret; 644 } 645 return 0; 646 } 647 } 648 return -EINVAL; 649 } 650 651 static int bmp280_write_sampling_frequency(struct bmp280_data *data, 652 int val, int val2) 653 { 654 const int (*avail)[2] = data->chip_info->sampling_freq_avail; 655 const int n = data->chip_info->num_sampling_freq_avail; 656 int ret, prev; 657 int i; 658 659 for (i = 0; i < n; i++) { 660 if (avail[i][0] == val && avail[i][1] == val2) { 661 prev = data->sampling_freq; 662 data->sampling_freq = i; 663 664 ret = data->chip_info->chip_config(data); 665 if (ret) { 666 data->sampling_freq = prev; 667 data->chip_info->chip_config(data); 668 return ret; 669 } 670 return 0; 671 } 672 } 673 return -EINVAL; 674 } 675 676 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) 677 { 678 const int *avail = data->chip_info->iir_filter_coeffs_avail; 679 const int n = data->chip_info->num_iir_filter_coeffs_avail; 680 int ret, prev; 681 int i; 682 683 for (i = 0; i < n; i++) { 684 if (avail[i] - 1 == val) { 685 prev = data->iir_filter_coeff; 686 data->iir_filter_coeff = i; 687 688 ret = data->chip_info->chip_config(data); 689 if (ret) { 690 data->iir_filter_coeff = prev; 691 data->chip_info->chip_config(data); 692 return ret; 693 694 } 695 return 0; 696 } 697 } 698 return -EINVAL; 699 } 700 701 static int bmp280_write_raw_impl(struct iio_dev *indio_dev, 702 struct iio_chan_spec const *chan, 703 int val, int val2, long mask) 704 { 705 struct bmp280_data *data = iio_priv(indio_dev); 706 707 guard(mutex)(&data->lock); 708 709 /* 710 * Helper functions to update sensor running configuration. 711 * If an error happens applying new settings, will try restore 712 * previous parameters to ensure the sensor is left in a known 713 * working configuration. 714 */ 715 switch (mask) { 716 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 717 switch (chan->type) { 718 case IIO_HUMIDITYRELATIVE: 719 return bme280_write_oversampling_ratio_humid(data, val); 720 case IIO_PRESSURE: 721 return bmp280_write_oversampling_ratio_press(data, val); 722 case IIO_TEMP: 723 return bmp280_write_oversampling_ratio_temp(data, val); 724 default: 725 return -EINVAL; 726 } 727 case IIO_CHAN_INFO_SAMP_FREQ: 728 return bmp280_write_sampling_frequency(data, val, val2); 729 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 730 return bmp280_write_iir_filter_coeffs(data, val); 731 default: 732 return -EINVAL; 733 } 734 } 735 736 static int bmp280_write_raw(struct iio_dev *indio_dev, 737 struct iio_chan_spec const *chan, 738 int val, int val2, long mask) 739 { 740 struct bmp280_data *data = iio_priv(indio_dev); 741 int ret; 742 743 pm_runtime_get_sync(data->dev); 744 ret = bmp280_write_raw_impl(indio_dev, chan, val, val2, mask); 745 pm_runtime_mark_last_busy(data->dev); 746 pm_runtime_put_autosuspend(data->dev); 747 748 return ret; 749 } 750 751 static int bmp280_read_avail(struct iio_dev *indio_dev, 752 struct iio_chan_spec const *chan, 753 const int **vals, int *type, int *length, 754 long mask) 755 { 756 struct bmp280_data *data = iio_priv(indio_dev); 757 758 switch (mask) { 759 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 760 switch (chan->type) { 761 case IIO_PRESSURE: 762 *vals = data->chip_info->oversampling_press_avail; 763 *length = data->chip_info->num_oversampling_press_avail; 764 break; 765 case IIO_TEMP: 766 *vals = data->chip_info->oversampling_temp_avail; 767 *length = data->chip_info->num_oversampling_temp_avail; 768 break; 769 default: 770 return -EINVAL; 771 } 772 *type = IIO_VAL_INT; 773 return IIO_AVAIL_LIST; 774 case IIO_CHAN_INFO_SAMP_FREQ: 775 *vals = (const int *)data->chip_info->sampling_freq_avail; 776 *type = IIO_VAL_INT_PLUS_MICRO; 777 /* Values are stored in a 2D matrix */ 778 *length = data->chip_info->num_sampling_freq_avail; 779 return IIO_AVAIL_LIST; 780 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 781 *vals = data->chip_info->iir_filter_coeffs_avail; 782 *type = IIO_VAL_INT; 783 *length = data->chip_info->num_iir_filter_coeffs_avail; 784 return IIO_AVAIL_LIST; 785 default: 786 return -EINVAL; 787 } 788 } 789 790 static const struct iio_info bmp280_info = { 791 .read_raw = &bmp280_read_raw, 792 .read_avail = &bmp280_read_avail, 793 .write_raw = &bmp280_write_raw, 794 }; 795 796 static int bmp280_chip_config(struct bmp280_data *data) 797 { 798 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | 799 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); 800 int ret; 801 802 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, 803 BMP280_OSRS_TEMP_MASK | 804 BMP280_OSRS_PRESS_MASK | 805 BMP280_MODE_MASK, 806 osrs | BMP280_MODE_NORMAL); 807 if (ret) { 808 dev_err(data->dev, "failed to write ctrl_meas register\n"); 809 return ret; 810 } 811 812 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, 813 BMP280_FILTER_MASK, 814 BMP280_FILTER_4X); 815 if (ret) { 816 dev_err(data->dev, "failed to write config register\n"); 817 return ret; 818 } 819 820 return ret; 821 } 822 823 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; 824 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; 825 826 const struct bmp280_chip_info bmp280_chip_info = { 827 .id_reg = BMP280_REG_ID, 828 .chip_id = bmp280_chip_ids, 829 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), 830 .regmap_config = &bmp280_regmap_config, 831 .start_up_time = 2000, 832 .channels = bmp280_channels, 833 .num_channels = 2, 834 835 .oversampling_temp_avail = bmp280_oversampling_avail, 836 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 837 /* 838 * Oversampling config values on BMx280 have one additional setting 839 * that other generations of the family don't: 840 * The value 0 means the measurement is bypassed instead of 841 * oversampling set to x1. 842 * 843 * To account for this difference, and preserve the same common 844 * config logic, this is handled later on chip_config callback 845 * incrementing one unit the oversampling setting. 846 */ 847 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 848 849 .oversampling_press_avail = bmp280_oversampling_avail, 850 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 851 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 852 853 .chip_config = bmp280_chip_config, 854 .read_temp = bmp280_read_temp, 855 .read_press = bmp280_read_press, 856 .read_calib = bmp280_read_calib, 857 }; 858 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); 859 860 static int bme280_chip_config(struct bmp280_data *data) 861 { 862 u8 osrs = FIELD_PREP(BME280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); 863 int ret; 864 865 /* 866 * Oversampling of humidity must be set before oversampling of 867 * temperature/pressure is set to become effective. 