xref: /linux/drivers/iio/pressure/bmp280-core.c (revision 3b5584afeef05319ade0fbf5f634a64fd3e5772b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2010 Christoph Mair <christoph.mair@gmail.com>
4  * Copyright (c) 2012 Bosch Sensortec GmbH
5  * Copyright (c) 2012 Unixphere AB
6  * Copyright (c) 2014 Intel Corporation
7  * Copyright (c) 2016 Linus Walleij <linus.walleij@linaro.org>
8  *
9  * Driver for Bosch Sensortec BMP180 and BMP280 digital pressure sensor.
10  *
11  * Datasheet:
12  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP180-DS000-121.pdf
13  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BMP280-DS001-12.pdf
14  * https://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf
15  */
16 
17 #define pr_fmt(fmt) "bmp280: " fmt
18 
19 #include <linux/device.h>
20 #include <linux/module.h>
21 #include <linux/regmap.h>
22 #include <linux/delay.h>
23 #include <linux/iio/iio.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/gpio/consumer.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h> /* For irq_get_irq_data() */
29 #include <linux/completion.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/random.h>
32 
33 #include "bmp280.h"
34 
35 /*
36  * These enums are used for indexing into the array of calibration
37  * coefficients for BMP180.
38  */
39 enum { AC1, AC2, AC3, AC4, AC5, AC6, B1, B2, MB, MC, MD };
40 
41 struct bmp180_calib {
42 	s16 AC1;
43 	s16 AC2;
44 	s16 AC3;
45 	u16 AC4;
46 	u16 AC5;
47 	u16 AC6;
48 	s16 B1;
49 	s16 B2;
50 	s16 MB;
51 	s16 MC;
52 	s16 MD;
53 };
54 
55 /* See datasheet Section 4.2.2. */
56 struct bmp280_calib {
57 	u16 T1;
58 	s16 T2;
59 	s16 T3;
60 	u16 P1;
61 	s16 P2;
62 	s16 P3;
63 	s16 P4;
64 	s16 P5;
65 	s16 P6;
66 	s16 P7;
67 	s16 P8;
68 	s16 P9;
69 	u8  H1;
70 	s16 H2;
71 	u8  H3;
72 	s16 H4;
73 	s16 H5;
74 	s8  H6;
75 };
76 
77 static const char *const bmp280_supply_names[] = {
78 	"vddd", "vdda"
79 };
80 
81 #define BMP280_NUM_SUPPLIES ARRAY_SIZE(bmp280_supply_names)
82 
83 struct bmp280_data {
84 	struct device *dev;
85 	struct mutex lock;
86 	struct regmap *regmap;
87 	struct completion done;
88 	bool use_eoc;
89 	const struct bmp280_chip_info *chip_info;
90 	union {
91 		struct bmp180_calib bmp180;
92 		struct bmp280_calib bmp280;
93 	} calib;
94 	struct regulator_bulk_data supplies[BMP280_NUM_SUPPLIES];
95 	unsigned int start_up_time; /* in microseconds */
96 
97 	/* log of base 2 of oversampling rate */
98 	u8 oversampling_press;
99 	u8 oversampling_temp;
100 	u8 oversampling_humid;
101 
102 	/*
103 	 * Carryover value from temperature conversion, used in pressure
104 	 * calculation.
105 	 */
106 	s32 t_fine;
107 };
108 
109 struct bmp280_chip_info {
110 	const int *oversampling_temp_avail;
111 	int num_oversampling_temp_avail;
112 
113 	const int *oversampling_press_avail;
114 	int num_oversampling_press_avail;
115 
116 	const int *oversampling_humid_avail;
117 	int num_oversampling_humid_avail;
118 
119 	int (*chip_config)(struct bmp280_data *);
120 	int (*read_temp)(struct bmp280_data *, int *);
121 	int (*read_press)(struct bmp280_data *, int *, int *);
122 	int (*read_humid)(struct bmp280_data *, int *, int *);
123 };
124 
125 /*
126  * These enums are used for indexing into the array of compensation
127  * parameters for BMP280.
128  */
129 enum { T1, T2, T3 };
130 enum { P1, P2, P3, P4, P5, P6, P7, P8, P9 };
131 
132 static const struct iio_chan_spec bmp280_channels[] = {
133 	{
134 		.type = IIO_PRESSURE,
135 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
136 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
137 	},
138 	{
139 		.type = IIO_TEMP,
140 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
141 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
142 	},
143 	{
144 		.type = IIO_HUMIDITYRELATIVE,
145 		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
146 				      BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),
147 	},
148 };
149 
150 static int bmp280_read_calib(struct bmp280_data *data,
151 			     struct bmp280_calib *calib,
152 			     unsigned int chip)
153 {
154 	int ret;
155 	unsigned int tmp;
156 	__le16 l16;
157 	__be16 b16;
158 	struct device *dev = data->dev;
159 	__le16 t_buf[BMP280_COMP_TEMP_REG_COUNT / 2];
160 	__le16 p_buf[BMP280_COMP_PRESS_REG_COUNT / 2];
161 
162 	/* Read temperature calibration values. */
163 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_TEMP_START,
164 			       t_buf, BMP280_COMP_TEMP_REG_COUNT);
165 	if (ret < 0) {
166 		dev_err(data->dev,
167 			"failed to read temperature calibration parameters\n");
168 		return ret;
169 	}
170 
171 	/* Toss the temperature calibration data into the entropy pool */
172 	add_device_randomness(t_buf, sizeof(t_buf));
173 
174 	calib->T1 = le16_to_cpu(t_buf[T1]);
175 	calib->T2 = le16_to_cpu(t_buf[T2]);
176 	calib->T3 = le16_to_cpu(t_buf[T3]);
177 
178 	/* Read pressure calibration values. */
179 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_PRESS_START,
180 			       p_buf, BMP280_COMP_PRESS_REG_COUNT);
181 	if (ret < 0) {
182 		dev_err(data->dev,
183 			"failed to read pressure calibration parameters\n");
184 		return ret;
185 	}
186 
187 	/* Toss the pressure calibration data into the entropy pool */
188 	add_device_randomness(p_buf, sizeof(p_buf));
189 
190 	calib->P1 = le16_to_cpu(p_buf[P1]);
191 	calib->P2 = le16_to_cpu(p_buf[P2]);
192 	calib->P3 = le16_to_cpu(p_buf[P3]);
193 	calib->P4 = le16_to_cpu(p_buf[P4]);
194 	calib->P5 = le16_to_cpu(p_buf[P5]);
195 	calib->P6 = le16_to_cpu(p_buf[P6]);
196 	calib->P7 = le16_to_cpu(p_buf[P7]);
197 	calib->P8 = le16_to_cpu(p_buf[P8]);
198 	calib->P9 = le16_to_cpu(p_buf[P9]);
199 
200 	/*
201 	 * Read humidity calibration values.
