1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for the Yamaha YAS magnetic sensors, often used in Samsung 4 * mobile phones. While all are not yet handled because of lacking 5 * hardware, expand this driver to handle the different variants: 6 * 7 * YAS530 MS-3E (2011 Samsung Galaxy S Advance) 8 * YAS532 MS-3R (2011 Samsung Galaxy S4) 9 * YAS533 MS-3F (Vivo 1633, 1707, V3, Y21L) 10 * (YAS534 is a magnetic switch, not handled) 11 * YAS535 MS-6C 12 * YAS536 MS-3W 13 * YAS537 MS-3T (2015 Samsung Galaxy S6, Note 5, Galaxy S7) 14 * YAS539 MS-3S (2018 Samsung Galaxy A7 SM-A750FN) 15 * 16 * Code functions found in the MPU3050 YAS530 and YAS532 drivers 17 * named "inv_compass" in the Tegra Android kernel tree. 18 * Copyright (C) 2012 InvenSense Corporation 19 * 20 * Code functions for YAS537 based on Yamaha Android kernel driver. 21 * Copyright (c) 2014 Yamaha Corporation 22 * 23 * Author: Linus Walleij <linus.walleij@linaro.org> 24 */ 25 #include <linux/bitfield.h> 26 #include <linux/bitops.h> 27 #include <linux/delay.h> 28 #include <linux/err.h> 29 #include <linux/gpio/consumer.h> 30 #include <linux/i2c.h> 31 #include <linux/module.h> 32 #include <linux/mod_devicetable.h> 33 #include <linux/mutex.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/property.h> 36 #include <linux/regmap.h> 37 #include <linux/regulator/consumer.h> 38 #include <linux/random.h> 39 #include <linux/units.h> 40 41 #include <linux/iio/buffer.h> 42 #include <linux/iio/iio.h> 43 #include <linux/iio/trigger_consumer.h> 44 #include <linux/iio/triggered_buffer.h> 45 46 #include <linux/unaligned.h> 47 48 /* Commonly used registers */ 49 #define YAS5XX_DEVICE_ID 0x80 50 #define YAS5XX_MEASURE_DATA 0xB0 51 52 /* These registers are used by YAS530, YAS532 and YAS533 */ 53 #define YAS530_ACTUATE_INIT_COIL 0x81 54 #define YAS530_MEASURE 0x82 55 #define YAS530_CONFIG 0x83 56 #define YAS530_MEASURE_INTERVAL 0x84 57 #define YAS530_OFFSET_X 0x85 /* [-31 .. 31] */ 58 #define YAS530_OFFSET_Y1 0x86 /* [-31 .. 31] */ 59 #define YAS530_OFFSET_Y2 0x87 /* [-31 .. 31] */ 60 #define YAS530_TEST1 0x88 61 #define YAS530_TEST2 0x89 62 #define YAS530_CAL 0x90 63 64 /* Registers used by YAS537 */ 65 #define YAS537_MEASURE 0x81 /* Originally YAS537_REG_CMDR */ 66 #define YAS537_CONFIG 0x82 /* Originally YAS537_REG_CONFR */ 67 #define YAS537_MEASURE_INTERVAL 0x83 /* Originally YAS537_REG_INTRVLR */ 68 #define YAS537_OFFSET_X 0x84 /* Originally YAS537_REG_OXR */ 69 #define YAS537_OFFSET_Y1 0x85 /* Originally YAS537_REG_OY1R */ 70 #define YAS537_OFFSET_Y2 0x86 /* Originally YAS537_REG_OY2R */ 71 #define YAS537_AVR 0x87 72 #define YAS537_HCK 0x88 73 #define YAS537_LCK 0x89 74 #define YAS537_SRST 0x90 75 #define YAS537_ADCCAL 0x91 76 #define YAS537_MTC 0x93 77 #define YAS537_OC 0x9E 78 #define YAS537_TRM 0x9F 79 #define YAS537_CAL 0xC0 80 81 /* Bits in the YAS5xx config register */ 82 #define YAS5XX_CONFIG_INTON BIT(0) /* Interrupt on? */ 83 #define YAS5XX_CONFIG_INTHACT BIT(1) /* Interrupt active high? */ 84 #define YAS5XX_CONFIG_CCK_MASK GENMASK(4, 2) 85 #define YAS5XX_CONFIG_CCK_SHIFT 2 86 87 /* Bits in the measure command register */ 88 #define YAS5XX_MEASURE_START BIT(0) 89 #define YAS5XX_MEASURE_LDTC BIT(1) 90 #define YAS5XX_MEASURE_FORS BIT(2) 91 #define YAS5XX_MEASURE_DLYMES BIT(4) 92 #define YAS5XX_MEASURE_CONT BIT(5) 93 94 /* Bits in the measure data register */ 95 #define YAS5XX_MEASURE_DATA_BUSY BIT(7) 96 97 #define YAS530_DEVICE_ID 0x01 /* YAS530 (MS-3E) */ 98 #define YAS530_VERSION_A 0 /* YAS530 (MS-3E A) */ 99 #define YAS530_VERSION_B 1 /* YAS530B (MS-3E B) */ 100 #define YAS530_VERSION_A_COEF 380 101 #define YAS530_VERSION_B_COEF 550 102 #define YAS530_DATA_BITS 12 103 #define YAS530_DATA_CENTER BIT(YAS530_DATA_BITS - 1) 104 #define YAS530_DATA_OVERFLOW (BIT(YAS530_DATA_BITS) - 1) 105 106 #define YAS532_DEVICE_ID 0x02 /* YAS532/YAS533 (MS-3R/F) */ 107 #define YAS532_VERSION_AB 0 /* YAS532/533 AB (MS-3R/F AB) */ 108 #define YAS532_VERSION_AC 1 /* YAS532/533 AC (MS-3R/F AC) */ 109 #define YAS532_VERSION_AB_COEF 1800 110 #define YAS532_VERSION_AC_COEF_X 850 111 #define YAS532_VERSION_AC_COEF_Y1 750 112 #define YAS532_VERSION_AC_COEF_Y2 750 113 #define YAS532_DATA_BITS 13 114 #define YAS532_DATA_CENTER BIT(YAS532_DATA_BITS - 1) 115 #define YAS532_DATA_OVERFLOW (BIT(YAS532_DATA_BITS) - 1) 116 117 #define YAS537_DEVICE_ID 0x07 /* YAS537 (MS-3T) */ 118 #define YAS537_VERSION_0 0 /* Version naming unknown */ 119 #define YAS537_VERSION_1 1 /* Version naming unknown */ 120 #define YAS537_MAG_AVERAGE_32_MASK GENMASK(6, 4) 121 #define YAS537_MEASURE_TIME_WORST_US 1500 122 #define YAS537_DEFAULT_SENSOR_DELAY_MS 50 123 #define YAS537_MAG_RCOIL_TIME_US 65 124 #define YAS537_MTC3_MASK_PREP GENMASK(7, 0) 125 #define YAS537_MTC3_MASK_GET GENMASK(7, 5) 126 #define