868 */ 869 ret = regmap_update_bits(data->regmap, BME280_REG_CTRL_HUMIDITY, 870 BME280_OSRS_HUMIDITY_MASK, osrs); 871 if (ret) { 872 dev_err(data->dev, "failed to set humidity oversampling"); 873 return ret; 874 } 875 876 return bmp280_chip_config(data); 877 } 878 879 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; 880 881 const struct bmp280_chip_info bme280_chip_info = { 882 .id_reg = BMP280_REG_ID, 883 .chip_id = bme280_chip_ids, 884 .num_chip_id = ARRAY_SIZE(bme280_chip_ids), 885 .regmap_config = &bmp280_regmap_config, 886 .start_up_time = 2000, 887 .channels = bmp280_channels, 888 .num_channels = 3, 889 890 .oversampling_temp_avail = bmp280_oversampling_avail, 891 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 892 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 893 894 .oversampling_press_avail = bmp280_oversampling_avail, 895 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 896 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 897 898 .oversampling_humid_avail = bmp280_oversampling_avail, 899 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), 900 .oversampling_humid_default = BME280_OSRS_HUMIDITY_16X - 1, 901 902 .chip_config = bme280_chip_config, 903 .read_temp = bmp280_read_temp, 904 .read_press = bmp280_read_press, 905 .read_humid = bme280_read_humid, 906 .read_calib = bme280_read_calib, 907 }; 908 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); 909 910 /* 911 * Helper function to send a command to BMP3XX sensors. 912 * 913 * Sensor processes commands written to the CMD register and signals 914 * execution result through "cmd_rdy" and "cmd_error" flags available on 915 * STATUS and ERROR registers. 916 */ 917 static int bmp380_cmd(struct bmp280_data *data, u8 cmd) 918 { 919 unsigned int reg; 920 int ret; 921 922 /* Check if device is ready to process a command */ 923 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); 924 if (ret) { 925 dev_err(data->dev, "failed to read error register\n"); 926 return ret; 927 } 928 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { 929 dev_err(data->dev, "device is not ready to accept commands\n"); 930 return -EBUSY; 931 } 932 933 /* Send command to process */ 934 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); 935 if (ret) { 936 dev_err(data->dev, "failed to send command to device\n"); 937 return ret; 938 } 939 /* Wait for 2ms for command to be processed */ 940 usleep_range(data->start_up_time, data->start_up_time + 100); 941 /* Check for command processing error */ 942 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); 943 if (ret) { 944 dev_err(data->dev, "error reading ERROR reg\n"); 945 return ret; 946 } 947 if (reg & BMP380_ERR_CMD_MASK) { 948 dev_err(data->dev, "error processing command 0x%X\n", cmd); 949 return -EINVAL; 950 } 951 952 return 0; 953 } 954 955 static int bmp380_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 956 { 957 u32 value_temp; 958 int ret; 959 960 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, 961 data->buf, sizeof(data->buf)); 962 if (ret) { 963 dev_err(data->dev, "failed to read temperature\n"); 964 return ret; 965 } 966 967 value_temp = get_unaligned_le24(data->buf); 968 if (value_temp == BMP380_TEMP_SKIPPED) { 969 dev_err(data->dev, "reading temperature skipped\n"); 970 return -EIO; 971 } 972 *adc_temp = value_temp; 973 974 return 0; 975 } 976 977 /* 978 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value 979 * of "5123" equals 51.2º C. t_fine carries fine temperature as global value. 980 * 981 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo 982 * https://github.com/BoschSensortec/BMP3-Sensor-API. 983 */ 984 static s32 bmp380_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 985 { 986 s64 var1, var2, var3, var4, var5, var6; 987 struct bmp380_calib *calib = &data->calib.bmp380; 988 989 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); 990 var2 = var1 * ((s64) calib->T2); 991 var3 = var1 * var1; 992 var4 = var3 * ((s64) calib->T3); 993 var5 = (var2 << 18) + var4; 994 var6 = var5 >> 32; 995 return (s32)var6; /* t_fine = var6 */ 996 } 997 998 static int bmp380_get_t_fine(struct bmp280_data *data, s32 *t_fine) 999 { 1000 s32 adc_temp; 1001 int ret; 1002 1003 ret = bmp380_read_temp_adc(data, &adc_temp); 1004 if (ret) 1005 return ret; 1006 1007 *t_fine = bmp380_calc_t_fine(data, adc_temp); 1008 1009 return 0; 1010 } 1011 1012 static int bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) 1013 { 1014 s64 comp_temp; 1015 s32 var6; 1016 1017 var6 = bmp380_calc_t_fine(data, adc_temp); 1018 comp_temp = (var6 * 25) >> 14; 1019 1020 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); 1021 return (s32) comp_temp; 1022 } 1023 1024 static int bmp380_read_press_adc(struct bmp280_data *data, u32 *adc_press) 1025 { 1026 u32 value_press; 1027 int ret; 1028 1029 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1030 data->buf, sizeof(data->buf)); 1031 if (ret) { 1032 dev_err(data->dev, "failed to read pressure\n"); 1033 return ret; 1034 } 1035 1036 value_press = get_unaligned_le24(data->buf); 1037 if (value_press == BMP380_PRESS_SKIPPED) { 1038 dev_err(data->dev, "reading pressure skipped\n"); 1039 return -EIO; 1040 } 1041 *adc_press = value_press; 1042 1043 return 0; 1044 } 1045 1046 /* 1047 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. 1048 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. 1049 * 1050 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository 1051 * https://github.com/BoschSensortec/BMP3-Sensor-API. 1052 */ 1053 static u32 bmp380_compensate_press(struct bmp280_data *data, 1054 u32 adc_press, s32 t_fine) 1055 { 1056 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; 1057 struct bmp380_calib *calib = &data->calib.bmp380; 1058 u32 comp_press; 1059 1060 var1 = (s64)t_fine * (s64)t_fine; 1061 var2 = var1 >> 6; 1062 var3 = (var2 * ((s64)t_fine)) >> 8; 1063 var4 = ((s64)calib->P8 * var3) >> 5; 1064 var5 = ((s64)calib->P7 * var1) << 4; 1065 var6 = ((s64)calib->P6 * (s64)t_fine) << 22; 1066 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; 1067 var2 = ((s64)calib->P4 * var3) >> 5; 1068 var4 = ((s64)calib->P3 * var1) << 2; 1069 var5 = ((s64)calib->P2 - ((s64)1 << 14)) * 1070 ((s64)t_fine << 21); 1071 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + 1072 var2 + var4 + var5; 1073 var1 = (sensitivity >> 24) * (s64)adc_press; 1074 var2 = (s64)calib->P10 * (s64)t_fine; 1075 var3 = var2 + ((s64)calib->P9 << 16); 1076 var4 = (var3 * (s64)adc_press) >> 13; 1077 1078 /* 1079 * Dividing by 10 followed by multiplying by 10 to avoid 1080 * possible overflow caused by (uncomp_data->pressure * partial_data4). 