202 	 * Due to some odd register addressing we cannot just
203 	 * do a big bulk read. Instead, we have to read each Hx
204 	 * value separately and sometimes do some bit shifting...
205 	 * Humidity data is only available on BME280.
206 	 */
207 	if (chip != BME280_CHIP_ID)
208 		return 0;
209 
210 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H1, &tmp);
211 	if (ret < 0) {
212 		dev_err(dev, "failed to read H1 comp value\n");
213 		return ret;
214 	}
215 	calib->H1 = tmp;
216 
217 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H2, &l16, 2);
218 	if (ret < 0) {
219 		dev_err(dev, "failed to read H2 comp value\n");
220 		return ret;
221 	}
222 	calib->H2 = sign_extend32(le16_to_cpu(l16), 15);
223 
224 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H3, &tmp);
225 	if (ret < 0) {
226 		dev_err(dev, "failed to read H3 comp value\n");
227 		return ret;
228 	}
229 	calib->H3 = tmp;
230 
231 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H4, &b16, 2);
232 	if (ret < 0) {
233 		dev_err(dev, "failed to read H4 comp value\n");
234 		return ret;
235 	}
236 	calib->H4 = sign_extend32(((be16_to_cpu(b16) >> 4) & 0xff0) |
237 				  (be16_to_cpu(b16) & 0xf), 11);
238 
239 	ret = regmap_bulk_read(data->regmap, BMP280_REG_COMP_H5, &l16, 2);
240 	if (ret < 0) {
241 		dev_err(dev, "failed to read H5 comp value\n");
242 		return ret;
243 	}
244 	calib->H5 = sign_extend32(((le16_to_cpu(l16) >> 4) & 0xfff), 11);
245 
246 	ret = regmap_read(data->regmap, BMP280_REG_COMP_H6, &tmp);
247 	if (ret < 0) {
248 		dev_err(dev, "failed to read H6 comp value\n");
249 		return ret;
250 	}
251 	calib->H6 = sign_extend32(tmp, 7);
252 
253 	return 0;
254 }
255 /*
256  * Returns humidity in percent, resolution is 0.01 percent. Output value of
257  * "47445" represents 47445/1024 = 46.333 %RH.
258  *
259  * Taken from BME280 datasheet, Section 4.2.3, "Compensation formula".
260  */
261 static u32 bmp280_compensate_humidity(struct bmp280_data *data,
262 				      s32 adc_humidity)
263 {
264 	s32 var;
265 	struct bmp280_calib *calib = &data->calib.bmp280;
266 
267 	var = ((s32)data->t_fine) - (s32)76800;
268 	var = ((((adc_humidity << 14) - (calib->H4 << 20) - (calib->H5 * var))
269 		+ (s32)16384) >> 15) * (((((((var * calib->H6) >> 10)
270 		* (((var * (s32)calib->H3) >> 11) + (s32)32768)) >> 10)
271 		+ (s32)2097152) * calib->H2 + 8192) >> 14);
272 	var -= ((((var >> 15) * (var >> 15)) >> 7) * (s32)calib->H1) >> 4;
273 
274 	return var >> 12;
275 };
276 
277 /*
278  * Returns temperature in DegC, resolution is 0.01 DegC.  Output value of
279  * "5123" equals 51.23 DegC.  t_fine carries fine temperature as global
280  * value.
281  *
282  * Taken from datasheet, Section 3.11.3, "Compensation formula".
283  */
284 static s32 bmp280_compensate_temp(struct bmp280_data *data,
285 				  s32 adc_temp)
286 {
287 	s32 var1, var2;
288 	struct bmp280_calib *calib = &data->calib.bmp280;
289 
290 	var1 = (((adc_temp >> 3) - ((s32)calib->T1 << 1)) *
291 		((s32)calib->T2)) >> 11;
292 	var2 = (((((adc_temp >> 4) - ((s32)calib->T1)) *
293 		  ((adc_temp >> 4) - ((s32)calib->T1))) >> 12) *
294 		((s32)calib->T3)) >> 14;
295 	data->t_fine = var1 + var2;
296 
297 	return (data->t_fine * 5 + 128) >> 8;
298 }
299 
300 /*
301  * Returns pressure in Pa as unsigned 32 bit integer in Q24.8 format (24
302  * integer bits and 8 fractional bits).  Output value of "24674867"
303  * represents 24674867/256 = 96386.2 Pa = 963.862 hPa
304  *
305  * Taken from datasheet, Section 3.11.3, "Compensation formula".
