1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com> 4 * Copyright (c) 2012 Bosch Sensortec GmbH 5 * Copyright (c) 2012 Unixphere AB 6 * Copyright (c) 2014 Intel Corporation 7 * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org> 8 * 9 * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor. 10 * 11 * Datasheet: 12 * https://cdn-shop.adafruit.com/datasheets/BST-BMP180-DS000-09.pdf 13 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp280-ds001.pdf 14 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme280-ds002.pdf 15 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp388-ds001.pdf 16 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp390-ds002.pdf 17 * https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bmp581-ds004.pdf 18 * 19 * Notice: 20 * The link to the bmp180 datasheet points to an outdated version missing these changes: 21 * - Changed document referral from ANP015 to BST-MPS-AN004-00 on page 26 22 * - Updated equation for B3 param on section 3.5 to ((((long)AC1 * 4 + X3) << oss) + 2) / 4 23 * - Updated RoHS directive to 2011/65/EU effective 8 June 2011 on page 26 24 */ 25 26 #define pr_fmt(fmt) "bmp280: " fmt 27 28 #include <linux/bitops.h> 29 #include <linux/bitfield.h> 30 #include <linux/completion.h> 31 #include <linux/delay.h> 32 #include <linux/device.h> 33 #include <linux/gpio/consumer.h> 34 #include <linux/interrupt.h> 35 #include <linux/irq.h> /* For irq_get_irq_data() */ 36 #include <linux/module.h> 37 #include <linux/nvmem-provider.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/random.h> 40 #include <linux/regmap.h> 41 #include <linux/regulator/consumer.h> 42 43 #include <linux/iio/iio.h> 44 45 #include <asm/unaligned.h> 46 47 #include "bmp280.h" 48 49 /* 50 * These enums are used for indexing into the array of calibration 51 * coefficients for BMP180. 52 */ 53 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD }; 54 55 56 enum bmp380_odr { 57 BMP380_ODR_200HZ, 58 BMP380_ODR_100HZ, 59 BMP380_ODR_50HZ, 60 BMP380_ODR_25HZ, 61 BMP380_ODR_12_5HZ, 62 BMP380_ODR_6_25HZ, 63 BMP380_ODR_3_125HZ, 64 BMP380_ODR_1_5625HZ, 65 BMP380_ODR_0_78HZ, 66 BMP380_ODR_0_39HZ, 67 BMP380_ODR_0_2HZ, 68 BMP380_ODR_0_1HZ, 69 BMP380_ODR_0_05HZ, 70 BMP380_ODR_0_02HZ, 71 BMP380_ODR_0_01HZ, 72 BMP380_ODR_0_006HZ, 73 BMP380_ODR_0_003HZ, 74 BMP380_ODR_0_0015HZ, 75 }; 76 77 enum bmp580_odr { 78 BMP580_ODR_240HZ, 79 BMP580_ODR_218HZ, 80 BMP580_ODR_199HZ, 81 BMP580_ODR_179HZ, 82 BMP580_ODR_160HZ, 83 BMP580_ODR_149HZ, 84 BMP580_ODR_140HZ, 85 BMP580_ODR_129HZ, 86 BMP580_ODR_120HZ, 87 BMP580_ODR_110HZ, 88 BMP580_ODR_100HZ, 89 BMP580_ODR_89HZ, 90 BMP580_ODR_80HZ, 91 BMP580_ODR_70HZ, 92 BMP580_ODR_60HZ, 93 BMP580_ODR_50HZ, 94 BMP580_ODR_45HZ, 95 BMP580_ODR_40HZ, 96 BMP580_ODR_35HZ, 97 BMP580_ODR_30HZ, 98 BMP580_ODR_25HZ, 99 BMP580_ODR_20HZ, 100 BMP580_ODR_15HZ, 101 BMP580_ODR_10HZ, 102 BMP580_ODR_5HZ, 103 BMP580_ODR_4HZ, 104 BMP580_ODR_3HZ, 105 BMP580_ODR_2HZ, 106 BMP580_ODR_1HZ, 107 BMP580_ODR_0_5HZ, 108 BMP580_ODR_0_25HZ, 109 BMP580_ODR_0_125HZ, 110 }; 111 112 /* 113 * These enums are used for indexing into the array of compensation 114 * parameters for BMP280. 115 */ 116 enum { T1, T2, T3, P1, P2, P3, P4, P5, P6, P7, P8, P9 }; 117 118 enum { 119 /* Temperature calib indexes */ 120 BMP380_T1 = 0, 121 BMP380_T2 = 2, 122 BMP380_T3 = 4, 123 /* Pressure calib indexes */ 124 BMP380_P1 = 5, 125 BMP380_P2 = 7, 126 BMP380_P3 = 9, 127 BMP380_P4 = 10, 128 BMP380_P5 = 11, 129 BMP380_P6 = 13, 130 BMP380_P7 = 15, 131 BMP380_P8 = 16, 132 BMP380_P9 = 17, 133 BMP380_P10 = 19, 134 BMP380_P11 = 20, 135 }; 136 137 static const struct iio_chan_spec bmp280_channels[] = { 138 { 139 .type = IIO_PRESSURE, 140 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 141 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 142 }, 143 { 144 .type = IIO_TEMP, 145 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 146 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 147 }, 148 { 149 .type = IIO_HUMIDITYRELATIVE, 150 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 151 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 152 }, 153 }; 154 155 static const struct iio_chan_spec bmp380_channels[] = { 156 { 157 .type = IIO_PRESSURE, 158 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 159 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 160 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 161 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 162 }, 163 { 164 .type = IIO_TEMP, 165 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 166 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 167 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 168 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 169 }, 170 { 171 .type = IIO_HUMIDITYRELATIVE, 172 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | 173 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), 174 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ) | 175 BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), 176 }, 177 }; 178 179 static int bmp280_read_calib(struct bmp280_data *data) 180 { 181 struct bmp280_calib *calib = &data->calib.bmp280; 182 int ret; 183 184 185 /* Read temperature and pressure calibration values. */ 186 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START, 187 data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf)); 188 if (ret < 0) { 189 dev_err(data->dev, 190 "failed to read temperature and pressure calibration parameters\n"); 191 return ret; 192 } 193 194 /* Toss the temperature and pressure calibration data into the entropy pool */ 195 add_device_randomness(data->bmp280_cal_buf, sizeof(data->bmp280_cal_buf)); 196 197 /* Parse temperature calibration values. */ 198 calib->T1 = le16_to_cpu(data->bmp280_cal_buf[T1]); 199 calib->T2 = le16_to_cpu(data->bmp280_cal_buf[T2]); 200 calib->T3 = le16_to_cpu(data->bmp280_cal_buf[T3]); 201 202 /* Parse pressure calibration values. */ 203 calib->P1 = le16_to_cpu(data->bmp280_cal_buf[P1]); 204 calib->P2 = le16_to_cpu(data->bmp280_cal_buf[P2]); 205 calib->P3 = le16_to_cpu(data->bmp280_cal_buf[P3]); 206 calib->P4 = le16_to_cpu(data->bmp280_cal_buf[P4]); 207 calib->P5 = le16_to_cpu(data->bmp280_cal_buf[P5]); 208 calib->P6 = le16_to_cpu(data->bmp280_cal_buf[P6]); 209 calib->P7 = le16_to_cpu(data->bmp280_cal_buf[P7]); 210 calib->P8 = le16_to_cpu(data->bmp280_cal_buf[P8]); 211 calib->P9 = le16_to_cpu(data->bmp280_cal_buf[P9]); 212 213 return 0; 214 } 215 216 static int bme280_read_calib(struct bmp280_data *data) 217 { 218 struct bmp280_calib *calib = &data->calib.bmp280; 219 struct device *dev = data->dev; 220 unsigned int tmp; 221 int ret; 222 223 /* Load shared calibration params with bmp280 first */ 224 ret = bmp280_read_calib(data); 225 if (ret < 0) { 226 dev_err(dev, "failed to read common bmp280 calibration parameters\n"); 227 return ret; 228 } 229 230 /* 231 * Read humidity calibration values. 232 * Due to some odd register addressing we cannot just 233 * do a big bulk read. Instead, we have to read each Hx 234 * value separately and sometimes do some bit shifting... 235 * Humidity data is only available on BME280. 236 */ 237 238 ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp); 239 if (ret < 0) { 240 dev_err(dev, "failed to read H1 comp value\n"); 241 return ret; 242 } 243 calib->H1 = tmp; 244 245 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, 246 &data->le16, sizeof(data->le16)); 247 if (ret < 0) { 248 dev_err(dev, "failed to read H2 comp value\n"); 249 return ret; 250 } 251 calib->H2 = sign_extend32(le16_to_cpu(data->le16), 15); 252 253 ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp); 254 if (ret < 0) { 255 dev_err(dev, "failed to read H3 comp value\n"); 256 return ret; 257 } 258 calib->H3 = tmp; 259 260 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, 261 &data->be16, sizeof(data->be16)); 262 if (ret < 0) { 263 dev_err(dev, "failed to read H4 comp value\n"); 264 return ret; 265 } 266 calib->H4 = sign_extend32(((be16_to_cpu(data->be16) >> 4) & 0xff0) | 267 (be16_to_cpu(data->be16) & 0xf), 11); 268 269 ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, 270 &data->le16, sizeof(data->le16)); 271 if (ret < 0) { 272 dev_err(dev, "failed to read H5 comp value\n"); 273 return ret; 274 } 275 calib->H5 = sign_extend32(FIELD_GET(BMP280_COMP_H5_MASK, le16_to_cpu(data->le16)), 11); 276 277 ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp); 278 if (ret < 0) { 279 dev_err(dev, "failed to read H6 comp value\n"); 280 return ret; 281 } 282 calib->H6 = sign_extend32(tmp, 7); 283 284 return 0; 285 } 286 /* 287 * Returns humidity in percent, resolution is 0.01 percent. Output value of 288 * "47445" represents 47445/1024 = 46.333 %RH. 289 * 290 * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula". 