1081 */ 1082 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; 1083 var5 *= 10; 1084 var6 = (s64)adc_press * (s64)adc_press; 1085 var2 = ((s64)calib->P11 * var6) >> 16; 1086 var3 = (var2 * (s64)adc_press) >> 7; 1087 var4 = (offset >> 2) + var1 + var5 + var3; 1088 comp_press = ((u64)var4 * 25) >> 40; 1089 1090 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); 1091 return comp_press; 1092 } 1093 1094 static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2) 1095 { 1096 s32 comp_temp; 1097 u32 adc_temp; 1098 int ret; 1099 1100 ret = bmp380_read_temp_adc(data, &adc_temp); 1101 if (ret) 1102 return ret; 1103 1104 comp_temp = bmp380_compensate_temp(data, adc_temp); 1105 1106 *val = comp_temp * 10; 1107 return IIO_VAL_INT; 1108 } 1109 1110 static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2) 1111 { 1112 u32 adc_press, comp_press, t_fine; 1113 int ret; 1114 1115 ret = bmp380_get_t_fine(data, &t_fine); 1116 if (ret) 1117 return ret; 1118 1119 ret = bmp380_read_press_adc(data, &adc_press); 1120 if (ret) 1121 return ret; 1122 1123 comp_press = bmp380_compensate_press(data, adc_press, t_fine); 1124 1125 *val = comp_press; 1126 *val2 = 100000; 1127 1128 return IIO_VAL_FRACTIONAL; 1129 } 1130 1131 static int bmp380_read_calib(struct bmp280_data *data) 1132 { 1133 struct bmp380_calib *calib = &data->calib.bmp380; 1134 int ret; 1135 1136 /* Read temperature and pressure calibration data */ 1137 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, 1138 data->bmp380_cal_buf, 1139 sizeof(data->bmp380_cal_buf)); 1140 if (ret) { 1141 dev_err(data->dev, 1142 "failed to read calibration parameters\n"); 1143 return ret; 1144 } 1145 1146 /* Toss the temperature calibration data into the entropy pool */ 1147 add_device_randomness(data->bmp380_cal_buf, 1148 sizeof(data->bmp380_cal_buf)); 1149 1150 /* Parse calibration values */ 1151 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); 1152 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); 1153 calib->T3 = data->bmp380_cal_buf[BMP380_T3]; 1154 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); 1155 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); 1156 calib->P3 = data->bmp380_cal_buf[BMP380_P3]; 1157 calib->P4 = data->bmp380_cal_buf[BMP380_P4]; 1158 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); 1159 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); 1160 calib->P7 = data->bmp380_cal_buf[BMP380_P7]; 1161 calib->P8 = data->bmp380_cal_buf[BMP380_P8]; 1162 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); 1163 calib->P10 = data->bmp380_cal_buf[BMP380_P10]; 1164 calib->P11 = data->bmp380_cal_buf[BMP380_P11]; 1165 1166 return 0; 1167 } 1168 1169 static const int bmp380_odr_table[][2] = { 1170 [BMP380_ODR_200HZ] = {200, 0}, 1171 [BMP380_ODR_100HZ] = {100, 0}, 1172 [BMP380_ODR_50HZ] = {50, 0}, 1173 [BMP380_ODR_25HZ] = {25, 0}, 1174 [BMP380_ODR_12_5HZ] = {12, 500000}, 1175 [BMP380_ODR_6_25HZ] = {6, 250000}, 1176 [BMP380_ODR_3_125HZ] = {3, 125000}, 1177 [BMP380_ODR_1_5625HZ] = {1, 562500}, 1178 [BMP380_ODR_0_78HZ] = {0, 781250}, 1179 [BMP380_ODR_0_39HZ] = {0, 390625}, 1180 [BMP380_ODR_0_2HZ] = {0, 195313}, 1181 [BMP380_ODR_0_1HZ] = {0, 97656}, 1182 [BMP380_ODR_0_05HZ] = {0, 48828}, 1183 [BMP380_ODR_0_02HZ] = {0, 24414}, 1184 [BMP380_ODR_0_01HZ] = {0, 12207}, 1185 [BMP380_ODR_0_006HZ] = {0, 6104}, 1186 [BMP380_ODR_0_003HZ] = {0, 3052}, 1187 [BMP380_ODR_0_0015HZ] = {0, 1526}, 1188 }; 1189 1190 static int bmp380_preinit(struct bmp280_data *data) 1191 { 1192 /* BMP3xx requires soft-reset as part of initialization */ 1193 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); 1194 } 1195 1196 static int bmp380_chip_config(struct bmp280_data *data) 1197 { 1198 bool change = false, aux; 1199 unsigned int tmp; 1200 u8 osrs; 1201 int ret; 1202 1203 /* Configure power control register */ 1204 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1205 BMP380_CTRL_SENSORS_MASK, 1206 BMP380_CTRL_SENSORS_PRESS_EN | 1207 BMP380_CTRL_SENSORS_TEMP_EN); 1208 if (ret) { 1209 dev_err(data->dev, 1210 "failed to write operation control register\n"); 1211 return ret; 1212 } 1213 1214 /* Configure oversampling */ 1215 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | 1216 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); 1217 1218 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, 1219 BMP380_OSRS_TEMP_MASK | 1220 BMP380_OSRS_PRESS_MASK, 1221 osrs, &aux); 1222 if (ret) { 1223 dev_err(data->dev, "failed to write oversampling register\n"); 1224 return ret; 1225 } 1226 change = change || aux; 1227 1228 /* Configure output data rate */ 1229 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, 1230 BMP380_ODRS_MASK, data->sampling_freq, 1231 &aux); 1232 if (ret) { 1233 dev_err(data->dev, "failed to write ODR selection register\n"); 1234 return ret; 1235 } 1236 change = change || aux; 1237 1238 /* Set filter data */ 1239 ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, 1240 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), 1241 &aux); 1242 if (ret) { 1243 dev_err(data->dev, "failed to write config register\n"); 1244 return ret; 1245 } 1246 change = change || aux; 1247 1248 if (change) { 1249 /* 1250 * The configurations errors are detected on the fly during a 1251 * measurement cycle. If the sampling frequency is too low, it's 1252 * faster to reset the measurement loop than wait until the next 1253 * measurement is due. 1254 * 1255 * Resets sensor measurement loop toggling between sleep and 1256 * normal operating modes. 1257 */ 1258 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1259 BMP380_MODE_MASK, 1260 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); 1261 if (ret) { 1262 dev_err(data->dev, "failed to set sleep mode\n"); 1263 return ret; 1264 } 1265 usleep_range(2000, 2500); 1266 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1267 BMP380_MODE_MASK, 1268 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); 1269 if (ret) { 1270 dev_err(data->dev, "failed to set normal mode\n"); 1271 return ret; 1272 } 1273 /* 1274 * Waits for measurement before checking configuration error 1275 * flag. Selected longest measure time indicated in 1276 * section 3.9.1 in the datasheet. 