YAS537_MTC3_ADD_BIT BIT(4) 127 #define YAS537_HCK_MASK_PREP GENMASK(4, 0) 128 #define YAS537_HCK_MASK_GET GENMASK(7, 4) 129 #define YAS537_LCK_MASK_PREP GENMASK(4, 0) 130 #define YAS537_LCK_MASK_GET GENMASK(3, 0) 131 #define YAS537_OC_MASK_GET GENMASK(5, 0) 132 133 /* Turn off device regulators etc after 5 seconds of inactivity */ 134 #define YAS5XX_AUTOSUSPEND_DELAY_MS 5000 135 136 enum chip_ids { 137 yas530, 138 yas532, 139 yas533, 140 yas537, 141 }; 142 143 static const int yas530_volatile_reg[] = { 144 YAS530_ACTUATE_INIT_COIL, 145 YAS530_MEASURE, 146 }; 147 148 static const int yas537_volatile_reg[] = { 149 YAS537_MEASURE, 150 }; 151 152 struct yas5xx_calibration { 153 /* Linearization calibration x, y1, y2 */ 154 s32 r[3]; 155 u32 f[3]; 156 /* Temperature compensation calibration */ 157 s16 Cx, Cy1, Cy2; 158 /* Misc calibration coefficients */ 159 s8 a2, a3, a4, a6, a7, a8; 160 s16 a5, a9; 161 u8 k; 162 /* clock divider */ 163 u8 dck; 164 }; 165 166 struct yas5xx; 167 168 /** 169 * struct yas5xx_chip_info - device-specific data and function pointers 170 * @devid: device ID number 171 * @product_name: product name of the YAS variant 172 * @version_names: version letters or namings 173 * @volatile_reg: device-specific volatile registers 174 * @volatile_reg_qty: quantity of device-specific volatile registers 175 * @scaling_val2: scaling value for IIO_CHAN_INFO_SCALE 176 * @t_ref: number of counts at reference temperature 20 °C 177 * @min_temp_x10: starting point of temperature counting in 1/10:s degrees Celsius 178 * @get_measure: function pointer to get a measurement 179 * @get_calibration_data: function pointer to get calibration data 180 * @dump_calibration: function pointer to dump calibration for debugging 181 * @measure_offsets: function pointer to measure the offsets 182 * @power_on: function pointer to power-on procedure 183 * 184 * The "t_ref" value for YAS532/533 is known from the Android driver. 185 * For YAS530 and YAS537 it was approximately measured. 186 * 187 * The temperatures "min_temp_x10" are derived from the temperature resolutions 188 * given in the data sheets. 189 */ 190 struct yas5xx_chip_info { 191 unsigned int devid; 192 const char *product_name; 193 const char *version_names[2]; 194 const int *volatile_reg; 195 int volatile_reg_qty; 196 u32 scaling_val2; 197 u16 t_ref; 198 s16 min_temp_x10; 199 int (*get_measure)(struct yas5xx *yas5xx, s32 *to, s32 *xo, s32 *yo, s32 *zo); 200 int (*get_calibration_data)(struct yas5xx *yas5xx); 201 void (*dump_calibration)(struct yas5xx *yas5xx); 202 int (*measure_offsets)(struct yas5xx *yas5xx); 203 int (*power_on)(struct yas5xx *yas5xx); 204 }; 205 206 /** 207 * struct yas5xx - state container for the YAS5xx driver 208 * @dev: parent device pointer 209 * @chip_info: device-specific data and function pointers 210 * @version: device version 211 * @calibration: calibration settings from the OTP storage 212 * @hard_offsets: offsets for each axis measured with initcoil actuated 213 * @orientation: mounting matrix, flipped axis etc 214 * @map: regmap to access the YAX5xx registers over I2C 215 * @regs: the vdd and vddio power regulators 216 * @reset: optional GPIO line used for handling RESET 217 * @lock: locks the magnetometer for exclusive use during a measurement (which 218 * involves several register transactions so the regmap lock is not enough) 219 * so that measurements get serialized in a first-come-first serve manner 220 * @scan: naturally aligned measurements 221 */ 222 struct yas5xx { 223 struct device *dev; 224 const struct yas5xx_chip_info *chip_info; 225 unsigned int version; 226 struct yas5xx_calibration calibration; 227 s8 hard_offsets[3]; 228 struct iio_mount_matrix orientation; 229 struct regmap *map; 230 struct regulator_bulk_data regs[2]; 231 struct gpio_desc *reset; 232 struct mutex lock; 233 /* 234 * The scanout is 4 x 32 bits in CPU endianness. 235 * Ensure timestamp is naturally aligned 236 */ 237 struct { 238 s32 channels[4]; 239 aligned_s64 ts; 240 } scan; 241 }; 242 243 /* On YAS530 the x, y1 and y2 values are 12 bits */ 244 static u16 yas530_extract_axis(u8 *data) 245 { 246 u16 val; 247 248 /* 249 * These are the bits used in a 16bit word: 250 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 251 * x x x x x x x x x x x x 252 */ 253 val = get_unaligned_be16(&data[0]); 254 val = FIELD_GET(GENMASK(14, 3), val); 255 return val; 256 } 257 258 /* On YAS532 the x, y1 and y2 values are 13 bits */ 259 static u16 yas532_extract_axis(u8 *data) 260 { 261 u16 val; 262 263 /* 264 * These are the bits used in a 16bit word: 265 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 266 * x x x x x x x x x x x x x 267 */ 268 val = get_unaligned_be16(&data[0]); 269 val = FIELD_GET(GENMASK(14, 2), val); 270 return val; 271 } 272 273 /** 274 * yas530_measure() - Make a measure from the hardware 275 * @yas5xx: The device state 276 * @t: the raw temperature measurement 277 * @x: the raw x axis measurement 278 * @y1: the y1 axis measurement 279 * @y2: the y2 axis measurement 280 * @return: 0 on success or error code 281 * 282 * Used by YAS530, YAS532 and YAS533. 