291 */ 292 static u32 bmp280_compensate_humidity(struct bmp280_data *data, 293 s32 adc_humidity) 294 { 295 struct bmp280_calib *calib = &data->calib.bmp280; 296 s32 var; 297 298 var = ((s32)data->t_fine) - (s32)76800; 299 var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var)) 300 + (s32)16384) >> 15) * (((((((var * calib->H6) >> 10) 301 * (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10) 302 + (s32)2097152) * calib->H2 + 8192) >> 14); 303 var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4; 304 305 var = clamp_val(var, 0, 419430400); 306 307 return var >> 12; 308 }; 309 310 /* 311 * Returns temperature in DegC, resolution is 0.01 DegC. Output value of 312 * "5123" equals 51.23 DegC. t_fine carries fine temperature as global 313 * value. 314 * 315 * Taken from datasheet, Section 3.11.3, "Compensation formula". 316 */ 317 static s32 bmp280_compensate_temp(struct bmp280_data *data, 318 s32 adc_temp) 319 { 320 struct bmp280_calib *calib = &data->calib.bmp280; 321 s32 var1, var2; 322 323 var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) * 324 ((s32)calib->T2)) >> 11; 325 var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) * 326 ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) * 327 ((s32)calib->T3)) >> 14; 328 data->t_fine = var1 + var2; 329 330 return (data->t_fine * 5 + 128) >> 8; 331 } 332 333 /* 334 * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24 335 * integer bits and 8 fractional bits). Output value of "24674867" 336 * represents 24674867/256 = 96386.2 Pa = 963.862 hPa 337 * 338 * Taken from datasheet, Section 3.11.3, "Compensation formula". 339 */ 340 static u32 bmp280_compensate_press(struct bmp280_data *data, 341 s32 adc_press) 342 { 343 struct bmp280_calib *calib = &data->calib.bmp280; 344 s64 var1, var2, p; 345 346 var1 = ((s64)data->t_fine) - 128000; 347 var2 = var1 * var1 * (s64)calib->P6; 348 var2 += (var1 * (s64)calib->P5) << 17; 349 var2 += ((s64)calib->P4) << 35; 350 var1 = ((var1 * var1 * (s64)calib->P3) >> 8) + 351 ((var1 * (s64)calib->P2) << 12); 352 var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33; 353 354 if (var1 == 0) 355 return 0; 356 357 p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125; 358 p = div64_s64(p, var1); 359 var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25; 360 var2 = ((s64)(calib->P8) * p) >> 19; 361 p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4); 362 363 return (u32)p; 364 } 365 366 static int bmp280_read_temp(struct bmp280_data *data, 367 int *val, int *val2) 368 { 369 s32 adc_temp, comp_temp; 370 int ret; 371 372 ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB, 373 data->buf, sizeof(data->buf)); 374 if (ret < 0) { 375 dev_err(data->dev, "failed to read temperature\n"); 376 return ret; 377 } 378 379 adc_temp = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 380 if (adc_temp == BMP280_TEMP_SKIPPED) { 381 /* reading was skipped */ 382 dev_err(data->dev, "reading temperature skipped\n"); 383 return -EIO; 384 } 385 comp_temp = bmp280_compensate_temp(data, adc_temp); 386 387 /* 388 * val might be NULL if we're called by the read_press routine, 389 * who only cares about the carry over t_fine value. 390 */ 391 if (val) { 392 *val = comp_temp * 10; 393 return IIO_VAL_INT; 394 } 395 396 return 0; 397 } 398 399 static int bmp280_read_press(struct bmp280_data *data, 400 int *val, int *val2) 401 { 402 u32 comp_press; 403 s32 adc_press; 404 int ret; 405 406 /* Read and compensate temperature so we get a reading of t_fine. */ 407 ret = bmp280_read_temp(data, NULL, NULL); 408 if (ret < 0) 409 return ret; 410 411 ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB, 412 data->buf, sizeof(data->buf)); 413 if (ret < 0) { 414 dev_err(data->dev, "failed to read pressure\n"); 415 return ret; 416 } 417 418 adc_press = FIELD_GET(BMP280_MEAS_TRIM_MASK, get_unaligned_be24(data->buf)); 419 if (adc_press == BMP280_PRESS_SKIPPED) { 420 /* reading was skipped */ 421 dev_err(data->dev, "reading pressure skipped\n"); 422 return -EIO; 423 } 424 comp_press = bmp280_compensate_press(data, adc_press); 425 426 *val = comp_press; 427 *val2 = 256000; 428 429 return IIO_VAL_FRACTIONAL; 430 } 431 432 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2) 433 { 434 u32 comp_humidity; 435 s32 adc_humidity; 436 int ret; 437 438 /* Read and compensate temperature so we get a reading of t_fine. */ 439 ret = bmp280_read_temp(data, NULL, NULL); 440 if (ret < 0) 441 return ret; 442 443 ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB, 444 &data->be16, sizeof(data->be16)); 445 if (ret < 0) { 446 dev_err(data->dev, "failed to read humidity\n"); 447 return ret; 448 } 449 450 adc_humidity = be16_to_cpu(data->be16); 451 if (adc_humidity == BMP280_HUMIDITY_SKIPPED) { 452 /* reading was skipped */ 453 dev_err(data->dev, "reading humidity skipped\n"); 454 return -EIO; 455 } 456 comp_humidity = bmp280_compensate_humidity(data, adc_humidity); 457 458 *val = comp_humidity * 1000 / 1024; 459 460 return IIO_VAL_INT; 461 } 462 463 static int bmp280_read_raw(struct iio_dev *indio_dev, 464 struct iio_chan_spec const *chan, 465 int *val, int *val2, long mask) 466 { 467 struct bmp280_data *data = iio_priv(indio_dev); 468 int ret; 469 470 pm_runtime_get_sync(data->dev); 471 mutex_lock(&data->lock); 472 473 switch (mask) { 474 case IIO_CHAN_INFO_PROCESSED: 475 switch (chan->type) { 476 case IIO_HUMIDITYRELATIVE: 477 ret = data->chip_info->read_humid(data, val, val2); 478 break; 479 case IIO_PRESSURE: 480 ret = data->chip_info->read_press(data, val, val2); 481 break; 482 case IIO_TEMP: 483 ret = data->chip_info->read_temp(data, val, val2); 484 break; 485 default: 486 ret = -EINVAL; 487 break; 488 } 489 break; 490 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 491 switch (chan->type) { 492 case IIO_HUMIDITYRELATIVE: 493 *val = 1 << data->oversampling_humid; 494 ret = IIO_VAL_INT; 495 break; 496 case IIO_PRESSURE: 497 *val = 1 << data->oversampling_press; 498 ret = IIO_VAL_INT; 499 break; 500 case IIO_TEMP: 501 *val = 1 << data->oversampling_temp; 502 ret = IIO_VAL_INT; 503 break; 504 default: 505 ret = -EINVAL; 506 break; 507 } 508 break; 509 case IIO_CHAN_INFO_SAMP_FREQ: 510 if (!data->chip_info->sampling_freq_avail) { 511 ret = -EINVAL; 512 break; 513 } 514 515 *val = data->chip_info->sampling_freq_avail[data->sampling_freq][0]; 516 *val2 = data->chip_info->sampling_freq_avail[data->sampling_freq][1]; 517 ret = IIO_VAL_INT_PLUS_MICRO; 518 break; 519 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 520 if (!data->chip_info->iir_filter_coeffs_avail) { 521 ret = -EINVAL; 522 break; 523 } 524 525 *val = (1 << data->iir_filter_coeff) - 1; 526 ret = IIO_VAL_INT; 527 break; 528 default: 529 ret = -EINVAL; 530 break; 531 } 532 533 mutex_unlock(&data->lock); 534 pm_runtime_mark_last_busy(data->dev); 535 pm_runtime_put_autosuspend(data->dev); 536 537 return ret; 538 } 539 540 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data, 541 int val) 542 { 543 const int *avail = data->chip_info->oversampling_humid_avail; 544 const int n = data->chip_info->num_oversampling_humid_avail; 545 int ret, prev; 546 int i; 547 548 for (i = 0; i < n; i++) { 549 if (avail[i] == val) { 550 prev = data->oversampling_humid; 551 data->oversampling_humid = ilog2(val); 552 553 ret = data->chip_info->chip_config(data); 554 if (ret) { 555 data->oversampling_humid = prev; 556 data->chip_info->chip_config(data); 557 return ret; 558 } 559 return 0; 560 } 561 } 562 return -EINVAL; 563 } 564 565 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data, 566 int val) 567 { 568 const int *avail = data->chip_info->oversampling_temp_avail; 569 const int n = data->chip_info->num_oversampling_temp_avail; 570 int ret, prev; 571 int i; 572 573 for (i = 0; i < n; i++) { 574 if (avail[i] == val) { 575 prev = data->oversampling_temp; 576 data->oversampling_temp = ilog2(val); 577 578 ret = data->chip_info->chip_config(data); 579 if (ret) { 580 data->oversampling_temp = prev; 581 data->chip_info->chip_config(data); 582 return ret; 583 } 584 return 0; 585 } 586 } 587 return -EINVAL; 588 } 589 590 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data, 591 int val) 592 { 593 const int *avail = data->chip_info->oversampling_press_avail; 594 const int n = data->chip_info->num_oversampling_press_avail; 595 int ret, prev; 596 int i; 597 598 for (i = 0; i < n; i++) { 599 if (avail[i] == val) { 