306  */
307 static u32 bmp280_compensate_press(struct bmp280_data *data,
308 				   s32 adc_press)
309 {
310 	s64 var1, var2, p;
311 	struct bmp280_calib *calib = &data->calib.bmp280;
312 
313 	var1 = ((s64)data->t_fine) - 128000;
314 	var2 = var1 * var1 * (s64)calib->P6;
315 	var2 += (var1 * (s64)calib->P5) << 17;
316 	var2 += ((s64)calib->P4) << 35;
317 	var1 = ((var1 * var1 * (s64)calib->P3) >> 8) +
318 		((var1 * (s64)calib->P2) << 12);
319 	var1 = ((((s64)1) << 47) + var1) * ((s64)calib->P1) >> 33;
320 
321 	if (var1 == 0)
322 		return 0;
323 
324 	p = ((((s64)1048576 - adc_press) << 31) - var2) * 3125;
325 	p = div64_s64(p, var1);
326 	var1 = (((s64)calib->P9) * (p >> 13) * (p >> 13)) >> 25;
327 	var2 = ((s64)(calib->P8) * p) >> 19;
328 	p = ((p + var1 + var2) >> 8) + (((s64)calib->P7) << 4);
329 
330 	return (u32)p;
331 }
332 
333 static int bmp280_read_temp(struct bmp280_data *data,
334 			    int *val)
335 {
336 	int ret;
337 	__be32 tmp = 0;
338 	s32 adc_temp, comp_temp;
339 
340 	ret = regmap_bulk_read(data->regmap, BMP280_REG_TEMP_MSB,
341 			       (u8 *) &tmp, 3);
342 	if (ret < 0) {
343 		dev_err(data->dev, "failed to read temperature\n");
344 		return ret;
345 	}
346 
347 	adc_temp = be32_to_cpu(tmp) >> 12;
348 	if (adc_temp == BMP280_TEMP_SKIPPED) {
349 		/* reading was skipped */
350 		dev_err(data->dev, "reading temperature skipped\n");
351 		return -EIO;
352 	}
353 	comp_temp = bmp280_compensate_temp(data, adc_temp);
354 
355 	/*
356 	 * val might be NULL if we're called by the read_press routine,
357 	 * who only cares about the carry over t_fine value.
358 	 */
359 	if (val) {
360 		*val = comp_temp * 10;
361 		return IIO_VAL_INT;
362 	}
363 
364 	return 0;
365 }
366 
367 static int bmp280_read_press(struct bmp280_data *data,
368 			     int *val, int *val2)
369 {
370 	int ret;
371 	__be32 tmp = 0;
372 	s32 adc_press;
373 	u32 comp_press;
374 
375 	/* Read and compensate temperature so we get a reading of t_fine. */
376 	ret = bmp280_read_temp(data, NULL);
377 	if (ret < 0)
378 		return ret;
379 
380 	ret = regmap_bulk_read(data->regmap, BMP280_REG_PRESS_MSB,
381 			       (u8 *) &tmp, 3);
382 	if (ret < 0) {
383 		dev_err(data->dev, "failed to read pressure\n");
384 		return ret;
385 	}
386 
387 	adc_press = be32_to_cpu(tmp) >> 12;
388 	if (adc_press == BMP280_PRESS_SKIPPED) {
389 		/* reading was skipped */
390 		dev_err(data->dev, "reading pressure skipped\n");
391 		return -EIO;
392 	}
393 	comp_press = bmp280_compensate_press(data, adc_press);
394 
395 	*val = comp_press;
396 	*val2 = 256000;
397 
398 	return IIO_VAL_FRACTIONAL;
399 }
400 
401 static int bmp280_read_humid(struct bmp280_data *data, int *val, int *val2)
402 {
403 	int ret;
404 	__be16 tmp = 0;
405 	s32 adc_humidity;
406 	u32 comp_humidity;
407 
408 	/* Read and compensate temperature so we get a reading of t_fine. */
409 	ret = bmp280_read_temp(data, NULL);
410 	if (ret < 0)
411 		return ret;
412 
413 	ret = regmap_bulk_read(data->regmap, BMP280_REG_HUMIDITY_MSB,
414 			       (u8 *) &tmp, 2);
415 	if (ret < 0) {
416 		dev_err(data->dev, "failed to read humidity\n");
417 		return ret;
418 	}
419 
420 	adc_humidity = be16_to_cpu(tmp);
421 	if (adc_humidity == BMP280_HUMIDITY_SKIPPED) {
422 		/* reading was skipped */
423 		dev_err(data->dev, "reading humidity skipped\n");
424 		return -EIO;
425 	}
426 	comp_humidity = bmp280_compensate_humidity(data, adc_humidity);
427 
428 	*val = comp_humidity * 1000 / 1024;
429 
430 	return IIO_VAL_INT;
431 }
432 
433 static int bmp280_read_raw(struct iio_dev *indio_dev,
434 			   struct iio_chan_spec const *chan,
435 			   int *val, int *val2, long mask)
436 {
437 	int ret;
438 	struct bmp280_data *data = iio_priv(indio_dev);
439 
440 	pm_runtime_get_sync(data->dev);
441 	mutex_lock(&data->lock);
442 
443 	switch (mask) {
444 	case IIO_CHAN_INFO_PROCESSED:
445 		switch (chan->type) {
446 		case IIO_HUMIDITYRELATIVE:
447 			ret = data->chip_info->read_humid(data, val, val2);
448 			break;
449 		case IIO_PRESSURE:
450 			ret = data->chip_info->read_press(data, val, val2);
451 			break;
452 		case IIO_TEMP:
453 			ret = data->chip_info->read_temp(data, val);
454 			break;
455 		default:
456 			ret = -EINVAL;
457 			break;
458 		}
459 		break;
460 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
461 		switch (chan->type) {
462 		case IIO_HUMIDITYRELATIVE:
463 			*val = 1 << data->oversampling_humid;
464 			ret = IIO_VAL_INT;
465 			break;
466 		case IIO_PRESSURE:
467 			*val = 1 << data->oversampling_press;
468 			ret = IIO_VAL_INT;
469 			break;
470 		case IIO_TEMP:
471 			*val = 1 << data->oversampling_temp;
472 			ret = IIO_VAL_INT;
473 			break;
474 		default:
475 			ret = -EINVAL;
476 			break;
477 		}
478 		break;
479 	default:
480 		ret = -EINVAL;
481 		break;
482 	}
483 
484 	mutex_unlock(&data->lock);
485 	pm_runtime_mark_last_busy(data->dev);
486 	pm_runtime_put_autosuspend(data->dev);
487 
488 	return ret;
489 }
490 
491 static int bmp280_write_oversampling_ratio_humid(struct bmp280_data *data,
492 					       int val)
493 {
494 	int i;
495 	const int *avail = data->chip_info->oversampling_humid_avail;
496 	const int n = data->chip_info->num_oversampling_humid_avail;
497 
498 	for (i = 0; i < n; i++) {
499 		if (avail[i] == val) {
500 			data->oversampling_humid = ilog2(val);
501 
502 			return data->chip_info->chip_config(data);
503 		}
504 	}
505 	return -EINVAL;
506 }
507 
508 static int bmp280_write_oversampling_ratio_temp(struct bmp280_data *data,
509 					       int val)
510 {
511 	int i;
512 	const int *avail = data->chip_info->oversampling_temp_avail;
513 	const int n = data->chip_info->num_oversampling_temp_avail;
514 
515 	for (i = 0; i < n; i++) {
516 		if (avail[i] == val) {
517 			data->oversampling_temp = ilog2(val);
518 
519 			return data->chip_info->chip_config(data);
520 		}
521 	}
522 	return -EINVAL;
523 }
524 
525 static int bmp280_write_oversampling_ratio_press(struct bmp280_data *data,
526 					       int val)
527 {
528 	int i;
529 	const int *avail = data->chip_info->oversampling_press_avail;
530 	const int n = data->chip_info->num_oversampling_press_avail;
531 
532 	for (i = 0; i < n; i++) {
533 		if (avail[i] == val) {
534 			data->oversampling_press = ilog2(val);
535 
536 			return data->chip_info->chip_config(data);
537 		}
538 	}
539 	return -EINVAL;
540 }
541 
542 static int bmp280_write_raw(struct iio_dev *indio_dev,
543 			    struct iio_chan_spec const *chan,
544 			    int val, int val2, long mask)
545 {
546 	int ret = 0;
547 	struct bmp280_data *data = iio_priv(indio_dev);
548 
549 	switch (mask) {
550 	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
551 		pm_runtime_get_sync(data->dev);
552 		mutex_lock(&data->lock);
553 		switch (chan->type) {
554 		case IIO_HUMIDITYRELATIVE:
555 			ret = bmp280_write_oversampling_ratio_humid(data, val);
556 			break;
557 		case IIO_PRESSURE:
558 			ret = bmp280_write_oversampling_ratio_press(data, val);
559 			break;
560 		case IIO_TEMP:
561 			ret = bmp280_write_oversampling_ratio_temp(data, val);
562 			break;
563 		default:
564 			ret = -EINVAL;
565 			break;
566 		}
567 		mutex_unlock(&data->lock);
568 		pm_runtime_mark_last_busy(data->dev);
569 		pm_runtime_put_autosuspend(data->dev);
570 		break;
571 	default:
572 		return -EINVAL;
573 	}
574 
575 	return ret;
576 }
577 
578 static ssize_t bmp280_show_avail(char *buf, const int *vals, const int n)
579 {
580 	size_t len = 0;
581 	int i;
582 
583 	for (i = 0; i < n; i++)
584 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", vals[i]);
585 
586 	buf[len - 1] = '\n';
587 
588 	return len;
589 }
590 
591 static ssize_t bmp280_show_temp_oversampling_avail(struct device *dev,
592 				struct device_attribute *attr, char *buf)
593 {
594 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
595 
596 	return bmp280_show_avail(buf, data->chip_info->oversampling_temp_avail,
597 				 data->chip_info->num_oversampling_temp_avail);
598 }
599 
600 static ssize_t bmp280_show_press_oversampling_avail(struct device *dev,
601 				struct device_attribute *attr, char *buf)