283 */ 284 static int yas530_measure(struct yas5xx *yas5xx, u16 *t, u16 *x, u16 *y1, u16 *y2) 285 { 286 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 287 unsigned int busy; 288 u8 data[8]; 289 int ret; 290 u16 val; 291 292 mutex_lock(&yas5xx->lock); 293 ret = regmap_write(yas5xx->map, YAS530_MEASURE, YAS5XX_MEASURE_START); 294 if (ret < 0) 295 goto out_unlock; 296 297 /* 298 * Typical time to measure 1500 us, max 2000 us so wait min 500 us 299 * and at most 20000 us (one magnitude more than the datsheet max) 300 * before timeout. 301 */ 302 ret = regmap_read_poll_timeout(yas5xx->map, YAS5XX_MEASURE_DATA, busy, 303 !(busy & YAS5XX_MEASURE_DATA_BUSY), 304 500, 20000); 305 if (ret) { 306 dev_err(yas5xx->dev, "timeout waiting for measurement\n"); 307 goto out_unlock; 308 } 309 310 ret = regmap_bulk_read(yas5xx->map, YAS5XX_MEASURE_DATA, 311 data, sizeof(data)); 312 if (ret) 313 goto out_unlock; 314 315 mutex_unlock(&yas5xx->lock); 316 317 switch (ci->devid) { 318 case YAS530_DEVICE_ID: 319 /* 320 * The t value is 9 bits in big endian format 321 * These are the bits used in a 16bit word: 322 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 323 * x x x x x x x x x 324 */ 325 val = get_unaligned_be16(&data[0]); 326 val = FIELD_GET(GENMASK(14, 6), val); 327 *t = val; 328 *x = yas530_extract_axis(&data[2]); 329 *y1 = yas530_extract_axis(&data[4]); 330 *y2 = yas530_extract_axis(&data[6]); 331 break; 332 case YAS532_DEVICE_ID: 333 /* 334 * The t value is 10 bits in big endian format 335 * These are the bits used in a 16bit word: 336 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 337 * x x x x x x x x x x 338 */ 339 val = get_unaligned_be16(&data[0]); 340 val = FIELD_GET(GENMASK(14, 5), val); 341 *t = val; 342 *x = yas532_extract_axis(&data[2]); 343 *y1 = yas532_extract_axis(&data[4]); 344 *y2 = yas532_extract_axis(&data[6]); 345 break; 346 default: 347 dev_err(yas5xx->dev, "unknown data format\n"); 348 ret = -EINVAL; 349 break; 350 } 351 352 return ret; 353 354 out_unlock: 355 mutex_unlock(&yas5xx->lock); 356 return ret; 357 } 358 359 /** 360 * yas537_measure() - Make a measure from the hardware 361 * @yas5xx: The device state 362 * @t: the raw temperature measurement 363 * @x: the raw x axis measurement 364 * @y1: the y1 axis measurement 365 * @y2: the y2 axis measurement 366 * @return: 0 on success or error code 367 */ 368 static int yas537_measure(struct yas5xx *yas5xx, u16 *t, u16 *x, u16 *y1, u16 *y2) 369 { 370 struct yas5xx_calibration *c = &yas5xx->calibration; 371 unsigned int busy; 372 u8 data[8]; 373 u16 xy1y2[3]; 374 s32 h[3], s[3]; 375 int half_range = BIT(13); 376 int i, ret; 377 378 mutex_lock(&yas5xx->lock); 379 380 /* Contrary to YAS530/532, also a "cont" bit is set, meaning unknown */ 381 ret = regmap_write(yas5xx->map, YAS537_MEASURE, YAS5XX_MEASURE_START | 382 YAS5XX_MEASURE_CONT); 383 if (ret < 0) 384 goto out_unlock; 385 386 /* Use same timeout like YAS530/532 but the bit is in data row 2 */ 387 ret = regmap_read_poll_timeout(yas5xx->map, YAS5XX_MEASURE_DATA + 2, busy, 388 !(busy & YAS5XX_MEASURE_DATA_BUSY), 389 500, 20000); 390 if (ret) { 391 dev_err(yas5xx->dev, "timeout waiting for measurement\n"); 392 goto out_unlock; 393 } 394 395 ret = regmap_bulk_read(yas5xx->map, YAS5XX_MEASURE_DATA, 396 data, sizeof(data)); 397 if (ret) 398 goto out_unlock; 399 400 mutex_unlock(&yas5xx->lock); 401 402 *t = get_unaligned_be16(&data[0]); 403 xy1y2[0] = FIELD_GET(GENMASK(13, 0), get_unaligned_be16(&data[2])); 404 xy1y2[1] = get_unaligned_be16(&data[4]); 405 xy1y2[2] = get_unaligned_be16(&data[6]); 406 407 /* The second version of YAS537 needs to include calibration coefficients */ 408 if (yas5xx->version == YAS537_VERSION_1) { 409 for (i = 0; i < 3; i++) 410 s[i] = xy1y2[i] - half_range; 411 h[0] = (c->k * (128 * s[0] + c->a2 * s[1] + c->a3 * s[2])) / half_range; 412 h[1] = (c->k * (c->a4 * s[0] + c->a5 * s[1] + c->a6 * s[2])) / half_range; 413 h[2] = (c->k * (c->a7 * s[0] + c->a8 * s[1] + c->a9 * s[2])) / half_range; 414 for (i = 0; i < 3; i++) { 415 h[i] = clamp(h[i], -half_range, half_range - 1); 416 xy1y2[i] = h[i] + half_range; 417 } 418 } 419 420 *x = xy1y2[0]; 421 *y1 = xy1y2[1]; 422 *y2 = xy1y2[2]; 423 424 return 0; 425 426 out_unlock: 427 mutex_unlock(&yas5xx->lock); 428 return ret; 429 } 430 431 /* Used by YAS530, YAS532 and YAS533 */ 432 static s32 yas530_linearize(struct yas5xx *yas5xx, u16 val, int axis) 433 { 434 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 