600 prev = data->oversampling_press; 601 data->oversampling_press = ilog2(val); 602 603 ret = data->chip_info->chip_config(data); 604 if (ret) { 605 data->oversampling_press = prev; 606 data->chip_info->chip_config(data); 607 return ret; 608 } 609 return 0; 610 } 611 } 612 return -EINVAL; 613 } 614 615 static int bmp280_write_sampling_frequency(struct bmp280_data *data, 616 int val, int val2) 617 { 618 const int (*avail)[2] = data->chip_info->sampling_freq_avail; 619 const int n = data->chip_info->num_sampling_freq_avail; 620 int ret, prev; 621 int i; 622 623 for (i = 0; i < n; i++) { 624 if (avail[i][0] == val && avail[i][1] == val2) { 625 prev = data->sampling_freq; 626 data->sampling_freq = i; 627 628 ret = data->chip_info->chip_config(data); 629 if (ret) { 630 data->sampling_freq = prev; 631 data->chip_info->chip_config(data); 632 return ret; 633 } 634 return 0; 635 } 636 } 637 return -EINVAL; 638 } 639 640 static int bmp280_write_iir_filter_coeffs(struct bmp280_data *data, int val) 641 { 642 const int *avail = data->chip_info->iir_filter_coeffs_avail; 643 const int n = data->chip_info->num_iir_filter_coeffs_avail; 644 int ret, prev; 645 int i; 646 647 for (i = 0; i < n; i++) { 648 if (avail[i] - 1 == val) { 649 prev = data->iir_filter_coeff; 650 data->iir_filter_coeff = i; 651 652 ret = data->chip_info->chip_config(data); 653 if (ret) { 654 data->iir_filter_coeff = prev; 655 data->chip_info->chip_config(data); 656 return ret; 657 658 } 659 return 0; 660 } 661 } 662 return -EINVAL; 663 } 664 665 static int bmp280_write_raw(struct iio_dev *indio_dev, 666 struct iio_chan_spec const *chan, 667 int val, int val2, long mask) 668 { 669 struct bmp280_data *data = iio_priv(indio_dev); 670 int ret = 0; 671 672 /* 673 * Helper functions to update sensor running configuration. 674 * If an error happens applying new settings, will try restore 675 * previous parameters to ensure the sensor is left in a known 676 * working configuration. 677 */ 678 switch (mask) { 679 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 680 pm_runtime_get_sync(data->dev); 681 mutex_lock(&data->lock); 682 switch (chan->type) { 683 case IIO_HUMIDITYRELATIVE: 684 ret = bmp280_write_oversampling_ratio_humid(data, val); 685 break; 686 case IIO_PRESSURE: 687 ret = bmp280_write_oversampling_ratio_press(data, val); 688 break; 689 case IIO_TEMP: 690 ret = bmp280_write_oversampling_ratio_temp(data, val); 691 break; 692 default: 693 ret = -EINVAL; 694 break; 695 } 696 mutex_unlock(&data->lock); 697 pm_runtime_mark_last_busy(data->dev); 698 pm_runtime_put_autosuspend(data->dev); 699 break; 700 case IIO_CHAN_INFO_SAMP_FREQ: 701 pm_runtime_get_sync(data->dev); 702 mutex_lock(&data->lock); 703 ret = bmp280_write_sampling_frequency(data, val, val2); 704 mutex_unlock(&data->lock); 705 pm_runtime_mark_last_busy(data->dev); 706 pm_runtime_put_autosuspend(data->dev); 707 break; 708 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 709 pm_runtime_get_sync(data->dev); 710 mutex_lock(&data->lock); 711 ret = bmp280_write_iir_filter_coeffs(data, val); 712 mutex_unlock(&data->lock); 713 pm_runtime_mark_last_busy(data->dev); 714 pm_runtime_put_autosuspend(data->dev); 715 break; 716 default: 717 return -EINVAL; 718 } 719 720 return ret; 721 } 722 723 static int bmp280_read_avail(struct iio_dev *indio_dev, 724 struct iio_chan_spec const *chan, 725 const int **vals, int *type, int *length, 726 long mask) 727 { 728 struct bmp280_data *data = iio_priv(indio_dev); 729 730 switch (mask) { 731 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 732 switch (chan->type) { 733 case IIO_PRESSURE: 734 *vals = data->chip_info->oversampling_press_avail; 735 *length = data->chip_info->num_oversampling_press_avail; 736 break; 737 case IIO_TEMP: 738 *vals = data->chip_info->oversampling_temp_avail; 739 *length = data->chip_info->num_oversampling_temp_avail; 740 break; 741 default: 742 return -EINVAL; 743 } 744 *type = IIO_VAL_INT; 745 return IIO_AVAIL_LIST; 746 case IIO_CHAN_INFO_SAMP_FREQ: 747 *vals = (const int *)data->chip_info->sampling_freq_avail; 748 *type = IIO_VAL_INT_PLUS_MICRO; 749 /* Values are stored in a 2D matrix */ 750 *length = data->chip_info->num_sampling_freq_avail; 751 return IIO_AVAIL_LIST; 752 case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: 753 *vals = data->chip_info->iir_filter_coeffs_avail; 754 *type = IIO_VAL_INT; 755 *length = data->chip_info->num_iir_filter_coeffs_avail; 756 return IIO_AVAIL_LIST; 757 default: 758 return -EINVAL; 759 } 760 } 761 762 static const struct iio_info bmp280_info = { 763 .read_raw = &bmp280_read_raw, 764 .read_avail = &bmp280_read_avail, 765 .write_raw = &bmp280_write_raw, 766 }; 767 768 static int bmp280_chip_config(struct bmp280_data *data) 769 { 770 u8 osrs = FIELD_PREP(BMP280_OSRS_TEMP_MASK, data->oversampling_temp + 1) | 771 FIELD_PREP(BMP280_OSRS_PRESS_MASK, data->oversampling_press + 1); 772 int ret; 773 774 ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS, 775 BMP280_OSRS_TEMP_MASK | 776 BMP280_OSRS_PRESS_MASK | 777 BMP280_MODE_MASK, 778 osrs | BMP280_MODE_NORMAL); 779 if (ret < 0) { 780 dev_err(data->dev, 781 "failed to write ctrl_meas register\n"); 782 return ret; 783 } 784 785 ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG, 786 BMP280_FILTER_MASK, 787 BMP280_FILTER_4X); 788 if (ret < 0) { 789 dev_err(data->dev, 790 "failed to write config register\n"); 791 return ret; 792 } 793 794 return ret; 795 } 796 797 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 }; 798 static const u8 bmp280_chip_ids[] = { BMP280_CHIP_ID }; 799 800 const struct bmp280_chip_info bmp280_chip_info = { 801 .id_reg = BMP280_REG_ID, 802 .chip_id = bmp280_chip_ids, 803 .num_chip_id = ARRAY_SIZE(bmp280_chip_ids), 804 .regmap_config = &bmp280_regmap_config, 805 .start_up_time = 2000, 806 .channels = bmp280_channels, 807 .num_channels = 2, 808 809 .oversampling_temp_avail = bmp280_oversampling_avail, 810 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 811 /* 812 * Oversampling config values on BMx280 have one additional setting 813 * that other generations of the family don't: 814 * The value 0 means the measurement is bypassed instead of 815 * oversampling set to x1. 816 * 817 * To account for this difference, and preserve the same common 818 * config logic, this is handled later on chip_config callback 819 * incrementing one unit the oversampling setting. 820 */ 821 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 822 823 .oversampling_press_avail = bmp280_oversampling_avail, 824 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 825 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 826 827 .chip_config = bmp280_chip_config, 828 .read_temp = bmp280_read_temp, 829 .read_press = bmp280_read_press, 830 .read_calib = bmp280_read_calib, 831 }; 832 EXPORT_SYMBOL_NS(bmp280_chip_info, IIO_BMP280); 833 834 static int bme280_chip_config(struct bmp280_data *data) 835 { 836 u8 osrs = FIELD_PREP(BMP280_OSRS_HUMIDITY_MASK, data->oversampling_humid + 1); 837 int ret; 838 839 /* 840 * Oversampling of humidity must be set before oversampling of 841 * temperature/pressure is set to become effective. 842 */ 843 ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY, 844 BMP280_OSRS_HUMIDITY_MASK, osrs); 845 846 if (ret < 0) 847 return ret; 848 849 return bmp280_chip_config(data); 850 } 851 852 static const u8 bme280_chip_ids[] = { BME280_CHIP_ID }; 853 854 const struct bmp280_chip_info bme280_chip_info = { 855 .id_reg = BMP280_REG_ID, 856 .chip_id = bme280_chip_ids, 857 .num_chip_id = ARRAY_SIZE(bme280_chip_ids), 858 .regmap_config = &bmp280_regmap_config, 859 .start_up_time = 2000, 860 .channels = bmp280_channels, 861 .num_channels = 3, 862 863 .oversampling_temp_avail = bmp280_oversampling_avail, 864 .num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail), 865 .oversampling_temp_default = BMP280_OSRS_TEMP_2X - 1, 866 867 .oversampling_press_avail = bmp280_oversampling_avail, 868 .num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail), 869 .oversampling_press_default = BMP280_OSRS_PRESS_16X - 1, 870 871 .oversampling_humid_avail = bmp280_oversampling_avail, 872 .num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail), 873 .oversampling_humid_default = BMP280_OSRS_HUMIDITY_16X - 1, 874 875 .chip_config = bme280_chip_config, 876 .read_temp = bmp280_read_temp, 877 .read_press = bmp280_read_press, 878 .read_humid = bmp280_read_humid, 879 .read_calib = bme280_read_calib, 880 }; 881 EXPORT_SYMBOL_NS(bme280_chip_info, IIO_BMP280); 882 883 /* 884 * Helper function to send a command to BMP3XX sensors. 