1277 */ 1278 msleep(80); 1279 1280 /* Check config error flag */ 1281 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); 1282 if (ret) { 1283 dev_err(data->dev, "failed to read error register\n"); 1284 return ret; 1285 } 1286 if (tmp & BMP380_ERR_CONF_MASK) { 1287 dev_warn(data->dev, 1288 "sensor flagged configuration as incompatible\n"); 1289 return -EINVAL; 1290 } 1291 } 1292 1293 return 0; 1294 } 1295 1296 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; 1297 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; 1298 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; 1299 1300 const struct bmp280_chip_info bmp380_chip_info = { 1301 .id_reg = BMP380_REG_ID, 1302 .chip_id = bmp380_chip_ids, 1303 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), 1304 .regmap_config = &bmp380_regmap_config, 1305 .spi_read_extra_byte = true, 1306 .start_up_time = 2000, 1307 .channels = bmp380_channels, 1308 .num_channels = 2, 1309 1310 .oversampling_temp_avail = bmp380_oversampling_avail, 1311 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1312 .oversampling_temp_default = ilog2(1), 1313 1314 .oversampling_press_avail = bmp380_oversampling_avail, 1315 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1316 .oversampling_press_default = ilog2(4), 1317 1318 .sampling_freq_avail = bmp380_odr_table, 1319 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, 1320 .sampling_freq_default = BMP380_ODR_50HZ, 1321 1322 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1323 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1324 .iir_filter_coeff_default = 2, 1325 1326 .chip_config = bmp380_chip_config, 1327 .read_temp = bmp380_read_temp, 1328 .read_press = bmp380_read_press, 1329 .read_calib = bmp380_read_calib, 1330 .preinit = bmp380_preinit, 1331 }; 1332 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); 1333 1334 static int bmp580_soft_reset(struct bmp280_data *data) 1335 { 1336 unsigned int reg; 1337 int ret; 1338 1339 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); 1340 if (ret) { 1341 dev_err(data->dev, "failed to send reset command to device\n"); 1342 return ret; 1343 } 1344 usleep_range(2000, 2500); 1345 1346 /* Dummy read of chip_id */ 1347 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1348 if (ret) { 1349 dev_err(data->dev, "failed to reestablish comms after reset\n"); 1350 return ret; 1351 } 1352 1353 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®); 1354 if (ret) { 1355 dev_err(data->dev, "error reading interrupt status register\n"); 1356 return ret; 1357 } 1358 if (!(reg & BMP580_INT_STATUS_POR_MASK)) { 1359 dev_err(data->dev, "error resetting sensor\n"); 1360 return -EINVAL; 1361 } 1362 1363 return 0; 1364 } 1365 1366 /** 1367 * bmp580_nvm_operation() - Helper function to commit NVM memory operations 1368 * @data: sensor data struct 1369 * @is_write: flag to signal write operation 1370 */ 1371 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) 1372 { 1373 unsigned long timeout, poll; 1374 unsigned int reg; 1375 int ret; 1376 1377 /* Check NVM ready flag */ 1378 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1379 if (ret) { 1380 dev_err(data->dev, "failed to check nvm status\n"); 1381 return ret; 1382 } 1383 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { 1384 dev_err(data->dev, "sensor's nvm is not ready\n"); 1385 return -EIO; 1386 } 1387 1388 /* Start NVM operation sequence */ 1389 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1390 BMP580_CMD_NVM_OP_SEQ_0); 1391 if (ret) { 1392 dev_err(data->dev, 1393 "failed to send nvm operation's first sequence\n"); 1394 return ret; 1395 } 1396 if (is_write) { 1397 /* Send NVM write sequence */ 1398 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1399 BMP580_CMD_NVM_WRITE_SEQ_1); 1400 if (ret) { 1401 dev_err(data->dev, 1402 "failed to send nvm write sequence\n"); 1403 return ret; 1404 } 1405 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ 1406 poll = 2000; 1407 timeout = 12000; 1408 } else { 1409 /* Send NVM read sequence */ 1410 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1411 BMP580_CMD_NVM_READ_SEQ_1); 1412 if (ret) { 1413 dev_err(data->dev, 1414 "failed to send nvm read sequence\n"); 1415 return ret; 1416 } 1417 /* Datasheet says on 4.8.1.1 it takes approximately 200us */ 1418 poll = 50; 1419 timeout = 400; 1420 } 1421 1422 /* Wait until NVM is ready again */ 1423 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, 1424 (reg & BMP580_STATUS_NVM_RDY_MASK), 1425 poll, timeout); 1426 if (ret) { 1427 dev_err(data->dev, "error checking nvm operation status\n"); 1428 return ret; 1429 } 1430 1431 /* Check NVM error flags */ 1432 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { 1433 dev_err(data->dev, "error processing nvm operation\n"); 1434 return -EIO; 1435 } 1436 1437 return 0; 1438 } 1439 1440 /* 1441 * Contrary to previous sensors families, compensation algorithm is builtin. 1442 * We are only required to read the register raw data and adapt the ranges 1443 * for what is expected on IIO ABI. 1444 */ 1445 1446 static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2) 1447 { 1448 s32 raw_temp; 1449 int ret; 1450 1451 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf, 1452 sizeof(data->buf)); 1453 if (ret) { 1454 dev_err(data->dev, "failed to read temperature\n"); 1455 return ret; 1456 } 1457 1458 raw_temp = get_unaligned_le24(data->buf); 1459 if (raw_temp == BMP580_TEMP_SKIPPED) { 1460 dev_err(data->dev, "reading temperature skipped\n"); 1461 return -EIO; 1462 } 1463 1464 /* 1465 * Temperature is returned in Celsius degrees in fractional 1466 * form down 2^16. We rescale by x1000 to return millidegrees 1467 * Celsius to respect IIO ABI. 1468 */ 1469 raw_temp = sign_extend32(raw_temp, 23); 1470 *val = ((s64)raw_temp * 1000) / (1 << 16); 1471 return IIO_VAL_INT; 1472 } 1473 1474 static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2) 1475 { 1476 u32 raw_press; 1477 int ret; 1478 1479 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf, 1480 sizeof(data->buf)); 1481 if (ret) { 1482 dev_err(data->dev, "failed to read pressure\n"); 1483 return ret; 1484 } 1485 1486 raw_press = get_unaligned_le24(data->buf); 1487 if (raw_press == BMP580_PRESS_SKIPPED) { 1488 dev_err(data->dev, "reading pressure skipped\n"); 1489 return -EIO; 1490 } 1491 /* 1492 * Pressure is returned in Pascals in fractional form down 2^16. 