435 struct yas5xx_calibration *c = &yas5xx->calibration; 436 static const s32 yas532ac_coef[] = { 437 YAS532_VERSION_AC_COEF_X, 438 YAS532_VERSION_AC_COEF_Y1, 439 YAS532_VERSION_AC_COEF_Y2, 440 }; 441 s32 coef; 442 443 /* Select coefficients */ 444 switch (ci->devid) { 445 case YAS530_DEVICE_ID: 446 if (yas5xx->version == YAS530_VERSION_A) 447 coef = YAS530_VERSION_A_COEF; 448 else 449 coef = YAS530_VERSION_B_COEF; 450 break; 451 case YAS532_DEVICE_ID: 452 if (yas5xx->version == YAS532_VERSION_AB) 453 coef = YAS532_VERSION_AB_COEF; 454 else 455 /* Elaborate coefficients */ 456 coef = yas532ac_coef[axis]; 457 break; 458 default: 459 dev_err(yas5xx->dev, "unknown device type\n"); 460 return val; 461 } 462 /* 463 * Linearization formula: 464 * 465 * x' = x - (3721 + 50 * f) + (xoffset - r) * c 466 * 467 * Where f and r are calibration values, c is a per-device 468 * and sometimes per-axis coefficient. 469 */ 470 return val - (3721 + 50 * c->f[axis]) + 471 (yas5xx->hard_offsets[axis] - c->r[axis]) * coef; 472 } 473 474 static s32 yas5xx_calc_temperature(struct yas5xx *yas5xx, u16 t) 475 { 476 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 477 s32 to; 478 u16 t_ref; 479 s16 min_temp_x10; 480 int ref_temp_x10; 481 482 t_ref = ci->t_ref; 483 min_temp_x10 = ci->min_temp_x10; 484 ref_temp_x10 = 200; 485 486 to = (min_temp_x10 + ((ref_temp_x10 - min_temp_x10) * t / t_ref)) * 100; 487 return to; 488 } 489 490 /** 491 * yas530_get_measure() - Measure a sample of all axis and process 492 * @yas5xx: The device state 493 * @to: Temperature out 494 * @xo: X axis out 495 * @yo: Y axis out 496 * @zo: Z axis out 497 * @return: 0 on success or error code 498 * 499 * Used by YAS530, YAS532 and YAS533. 500 */ 501 static int yas530_get_measure(struct yas5xx *yas5xx, s32 *to, s32 *xo, s32 *yo, s32 *zo) 502 { 503 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 504 struct yas5xx_calibration *c = &yas5xx->calibration; 505 u16 t_ref, t_comp, t, x, y1, y2; 506 /* These are signed x, signed y1 etc */ 507 s32 sx, sy1, sy2, sy, sz; 508 int ret; 509 510 /* We first get raw data that needs to be translated to [x,y,z] */ 511 ret = yas530_measure(yas5xx, &t, &x, &y1, &y2); 512 if (ret) 513 return ret; 514 515 /* Do some linearization if available */ 516 sx = yas530_linearize(yas5xx, x, 0); 517 sy1 = yas530_linearize(yas5xx, y1, 1); 518 sy2 = yas530_linearize(yas5xx, y2, 2); 519 520 /* 521 * Set the temperature for compensation (unit: counts): 522 * YAS532/YAS533 version AC uses the temperature deviation as a 523 * multiplier. YAS530 and YAS532 version AB use solely the t value. 524 */ 525 t_ref = ci->t_ref; 526 if (ci->devid == YAS532_DEVICE_ID && 527 yas5xx->version == YAS532_VERSION_AC) { 528 t_comp = t - t_ref; 529 } else { 530 t_comp = t; 531 } 532 533 /* 534 * Temperature compensation for x, y1, y2 respectively: 535 * 536 * Cx * t_comp 537 * x' = x - ----------- 538 * 100 539 */ 540 sx = sx - (c->Cx * t_comp) / 100; 541 sy1 = sy1 - (c->Cy1 * t_comp) / 100; 542 sy2 = sy2 - (c->Cy2 * t_comp) / 100; 543 544 /* 545 * Break y1 and y2 into y and z, y1 and y2 are apparently encoding 546 * y and z. 547 */ 548 sy = sy1 - sy2; 549 sz = -sy1 - sy2; 550 551 /* Calculate temperature readout */ 552 *to = yas5xx_calc_temperature(yas5xx, t); 553 554 /* 555 * Calibrate [x,y,z] with some formulas like this: 556 * 557 * 100 * x + a_2 * y + a_3 * z 558 * x' = k * --------------------------- 559 * 10 560 * 561 * a_4 * x + a_5 * y + a_6 * z 562 * y' = k * --------------------------- 563 * 10 564 * 565 * a_7 * x + a_8 * y + a_9 * z 566 * z' = k * --------------------------- 567 * 10 568 */ 569 *xo = c->k * ((100 * sx + c->a2 * sy + c->a3 * sz) / 10); 570 *yo = c->k * ((c->a4 * sx + c->a5 * sy + c->a6 * sz) / 10); 571 *zo = c->k * ((c->a7 * sx + c->a8 * sy + c->a9 * sz) / 10); 572 573 return 0; 574 } 575 576 /** 577 * yas537_get_measure() - Measure a sample of all axis and process 578 * @yas5xx: The device state 579 * @to: Temperature out 580 * @xo: X axis out 581 * @yo: Y axis out 582 * @zo: Z axis out 583 * @return: 0 on success or error code 584 */ 585 static int yas537_get_measure(struct yas5xx *yas5xx, s32 *to, s32 *xo, s32 *yo, s32 *zo) 586 { 587 u16 t, x, y1, y2; 588 int ret; 589 590 /* We first get raw data that needs to be translated to [x,y,z] */ 591 ret = yas537_measure(yas5xx, &t, &x, &y1, &y2); 592 if (ret) 593 return ret; 594 595 /* Calculate temperature readout */ 596 *to = yas5xx_calc_temperature(yas5xx, t); 597 598 /* 599 * Unfortunately, no linearization or temperature compensation formulas 600 * are known for YAS537. 