885 * 886 * Sensor processes commands written to the CMD register and signals 887 * execution result through "cmd_rdy" and "cmd_error" flags available on 888 * STATUS and ERROR registers. 889 */ 890 static int bmp380_cmd(struct bmp280_data *data, u8 cmd) 891 { 892 unsigned int reg; 893 int ret; 894 895 /* Check if device is ready to process a command */ 896 ret = regmap_read(data->regmap, BMP380_REG_STATUS, ®); 897 if (ret) { 898 dev_err(data->dev, "failed to read error register\n"); 899 return ret; 900 } 901 if (!(reg & BMP380_STATUS_CMD_RDY_MASK)) { 902 dev_err(data->dev, "device is not ready to accept commands\n"); 903 return -EBUSY; 904 } 905 906 /* Send command to process */ 907 ret = regmap_write(data->regmap, BMP380_REG_CMD, cmd); 908 if (ret) { 909 dev_err(data->dev, "failed to send command to device\n"); 910 return ret; 911 } 912 /* Wait for 2ms for command to be processed */ 913 usleep_range(data->start_up_time, data->start_up_time + 100); 914 /* Check for command processing error */ 915 ret = regmap_read(data->regmap, BMP380_REG_ERROR, ®); 916 if (ret) { 917 dev_err(data->dev, "error reading ERROR reg\n"); 918 return ret; 919 } 920 if (reg & BMP380_ERR_CMD_MASK) { 921 dev_err(data->dev, "error processing command 0x%X\n", cmd); 922 return -EINVAL; 923 } 924 925 return 0; 926 } 927 928 /* 929 * Returns temperature in Celsius degrees, resolution is 0.01º C. Output value of 930 * "5123" equals 51.2º C. t_fine carries fine temperature as global value. 931 * 932 * Taken from datasheet, Section Appendix 9, "Compensation formula" and repo 933 * https://github.com/BoschSensortec/BMP3-Sensor-API. 934 */ 935 static s32 bmp380_compensate_temp(struct bmp280_data *data, u32 adc_temp) 936 { 937 s64 var1, var2, var3, var4, var5, var6, comp_temp; 938 struct bmp380_calib *calib = &data->calib.bmp380; 939 940 var1 = ((s64) adc_temp) - (((s64) calib->T1) << 8); 941 var2 = var1 * ((s64) calib->T2); 942 var3 = var1 * var1; 943 var4 = var3 * ((s64) calib->T3); 944 var5 = (var2 << 18) + var4; 945 var6 = var5 >> 32; 946 data->t_fine = (s32) var6; 947 comp_temp = (var6 * 25) >> 14; 948 949 comp_temp = clamp_val(comp_temp, BMP380_MIN_TEMP, BMP380_MAX_TEMP); 950 return (s32) comp_temp; 951 } 952 953 /* 954 * Returns pressure in Pa as an unsigned 32 bit integer in fractional Pascal. 955 * Output value of "9528709" represents 9528709/100 = 95287.09 Pa = 952.8709 hPa. 956 * 957 * Taken from datasheet, Section 9.3. "Pressure compensation" and repository 958 * https://github.com/BoschSensortec/BMP3-Sensor-API. 959 */ 960 static u32 bmp380_compensate_press(struct bmp280_data *data, u32 adc_press) 961 { 962 s64 var1, var2, var3, var4, var5, var6, offset, sensitivity; 963 struct bmp380_calib *calib = &data->calib.bmp380; 964 u32 comp_press; 965 966 var1 = (s64)data->t_fine * (s64)data->t_fine; 967 var2 = var1 >> 6; 968 var3 = (var2 * ((s64) data->t_fine)) >> 8; 969 var4 = ((s64)calib->P8 * var3) >> 5; 970 var5 = ((s64)calib->P7 * var1) << 4; 971 var6 = ((s64)calib->P6 * (s64)data->t_fine) << 22; 972 offset = ((s64)calib->P5 << 47) + var4 + var5 + var6; 973 var2 = ((s64)calib->P4 * var3) >> 5; 974 var4 = ((s64)calib->P3 * var1) << 2; 975 var5 = ((s64)calib->P2 - ((s64)1 << 14)) * 976 ((s64)data->t_fine << 21); 977 sensitivity = (((s64) calib->P1 - ((s64) 1 << 14)) << 46) + 978 var2 + var4 + var5; 979 var1 = (sensitivity >> 24) * (s64)adc_press; 980 var2 = (s64)calib->P10 * (s64)data->t_fine; 981 var3 = var2 + ((s64)calib->P9 << 16); 982 var4 = (var3 * (s64)adc_press) >> 13; 983 984 /* 985 * Dividing by 10 followed by multiplying by 10 to avoid 986 * possible overflow caused by (uncomp_data->pressure * partial_data4). 987 */ 988 var5 = ((s64)adc_press * div_s64(var4, 10)) >> 9; 989 var5 *= 10; 990 var6 = (s64)adc_press * (s64)adc_press; 991 var2 = ((s64)calib->P11 * var6) >> 16; 992 var3 = (var2 * (s64)adc_press) >> 7; 993 var4 = (offset >> 2) + var1 + var5 + var3; 994 comp_press = ((u64)var4 * 25) >> 40; 995 996 comp_press = clamp_val(comp_press, BMP380_MIN_PRES, BMP380_MAX_PRES); 997 return comp_press; 998 } 999 1000 static int bmp380_read_temp(struct bmp280_data *data, int *val, int *val2) 1001 { 1002 s32 comp_temp; 1003 u32 adc_temp; 1004 int ret; 1005 1006 ret = regmap_bulk_read(data->regmap, BMP380_REG_TEMP_XLSB, 1007 data->buf, sizeof(data->buf)); 1008 if (ret) { 1009 dev_err(data->dev, "failed to read temperature\n"); 1010 return ret; 1011 } 1012 1013 adc_temp = get_unaligned_le24(data->buf); 1014 if (adc_temp == BMP380_TEMP_SKIPPED) { 1015 dev_err(data->dev, "reading temperature skipped\n"); 1016 return -EIO; 1017 } 1018 comp_temp = bmp380_compensate_temp(data, adc_temp); 1019 1020 /* 1021 * Val might be NULL if we're called by the read_press routine, 1022 * who only cares about the carry over t_fine value. 1023 */ 1024 if (val) { 1025 /* IIO reports temperatures in milli Celsius */ 1026 *val = comp_temp * 10; 1027 return IIO_VAL_INT; 1028 } 1029 1030 return 0; 1031 } 1032 1033 static int bmp380_read_press(struct bmp280_data *data, int *val, int *val2) 1034 { 1035 s32 comp_press; 1036 u32 adc_press; 1037 int ret; 1038 1039 /* Read and compensate for temperature so we get a reading of t_fine */ 1040 ret = bmp380_read_temp(data, NULL, NULL); 1041 if (ret) 1042 return ret; 1043 1044 ret = regmap_bulk_read(data->regmap, BMP380_REG_PRESS_XLSB, 1045 data->buf, sizeof(data->buf)); 1046 if (ret) { 1047 dev_err(data->dev, "failed to read pressure\n"); 1048 return ret; 1049 } 1050 1051 adc_press = get_unaligned_le24(data->buf); 1052 if (adc_press == BMP380_PRESS_SKIPPED) { 1053 dev_err(data->dev, "reading pressure skipped\n"); 1054 return -EIO; 1055 } 1056 comp_press = bmp380_compensate_press(data, adc_press); 1057 1058 *val = comp_press; 1059 /* Compensated pressure is in cPa (centipascals) */ 1060 *val2 = 100000; 1061 1062 return IIO_VAL_FRACTIONAL; 1063 } 1064 1065 static int bmp380_read_calib(struct bmp280_data *data) 1066 { 1067 struct bmp380_calib *calib = &data->calib.bmp380; 1068 int ret; 1069 1070 /* Read temperature and pressure calibration data */ 1071 ret = regmap_bulk_read(data->regmap, BMP380_REG_CALIB_TEMP_START, 1072 data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf)); 1073 if (ret) { 1074 dev_err(data->dev, 1075 "failed to read temperature calibration parameters\n"); 1076 return ret; 1077 } 1078 1079 /* Toss the temperature calibration data into the entropy pool */ 1080 add_device_randomness(data->bmp380_cal_buf, sizeof(data->bmp380_cal_buf)); 1081 1082 /* Parse calibration values */ 1083 calib->T1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T1]); 1084 calib->T2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_T2]); 1085 calib->T3 = data->bmp380_cal_buf[BMP380_T3]; 1086 calib->P1 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P1]); 1087 calib->P2 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P2]); 1088 calib->P3 = data->bmp380_cal_buf[BMP380_P3]; 1089 calib->P4 = data->bmp380_cal_buf[BMP380_P4]; 1090 calib->P5 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P5]); 1091 calib->P6 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P6]); 1092 calib->P7 = data->bmp380_cal_buf[BMP380_P7]; 1093 calib->P8 = data->bmp380_cal_buf[BMP380_P8]; 1094 calib->P9 = get_unaligned_le16(&data->bmp380_cal_buf[BMP380_P9]); 1095 calib->P10 = data->bmp380_cal_buf[BMP380_P10]; 1096 calib->P11 = data->bmp380_cal_buf[BMP380_P11]; 1097 1098 return 0; 1099 } 1100 1101 static const int bmp380_odr_table[][2] = { 1102 [BMP380_ODR_200HZ] = {200, 0}, 1103 [BMP380_ODR_100HZ] = {100, 0}, 1104 [BMP380_ODR_50HZ] = {50, 0}, 1105 [BMP380_ODR_25HZ] = {25, 0}, 1106 [BMP380_ODR_12_5HZ] = {12, 500000}, 1107 [BMP380_ODR_6_25HZ] = {6, 250000}, 1108 [BMP380_ODR_3_125HZ] = {3, 125000}, 1109 [BMP380_ODR_1_5625HZ] = {1, 562500}, 1110 [BMP380_ODR_0_78HZ] = {0, 781250}, 1111 [BMP380_ODR_0_39HZ] = {0, 390625}, 1112 [BMP380_ODR_0_2HZ] = {0, 195313}, 1113 [BMP380_ODR_0_1HZ] = {0, 97656}, 1114 [BMP380_ODR_0_05HZ] = {0, 48828}, 1115 [BMP380_ODR_0_02HZ] = {0, 24414}, 1116 [BMP380_ODR_0_01HZ] = {0, 12207}, 1117 [BMP380_ODR_0_006HZ] = {0, 6104}, 1118 [BMP380_ODR_0_003HZ] = {0, 3052}, 1119 [BMP380_ODR_0_0015HZ] = {0, 1526}, 1120 }; 1121 1122 static int bmp380_preinit(struct bmp280_data *data) 1123 { 1124 /* BMP3xx requires soft-reset as part of initialization */ 1125 return bmp380_cmd(data, BMP380_CMD_SOFT_RESET); 1126 } 1127 1128 static int bmp380_chip_config(struct bmp280_data *data) 1129 { 1130 bool change = false, aux; 1131 unsigned int tmp; 1132 u8 osrs; 1133 int ret; 1134 1135 /* Configure power control register */ 1136 ret = regmap_update_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1137 BMP380_CTRL_SENSORS_MASK, 1138 BMP380_CTRL_SENSORS_PRESS_EN | 1139 BMP380_CTRL_SENSORS_TEMP_EN); 1140 if (ret) { 1141 dev_err(data->dev, 1142 "failed to write operation control register\n"); 1143 return ret; 1144 } 1145 1146 /* Configure oversampling */ 1147 osrs = FIELD_PREP(BMP380_OSRS_TEMP_MASK, data->oversampling_temp) | 1148 FIELD_PREP(BMP380_OSRS_PRESS_MASK, data->oversampling_press); 1149 1150 ret = regmap_update_bits_check(data->regmap, BMP380_REG_OSR, 1151 BMP380_OSRS_TEMP_MASK | 1152 BMP380_OSRS_PRESS_MASK, 1153 osrs, &aux); 1154 if (ret) { 1155 dev_err(data->dev, "failed to write oversampling register\n"); 1156 return ret; 1157 } 1158 change = change || aux; 1159 1160 /* Configure output data rate */ 1161 ret = regmap_update_bits_check(data->regmap, BMP380_REG_ODR, 1162 BMP380_ODRS_MASK, data->sampling_freq, &aux); 1163 if (ret) { 1164 dev_err(data->dev, "failed to write ODR selection register\n"); 1165 return ret; 1166 } 1167 change = change || aux; 1168 1169 /* Set filter data */ 1170 ret = regmap_update_bits_check(data->regmap, BMP380_REG_CONFIG, BMP380_FILTER_MASK, 1171 FIELD_PREP(BMP380_FILTER_MASK, data->iir_filter_coeff), 1172 &aux); 1173 if (ret) { 1174 dev_err(data->dev, "failed to write config register\n"); 1175 return ret; 1176 } 1177 change = change || aux; 1178 1179 if (change) { 1180 /* 1181 * The configurations errors are detected on the fly during a measurement 1182 * cycle. If the sampling frequency is too low, it's faster to reset 1183 * the measurement loop than wait until the next measurement is due. 1184 * 1185 * Resets sensor measurement loop toggling between sleep and normal 1186 * operating modes. 1187 */ 1188 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1189 BMP380_MODE_MASK, 1190 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_SLEEP)); 1191 if (ret) { 1192 dev_err(data->dev, "failed to set sleep mode\n"); 1193 return ret; 1194 } 1195 usleep_range(2000, 2500); 1196 ret = regmap_write_bits(data->regmap, BMP380_REG_POWER_CONTROL, 1197 BMP380_MODE_MASK, 1198 FIELD_PREP(BMP380_MODE_MASK, BMP380_MODE_NORMAL)); 1199 if (ret) { 1200 dev_err(data->dev, "failed to set normal mode\n"); 1201 return ret; 1202 } 1203 /* 1204 * Waits for measurement before checking configuration error flag. 1205 * Selected longest measure time indicated in section 3.9.1 1206 * in the datasheet. 1207 */ 1208 msleep(80); 1209 1210 /* Check config error flag */ 1211 ret = regmap_read(data->regmap, BMP380_REG_ERROR, &tmp); 1212 if (ret) { 1213 dev_err(data->dev, 1214 "failed to read error register\n"); 1215 return ret; 1216 } 1217 if (tmp & BMP380_ERR_CONF_MASK) { 1218 dev_warn(data->dev, 1219 "sensor flagged configuration as incompatible\n"); 1220 return -EINVAL; 1221 } 1222 } 1223 1224 return 0; 1225 } 1226 1227 static const int bmp380_oversampling_avail[] = { 1, 2, 4, 8, 16, 32 }; 1228 static const int bmp380_iir_filter_coeffs_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128}; 1229 static const u8 bmp380_chip_ids[] = { BMP380_CHIP_ID, BMP390_CHIP_ID }; 1230 1231 const struct bmp280_chip_info bmp380_chip_info = { 1232 .id_reg = BMP380_REG_ID, 1233 .chip_id = bmp380_chip_ids, 1234 .num_chip_id = ARRAY_SIZE(bmp380_chip_ids), 1235 .regmap_config = &bmp380_regmap_config, 1236 .spi_read_extra_byte = true, 1237 .start_up_time = 2000, 1238 .channels = bmp380_channels, 1239 .num_channels = 2, 1240 1241 .oversampling_temp_avail = bmp380_oversampling_avail, 1242 .num_oversampling_temp_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1243 .oversampling_temp_default = ilog2(1), 1244 1245 .oversampling_press_avail = bmp380_oversampling_avail, 1246 .num_oversampling_press_avail = ARRAY_SIZE(bmp380_oversampling_avail), 1247 .oversampling_press_default = ilog2(4), 1248 1249 .sampling_freq_avail = bmp380_odr_table, 1250 .num_sampling_freq_avail = ARRAY_SIZE(bmp380_odr_table) * 2, 1251 .sampling_freq_default = BMP380_ODR_50HZ, 1252 1253 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1254 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1255 .iir_filter_coeff_default = 2, 1256 1257 .chip_config = bmp380_chip_config, 1258 .read_temp = bmp380_read_temp, 1259 .read_press = bmp380_read_press, 1260 .read_calib = bmp380_read_calib, 1261 .preinit = bmp380_preinit, 1262 }; 1263 EXPORT_SYMBOL_NS(bmp380_chip_info, IIO_BMP280); 1264 1265 static int bmp580_soft_reset(struct bmp280_data *data) 1266 { 1267 unsigned int reg; 1268 int ret; 1269 1270 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_SOFT_RESET); 1271 if (ret) { 1272 dev_err(data->dev, "failed to send reset command to device\n"); 1273 return ret; 1274 } 1275 usleep_range(2000, 2500); 1276 1277 /* Dummy read of chip_id */ 1278 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1279 if (ret) { 1280 dev_err(data->dev, "failed to reestablish comms after reset\n"); 1281 return ret; 1282 } 1283 1284 ret = regmap_read(data->regmap, BMP580_REG_INT_STATUS, ®); 1285 if (ret) { 1286 dev_err(data->dev, "error reading interrupt status register\n"); 1287 return ret; 1288 } 1289 if (!(reg & BMP580_INT_STATUS_POR_MASK)) { 1290 dev_err(data->dev, "error resetting sensor\n"); 1291 return -EINVAL; 1292 } 1293 1294 return 0; 1295 } 1296 1297 /** 1298 * bmp580_nvm_operation() - Helper function to commit NVM memory operations 1299 * @data: sensor data struct 1300 * @is_write: flag to signal write operation 1301 */ 1302 static int bmp580_nvm_operation(struct bmp280_data *data, bool is_write) 1303 { 1304 unsigned long timeout, poll; 1305 unsigned int reg; 1306 int ret; 1307 1308 /* Check NVM ready flag */ 1309 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1310 if (ret) { 1311 dev_err(data->dev, "failed to check nvm status\n"); 1312 return ret; 1313 } 1314 if (!(reg & BMP580_STATUS_NVM_RDY_MASK)) { 1315 dev_err(data->dev, "sensor's nvm is not ready\n"); 1316 return -EIO; 1317 } 1318 1319 /* Start NVM operation sequence */ 1320 ret = regmap_write(data->regmap, BMP580_REG_CMD, BMP580_CMD_NVM_OP_SEQ_0); 1321 if (ret) { 1322 dev_err(data->dev, "failed to send nvm operation's first sequence\n"); 1323 return ret; 1324 } 1325 if (is_write) { 1326 /* Send NVM write sequence */ 1327 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1328 BMP580_CMD_NVM_WRITE_SEQ_1); 1329 if (ret) { 1330 dev_err(data->dev, "failed to send nvm write sequence\n"); 1331 return ret; 1332 } 1333 /* Datasheet says on 4.8.1.2 it takes approximately 10ms */ 1334 poll = 2000; 1335 timeout = 12000; 1336 } else { 1337 /* Send NVM read sequence */ 1338 ret = regmap_write(data->regmap, BMP580_REG_CMD, 1339 BMP580_CMD_NVM_READ_SEQ_1); 1340 if (ret) { 1341 dev_err(data->dev, "failed to send nvm read sequence\n"); 1342 return ret; 1343 } 1344 /* Datasheet says on 4.8.1.1 it takes approximately 200us */ 1345 poll = 50; 1346 timeout = 400; 1347 } 1348 if (ret) { 1349 dev_err(data->dev, "failed to write command sequence\n"); 1350 return -EIO; 1351 } 1352 1353 /* Wait until NVM is ready again */ 1354 ret = regmap_read_poll_timeout(data->regmap, BMP580_REG_STATUS, reg, 1355 (reg & BMP580_STATUS_NVM_RDY_MASK), 1356 poll, timeout); 1357 if (ret) { 1358 dev_err(data->dev, "error checking nvm operation status\n"); 1359 return ret; 1360 } 1361 1362 /* Check NVM error flags */ 1363 if ((reg & BMP580_STATUS_NVM_ERR_MASK) || (reg & BMP580_STATUS_NVM_CMD_ERR_MASK)) { 1364 dev_err(data->dev, "error processing nvm operation\n"); 1365 return -EIO; 1366 } 1367 1368 return 0; 1369 } 1370 1371 /* 1372 * Contrary to previous sensors families, compensation algorithm is builtin. 1373 * We are only required to read the register raw data and adapt the ranges 1374 * for what is expected on IIO ABI. 1375 */ 1376 1377 static int bmp580_read_temp(struct bmp280_data *data, int *val, int *val2) 1378 { 1379 s32 raw_temp; 1380 int ret; 1381 1382 ret = regmap_bulk_read(data->regmap, BMP580_REG_TEMP_XLSB, data->buf, 1383 sizeof(data->buf)); 1384 if (ret) { 1385 dev_err(data->dev, "failed to read temperature\n"); 1386 return ret; 1387 } 1388 1389 raw_temp = get_unaligned_le24(data->buf); 1390 if (raw_temp == BMP580_TEMP_SKIPPED) { 1391 dev_err(data->dev, "reading temperature skipped\n"); 1392 return -EIO; 1393 } 1394 1395 /* 1396 * Temperature is returned in Celsius degrees in fractional 1397 * form down 2^16. We rescale by x1000 to return milli Celsius 1398 * to respect IIO ABI. 1399 */ 1400 *val = raw_temp * 1000; 1401 *val2 = 16; 1402 return IIO_VAL_FRACTIONAL_LOG2; 1403 } 1404 1405 static int bmp580_read_press(struct bmp280_data *data, int *val, int *val2) 1406 { 1407 u32 raw_press; 1408 int ret; 1409 1410 ret = regmap_bulk_read(data->regmap, BMP580_REG_PRESS_XLSB, data->buf, 1411 sizeof(data->buf)); 1412 if (ret) { 1413 dev_err(data->dev, "failed to read pressure\n"); 1414 return ret; 1415 } 1416 1417 raw_press = get_unaligned_le24(data->buf); 1418 if (raw_press == BMP580_PRESS_SKIPPED) { 1419 dev_err(data->dev, "reading pressure skipped\n"); 1420 return -EIO; 1421 } 1422 /* 1423 * Pressure is returned in Pascals in fractional form down 2^16. 