1493 * We rescale /1000 to convert to kilopascal to respect IIO ABI. 1494 */ 1495 *val = raw_press; 1496 *val2 = 64000; /* 2^6 * 1000 */ 1497 return IIO_VAL_FRACTIONAL; 1498 } 1499 1500 static const int bmp580_odr_table[][2] = { 1501 [BMP580_ODR_240HZ] = {240, 0}, 1502 [BMP580_ODR_218HZ] = {218, 0}, 1503 [BMP580_ODR_199HZ] = {199, 0}, 1504 [BMP580_ODR_179HZ] = {179, 0}, 1505 [BMP580_ODR_160HZ] = {160, 0}, 1506 [BMP580_ODR_149HZ] = {149, 0}, 1507 [BMP580_ODR_140HZ] = {140, 0}, 1508 [BMP580_ODR_129HZ] = {129, 0}, 1509 [BMP580_ODR_120HZ] = {120, 0}, 1510 [BMP580_ODR_110HZ] = {110, 0}, 1511 [BMP580_ODR_100HZ] = {100, 0}, 1512 [BMP580_ODR_89HZ] = {89, 0}, 1513 [BMP580_ODR_80HZ] = {80, 0}, 1514 [BMP580_ODR_70HZ] = {70, 0}, 1515 [BMP580_ODR_60HZ] = {60, 0}, 1516 [BMP580_ODR_50HZ] = {50, 0}, 1517 [BMP580_ODR_45HZ] = {45, 0}, 1518 [BMP580_ODR_40HZ] = {40, 0}, 1519 [BMP580_ODR_35HZ] = {35, 0}, 1520 [BMP580_ODR_30HZ] = {30, 0}, 1521 [BMP580_ODR_25HZ] = {25, 0}, 1522 [BMP580_ODR_20HZ] = {20, 0}, 1523 [BMP580_ODR_15HZ] = {15, 0}, 1524 [BMP580_ODR_10HZ] = {10, 0}, 1525 [BMP580_ODR_5HZ] = {5, 0}, 1526 [BMP580_ODR_4HZ] = {4, 0}, 1527 [BMP580_ODR_3HZ] = {3, 0}, 1528 [BMP580_ODR_2HZ] = {2, 0}, 1529 [BMP580_ODR_1HZ] = {1, 0}, 1530 [BMP580_ODR_0_5HZ] = {0, 500000}, 1531 [BMP580_ODR_0_25HZ] = {0, 250000}, 1532 [BMP580_ODR_0_125HZ] = {0, 125000}, 1533 }; 1534 1535 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; 1536 1537 static int bmp580_nvmem_read_impl(void *priv, unsigned int offset, void *val, 1538 size_t bytes) 1539 { 1540 struct bmp280_data *data = priv; 1541 u16 *dst = val; 1542 int ret, addr; 1543 1544 guard(mutex)(&data->lock); 1545 1546 /* Set sensor in standby mode */ 1547 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1548 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1549 BMP580_ODR_DEEPSLEEP_DIS | 1550 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1551 if (ret) { 1552 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1553 goto exit; 1554 } 1555 /* Wait standby transition time */ 1556 usleep_range(2500, 3000); 1557 1558 while (bytes >= sizeof(*dst)) { 1559 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; 1560 1561 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1562 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1563 if (ret) { 1564 dev_err(data->dev, "error writing nvm address\n"); 1565 goto exit; 1566 } 1567 1568 ret = bmp580_nvm_operation(data, false); 1569 if (ret) 1570 goto exit; 1571 1572 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, 1573 &data->le16, sizeof(data->le16)); 1574 if (ret) { 1575 dev_err(data->dev, "error reading nvm data regs\n"); 1576 goto exit; 1577 } 1578 1579 *dst++ = le16_to_cpu(data->le16); 1580 bytes -= sizeof(*dst); 1581 offset += sizeof(*dst); 1582 } 1583 exit: 1584 /* Restore chip config */ 1585 data->chip_info->chip_config(data); 1586 return ret; 1587 } 1588 1589 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, 1590 size_t bytes) 1591 { 1592 struct bmp280_data *data = priv; 1593 int ret; 1594 1595 pm_runtime_get_sync(data->dev); 1596 ret = bmp580_nvmem_read_impl(priv, offset, val, bytes); 1597 pm_runtime_mark_last_busy(data->dev); 1598 pm_runtime_put_autosuspend(data->dev); 1599 1600 return ret; 1601 } 1602 1603 static int bmp580_nvmem_write_impl(void *priv, unsigned int offset, void *val, 1604 size_t bytes) 1605 { 1606 struct bmp280_data *data = priv; 1607 u16 *buf = val; 1608 int ret, addr; 1609 1610 guard(mutex)(&data->lock); 1611 1612 /* Set sensor in standby mode */ 1613 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1614 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1615 BMP580_ODR_DEEPSLEEP_DIS | 1616 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1617 if (ret) { 1618 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1619 goto exit; 1620 } 1621 /* Wait standby transition time */ 1622 usleep_range(2500, 3000); 1623 1624 while (bytes >= sizeof(*buf)) { 1625 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; 1626 1627 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1628 BMP580_NVM_PROG_EN | 1629 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1630 if (ret) { 1631 dev_err(data->dev, "error writing nvm address\n"); 1632 goto exit; 1633 } 1634 data->le16 = cpu_to_le16(*buf++); 1635 1636 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, 1637 &data->le16, sizeof(data->le16)); 1638 if (ret) { 1639 dev_err(data->dev, "error writing LSB NVM data regs\n"); 1640 goto exit; 1641 } 1642 1643 ret = bmp580_nvm_operation(data, true); 1644 if (ret) 1645 goto exit; 1646 1647 /* Disable programming mode bit */ 1648 ret = regmap_clear_bits(data->regmap, BMP580_REG_NVM_ADDR, 1649 BMP580_NVM_PROG_EN); 1650 if (ret) { 1651 dev_err(data->dev, "error resetting nvm write\n"); 1652 goto exit; 1653 } 1654 1655 bytes -= sizeof(*buf); 1656 offset += sizeof(*buf); 1657 } 1658 exit: 1659 /* Restore chip config */ 1660 data->chip_info->chip_config(data); 1661 return ret; 1662 } 1663 1664 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, 1665 size_t bytes) 1666 { 1667 struct bmp280_data *data = priv; 1668 int ret; 1669 1670 pm_runtime_get_sync(data->dev); 1671 ret = bmp580_nvmem_write_impl(priv, offset, val, bytes); 1672 pm_runtime_mark_last_busy(data->dev); 1673 pm_runtime_put_autosuspend(data->dev); 1674 1675 return ret; 1676 } 1677 1678 static int bmp580_preinit(struct bmp280_data *data) 1679 { 1680 struct nvmem_config config = { 1681 .dev = data->dev, 1682 .priv = data, 1683 .name = "bmp580_nvmem", 1684 .word_size = sizeof(u16), 1685 .stride = sizeof(u16), 1686 .size = 3 * sizeof(u16), 1687 .reg_read = bmp580_nvmem_read, 1688 .reg_write = bmp580_nvmem_write, 1689 }; 1690 unsigned int reg; 1691 int ret; 1692 1693 /* Issue soft-reset command */ 1694 ret = bmp580_soft_reset(data); 1695 if (ret) 1696 return ret; 1697 1698 /* Post powerup sequence */ 1699 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1700 if (ret) { 1701 dev_err(data->dev, "failed to establish comms with the chip\n"); 1702 return ret; 1703 } 1704 1705 /* Print warn message if we don't know the chip id */ 1706 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) 1707 dev_warn(data->dev, "unexpected chip_id\n"); 1708 1709 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1710 if (ret) { 1711 dev_err(data->dev, "failed to read nvm status\n"); 1712 return ret; 1713 } 1714 1715 /* Check nvm status */ 1716 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { 1717 dev_err(data->dev, "nvm error on powerup sequence\n"); 1718 return -EIO; 1719 } 1720 1721 /* Register nvmem device */ 1722 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config)); 1723 } 1724 1725 static int bmp580_chip_config(struct