602 {
603 	struct bmp280_data *data = iio_priv(dev_to_iio_dev(dev));
604 
605 	return bmp280_show_avail(buf, data->chip_info->oversampling_press_avail,
606 				 data->chip_info->num_oversampling_press_avail);
607 }
608 
609 static IIO_DEVICE_ATTR(in_temp_oversampling_ratio_available,
610 	S_IRUGO, bmp280_show_temp_oversampling_avail, NULL, 0);
611 
612 static IIO_DEVICE_ATTR(in_pressure_oversampling_ratio_available,
613 	S_IRUGO, bmp280_show_press_oversampling_avail, NULL, 0);
614 
615 static struct attribute *bmp280_attributes[] = {
616 	&iio_dev_attr_in_temp_oversampling_ratio_available.dev_attr.attr,
617 	&iio_dev_attr_in_pressure_oversampling_ratio_available.dev_attr.attr,
618 	NULL,
619 };
620 
621 static const struct attribute_group bmp280_attrs_group = {
622 	.attrs = bmp280_attributes,
623 };
624 
625 static const struct iio_info bmp280_info = {
626 	.read_raw = &bmp280_read_raw,
627 	.write_raw = &bmp280_write_raw,
628 	.attrs = &bmp280_attrs_group,
629 };
630 
631 static int bmp280_chip_config(struct bmp280_data *data)
632 {
633 	int ret;
634 	u8 osrs = BMP280_OSRS_TEMP_X(data->oversampling_temp + 1) |
635 		  BMP280_OSRS_PRESS_X(data->oversampling_press + 1);
636 
637 	ret = regmap_write_bits(data->regmap, BMP280_REG_CTRL_MEAS,
638 				 BMP280_OSRS_TEMP_MASK |
639 				 BMP280_OSRS_PRESS_MASK |
640 				 BMP280_MODE_MASK,
641 				 osrs | BMP280_MODE_NORMAL);
642 	if (ret < 0) {
643 		dev_err(data->dev,
644 			"failed to write ctrl_meas register\n");
645 		return ret;
646 	}
647 
648 	ret = regmap_update_bits(data->regmap, BMP280_REG_CONFIG,
649 				 BMP280_FILTER_MASK,
650 				 BMP280_FILTER_4X);
651 	if (ret < 0) {
652 		dev_err(data->dev,
653 			"failed to write config register\n");
654 		return ret;
655 	}
656 
657 	return ret;
658 }
659 
660 static const int bmp280_oversampling_avail[] = { 1, 2, 4, 8, 16 };
661 
662 static const struct bmp280_chip_info bmp280_chip_info = {
663 	.oversampling_temp_avail = bmp280_oversampling_avail,
664 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
665 
666 	.oversampling_press_avail = bmp280_oversampling_avail,
667 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
668 
669 	.chip_config = bmp280_chip_config,
670 	.read_temp = bmp280_read_temp,
671 	.read_press = bmp280_read_press,
672 };
673 
674 static int bme280_chip_config(struct bmp280_data *data)
675 {
676 	int ret;
677 	u8 osrs = BMP280_OSRS_HUMIDITIY_X(data->oversampling_humid + 1);
678 
679 	/*
680 	 * Oversampling of humidity must be set before oversampling of
681 	 * temperature/pressure is set to become effective.
682 	 */
683 	ret = regmap_update_bits(data->regmap, BMP280_REG_CTRL_HUMIDITY,
684 				  BMP280_OSRS_HUMIDITY_MASK, osrs);
685 
686 	if (ret < 0)
687 		return ret;
688 
689 	return bmp280_chip_config(data);
690 }
691 
692 static const struct bmp280_chip_info bme280_chip_info = {
693 	.oversampling_temp_avail = bmp280_oversampling_avail,
694 	.num_oversampling_temp_avail = ARRAY_SIZE(bmp280_oversampling_avail),
695 
696 	.oversampling_press_avail = bmp280_oversampling_avail,
697 	.num_oversampling_press_avail = ARRAY_SIZE(bmp280_oversampling_avail),
698 
699 	.oversampling_humid_avail = bmp280_oversampling_avail,
700 	.num_oversampling_humid_avail = ARRAY_SIZE(bmp280_oversampling_avail),
701 
702 	.chip_config = bme280_chip_config,
703 	.read_temp = bmp280_read_temp,
704 	.read_press = bmp280_read_press,
705 	.read_humid = bmp280_read_humid,
706 };
707 
708 static int bmp180_measure(struct bmp280_data *data, u8 ctrl_meas)
709 {
710 	int ret;
711 	const int conversion_time_max[] = { 4500, 7500, 13500, 25500 };
712 	unsigned int delay_us;
713 	unsigned int ctrl;
714 
715 	if (data->use_eoc)
716 		init_completion(&data->done);
717 
718 	ret = regmap_write(data->regmap, BMP280_REG_CTRL_MEAS, ctrl_meas);
719 	if (ret)
720 		return ret;
721 
722 	if (data->use_eoc) {
723 		/*
724 		 * If we have a completion interrupt, use it, wait up to
725 		 * 100ms. The longest conversion time listed is 76.5 ms for
726 		 * advanced resolution mode.