601 */ 602 603 /* Calculate x, y, z from x, y1, y2 */ 604 *xo = (x - BIT(13)) * 300; 605 *yo = (y1 - y2) * 1732 / 10; 606 *zo = (-y1 - y2 + BIT(14)) * 300; 607 608 return 0; 609 } 610 611 static int yas5xx_read_raw(struct iio_dev *indio_dev, 612 struct iio_chan_spec const *chan, 613 int *val, int *val2, 614 long mask) 615 { 616 struct yas5xx *yas5xx = iio_priv(indio_dev); 617 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 618 s32 t, x, y, z; 619 int ret; 620 621 switch (mask) { 622 case IIO_CHAN_INFO_PROCESSED: 623 case IIO_CHAN_INFO_RAW: 624 pm_runtime_get_sync(yas5xx->dev); 625 ret = ci->get_measure(yas5xx, &t, &x, &y, &z); 626 pm_runtime_put_autosuspend(yas5xx->dev); 627 if (ret) 628 return ret; 629 switch (chan->address) { 630 case 0: 631 *val = t; 632 break; 633 case 1: 634 *val = x; 635 break; 636 case 2: 637 *val = y; 638 break; 639 case 3: 640 *val = z; 641 break; 642 default: 643 dev_err(yas5xx->dev, "unknown channel\n"); 644 return -EINVAL; 645 } 646 return IIO_VAL_INT; 647 case IIO_CHAN_INFO_SCALE: 648 *val = 1; 649 *val2 = ci->scaling_val2; 650 return IIO_VAL_FRACTIONAL; 651 default: 652 /* Unknown request */ 653 return -EINVAL; 654 } 655 } 656 657 static void yas5xx_fill_buffer(struct iio_dev *indio_dev) 658 { 659 struct yas5xx *yas5xx = iio_priv(indio_dev); 660 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 661 s32 t, x, y, z; 662 int ret; 663 664 pm_runtime_get_sync(yas5xx->dev); 665 ret = ci->get_measure(yas5xx, &t, &x, &y, &z); 666 pm_runtime_put_autosuspend(yas5xx->dev); 667 if (ret) { 668 dev_err(yas5xx->dev, "error refilling buffer\n"); 669 return; 670 } 671 yas5xx->scan.channels[0] = t; 672 yas5xx->scan.channels[1] = x; 673 yas5xx->scan.channels[2] = y; 674 yas5xx->scan.channels[3] = z; 675 iio_push_to_buffers_with_ts(indio_dev, &yas5xx->scan, sizeof(yas5xx->scan), 676 iio_get_time_ns(indio_dev)); 677 } 678 679 static irqreturn_t yas5xx_handle_trigger(int irq, void *p) 680 { 681 const struct iio_poll_func *pf = p; 682 struct iio_dev *indio_dev = pf->indio_dev; 683 684 yas5xx_fill_buffer(indio_dev); 685 iio_trigger_notify_done(indio_dev->trig); 686 687 return IRQ_HANDLED; 688 } 689 690 691 static const struct iio_mount_matrix * 692 yas5xx_get_mount_matrix(const struct iio_dev *indio_dev, 693 const struct iio_chan_spec *chan) 694 { 695 struct yas5xx *yas5xx = iio_priv(indio_dev); 696 697 return &yas5xx->orientation; 698 } 699 700 static const struct iio_chan_spec_ext_info yas5xx_ext_info[] = { 701 IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, yas5xx_get_mount_matrix), 702 { } 703 }; 704 705 #define YAS5XX_AXIS_CHANNEL(axis, index) \ 706 { \ 707 .type = IIO_MAGN, \ 708 .modified = 1, \ 709 .channel2 = IIO_MOD_##axis, \ 710 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 711 BIT(IIO_CHAN_INFO_SCALE), \ 712 .ext_info = yas5xx_ext_info, \ 713 .address = index, \ 714 .scan_index = index, \ 715 .scan_type = { \ 716 .sign = 's', \ 717 .realbits = 32, \ 718 .storagebits = 32, \ 719 .endianness = IIO_CPU, \ 720 }, \ 721 } 722 723 static const struct iio_chan_spec yas5xx_channels[] = { 724 { 725 .type = IIO_TEMP, 726 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 727 .address = 0, 728 .scan_index = 0, 729 .scan_type = { 730 .sign = 's', 731 .realbits = 32, 732 .storagebits = 32, 733 .endianness = IIO_CPU, 734 }, 735 }, 736 YAS5XX_AXIS_CHANNEL(X, 1), 737 YAS5XX_AXIS_CHANNEL(Y, 2), 738 YAS5XX_AXIS_CHANNEL(Z, 3), 739 IIO_CHAN_SOFT_TIMESTAMP(4), 740 }; 741 742 static const unsigned long yas5xx_scan_masks[] = { GENMASK(3, 0), 0 }; 743 744 static const struct iio_info yas5xx_info = { 745 .read_raw = &yas5xx_read_raw, 746 }; 747 748 static bool yas5xx_volatile_reg(struct device *dev, unsigned int reg) 749 { 750 struct iio_dev *indio_dev = dev_get_drvdata(dev); 751 struct yas5xx *yas5xx = iio_priv(indio_dev); 752 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 753 int reg_qty; 754 int i; 755 756 if (reg >= YAS5XX_MEASURE_DATA && reg < YAS5XX_MEASURE_DATA + 8) 757 return true; 758 759 /* 760 * YAS versions share different registers on the same address, 761 * need to differentiate. 762 */ 763 reg_qty = ci->volatile_reg_qty; 764 for (i = 0; i < reg_qty; i++) { 765 if (reg == ci->volatile_reg[i]) 766 return true; 767 } 768 769 return false; 770 } 771 772 /* TODO: enable regmap cache, using mark dirty and sync at runtime resume */ 773 static const struct regmap_config yas5xx_regmap_config = { 774 .reg_bits = 8, 775 .val_bits = 8, 776 .max_register = 0xff, 777 .volatile_reg = yas5xx_volatile_reg, 778 }; 779 780 /** 781 * yas530_extract_calibration() - extracts the a2-a9 and k calibration 782 * @data: the bitfield to use 783 * @c: the calibration to populate 784 * 785 * Used by YAS530, YAS532 and YAS533. 786 */ 787 static void yas530_extract_calibration(u8 *data, struct yas5xx_calibration *c) 788 { 789 u64 val = get_unaligned_be64(data); 790 791 /* 792 * Bitfield layout for the axis calibration data, for factor 793 * a2 = 2 etc, k = k, c = clock divider 794 * 795 * n 7 6 5 4 3 2 1 0 796 * 0 [ 2 2 2 2 2 2 3 3 ] bits 63 .. 