bmp280_data *data) 1726 { 1727 bool change = false, aux; 1728 unsigned int tmp; 1729 u8 reg_val; 1730 int ret; 1731 1732 /* Sets sensor in standby mode */ 1733 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1734 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1735 BMP580_ODR_DEEPSLEEP_DIS | 1736 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1737 if (ret) { 1738 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1739 return ret; 1740 } 1741 /* From datasheet's table 4: electrical characteristics */ 1742 usleep_range(2500, 3000); 1743 1744 /* Set default DSP mode settings */ 1745 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | 1746 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; 1747 1748 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG, 1749 BMP580_DSP_COMP_MASK | 1750 BMP580_DSP_SHDW_IIR_TEMP_EN | 1751 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val); 1752 if (ret) { 1753 dev_err(data->dev, "failed to change DSP mode settings\n"); 1754 return ret; 1755 } 1756 1757 /* Configure oversampling */ 1758 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | 1759 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | 1760 BMP580_OSR_PRESS_EN; 1761 1762 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG, 1763 BMP580_OSR_TEMP_MASK | 1764 BMP580_OSR_PRESS_MASK | 1765 BMP580_OSR_PRESS_EN, 1766 reg_val, &aux); 1767 if (ret) { 1768 dev_err(data->dev, "failed to write oversampling register\n"); 1769 return ret; 1770 } 1771 change = change || aux; 1772 1773 /* Configure output data rate */ 1774 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, 1775 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), 1776 &aux); 1777 if (ret) { 1778 dev_err(data->dev, "failed to write ODR configuration register\n"); 1779 return ret; 1780 } 1781 change = change || aux; 1782 1783 /* Set filter data */ 1784 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | 1785 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); 1786 1787 ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR, 1788 BMP580_DSP_IIR_PRESS_MASK | 1789 BMP580_DSP_IIR_TEMP_MASK, 1790 reg_val, &aux); 1791 if (ret) { 1792 dev_err(data->dev, "failed to write config register\n"); 1793 return ret; 1794 } 1795 change = change || aux; 1796 1797 /* Restore sensor to normal operation mode */ 1798 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1799 BMP580_MODE_MASK, 1800 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); 1801 if (ret) { 1802 dev_err(data->dev, "failed to set normal mode\n"); 1803 return ret; 1804 } 1805 /* From datasheet's table 4: electrical characteristics */ 1806 usleep_range(3000, 3500); 1807 1808 if (change) { 1809 /* 1810 * Check if ODR and OSR settings are valid or we are 1811 * operating in a degraded mode. 1812 */ 1813 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp); 1814 if (ret) { 1815 dev_err(data->dev, 1816 "error reading effective OSR register\n"); 1817 return ret; 1818 } 1819 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { 1820 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); 1821 /* Set current OSR settings from data on effective OSR */ 1822 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); 1823 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); 1824 return -EINVAL; 1825 } 1826 } 1827 1828 return 0; 1829 } 1830 1831 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; 1832 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; 1833 1834 const struct bmp280_chip_info bmp580_chip_info = { 1835 .id_reg = BMP580_REG_CHIP_ID, 1836 .chip_id = bmp580_chip_ids, 1837 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), 1838 .regmap_config = &bmp580_regmap_config, 1839 .start_up_time = 2000, 1840 .channels = bmp380_channels, 1841 .num_channels = 2, 1842 1843 .oversampling_temp_avail = bmp580_oversampling_avail, 1844 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), 1845 .oversampling_temp_default = ilog2(1), 1846 1847 .oversampling_press_avail = bmp580_oversampling_avail, 1848 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), 1849 .oversampling_press_default = ilog2(4), 1850 1851 .sampling_freq_avail = bmp580_odr_table, 1852 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, 1853 .sampling_freq_default = BMP580_ODR_50HZ, 1854 1855 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1856 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1857 .iir_filter_coeff_default = 2, 1858 1859 .chip_config = bmp580_chip_config, 1860 .read_temp = bmp580_read_temp, 1861 .read_press = bmp580_read_press, 1862 .preinit = bmp580_preinit, 1863 }; 1864 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); 1865 1866 static int bmp180_wait_for_eoc(struct bmp280_data *data, u8 ctrl_meas) 1867 { 1868 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; 1869 unsigned int delay_us; 1870 unsigned int ctrl; 1871 int ret; 1872 1873 if (data->use_eoc) 1874 reinit_completion(&data->done); 1875 1876 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); 1877 if (ret) { 1878 dev_err(data->dev, "failed to write crtl_meas register\n"); 1879 return ret; 1880 } 1881 1882 if (data->use_eoc) { 1883 /* 1884 * If we have a completion interrupt, use it, wait up to 1885 * 100ms. The longest conversion time listed is 76.5 ms for 1886 * advanced resolution mode. 1887 */ 1888 ret = wait_for_completion_timeout(&data->done, 1889 1 + msecs_to_jiffies(100)); 1890 if (!ret) 1891 dev_err(data->dev, "timeout waiting for completion\n"); 1892 } else { 1893 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) 1894 delay_us = 4500; 1895 else 1896 delay_us = 1897 conversion_time_max[data->oversampling_press]; 1898 1899 usleep_range(delay_us, delay_us + 1000); 1900 } 1901 1902 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); 1903 if (ret) { 1904 dev_err(data->dev, "failed to read ctrl_meas register\n"); 1905 return ret; 1906 } 1907 1908 /* The value of this bit reset to "0" after conversion is complete */ 1909 if (ctrl & BMP180_MEAS_SCO) { 1910 dev_err(data->dev, "conversion didn't complete\n"); 1911 return -EIO; 1912 } 1913 1914 return 0; 1915 } 1916 1917 static int bmp180_read_temp_adc(struct bmp280_data *data, u32 *adc_temp) 1918 { 1919 int ret; 1920 1921 ret = bmp180_wait_for_eoc(data, 1922 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | 1923 BMP180_MEAS_SCO); 1924 if (ret) 1925 return ret; 1926 1927 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 1928 &data->be16, sizeof(data->be16)); 1929 if (ret) { 1930 dev_err(data->dev, "failed to read