727 		 */
728 		ret = wait_for_completion_timeout(&data->done,
729 						  1 + msecs_to_jiffies(100));
730 		if (!ret)
731 			dev_err(data->dev, "timeout waiting for completion\n");
732 	} else {
733 		if (ctrl_meas == BMP180_MEAS_TEMP)
734 			delay_us = 4500;
735 		else
736 			delay_us =
737 				conversion_time_max[data->oversampling_press];
738 
739 		usleep_range(delay_us, delay_us + 1000);
740 	}
741 
742 	ret = regmap_read(data->regmap, BMP280_REG_CTRL_MEAS, &ctrl);
743 	if (ret)
744 		return ret;
745 
746 	/* The value of this bit reset to "0" after conversion is complete */
747 	if (ctrl & BMP180_MEAS_SCO)
748 		return -EIO;
749 
750 	return 0;
751 }
752 
753 static int bmp180_read_adc_temp(struct bmp280_data *data, int *val)
754 {
755 	int ret;
756 	__be16 tmp = 0;
757 
758 	ret = bmp180_measure(data, BMP180_MEAS_TEMP);
759 	if (ret)
760 		return ret;
761 
762 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 2);
763 	if (ret)
764 		return ret;
765 
766 	*val = be16_to_cpu(tmp);
767 
768 	return 0;
769 }
770 
771 static int bmp180_read_calib(struct bmp280_data *data,
772 			     struct bmp180_calib *calib)
773 {
774 	int ret;
775 	int i;
776 	__be16 buf[BMP180_REG_CALIB_COUNT / 2];
777 
778 	ret = regmap_bulk_read(data->regmap, BMP180_REG_CALIB_START, buf,
779 			       sizeof(buf));
780 
781 	if (ret < 0)
782 		return ret;
783 
784 	/* None of the words has the value 0 or 0xFFFF */
785 	for (i = 0; i < ARRAY_SIZE(buf); i++) {
786 		if (buf[i] == cpu_to_be16(0) || buf[i] == cpu_to_be16(0xffff))
787 			return -EIO;
788 	}
789 
790 	/* Toss the calibration data into the entropy pool */
791 	add_device_randomness(buf, sizeof(buf));
792 
793 	calib->AC1 = be16_to_cpu(buf[AC1]);
794 	calib->AC2 = be16_to_cpu(buf[AC2]);
795 	calib->AC3 = be16_to_cpu(buf[AC3]);
796 	calib->AC4 = be16_to_cpu(buf[AC4]);
797 	calib->AC5 = be16_to_cpu(buf[AC5]);
798 	calib->AC6 = be16_to_cpu(buf[AC6]);
799 	calib->B1 = be16_to_cpu(buf[B1]);
800 	calib->B2 = be16_to_cpu(buf[B2]);
801 	calib->MB = be16_to_cpu(buf[MB]);
802 	calib->MC = be16_to_cpu(buf[MC]);
803 	calib->MD = be16_to_cpu(buf[MD]);
804 
805 	return 0;
806 }
807 
808 /*
809  * Returns temperature in DegC, resolution is 0.1 DegC.
810  * t_fine carries fine temperature as global value.
811  *
812  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
813  */
814 static s32 bmp180_compensate_temp(struct bmp280_data *data, s32 adc_temp)
815 {
816 	s32 x1, x2;
817 	struct bmp180_calib *calib = &data->calib.bmp180;
818 
819 	x1 = ((adc_temp - calib->AC6) * calib->AC5) >> 15;
820 	x2 = (calib->MC << 11) / (x1 + calib->MD);
821 	data->t_fine = x1 + x2;
822 
823 	return (data->t_fine + 8) >> 4;
824 }
825 
826 static int bmp180_read_temp(struct bmp280_data *data, int *val)
827 {
828 	int ret;
829 	s32 adc_temp, comp_temp;
830 
831 	ret = bmp180_read_adc_temp(data, &adc_temp);
832 	if (ret)
833 		return ret;
834 
835 	comp_temp = bmp180_compensate_temp(data, adc_temp);
836 
837 	/*
838 	 * val might be NULL if we're called by the read_press routine,
839 	 * who only cares about the carry over t_fine value.
840 	 */
841 	if (val) {
842 		*val = comp_temp * 100;
843 		return IIO_VAL_INT;
844 	}
845 
846 	return 0;
847 }
848 
849 static int bmp180_read_adc_press(struct bmp280_data *data, int *val)
850 {
851 	int ret;
852 	__be32 tmp = 0;
853 	u8 oss = data->oversampling_press;
854 
855 	ret = bmp180_measure(data, BMP180_MEAS_PRESS_X(oss));
856 	if (ret)
857 		return ret;
858 
859 	ret = regmap_bulk_read(data->regmap, BMP180_REG_OUT_MSB, (u8 *)&tmp, 3);
860 	if (ret)
861 		return ret;
862 
863 	*val = (be32_to_cpu(tmp) >> 8) >> (8 - oss);
864 
865 	return 0;
866 }
867 
868 /*
869  * Returns pressure in Pa, resolution is 1 Pa.
870  *
871  * Taken from datasheet, Section 3.5, "Calculating pressure and temperature".