56 797 * 1 [ 3 3 4 4 4 4 4 4 ] bits 55 .. 48 798 * 2 [ 5 5 5 5 5 5 6 6 ] bits 47 .. 40 799 * 3 [ 6 6 6 6 7 7 7 7 ] bits 39 .. 32 800 * 4 [ 7 7 7 8 8 8 8 8 ] bits 31 .. 24 801 * 5 [ 8 9 9 9 9 9 9 9 ] bits 23 .. 16 802 * 6 [ 9 k k k k k c c ] bits 15 .. 8 803 * 7 [ c x x x x x x x ] bits 7 .. 0 804 */ 805 c->a2 = FIELD_GET(GENMASK_ULL(63, 58), val) - 32; 806 c->a3 = FIELD_GET(GENMASK_ULL(57, 54), val) - 8; 807 c->a4 = FIELD_GET(GENMASK_ULL(53, 48), val) - 32; 808 c->a5 = FIELD_GET(GENMASK_ULL(47, 42), val) + 38; 809 c->a6 = FIELD_GET(GENMASK_ULL(41, 36), val) - 32; 810 c->a7 = FIELD_GET(GENMASK_ULL(35, 29), val) - 64; 811 c->a8 = FIELD_GET(GENMASK_ULL(28, 23), val) - 32; 812 c->a9 = FIELD_GET(GENMASK_ULL(22, 15), val); 813 c->k = FIELD_GET(GENMASK_ULL(14, 10), val) + 10; 814 c->dck = FIELD_GET(GENMASK_ULL(9, 7), val); 815 } 816 817 static int yas530_get_calibration_data(struct yas5xx *yas5xx) 818 { 819 struct yas5xx_calibration *c = &yas5xx->calibration; 820 u8 data[16]; 821 u32 val; 822 int ret; 823 824 /* Dummy read, first read is ALWAYS wrong */ 825 ret = regmap_bulk_read(yas5xx->map, YAS530_CAL, data, sizeof(data)); 826 if (ret) 827 return ret; 828 829 /* Actual calibration readout */ 830 ret = regmap_bulk_read(yas5xx->map, YAS530_CAL, data, sizeof(data)); 831 if (ret) 832 return ret; 833 dev_dbg(yas5xx->dev, "calibration data: %16ph\n", data); 834 835 /* Contribute calibration data to the input pool for kernel entropy */ 836 add_device_randomness(data, sizeof(data)); 837 838 /* Extract version */ 839 yas5xx->version = data[15] & GENMASK(1, 0); 840 841 /* Extract the calibration from the bitfield */ 842 c->Cx = data[0] * 6 - 768; 843 c->Cy1 = data[1] * 6 - 768; 844 c->Cy2 = data[2] * 6 - 768; 845 yas530_extract_calibration(&data[3], c); 846 847 /* 848 * Extract linearization: 849 * Linearization layout in the 32 bits at byte 11: 850 * The r factors are 6 bit values where bit 5 is the sign 851 * 852 * n 7 6 5 4 3 2 1 0 853 * 0 [ xx xx xx r0 r0 r0 r0 r0 ] bits 31 .. 24 854 * 1 [ r0 f0 f0 r1 r1 r1 r1 r1 ] bits 23 .. 16 855 * 2 [ r1 f1 f1 r2 r2 r2 r2 r2 ] bits 15 .. 8 856 * 3 [ r2 f2 f2 xx xx xx xx xx ] bits 7 .. 0 857 */ 858 val = get_unaligned_be32(&data[11]); 859 c->f[0] = FIELD_GET(GENMASK(22, 21), val); 860 c->f[1] = FIELD_GET(GENMASK(14, 13), val); 861 c->f[2] = FIELD_GET(GENMASK(6, 5), val); 862 c->r[0] = sign_extend32(FIELD_GET(GENMASK(28, 23), val), 5); 863 c->r[1] = sign_extend32(FIELD_GET(GENMASK(20, 15), val), 5); 864 c->r[2] = sign_extend32(FIELD_GET(GENMASK(12, 7), val), 5); 865 866 return 0; 867 } 868 869 static int yas532_get_calibration_data(struct yas5xx *yas5xx) 870 { 871 struct yas5xx_calibration *c = &yas5xx->calibration; 872 u8 data[14]; 873 u32 val; 874 int ret; 875 876 /* Dummy read, first read is ALWAYS wrong */ 877 ret = regmap_bulk_read(yas5xx->map, YAS530_CAL, data, sizeof(data)); 878 if (ret) 879 return ret; 880 /* Actual calibration readout */ 881 ret = regmap_bulk_read(yas5xx->map, YAS530_CAL, data, sizeof(data)); 882 if (ret) 883 return ret; 884 dev_dbg(yas5xx->dev, "calibration data: %14ph\n", data); 885 886 /* Sanity check, is this all zeroes? */ 887 if (!memchr_inv(data, 0x00, 13) && !(data[13] & BIT(7))) 888 dev_warn(yas5xx->dev, "calibration is blank!\n"); 889 890 /* Contribute calibration data to the input pool for kernel entropy */ 891 add_device_randomness(data, sizeof(data)); 892 893 /* Only one bit of version info reserved here as far as we know */ 894 yas5xx->version = data[13] & BIT(0); 895 896 /* Extract calibration from the bitfield */ 897 c->Cx = data[0] * 10 - 1280; 898 c->Cy1 = data[1] * 10 - 1280; 899 c->Cy2 = data[2] * 10 - 1280; 900 yas530_extract_calibration(&data[3], c); 901 902 /* 903 * Extract linearization: 904 * Linearization layout in the 32 bits at byte 10: 905 * The r factors are 6 bit values where bit 5 is the sign 906 * 907 * n 7 6 5 4 3 2 1 0 908 * 0 [ xx r0 r0 r0 r0 r0 r0 f0 ] bits 31 .. 24 909 * 1 [ f0 r1 r1 r1 r1 r1 r1 f1 ] bits 23 .. 16 910 * 2 [ f1 r2 r2 r2 r2 r2 r2 f2 ] bits 15 .. 8 911 * 3 [ f2 xx xx xx xx xx xx xx ] bits 7 .. 0 912 */ 913 val = get_unaligned_be32(&data[10]); 914 c->f[0] = FIELD_GET(GENMASK(24, 23), val); 915 c->f[1] = FIELD_GET(GENMASK(16, 15), val); 916 c->f[2] = FIELD_GET(GENMASK(8, 7), val); 917 c->r[0] = sign_extend32(FIELD_GET(GENMASK(30, 25), val), 5); 918 c->r[1] = sign_extend32(FIELD_GET(GENMASK(22, 17), val), 5); 919 c->r[2] = sign_extend32(FIELD_GET(GENMASK(14, 7), val), 5); 920 921 return 0; 922 } 923 924 static int yas537_get_calibration_data(struct yas5xx *yas5xx) 925 { 926 struct yas5xx_calibration *c = &yas5xx->calibration; 927 u8 data[17]; 928 u32 val1, val2, val3, val4; 929 int i, ret; 930 931 /* Writing SRST register */ 932 ret = regmap_write(yas5xx->map, YAS537_SRST, BIT(1)); 933 if (ret) 934 return ret; 935 936 /* Calibration readout, YAS537 needs one readout only */ 937 ret = regmap_bulk_read(yas5xx->map, YAS537_CAL, data, sizeof(data)); 938 if (ret) 939 return ret; 940 dev_dbg(yas5xx->dev, "calibration data: %17ph\n", data); 941 942 /* Sanity check, is this all zeroes? */ 943 if (!memchr_inv(data, 0x00, 16) && !FIELD_GET(GENMASK(5, 0), data[16])) 944 dev_warn(yas5xx->dev, "calibration is blank!