1424 * We rescale /1000 to convert to kilopascal to respect IIO ABI. 1425 */ 1426 *val = raw_press; 1427 *val2 = 64000; /* 2^6 * 1000 */ 1428 return IIO_VAL_FRACTIONAL; 1429 } 1430 1431 static const int bmp580_odr_table[][2] = { 1432 [BMP580_ODR_240HZ] = {240, 0}, 1433 [BMP580_ODR_218HZ] = {218, 0}, 1434 [BMP580_ODR_199HZ] = {199, 0}, 1435 [BMP580_ODR_179HZ] = {179, 0}, 1436 [BMP580_ODR_160HZ] = {160, 0}, 1437 [BMP580_ODR_149HZ] = {149, 0}, 1438 [BMP580_ODR_140HZ] = {140, 0}, 1439 [BMP580_ODR_129HZ] = {129, 0}, 1440 [BMP580_ODR_120HZ] = {120, 0}, 1441 [BMP580_ODR_110HZ] = {110, 0}, 1442 [BMP580_ODR_100HZ] = {100, 0}, 1443 [BMP580_ODR_89HZ] = {89, 0}, 1444 [BMP580_ODR_80HZ] = {80, 0}, 1445 [BMP580_ODR_70HZ] = {70, 0}, 1446 [BMP580_ODR_60HZ] = {60, 0}, 1447 [BMP580_ODR_50HZ] = {50, 0}, 1448 [BMP580_ODR_45HZ] = {45, 0}, 1449 [BMP580_ODR_40HZ] = {40, 0}, 1450 [BMP580_ODR_35HZ] = {35, 0}, 1451 [BMP580_ODR_30HZ] = {30, 0}, 1452 [BMP580_ODR_25HZ] = {25, 0}, 1453 [BMP580_ODR_20HZ] = {20, 0}, 1454 [BMP580_ODR_15HZ] = {15, 0}, 1455 [BMP580_ODR_10HZ] = {10, 0}, 1456 [BMP580_ODR_5HZ] = {5, 0}, 1457 [BMP580_ODR_4HZ] = {4, 0}, 1458 [BMP580_ODR_3HZ] = {3, 0}, 1459 [BMP580_ODR_2HZ] = {2, 0}, 1460 [BMP580_ODR_1HZ] = {1, 0}, 1461 [BMP580_ODR_0_5HZ] = {0, 500000}, 1462 [BMP580_ODR_0_25HZ] = {0, 250000}, 1463 [BMP580_ODR_0_125HZ] = {0, 125000}, 1464 }; 1465 1466 static const int bmp580_nvmem_addrs[] = { 0x20, 0x21, 0x22 }; 1467 1468 static int bmp580_nvmem_read(void *priv, unsigned int offset, void *val, 1469 size_t bytes) 1470 { 1471 struct bmp280_data *data = priv; 1472 u16 *dst = val; 1473 int ret, addr; 1474 1475 pm_runtime_get_sync(data->dev); 1476 mutex_lock(&data->lock); 1477 1478 /* Set sensor in standby mode */ 1479 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1480 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1481 BMP580_ODR_DEEPSLEEP_DIS | 1482 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1483 if (ret) { 1484 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1485 goto exit; 1486 } 1487 /* Wait standby transition time */ 1488 usleep_range(2500, 3000); 1489 1490 while (bytes >= sizeof(*dst)) { 1491 addr = bmp580_nvmem_addrs[offset / sizeof(*dst)]; 1492 1493 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, 1494 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1495 if (ret) { 1496 dev_err(data->dev, "error writing nvm address\n"); 1497 goto exit; 1498 } 1499 1500 ret = bmp580_nvm_operation(data, false); 1501 if (ret) 1502 goto exit; 1503 1504 ret = regmap_bulk_read(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16, 1505 sizeof(data->le16)); 1506 if (ret) { 1507 dev_err(data->dev, "error reading nvm data regs\n"); 1508 goto exit; 1509 } 1510 1511 *dst++ = le16_to_cpu(data->le16); 1512 bytes -= sizeof(*dst); 1513 offset += sizeof(*dst); 1514 } 1515 exit: 1516 /* Restore chip config */ 1517 data->chip_info->chip_config(data); 1518 mutex_unlock(&data->lock); 1519 pm_runtime_mark_last_busy(data->dev); 1520 pm_runtime_put_autosuspend(data->dev); 1521 return ret; 1522 } 1523 1524 static int bmp580_nvmem_write(void *priv, unsigned int offset, void *val, 1525 size_t bytes) 1526 { 1527 struct bmp280_data *data = priv; 1528 u16 *buf = val; 1529 int ret, addr; 1530 1531 pm_runtime_get_sync(data->dev); 1532 mutex_lock(&data->lock); 1533 1534 /* Set sensor in standby mode */ 1535 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1536 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1537 BMP580_ODR_DEEPSLEEP_DIS | 1538 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1539 if (ret) { 1540 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1541 goto exit; 1542 } 1543 /* Wait standby transition time */ 1544 usleep_range(2500, 3000); 1545 1546 while (bytes >= sizeof(*buf)) { 1547 addr = bmp580_nvmem_addrs[offset / sizeof(*buf)]; 1548 1549 ret = regmap_write(data->regmap, BMP580_REG_NVM_ADDR, BMP580_NVM_PROG_EN | 1550 FIELD_PREP(BMP580_NVM_ROW_ADDR_MASK, addr)); 1551 if (ret) { 1552 dev_err(data->dev, "error writing nvm address\n"); 1553 goto exit; 1554 } 1555 data->le16 = cpu_to_le16(*buf++); 1556 1557 ret = regmap_bulk_write(data->regmap, BMP580_REG_NVM_DATA_LSB, &data->le16, 1558 sizeof(data->le16)); 1559 if (ret) { 1560 dev_err(data->dev, "error writing LSB NVM data regs\n"); 1561 goto exit; 1562 } 1563 1564 ret = bmp580_nvm_operation(data, true); 1565 if (ret) 1566 goto exit; 1567 1568 /* Disable programming mode bit */ 1569 ret = regmap_update_bits(data->regmap, BMP580_REG_NVM_ADDR, 1570 BMP580_NVM_PROG_EN, 0); 1571 if (ret) { 1572 dev_err(data->dev, "error resetting nvm write\n"); 1573 goto exit; 1574 } 1575 1576 bytes -= sizeof(*buf); 1577 offset += sizeof(*buf); 1578 } 1579 exit: 1580 /* Restore chip config */ 1581 data->chip_info->chip_config(data); 1582 mutex_unlock(&data->lock); 1583 pm_runtime_mark_last_busy(data->dev); 1584 pm_runtime_put_autosuspend(data->dev); 1585 return ret; 1586 } 1587 1588 static int bmp580_preinit(struct bmp280_data *data) 1589 { 1590 struct nvmem_config config = { 1591 .dev = data->dev, 1592 .priv = data, 1593 .name = "bmp580_nvmem", 1594 .word_size = sizeof(u16), 1595 .stride = sizeof(u16), 1596 .size = 3 * sizeof(u16), 1597 .reg_read = bmp580_nvmem_read, 1598 .reg_write = bmp580_nvmem_write, 1599 }; 1600 unsigned int reg; 1601 int ret; 1602 1603 /* Issue soft-reset command */ 1604 ret = bmp580_soft_reset(data); 1605 if (ret) 1606 return ret; 1607 1608 /* Post powerup sequence */ 1609 ret = regmap_read(data->regmap, BMP580_REG_CHIP_ID, ®); 1610 if (ret) 1611 return ret; 1612 1613 /* Print warn message if we don't know the chip id */ 1614 if (reg != BMP580_CHIP_ID && reg != BMP580_CHIP_ID_ALT) 1615 dev_warn(data->dev, "preinit: unexpected chip_id\n"); 1616 1617 ret = regmap_read(data->regmap, BMP580_REG_STATUS, ®); 1618 if (ret) 1619 return ret; 1620 1621 /* Check nvm status */ 1622 if (!(reg & BMP580_STATUS_NVM_RDY_MASK) || (reg & BMP580_STATUS_NVM_ERR_MASK)) { 1623 dev_err(data->dev, "preinit: nvm error on powerup sequence\n"); 1624 return -EIO; 1625 } 1626 1627 /* Register nvmem device */ 1628 return PTR_ERR_OR_ZERO(devm_nvmem_register(config.dev, &config)); 1629 } 1630 1631 static int bmp580_chip_config(struct bmp280_data *data) 1632 { 1633 bool change = false, aux; 1634 unsigned int tmp; 1635 u8 reg_val; 1636 int ret; 1637 1638 /* Sets sensor in standby mode */ 1639 ret = regmap_update_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1640 BMP580_MODE_MASK | BMP580_ODR_DEEPSLEEP_DIS, 1641 BMP580_ODR_DEEPSLEEP_DIS | 1642 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_SLEEP)); 1643 if (ret) { 1644 dev_err(data->dev, "failed to change sensor to standby mode\n"); 1645 return ret; 1646 } 1647 /* From datasheet's table 4: electrical characteristics */ 1648 usleep_range(2500, 3000); 1649 1650 /* Set default DSP mode settings */ 1651 reg_val = FIELD_PREP(BMP580_DSP_COMP_MASK, BMP580_DSP_PRESS_TEMP_COMP_EN) | 1652 BMP580_DSP_SHDW_IIR_TEMP_EN | BMP580_DSP_SHDW_IIR_PRESS_EN; 1653 1654 ret = regmap_update_bits(data->regmap, BMP580_REG_DSP_CONFIG, 1655 BMP580_DSP_COMP_MASK | 1656 BMP580_DSP_SHDW_IIR_TEMP_EN | 1657 BMP580_DSP_SHDW_IIR_PRESS_EN, reg_val); 1658 1659 /* Configure oversampling */ 1660 reg_val = FIELD_PREP(BMP580_OSR_TEMP_MASK, data->oversampling_temp) | 1661 FIELD_PREP(BMP580_OSR_PRESS_MASK, data->oversampling_press) | 1662 BMP580_OSR_PRESS_EN; 1663 1664 ret = regmap_update_bits_check(data->regmap, BMP580_REG_OSR_CONFIG, 1665 BMP580_OSR_TEMP_MASK | BMP580_OSR_PRESS_MASK | 1666 BMP580_OSR_PRESS_EN, 1667 reg_val, &aux); 1668 if (ret) { 1669 dev_err(data->dev, "failed to write oversampling register\n"); 1670 return ret; 1671 } 1672 change = change || aux; 1673 1674 /* Configure output data rate */ 1675 ret = regmap_update_bits_check(data->regmap, BMP580_REG_ODR_CONFIG, BMP580_ODR_MASK, 1676 FIELD_PREP(BMP580_ODR_MASK, data->sampling_freq), 1677 &aux); 1678 if (ret) { 1679 dev_err(data->dev, "failed to write ODR configuration register\n"); 1680 return ret; 1681 } 1682 change = change || aux; 1683 1684 /* Set filter data */ 1685 reg_val = FIELD_PREP(BMP580_DSP_IIR_PRESS_MASK, data->iir_filter_coeff) | 1686 FIELD_PREP(BMP580_DSP_IIR_TEMP_MASK, data->iir_filter_coeff); 1687 1688 ret = regmap_update_bits_check(data->regmap, BMP580_REG_DSP_IIR, 1689 BMP580_DSP_IIR_PRESS_MASK | 1690 BMP580_DSP_IIR_TEMP_MASK, 1691 reg_val, &aux); 1692 if (ret) { 1693 dev_err(data->dev, "failed to write config register\n"); 1694 return ret; 1695 } 1696 change = change || aux; 1697 1698 /* Restore sensor to normal operation mode */ 1699 ret = regmap_write_bits(data->regmap, BMP580_REG_ODR_CONFIG, 1700 BMP580_MODE_MASK, 1701 FIELD_PREP(BMP580_MODE_MASK, BMP580_MODE_NORMAL)); 1702 if (ret) { 1703 dev_err(data->dev, "failed to set normal mode\n"); 1704 return ret; 1705 } 1706 /* From datasheet's table 4: electrical characteristics */ 1707 usleep_range(3000, 3500); 1708 1709 if (change) { 1710 /* 1711 * Check if ODR and OSR settings are valid or we are 1712 * operating in a degraded mode. 1713 */ 1714 ret = regmap_read(data->regmap, BMP580_REG_EFF_OSR, &tmp); 1715 if (ret) { 1716 dev_err(data->dev, "error reading effective OSR register\n"); 1717 return ret; 1718 } 1719 if (!