872  */
873 static u32 bmp180_compensate_press(struct bmp280_data *data, s32 adc_press)
874 {
875 	s32 x1, x2, x3, p;
876 	s32 b3, b6;
877 	u32 b4, b7;
878 	s32 oss = data->oversampling_press;
879 	struct bmp180_calib *calib = &data->calib.bmp180;
880 
881 	b6 = data->t_fine - 4000;
882 	x1 = (calib->B2 * (b6 * b6 >> 12)) >> 11;
883 	x2 = calib->AC2 * b6 >> 11;
884 	x3 = x1 + x2;
885 	b3 = ((((s32)calib->AC1 * 4 + x3) << oss) + 2) / 4;
886 	x1 = calib->AC3 * b6 >> 13;
887 	x2 = (calib->B1 * ((b6 * b6) >> 12)) >> 16;
888 	x3 = (x1 + x2 + 2) >> 2;
889 	b4 = calib->AC4 * (u32)(x3 + 32768) >> 15;
890 	b7 = ((u32)adc_press - b3) * (50000 >> oss);
891 	if (b7 < 0x80000000)
892 		p = (b7 * 2) / b4;
893 	else
894 		p = (b7 / b4) * 2;
895 
896 	x1 = (p >> 8) * (p >> 8);
897 	x1 = (x1 * 3038) >> 16;
898 	x2 = (-7357 * p) >> 16;
899 
900 	return p + ((x1 + x2 + 3791) >> 4);
901 }
902 
903 static int bmp180_read_press(struct bmp280_data *data,
904 			     int *val, int *val2)
905 {
906 	int ret;
907 	s32 adc_press;
908 	u32 comp_press;
909 
910 	/* Read and compensate temperature so we get a reading of t_fine. */
911 	ret = bmp180_read_temp(data, NULL);
912 	if (ret)
913 		return ret;
914 
915 	ret = bmp180_read_adc_press(data, &adc_press);
916 	if (ret)
917 		return ret;
918 
919 	comp_press = bmp180_compensate_press(data, adc_press);
920 
921 	*val = comp_press;
922 	*val2 = 1000;
923 
924 	return IIO_VAL_FRACTIONAL;
925 }
926 
927 static int bmp180_chip_config(struct bmp280_data *data)
928 {
929 	return 0;
930 }
931 
932 static const int bmp180_oversampling_temp_avail[] = { 1 };
933 static const int bmp180_oversampling_press_avail[] = { 1, 2, 4, 8 };
934 
935 static const struct bmp280_chip_info bmp180_chip_info = {
936 	.oversampling_temp_avail = bmp180_oversampling_temp_avail,
937 	.num_oversampling_temp_avail =
938 		ARRAY_SIZE(bmp180_oversampling_temp_avail),
939 
940 	.oversampling_press_avail = bmp180_oversampling_press_avail,
941 	.num_oversampling_press_avail =
942 		ARRAY_SIZE(bmp180_oversampling_press_avail),
943 
944 	.chip_config = bmp180_chip_config,
945 	.read_temp = bmp180_read_temp,
946 	.read_press = bmp180_read_press,
947 };
948 
949 static irqreturn_t bmp085_eoc_irq(int irq, void *d)
950 {
951 	struct bmp280_data *data = d;
952 
953 	complete(&data->done);
954 
955 	return IRQ_HANDLED;
956 }
957 
958 static int bmp085_fetch_eoc_irq(struct device *dev,
959 				const char *name,
960 				int irq,
961 				struct bmp280_data *data)
962 {
963 	unsigned long irq_trig;
964 	int ret;
965 
966 	irq_trig = irqd_get_trigger_type(irq_get_irq_data(irq));
967 	if (irq_trig != IRQF_TRIGGER_RISING) {
968 		dev_err(dev, "non-rising trigger given for EOC interrupt, "
969 			"trying to enforce it\n");
970 		irq_trig = IRQF_TRIGGER_RISING;
971 	}
972 	ret = devm_request_threaded_irq(dev,
973 			irq,
974 			bmp085_eoc_irq,
975 			NULL,
976 			irq_trig,
977 			name,
978 			data);
979 	if (ret) {
980 		/* Bail out without IRQ but keep the driver in place */
981 		dev_err(dev, "unable to request DRDY IRQ\n");
982 		return 0;
983 	}
984 
985 	data->use_eoc = true;
986 	return 0;
987 }
988 
989 static void bmp280_pm_disable(void *data)
990 {
991 	struct device *dev = data;
992 
993 	pm_runtime_get_sync(dev);
994 	pm_runtime_put_noidle(dev);
995 	pm_runtime_disable(dev);
996 }
997 
998 static void bmp280_regulators_disable(void *data)
999 {
1000 	struct regulator_bulk_data *supplies = data;
1001 
1002 	regulator_bulk_disable(BMP280_NUM_SUPPLIES, supplies);
1003 }
1004 
1005 int bmp280_common_probe(struct device *dev,
1006 			struct regmap *regmap,
1007 			unsigned int chip,
1008 			const char *name,
1009 			int irq)
1010 {
1011 	int ret;
1012 	struct iio_dev *indio_dev;
1013 	struct bmp280_data *data;
1014 	unsigned int chip_id;
1015 	struct gpio_desc *gpiod;
1016 
1017 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1018 	if (!indio_dev)
1019 		return -ENOMEM;
1020 
1021 	data = iio_priv(indio_dev);
1022 	mutex_init(&data->lock);
1023 	data->dev = dev;
1024 
1025 	indio_dev->dev.parent = dev;
1026 	indio_dev->name = name;
1027 	indio_dev->channels = bmp280_channels;
1028 	indio_dev->info = &bmp280_info;
1029 	indio_dev->modes = INDIO_DIRECT_MODE;
1030 
1031 	switch (chip) {
1032 	case BMP180_CHIP_ID:
1033 		indio_dev->num_channels = 2;
1034 		data->chip_info = &bmp180_chip_info;
1035 		data->oversampling_press = ilog2(8);
1036 		data->oversampling_temp = ilog2(1);
1037 		data->start_up_time = 10000;
1038 		break;
1039 	case BMP280_CHIP_ID:
1040 		indio_dev->num_channels = 2;
1041 		data->chip_info = &bmp280_chip_info;
1042 		data->oversampling_press = ilog2(16);
1043 		data->oversampling_temp = ilog2(2);
1044 		data->start_up_time = 2000;
1045 		break;
1046 	case BME280_CHIP_ID:
1047 		indio_dev->num_channels = 3;
1048 		data->chip_info = &bme280_chip_info;
1049 		data->oversampling_press = ilog2(16);
1050 		data->oversampling_humid = ilog2(16);
1051 		data->oversampling_temp = ilog2(2);
1052 		data->start_up_time = 2000;
1053 		break;
1054 	default:
1055 		return -EINVAL;
1056 	}
1057 
1058 	/* Bring up regulators */
1059 	regulator_bulk_set_supply_names(data->supplies,
1060 					bmp280_supply_names,
1061 					BMP280_NUM_SUPPLIES);
1062 
1063 	ret = devm_regulator_bulk_get(dev,
1064 				      BMP280_NUM_SUPPLIES, data->supplies);
1065 	if (ret) {
1066 		dev_err(dev, "failed to get regulators\n");
1067 		return ret;
1068 	}
1069 
1070 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
1071 	if (ret) {
1072 		dev_err(dev, "failed to enable regulators\n");
1073 		return ret;
1074 	}
1075 
1076 	ret = devm_add_action_or_reset(dev, bmp280_regulators_disable,
1077 				       data->supplies);
1078 	if (ret)
1079 		return ret;
1080 
1081 	/* Wait to make sure we started up properly */
1082 	usleep_range(data->start_up_time, data->start_up_time + 100);
1083 
1084 	/* Bring chip out of reset if there is an assigned GPIO line */
1085 	gpiod = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
1086 	/* Deassert the signal */
1087 	if (!IS_ERR(gpiod)) {
1088 		dev_info(dev, "release reset\n");
1089 		gpiod_set_value(gpiod, 0);
1090 	}
1091 
1092 	data->regmap = regmap;
1093 	ret = regmap_read(regmap, BMP280_REG_ID, &chip_id);
1094 	if (ret < 0)
1095 		return ret;
1096 	if (chip_id != chip) {
1097 		dev_err(dev, "bad chip id: expected %x got %x\n",
1098 			chip, chip_id);
1099 		return -EINVAL;
1100 	}
1101 
1102 	ret = data->chip_info->chip_config(data);
1103 	if (ret < 0)
1104 		return ret;
1105 
1106 	dev_set_drvdata(dev, indio_dev);
1107 
1108 	/*
1109 	 * Some chips have calibration parameters "programmed into the devices'
1110 	 * non-volatile memory during production". Let's read them out at probe
1111 	 * time once. They will not change.
1112 	 */
1113 	if (chip_id  == BMP180_CHIP_ID) {
1114 		ret = bmp180_read_calib(data, &data->calib.bmp180);
1115 		if (ret < 0) {
1116 			dev_err(data->dev,
1117 				"failed to read calibration coefficients\n");
1118 			return ret;
1119 		}
1120 	} else if (chip_id == BMP280_CHIP_ID || chip_id == BME280_CHIP_ID) {
1121 		ret = bmp280_read_calib(data, &data->calib.bmp280, chip_id);
1122 		if (ret < 0) {
1123 			dev_err(data->dev,
1124 				"failed to read calibration coefficients\n");
1125 			return ret;
1126 		}
1127 	}
1128 
1129 	/*
1130 	 * Attempt to grab an optional EOC IRQ - only the BMP085 has this
1131 	 * however as it happens, the BMP085 shares the chip ID of BMP180
1132 	 * so we look for an IRQ if we have that.
1133 	 */
1134 	if (irq > 0 || (chip_id  == BMP180_CHIP_ID)) {
1135 		ret = bmp085_fetch_eoc_irq(dev, name, irq, data);
1136 		if (ret)
1137 			return ret;
1138 	}
1139 
1140 	/* Enable runtime PM */
1141 	pm_runtime_get_noresume(dev);
1142 	pm_runtime_set_active(dev);
1143 	pm_runtime_enable(dev);
1144 	/*
1145 	 * Set autosuspend to two orders of magnitude larger than the
1146 	 * start-up time.
1147 	 */
1148 	pm_runtime_set_autosuspend_delay(dev, data->start_up_time / 10);
1149 	pm_runtime_use_autosuspend(dev);
1150 	pm_runtime_put(dev);
1151 
1152 	ret = devm_add_action_or_reset(dev, bmp280_pm_disable, dev);
1153 	if (ret)
1154 		return ret;
1155 
1156 	return devm_iio_device_register(dev, indio_dev);
1157 }
1158 EXPORT_SYMBOL(bmp280_common_probe);
1159 
1160 #ifdef CONFIG_PM
1161 static int bmp280_runtime_suspend(struct device *dev)
1162 {
1163 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1164 	struct bmp280_data *data = iio_priv(indio_dev);
1165 
1166 	return regulator_bulk_disable(BMP280_NUM_SUPPLIES, data->supplies);
1167 }
1168 
1169 static int bmp280_runtime_resume(struct device *dev)
1170 {
1171 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1172 	struct bmp280_data *data = iio_priv(indio_dev);
1173 	int ret;
1174 
1175 	ret = regulator_bulk_enable(BMP280_NUM_SUPPLIES, data->supplies);
1176 	if (ret)
1177 		return ret;
1178 	usleep_range(data->start_up_time, data->start_up_time + 100);
1179 	return data->chip_info->chip_config(data);
1180 }
1181 #endif /* CONFIG_PM */
1182 
1183 const struct dev_pm_ops bmp280_dev_pm_ops = {
1184 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1185 				pm_runtime_force_resume)
1186 	SET_RUNTIME_PM_OPS(bmp280_runtime_suspend,
1187 			   bmp280_runtime_resume, NULL)
1188 };
1189 EXPORT_SYMBOL(bmp280_dev_pm_ops);
1190 
1191 MODULE_AUTHOR("Vlad Dogaru <vlad.dogaru@intel.com>");
1192 MODULE_DESCRIPTION("Driver for Bosch Sensortec BMP180/BMP280 pressure and temperature sensor");
1193 MODULE_LICENSE("GPL v2");
1194