\n"); 945 946 /* Contribute calibration data to the input pool for kernel entropy */ 947 add_device_randomness(data, sizeof(data)); 948 949 /* Extract version information */ 950 yas5xx->version = FIELD_GET(GENMASK(7, 6), data[16]); 951 952 /* There are two versions of YAS537 behaving differently */ 953 switch (yas5xx->version) { 954 case YAS537_VERSION_0: 955 /* 956 * The first version simply writes data back into registers: 957 * 958 * data[0] YAS537_MTC 0x93 959 * data[1] 0x94 960 * data[2] 0x95 961 * data[3] 0x96 962 * data[4] 0x97 963 * data[5] 0x98 964 * data[6] 0x99 965 * data[7] 0x9a 966 * data[8] 0x9b 967 * data[9] 0x9c 968 * data[10] 0x9d 969 * data[11] YAS537_OC 0x9e 970 * 971 * data[12] YAS537_OFFSET_X 0x84 972 * data[13] YAS537_OFFSET_Y1 0x85 973 * data[14] YAS537_OFFSET_Y2 0x86 974 * 975 * data[15] YAS537_HCK 0x88 976 * data[16] YAS537_LCK 0x89 977 */ 978 for (i = 0; i < 12; i++) { 979 ret = regmap_write(yas5xx->map, YAS537_MTC + i, 980 data[i]); 981 if (ret) 982 return ret; 983 } 984 for (i = 0; i < 3; i++) { 985 ret = regmap_write(yas5xx->map, YAS537_OFFSET_X + i, 986 data[i + 12]); 987 if (ret) 988 return ret; 989 yas5xx->hard_offsets[i] = data[i + 12]; 990 } 991 for (i = 0; i < 2; i++) { 992 ret = regmap_write(yas5xx->map, YAS537_HCK + i, 993 data[i + 15]); 994 if (ret) 995 return ret; 996 } 997 break; 998 case YAS537_VERSION_1: 999 /* 1000 * The second version writes some data into registers but also 1001 * extracts calibration coefficients. 1002 * 1003 * Registers being written: 1004 * 1005 * data[0] YAS537_MTC 0x93 1006 * data[1] YAS537_MTC+1 0x94 1007 * data[2] YAS537_MTC+2 0x95 1008 * data[3] YAS537_MTC+3 (partially) 0x96 1009 * 1010 * data[12] YAS537_OFFSET_X 0x84 1011 * data[13] YAS537_OFFSET_Y1 0x85 1012 * data[14] YAS537_OFFSET_Y2 0x86 1013 * 1014 * data[15] YAS537_HCK (partially) 0x88 1015 * YAS537_LCK (partially) 0x89 1016 * data[16] YAS537_OC (partially) 0x9e 1017 */ 1018 for (i = 0; i < 3; i++) { 1019 ret = regmap_write(yas5xx->map, YAS537_MTC + i, 1020 data[i]); 1021 if (ret) 1022 return ret; 1023 } 1024 for (i = 0; i < 3; i++) { 1025 ret = regmap_write(yas5xx->map, YAS537_OFFSET_X + i, 1026 data[i + 12]); 1027 if (ret) 1028 return ret; 1029 yas5xx->hard_offsets[i] = data[i + 12]; 1030 } 1031 /* 1032 * Visualization of partially taken data: 1033 * 1034 * data[3] n 7 6 5 4 3 2 1 0 1035 * YAS537_MTC+3 x x x 1 0 0 0 0 1036 * 1037 * data[15] n 7 6 5 4 3 2 1 0 1038 * YAS537_HCK x x x x 0 1039 * 1040 * data[15] n 7 6 5 4 3 2 1 0 1041 * YAS537_LCK x x x x 0 1042 * 1043 * data[16] n 7 6 5 4 3 2 1 0 1044 * YAS537_OC x x x x x x 1045 */ 1046 ret = regmap_write(yas5xx->map, YAS537_MTC + 3, 1047 FIELD_PREP(YAS537_MTC3_MASK_PREP, 1048 FIELD_GET(YAS537_MTC3_MASK_GET, data[3])) | 1049 YAS537_MTC3_ADD_BIT); 1050 if (ret) 1051 return ret; 1052 ret = regmap_write(yas5xx->map, YAS537_HCK, 1053 FIELD_PREP(YAS537_HCK_MASK_PREP, 1054 FIELD_GET(YAS537_HCK_MASK_GET, data[15]))); 1055 if (ret) 1056 return ret; 1057 ret = regmap_write(yas5xx->map, YAS537_LCK, 1058 FIELD_PREP(YAS537_LCK_MASK_PREP, 1059 FIELD_GET(YAS537_LCK_MASK_GET, data[15]))); 1060 if (ret) 1061 return ret; 1062 ret = regmap_write(yas5xx->map, YAS537_OC, 1063 FIELD_GET(YAS537_OC_MASK_GET, data[16])); 1064 if (ret) 1065 return ret; 1066 /* 1067 * For data extraction, build some blocks. Four 32-bit blocks 1068 * look appropriate. 1069 * 1070 * n 7 6 5 4 3 2 1 0 1071 * data[0] 0 [ Cx Cx Cx Cx Cx Cx Cx Cx ] bits 31 .. 24 1072 * data[1] 1 [ Cx C1 C1 C1 C1 C1 C1 C1 ] bits 23 .. 16 1073 * data[2] 2 [ C1 C1 C2 C2 C2 C2 C2 C2 ] bits 15 .. 8 1074 * data[3] 3 [ C2 C2 C2 ] bits 7 .. 0 1075 * 1076 * n 7 6 5 4 3 2 1 0 1077 * data[3] 0 [ a2 a2 a2 a2 a2 ] bits 31 .. 24 1078 * data[4] 1 [ a2 a2 a3 a3 a3 a3 a3 a3 ] bits 23 .. 16 1079 * data[5] 2 [ a3 a4 a4 a4 a4 a4 a4 a4 ] bits 15 .. 8 1080 * data[6] 3 [ a4 ] bits 7 .. 0 1081 * 1082 * n 7 6 5 4 3 2 1 0 1083 * data[6] 0 [ a5 a5 a5 a5 a5 a5 a5 ] bits 31 .. 24 1084 * data[7] 1 [ a5 a5 a6 a6 a6 a6 a6 a6 ] bits 23 .. 16 1085 * data[8] 2 [ a6 a7 a7 a7 a7 a7 a7 a7 ] bits 15 .. 8 1086 * data[9] 3 [ a7 ] bits 7 .. 0 1087 * 1088 * n 7 6 5 4 3 2 1 0 1089 * data[9] 0 [ a8 a8 a8 a8 a8 a8 a8 ] bits 31 .. 24 1090 * data[10] 1 [ a9 a9 a9 a9 a9 a9 a9 a9 ] bits 23 .. 16 1091 * data[11] 2 [ a9 k k k k k k k ] bits 15 .. 8 1092 * data[12] 3 [ ] bits 7 .. 