(tmp & BMP580_EFF_OSR_VALID_ODR)) { 1720 dev_warn(data->dev, "OSR and ODR incompatible settings detected\n"); 1721 /* Set current OSR settings from data on effective OSR */ 1722 data->oversampling_temp = FIELD_GET(BMP580_EFF_OSR_TEMP_MASK, tmp); 1723 data->oversampling_press = FIELD_GET(BMP580_EFF_OSR_PRESS_MASK, tmp); 1724 return -EINVAL; 1725 } 1726 } 1727 1728 return 0; 1729 } 1730 1731 static const int bmp580_oversampling_avail[] = { 1, 2, 4, 8, 16, 32, 64, 128 }; 1732 static const u8 bmp580_chip_ids[] = { BMP580_CHIP_ID, BMP580_CHIP_ID_ALT }; 1733 1734 const struct bmp280_chip_info bmp580_chip_info = { 1735 .id_reg = BMP580_REG_CHIP_ID, 1736 .chip_id = bmp580_chip_ids, 1737 .num_chip_id = ARRAY_SIZE(bmp580_chip_ids), 1738 .regmap_config = &bmp580_regmap_config, 1739 .start_up_time = 2000, 1740 .channels = bmp380_channels, 1741 .num_channels = 2, 1742 1743 .oversampling_temp_avail = bmp580_oversampling_avail, 1744 .num_oversampling_temp_avail = ARRAY_SIZE(bmp580_oversampling_avail), 1745 .oversampling_temp_default = ilog2(1), 1746 1747 .oversampling_press_avail = bmp580_oversampling_avail, 1748 .num_oversampling_press_avail = ARRAY_SIZE(bmp580_oversampling_avail), 1749 .oversampling_press_default = ilog2(4), 1750 1751 .sampling_freq_avail = bmp580_odr_table, 1752 .num_sampling_freq_avail = ARRAY_SIZE(bmp580_odr_table) * 2, 1753 .sampling_freq_default = BMP580_ODR_50HZ, 1754 1755 .iir_filter_coeffs_avail = bmp380_iir_filter_coeffs_avail, 1756 .num_iir_filter_coeffs_avail = ARRAY_SIZE(bmp380_iir_filter_coeffs_avail), 1757 .iir_filter_coeff_default = 2, 1758 1759 .chip_config = bmp580_chip_config, 1760 .read_temp = bmp580_read_temp, 1761 .read_press = bmp580_read_press, 1762 .preinit = bmp580_preinit, 1763 }; 1764 EXPORT_SYMBOL_NS(bmp580_chip_info, IIO_BMP280); 1765 1766 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas) 1767 { 1768 const int conversion_time_max[] = { 4500, 7500, 13500, 25500 }; 1769 unsigned int delay_us; 1770 unsigned int ctrl; 1771 int ret; 1772 1773 if (data->use_eoc) 1774 reinit_completion(&data->done); 1775 1776 ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas); 1777 if (ret) 1778 return ret; 1779 1780 if (data->use_eoc) { 1781 /* 1782 * If we have a completion interrupt, use it, wait up to 1783 * 100ms. The longest conversion time listed is 76.5 ms for 1784 * advanced resolution mode. 1785 */ 1786 ret = wait_for_completion_timeout(&data->done, 1787 1 + msecs_to_jiffies(100)); 1788 if (!ret) 1789 dev_err(data->dev, "timeout waiting for completion\n"); 1790 } else { 1791 if (FIELD_GET(BMP180_MEAS_CTRL_MASK, ctrl_meas) == BMP180_MEAS_TEMP) 1792 delay_us = 4500; 1793 else 1794 delay_us = 1795 conversion_time_max[data->oversampling_press]; 1796 1797 usleep_range(delay_us, delay_us + 1000); 1798 } 1799 1800 ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl); 1801 if (ret) 1802 return ret; 1803 1804 /* The value of this bit reset to "0" after conversion is complete */ 1805 if (ctrl & BMP180_MEAS_SCO) 1806 return -EIO; 1807 1808 return 0; 1809 } 1810 1811 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val) 1812 { 1813 int ret; 1814 1815 ret = bmp180_measure(data, 1816 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_TEMP) | 1817 BMP180_MEAS_SCO); 1818 if (ret) 1819 return ret; 1820 1821 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 1822 &data->be16, sizeof(data->be16)); 1823 if (ret) 1824 return ret; 1825 1826 *val = be16_to_cpu(data->be16); 1827 1828 return 0; 1829 } 1830 1831 static int bmp180_read_calib(struct bmp280_data *data) 1832 { 1833 struct bmp180_calib *calib = &data->calib.bmp180; 1834 int ret; 1835 int i; 1836 1837 ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, 1838 data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); 1839 1840 if (ret < 0) 1841 return ret; 1842 1843 /* None of the words has the value 0 or 0xFFFF */ 1844 for (i = 0; i < ARRAY_SIZE(data->bmp180_cal_buf); i++) { 1845 if (data->bmp180_cal_buf[i] == cpu_to_be16(0) || 1846 data->bmp180_cal_buf[i] == cpu_to_be16(0xffff)) 1847 return -EIO; 1848 } 1849 1850 /* Toss the calibration data into the entropy pool */ 1851 add_device_randomness(data->bmp180_cal_buf, sizeof(data->bmp180_cal_buf)); 1852 1853 calib->AC1 = be16_to_cpu(data->bmp180_cal_buf[AC1]); 1854 calib->AC2 = be16_to_cpu(data->bmp180_cal_buf[AC2]); 1855 calib->AC3 = be16_to_cpu(data->bmp180_cal_buf[AC3]); 1856 calib->AC4 = be16_to_cpu(data->bmp180_cal_buf[AC4]); 1857 calib->AC5 = be16_to_cpu(data->bmp180_cal_buf[AC5]); 1858 calib->AC6 = be16_to_cpu(data->bmp180_cal_buf[AC6]); 1859 calib->B1 = be16_to_cpu(data->bmp180_cal_buf[B1]); 1860 calib->B2 = be16_to_cpu(data->bmp180_cal_buf[B2]); 1861 calib->MB = be16_to_cpu(data->bmp180_cal_buf[MB]); 1862 calib->MC = be16_to_cpu(data->bmp180_cal_buf[MC]); 1863 calib->MD = be16_to_cpu(data->bmp180_cal_buf[MD]); 1864 1865 return 0; 1866 } 1867 1868 /* 1869 * Returns temperature in DegC, resolution is 0.1 DegC. 1870 * t_fine carries fine temperature as global value. 1871 * 1872 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 1873 */ 1874 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp) 1875 { 1876 struct bmp180_calib *calib = &data->calib.bmp180; 1877 s32 x1, x2; 1878 1879 x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15; 1880 x2 = (calib->MC << 11) / (x1 + calib->MD); 1881 data->t_fine = x1 + x2; 1882 1883 return (data->t_fine + 8) >> 4; 1884 } 1885 1886 static int bmp180_read_temp(struct bmp280_data *data, int *val, int *val2) 1887 { 1888 s32 adc_temp, comp_temp; 1889 int ret; 1890 1891 ret = bmp180_read_adc_temp(data, &adc_temp); 1892 if (ret) 1893 return ret; 1894 1895 comp_temp = bmp180_compensate_temp(data, adc_temp); 1896 1897 /* 1898 * val might be NULL if we're called by the read_press routine, 1899 * who only cares about the carry over t_fine value. 1900 */ 1901 if (val) { 1902 *val = comp_temp * 100; 1903 return IIO_VAL_INT; 1904 } 1905 1906 return 0; 1907 } 1908 1909 static int bmp180_read_adc_press(struct bmp280_data *data, int *val) 1910 { 1911 u8 oss = data->oversampling_press; 1912 int ret; 1913 1914 ret = bmp180_measure(data, 1915 FIELD_PREP(BMP180_MEAS_CTRL_MASK, BMP180_MEAS_PRESS) | 1916 FIELD_PREP(BMP180_OSRS_PRESS_MASK, oss) | 1917 BMP180_MEAS_SCO); 1918 if (ret) 1919 return ret; 1920 1921 ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, 1922 data->buf, sizeof(data->buf)); 1923 if (ret) 1924 return ret; 1925 1926 *val = get_unaligned_be24(data->buf) >> (8 - oss); 1927 1928 return 0; 1929 } 1930 1931 /* 1932 * Returns pressure in Pa, resolution is 1 Pa. 1933 * 1934 * Taken from datasheet, Section 3.5, "Calculating pressure and temperature". 