temperature\n"); 1931 return ret; 1932 } 1933 1934 *adc_temp = be16_to_cpu(data->be16); 1935 1936 return 0; 1937 } 1938 1939 static int bmp180_read_calib(struct bmp280_data *data) 1940 { 1941 struct bmp180_calib *calib = &data->calib.bmp180; 1942 int ret; 1943 int i; 1944 1945 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, 1946 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); 1947 if (ret) { 1948 dev_err(data->dev, "failed to read calibration parameters\n"); 1949 return ret; 1950 } 1951 1952 /* None of the words has the value 0 or 0xFFFF */ 1953 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { 1954 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || 1955 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) 1956 return -EIO; 1957 } 1958 1959 /* Toss the calibration data into the entropy pool */ 1960 add_device_randomness(data->bmp180_cal_buf, 1961 sizeof(data->bmp180_cal_buf)); 1962 1963 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); 1964 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); 1965 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); 1966 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); 1967 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); 1968 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); 1969 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); 1970 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); 1971 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); 1972 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); 1973 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); 1974 1975 return 0; 1976 } 1977 1978 /* 1979 * Returns temperature in DegC, resolution is 0.1 DegC. 1980 * t_fine carries fine temperature as global value. 1981 * 1982 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 1983 */ 1984 1985 static s32 bmp180_calc_t_fine(struct bmp280_data *data, u32 adc_temp) 1986 { 1987 struct bmp180_calib *calib = &data->calib.bmp180; 1988 s32 x1, x2; 1989 1990 x1 = ((((s32)adc_temp) - calib->AC6) * calib->AC5) >> 15; 1991 x2 = (calib->MC << 11) / (x1 + calib->MD); 1992 return x1 + x2; /* t_fine = x1 + x2; */ 1993 } 1994 1995 static int bmp180_get_t_fine(struct bmp280_data *data, s32 *t_fine) 1996 { 1997 s32 adc_temp; 1998 int ret; 1999 2000 ret = bmp180_read_temp_adc(data, &adc_temp); 2001 if (ret) 2002 return ret; 2003 2004 *t_fine = bmp180_calc_t_fine(data, adc_temp); 2005 2006 return 0; 2007 } 2008 2009 static s32 bmp180_compensate_temp(struct bmp280_data *data, u32 adc_temp) 2010 { 2011 return (bmp180_calc_t_fine(data, adc_temp) + 8) / 16; 2012 } 2013 2014 static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2) 2015 { 2016 s32 comp_temp; 2017 u32 adc_temp; 2018 int ret; 2019 2020 ret = bmp180_read_temp_adc(data, &adc_temp); 2021 if (ret) 2022 return ret; 2023 2024 comp_temp = bmp180_compensate_temp(data, adc_temp); 2025 2026 *val = comp_temp * 100; 2027 return IIO_VAL_INT; 2028 } 2029 2030 static int bmp180_read_press_adc(struct bmp280_data *data, u32 *adc_press) 2031 { 2032 u8 oss = data->oversampling_press; 2033 int ret; 2034 2035 ret = bmp180_wait_for_eoc(data, 2036 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | 2037 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | 2038 BMP180_MEAS_SCO); 2039 if (ret) 2040 return ret; 2041 2042 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 2043 data->buf, sizeof(data->buf)); 2044 if (ret) { 2045 dev_err(data->dev, "failed to read pressure\n"); 2046 return ret; 2047 } 2048 2049 *adc_press = get_unaligned_be24(data->buf) >> (8 - oss); 2050 2051 return 0; 2052 } 2053 2054 /* 2055 * Returns pressure in Pa, resolution is 1 Pa. 2056 * 2057 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 2058 */ 2059 static u32 bmp180_compensate_press(struct bmp280_data *data, u32 adc_press, 2060 s32 t_fine) 2061 { 2062 struct bmp180_calib *calib = &data->calib.bmp180; 2063 s32 oss = data->oversampling_press; 2064 s32 x1, x2, x3, p; 2065 s32 b3, b6; 2066 u32 b4, b7; 2067 2068 b6 = t_fine - 4000; 2069 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; 2070 x2 = calib->AC2 * b6 >> 11; 2071 x3 = x1 + x2; 2072 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; 2073 x1 = calib->AC3 * b6 >> 13; 2074 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; 2075 x3 = (x1 + x2 + 2) >> 2; 2076 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; 2077 b7 = (adc_press - b3) * (50000 >> oss); 2078 if (b7 < 0x80000000) 2079 p = (b7 * 2) / b4; 2080 else 2081 p = (b7 / b4) * 2; 2082 2083 x1 = (p >> 8) * (p >> 8); 2084 x1 = (x1 * 3038) >> 16; 2085 x2 = (-7357 * p) >> 16; 2086 2087 return p + ((x1 + x2 + 3791) >> 4); 2088 } 2089 2090 static int bmp180_read_press(struct bmp280_data *data, int *val, int *val2) 2091 { 2092 u32 comp_press, adc_press; 2093 s32 t_fine; 2094 int ret; 2095 2096 ret = bmp180_get_t_fine(data, &t_fine); 2097 if (ret) 2098 return ret; 2099 2100 ret = bmp180_read_press_adc(data, &adc_press); 2101 if (ret) 2102 return ret; 2103 2104 comp_press = bmp180_compensate_press(data, adc_press, t_fine); 2105 2106 *val = comp_press; 2107 *val2 = 1000; 2108 2109 return IIO_VAL_FRACTIONAL; 2110 } 2111 2112 static int bmp180_chip_config(struct bmp280_data *data) 2113 { 2114 return 0; 2115 } 2116 2117 static const int bmp180_oversampling_temp_avail[] = { 1 }; 2118 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; 2119 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; 2120 2121 const struct bmp280_chip_info bmp180_chip_info = { 2122 .id_reg = BMP280_REG_ID, 2123 .chip_id = bmp180_chip_ids, 2124 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), 2125 .regmap_config = &bmp180_regmap_config, 2126 .start_up_time = 2000, 2127 .channels = bmp280_channels, 2128 .num_channels = 2, 2129 2130 .oversampling_temp_avail = bmp180_oversampling_temp_avail, 2131 .num_oversampling_temp_avail = 2132 ARRAY_SIZE(bmp180_oversampling_temp_avail), 2133 .oversampling_temp_default = 0, 2134 2135 .oversampling_press_avail = bmp180_oversampling_press_avail, 2136 .num_oversampling_press_avail = 2137 ARRAY_SIZE(bmp180_oversampling_press_avail), 2138 .oversampling_press_default = BMP180_MEAS_PRESS_8X, 2139 2140 .chip_config = bmp180_chip_config, 2141 .read_temp = bmp180_read_temp, 2142 .read_press = bmp180_read_press, 2143 .read_calib = bmp180_read_calib, 2144 }; 2145 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); 2146 2147 static irqreturn_t bmp085_eoc_irq(int irq, void *d) 2148 { 2149 struct bmp280_data *data = d; 2150 2151 complete(&data->done); 2152 