1935 */ 1936 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press) 1937 { 1938 struct bmp180_calib *calib = &data->calib.bmp180; 1939 s32 oss = data->oversampling_press; 1940 s32 x1, x2, x3, p; 1941 s32 b3, b6; 1942 u32 b4, b7; 1943 1944 b6 = data->t_fine - 4000; 1945 x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11; 1946 x2 = calib->AC2 * b6 >> 11; 1947 x3 = x1 + x2; 1948 b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4; 1949 x1 = calib->AC3 * b6 >> 13; 1950 x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16; 1951 x3 = (x1 + x2 + 2) >> 2; 1952 b4 = calib->AC4 * (u32)(x3 + 32768) >> 15; 1953 b7 = ((u32)adc_press - b3) * (50000 >> oss); 1954 if (b7 < 0x80000000) 1955 p = (b7 * 2) / b4; 1956 else 1957 p = (b7 / b4) * 2; 1958 1959 x1 = (p >> 8) * (p >> 8); 1960 x1 = (x1 * 3038) >> 16; 1961 x2 = (-7357 * p) >> 16; 1962 1963 return p + ((x1 + x2 + 3791) >> 4); 1964 } 1965 1966 static int bmp180_read_press(struct bmp280_data *data, 1967 int *val, int *val2) 1968 { 1969 u32 comp_press; 1970 s32 adc_press; 1971 int ret; 1972 1973 /* Read and compensate temperature so we get a reading of t_fine. */ 1974 ret = bmp180_read_temp(data, NULL, NULL); 1975 if (ret) 1976 return ret; 1977 1978 ret = bmp180_read_adc_press(data, &adc_press); 1979 if (ret) 1980 return ret; 1981 1982 comp_press = bmp180_compensate_press(data, adc_press); 1983 1984 *val = comp_press; 1985 *val2 = 1000; 1986 1987 return IIO_VAL_FRACTIONAL; 1988 } 1989 1990 static int bmp180_chip_config(struct bmp280_data *data) 1991 { 1992 return 0; 1993 } 1994 1995 static const int bmp180_oversampling_temp_avail[] = { 1 }; 1996 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 }; 1997 static const u8 bmp180_chip_ids[] = { BMP180_CHIP_ID }; 1998 1999 const struct bmp280_chip_info bmp180_chip_info = { 2000 .id_reg = BMP280_REG_ID, 2001 .chip_id = bmp180_chip_ids, 2002 .num_chip_id = ARRAY_SIZE(bmp180_chip_ids), 2003 .regmap_config = &bmp180_regmap_config, 2004 .start_up_time = 2000, 2005 .channels = bmp280_channels, 2006 .num_channels = 2, 2007 2008 .oversampling_temp_avail = bmp180_oversampling_temp_avail, 2009 .num_oversampling_temp_avail = 2010 ARRAY_SIZE(bmp180_oversampling_temp_avail), 2011 .oversampling_temp_default = 0, 2012 2013 .oversampling_press_avail = bmp180_oversampling_press_avail, 2014 .num_oversampling_press_avail = 2015 ARRAY_SIZE(bmp180_oversampling_press_avail), 2016 .oversampling_press_default = BMP180_MEAS_PRESS_8X, 2017 2018 .chip_config = bmp180_chip_config, 2019 .read_temp = bmp180_read_temp, 2020 .read_press = bmp180_read_press, 2021 .read_calib = bmp180_read_calib, 2022 }; 2023 EXPORT_SYMBOL_NS(bmp180_chip_info, IIO_BMP280); 2024 2025 static irqreturn_t bmp085_eoc_irq(int irq, void *d) 2026 { 2027 struct bmp280_data *data = d; 2028 2029 complete(&data->done); 2030 2031 return IRQ_HANDLED; 2032 } 2033 2034 static int bmp085_fetch_eoc_irq(struct device *dev, 2035 const char *name, 2036 int irq, 2037 struct bmp280_data *data) 2038 { 2039 unsigned long irq_trig; 2040 int ret; 2041 2042 irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq)); 2043 if (irq_trig != IRQF_TRIGGER_RISING) { 2044 dev_err(dev, "non-rising trigger given for EOC interrupt, trying to enforce it\n"); 2045 irq_trig = IRQF_TRIGGER_RISING; 2046 } 2047 2048 init_completion(&data->done); 2049 2050 ret = devm_request_threaded_irq(dev, 2051 irq, 2052 bmp085_eoc_irq, 2053 NULL, 2054 irq_trig, 2055 name, 2056 data); 2057 if (ret) { 2058 /* Bail out without IRQ but keep the driver in place */ 2059 dev_err(dev, "unable to request DRDY IRQ\n"); 2060 return 0; 2061 } 2062 2063 data->use_eoc = true; 2064 return 0; 2065 } 2066 2067 static void bmp280_pm_disable(void *data) 2068 { 2069 struct device *dev = data; 2070 2071 pm_runtime_get_sync(dev); 2072 pm_runtime_put_noidle(dev); 2073 pm_runtime_disable(dev); 2074 } 2075 2076 static void bmp280_regulators_disable(void *data) 2077 { 2078 struct regulator_bulk_data *supplies = data; 2079 2080 regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies); 2081 } 2082 2083 int bmp280_common_probe(struct device *dev, 2084 struct regmap *regmap, 2085 const struct bmp280_chip_info *chip_info, 2086 const char *name, 2087 int irq) 2088 { 2089 struct iio_dev *indio_dev; 2090 struct bmp280_data *data; 2091 struct gpio_desc *gpiod; 2092 unsigned int chip_id; 2093 unsigned int i; 2094 int ret; 2095 2096 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 2097 if (!indio_dev) 2098 return -ENOMEM; 2099 2100 data = iio_priv(indio_dev); 2101 mutex_init(&data->lock); 2102 data->dev = dev; 2103 2104 indio_dev->name = name; 2105 indio_dev->info = &bmp280_info; 2106 indio_dev->modes = INDIO_DIRECT_MODE; 2107 2108 data->chip_info = chip_info; 2109 2110 /* Apply initial values from chip info structure */ 2111 indio_dev->channels = chip_info->channels; 2112 indio_dev->num_channels = chip_info->num_channels; 2113 data->oversampling_press = chip_info->oversampling_press_default; 2114 data->oversampling_humid = chip_info->oversampling_humid_default; 2115 data->oversampling_temp = chip_info->oversampling_temp_default; 2116 data->iir_filter_coeff = chip_info->iir_filter_coeff_default; 2117 data->sampling_freq = chip_info->sampling_freq_default; 2118 data->start_up_time = chip_info->start_up_time; 2119 2120 /* Bring up regulators */ 2121 regulator_bulk_set_supply_names(data->supplies, 2122 bmp280_supply_names, 2123 BMP280_NUM_SUPPLIES); 2124 2125 ret = devm_regulator_bulk_get(dev, 2126 BMP280_NUM_SUPPLIES, data->supplies); 2127 if (ret) { 2128 dev_err(dev, "failed to get regulators\n"); 2129 return ret; 2130 } 2131 2132 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2133 if (ret) { 2134 dev_err(dev, "failed to enable regulators\n"); 2135 return ret; 2136 } 2137 2138 ret = devm_add_action_or_reset(dev, bmp280_regulators_disable, 2139 data->supplies); 2140 if (ret) 2141 return ret; 2142 2143 /* Wait to make sure we started up properly */ 2144 usleep_range(data->start_up_time, data->start_up_time + 100); 2145 2146 /* Bring chip out of reset if there is an assigned GPIO line */ 2147 gpiod = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 2148 /* Deassert the signal */ 2149 if (gpiod) { 2150 dev_info(dev, "release reset\n"); 2151 gpiod_set_value(gpiod, 0); 2152 } 2153 2154 data->regmap = regmap; 2155 2156 ret = regmap_read(regmap, data->chip_info->id_reg, &chip_id); 2157 if (ret < 0) 2158 return ret; 2159 2160 for (i = 0; i < data->chip_info->num_chip_id; i++) { 2161 if (chip_id == data->chip_info->chip_id[i]) { 2162 dev_info(dev, "0x%x is a known chip id for %s\n", chip_id, name); 2163 break; 2164 } 2165 } 2166 2167 if (i == data->chip_info->num_chip_id) 2168 dev_warn(dev, "bad chip id: 0x%x is not a known chip id\n", chip_id); 2169 2170 if (data->chip_info->preinit) { 2171 ret = data->chip_info->preinit(data); 2172 if (ret) 2173 return dev_err_probe(data->dev, ret, 2174 "error running preinit tasks\n"); 2175 } 2176 2177 ret = data->chip_info->chip_config(data); 2178 if (ret < 0) 2179 return ret; 2180 2181 dev_set_drvdata(dev, indio_dev); 2182 2183 /* 2184 * Some chips have calibration parameters "programmed into the devices' 2185 * non-volatile memory during production". Let's read them out at probe 2186 * time once. They will not change. 2187 */ 2188 2189 if (data->chip_info->read_calib) { 2190 ret = data->chip_info->read_calib(data); 2191 if (ret < 0) 2192 return dev_err_probe(data->dev, ret, 2193 "failed to read calibration coefficients\n"); 2194 } 2195 2196 /* 2197 * Attempt to grab an optional EOC IRQ - only the BMP085 has this 2198 * however as it happens, the BMP085 shares the chip ID of BMP180 2199 * so we look for an IRQ if we have that. 2200 */ 2201 if (irq > 0 && (chip_id == BMP180_CHIP_ID)) { 2202 ret = bmp085_fetch_eoc_irq(dev, name, irq, data); 2203 if (ret) 2204 return ret; 2205 } 2206 2207 /* Enable runtime PM */ 2208 pm_runtime_get_noresume(dev); 2209 pm_runtime_set_active(dev); 2210 pm_runtime_enable(dev); 2211 /* 2212 * Set autosuspend to two orders of magnitude larger than the 2213 * start-up time. 2214 */ 2215 pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10); 2216 pm_runtime_use_autosuspend(dev); 2217 pm_runtime_put(dev); 2218 2219 ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev); 2220 if (ret) 2221 return ret; 2222 2223 return devm_iio_device_register(dev, indio_dev); 2224 } 2225 EXPORT_SYMBOL_NS(bmp280_common_probe, IIO_BMP280); 2226 2227 static int bmp280_runtime_suspend(struct device *dev) 2228 { 2229 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2230 struct bmp280_data *data = iio_priv(indio_dev); 2231 2232 return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies); 2233 } 2234 2235 static int bmp280_runtime_resume(struct device *dev) 2236 { 2237 struct iio_dev *indio_dev = dev_get_drvdata(dev); 2238 struct bmp280_data *data = iio_priv(indio_dev); 2239 int ret; 2240 2241 ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies); 2242 if (ret) 2243 return ret; 2244 usleep_range(data->start_up_time, data->start_up_time + 100); 2245 return data->chip_info->chip_config(data); 2246 } 2247 2248 EXPORT_RUNTIME_DEV_PM_OPS(bmp280_dev_pm_ops, bmp280_runtime_suspend, 2249 bmp280_runtime_resume, NULL); 2250 2251 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>"); 2252 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor"); 2253 MODULE_LICENSE("GPL v2"); 2254