2153 return IRQ_HANDLED; 2154 } 2155 2156 static int bmp085_fetch_eoc_irq(struct device *dev, 2157 const char *name, 2158 int irq, 2159 struct bmp280_data *data) 2160 { 2161 unsigned long irq_trig; 2162 int ret; 2163 2164 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); 2165 if (irq_trig != IRQF_TRIGGER_RISING) { 2166 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); 2167 irq_trig = IRQF_TRIGGER_RISING; 2168 } 2169 2170 init_completion(&data->done); 2171 2172 ret = devm_request_threaded_irq(dev, 2173 irq, 2174 bmp085_eoc_irq, 2175 NULL, 2176 irq_trig, 2177 name, 2178 data); 2179 if (ret) { 2180 /* Bail out without IRQ but keep the driver in place */ 2181 dev_err(dev, "unable to request DRDY IRQ\n"); 2182 return 0; 2183 } 2184 2185 data->use_eoc = true; 2186 return 0; 2187 } 2188 2189 static void bmp280_pm_disable(void *data) 2190 { 2191 struct device *dev = data; 2192 2193 pm_runtime_get_sync(dev); 2194 pm_runtime_put_noidle(dev); 2195 pm_runtime_disable(dev); 2196 } 2197 2198 static void bmp280_regulators_disable(void *data) 2199 { 2200 struct regulator_bulk_data *supplies = data; 2201 2202 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); 2203 } 2204 2205 int bmp280_common_probe(struct device *dev, 2206 struct regmap *regmap, 2207 const struct bmp280_chip_info *chip_info, 2208 const char *name, 2209 int irq) 2210 { 2211 struct iio_dev *indio_dev; 2212 struct bmp280_data *data; 2213 struct gpio_desc *gpiod; 2214 unsigned int chip_id; 2215 unsigned int i; 2216 int ret; 2217 2218 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 2219 if (!indio_dev) 2220 return -ENOMEM; 2221 2222 data = iio_priv(indio_dev); 2223 mutex_init(&data->lock); 2224 data->dev = dev; 2225 2226 indio_dev->name = name; 2227 indio_dev->info = &bmp280_info; 2228 indio_dev->modes = INDIO_DIRECT_MODE; 2229 2230 data->chip_info = chip_info; 2231 2232 /* Apply initial values from chip info structure */ 2233 indio_dev->channels = chip_info->channels; 2234 indio_dev->num_channels = chip_info->num_channels; 2235 data->oversampling_press = chip_info->oversampling_press_default; 2236 data->oversampling_humid = chip_info->oversampling_humid_default; 2237 data->oversampling_temp = chip_info->oversampling_temp_default; 2238 data->iir_filter_coeff = chip_info->iir_filter_coeff_default; 2239 data->sampling_freq = chip_info->sampling_freq_default; 2240 data->start_up_time = chip_info->start_up_time; 2241 2242 /* Bring up regulators */ 2243 regulator_bulk_set_supply_names(data->supplies, 2244 bmp280_supply_names, 2245 BMP280_NUM_SUPPLIES); 2246 2247 ret = devm_regulator_bulk_get(dev, 2248 BMP280_NUM_SUPPLIES, data->supplies); 2249 if (ret) { 2250 dev_err(dev, "failed to get regulators\n"); 2251 return ret; 2252 } 2253 2254 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2255 if (ret) { 2256 dev_err(dev, "failed to enable regulators\n"); 2257 return ret; 2258 } 2259 2260 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, 2261 data->supplies); 2262 if (ret) 2263 return ret; 2264 2265 /* Wait to make sure we started up properly */ 2266 usleep_range(data->start_up_time, data->start_up_time + 100); 2267 2268 /* Bring chip out of reset if there is an assigned GPIO line */ 2269 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 2270 /* Deassert the signal */ 2271 if (gpiod) { 2272 dev_info(dev, "release reset\n"); 2273 gpiod_set_value(gpiod, 0); 2274 } 2275 2276 data->regmap = regmap; 2277 2278 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); 2279 if (ret) { 2280 dev_err(data->dev, "failed to read chip id\n"); 2281 return ret; 2282 } 2283 2284 for (i = 0; i < data->chip_info->num_chip_id; i++) { 2285 if (chip_id == data->chip_info->chip_id[i]) { 2286 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); 2287 break; 2288 } 2289 } 2290 2291 if (i == data->chip_info->num_chip_id) 2292 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); 2293 2294 if (data->chip_info->preinit) { 2295 ret = data->chip_info->preinit(data); 2296 if (ret) 2297 return dev_err_probe(data->dev, ret, 2298 "error running preinit tasks\n"); 2299 } 2300 2301 ret = data->chip_info->chip_config(data); 2302 if (ret) 2303 return ret; 2304 2305 dev_set_drvdata(dev, indio_dev); 2306 2307 /* 2308 * Some chips have calibration parameters "programmed into the devices' 2309 * non-volatile memory during production". Let's read them out at probe 2310 * time once. They will not change. 2311 */ 2312 2313 if (data->chip_info->read_calib) { 2314 ret = data->chip_info->read_calib(data); 2315 if (ret) 2316 return dev_err_probe(data->dev, ret, 2317 "failed to read calibration coefficients\n"); 2318 } 2319 2320 /* 2321 * Attempt to grab an optional EOC IRQ - only the BMP085 has this 2322 * however as it happens, the BMP085 shares the chip ID of BMP180 2323 * so we look for an IRQ if we have that. 2324 */ 2325 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { 2326 ret = bmp085_fetch_eoc_irq(dev, name, irq, data); 2327 if (ret) 2328 return ret; 2329 } 2330 2331 /* Enable runtime PM */ 2332 pm_runtime_get_noresume(dev); 2333 pm_runtime_set_active(dev); 2334 pm_runtime_enable(dev); 2335 /* 2336 * Set autosuspend to two orders of magnitude larger than the 2337 * start-up time. 2338 */ 2339 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); 2340 pm_runtime_use_autosuspend(dev); 2341 pm_runtime_put(dev); 2342 2343 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); 2344 if (ret) 2345 return ret; 2346 2347 return devm_iio_device_register(dev, indio_dev); 2348 } 2349 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); 2350 2351 static int bmp280_runtime_suspend(struct device *dev) 2352 { 2353 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2354 struct bmp280_data *data = iio_priv(indio_dev); 2355 2356 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); 2357 } 2358 2359 static int bmp280_runtime_resume(struct device *dev) 2360 { 2361 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2362 struct bmp280_data *data = iio_priv(indio_dev); 2363 int ret; 2364 2365 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2366 if (ret) 2367 return ret; 2368 2369 usleep_range(data->start_up_time, data->start_up_time + 100); 2370 return data->chip_info->chip_config(data); 2371 } 2372 2373 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, 2374 bmp280_runtime_resume, NULL); 2375 2376 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); 2377 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); 2378 MODULE_LICENSE("GPL v2"); 2379