0 1093 */ 1094 val1 = get_unaligned_be32(&data[0]); 1095 val2 = get_unaligned_be32(&data[3]); 1096 val3 = get_unaligned_be32(&data[6]); 1097 val4 = get_unaligned_be32(&data[9]); 1098 /* Extract calibration coefficients and modify */ 1099 c->Cx = FIELD_GET(GENMASK(31, 23), val1) - 256; 1100 c->Cy1 = FIELD_GET(GENMASK(22, 14), val1) - 256; 1101 c->Cy2 = FIELD_GET(GENMASK(13, 5), val1) - 256; 1102 c->a2 = FIELD_GET(GENMASK(28, 22), val2) - 64; 1103 c->a3 = FIELD_GET(GENMASK(21, 15), val2) - 64; 1104 c->a4 = FIELD_GET(GENMASK(14, 7), val2) - 128; 1105 c->a5 = FIELD_GET(GENMASK(30, 22), val3) - 112; 1106 c->a6 = FIELD_GET(GENMASK(21, 15), val3) - 64; 1107 c->a7 = FIELD_GET(GENMASK(14, 7), val3) - 128; 1108 c->a8 = FIELD_GET(GENMASK(30, 24), val4) - 64; 1109 c->a9 = FIELD_GET(GENMASK(23, 15), val4) - 112; 1110 c->k = FIELD_GET(GENMASK(14, 8), val4); 1111 break; 1112 default: 1113 dev_err(yas5xx->dev, "unknown version of YAS537\n"); 1114 return -EINVAL; 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* Used by YAS530, YAS532 and YAS533 */ 1121 static void yas530_dump_calibration(struct yas5xx *yas5xx) 1122 { 1123 struct yas5xx_calibration *c = &yas5xx->calibration; 1124 1125 dev_dbg(yas5xx->dev, "f[] = [%d, %d, %d]\n", 1126 c->f[0], c->f[1], c->f[2]); 1127 dev_dbg(yas5xx->dev, "r[] = [%d, %d, %d]\n", 1128 c->r[0], c->r[1], c->r[2]); 1129 dev_dbg(yas5xx->dev, "Cx = %d\n", c->Cx); 1130 dev_dbg(yas5xx->dev, "Cy1 = %d\n", c->Cy1); 1131 dev_dbg(yas5xx->dev, "Cy2 = %d\n", c->Cy2); 1132 dev_dbg(yas5xx->dev, "a2 = %d\n", c->a2); 1133 dev_dbg(yas5xx->dev, "a3 = %d\n", c->a3); 1134 dev_dbg(yas5xx->dev, "a4 = %d\n", c->a4); 1135 dev_dbg(yas5xx->dev, "a5 = %d\n", c->a5); 1136 dev_dbg(yas5xx->dev, "a6 = %d\n", c->a6); 1137 dev_dbg(yas5xx->dev, "a7 = %d\n", c->a7); 1138 dev_dbg(yas5xx->dev, "a8 = %d\n", c->a8); 1139 dev_dbg(yas5xx->dev, "a9 = %d\n", c->a9); 1140 dev_dbg(yas5xx->dev, "k = %d\n", c->k); 1141 dev_dbg(yas5xx->dev, "dck = %d\n", c->dck); 1142 } 1143 1144 static void yas537_dump_calibration(struct yas5xx *yas5xx) 1145 { 1146 struct yas5xx_calibration *c = &yas5xx->calibration; 1147 1148 if (yas5xx->version == YAS537_VERSION_1) { 1149 dev_dbg(yas5xx->dev, "Cx = %d\n", c->Cx); 1150 dev_dbg(yas5xx->dev, "Cy1 = %d\n", c->Cy1); 1151 dev_dbg(yas5xx->dev, "Cy2 = %d\n", c->Cy2); 1152 dev_dbg(yas5xx->dev, "a2 = %d\n", c->a2); 1153 dev_dbg(yas5xx->dev, "a3 = %d\n", c->a3); 1154 dev_dbg(yas5xx->dev, "a4 = %d\n", c->a4); 1155 dev_dbg(yas5xx->dev, "a5 = %d\n", c->a5); 1156 dev_dbg(yas5xx->dev, "a6 = %d\n", c->a6); 1157 dev_dbg(yas5xx->dev, "a7 = %d\n", c->a7); 1158 dev_dbg(yas5xx->dev, "a8 = %d\n", c->a8); 1159 dev_dbg(yas5xx->dev, "a9 = %d\n", c->a9); 1160 dev_dbg(yas5xx->dev, "k = %d\n", c->k); 1161 } 1162 } 1163 1164 /* Used by YAS530, YAS532 and YAS533 */ 1165 static int yas530_set_offsets(struct yas5xx *yas5xx, s8 ox, s8 oy1, s8 oy2) 1166 { 1167 int ret; 1168 1169 ret = regmap_write(yas5xx->map, YAS530_OFFSET_X, ox); 1170 if (ret) 1171 return ret; 1172 ret = regmap_write(yas5xx->map, YAS530_OFFSET_Y1, oy1); 1173 if (ret) 1174 return ret; 1175 return regmap_write(yas5xx->map, YAS530_OFFSET_Y2, oy2); 1176 } 1177 1178 /* Used by YAS530, YAS532 and YAS533 */ 1179 static s8 yas530_adjust_offset(s8 old, int bit, u16 center, u16 measure) 1180 { 1181 if (measure > center) 1182 return old + BIT(bit); 1183 if (measure < center) 1184 return old - BIT(bit); 1185 return old; 1186 } 1187 1188 /* Used by YAS530, YAS532 and YAS533 */ 1189 static int yas530_measure_offsets(struct yas5xx *yas5xx) 1190 { 1191 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 1192 int ret; 1193 u16 center; 1194 u16 t, x, y1, y2; 1195 s8 ox, oy1, oy2; 1196 int i; 1197 1198 /* Actuate the init coil and measure offsets */ 1199 ret = regmap_write(yas5xx->map, YAS530_ACTUATE_INIT_COIL, 0); 1200 if (ret) 1201 return ret; 1202 1203 /* When the initcoil is active this should be around the center */ 1204 switch (ci->devid) { 1205 case YAS530_DEVICE_ID: 1206 center = YAS530_DATA_CENTER; 1207 break; 1208 case YAS532_DEVICE_ID: 1209 center = YAS532_DATA_CENTER; 1210 break; 1211 default: 1212 dev_err(yas5xx->dev, "unknown device type\n"); 1213 return -EINVAL; 1214 } 1215 1216 /* 1217 * We set offsets in the interval +-31 by iterating 1218 * +-16, +-8, +-4, +-2, +-1 adjusting the offsets each 1219 * time, then writing the final offsets into the 1220 * registers. 1221 * 1222 * NOTE: these offsets are NOT in the same unit or magnitude 1223 * as the values for [x, y1, y2]. The value is +/-31 1224 * but the effect on the raw values is much larger. 1225 * The effect of the offset is to bring the measure 1226 * rougly to the center. 1227 */ 1228 ox = 0; 1229 oy1 = 0; 1230 oy2 = 0; 1231 1232 for (i = 4; i >= 0; i--) { 1233 ret = yas530_set_offsets(yas5xx, ox, oy1, oy2); 1234 if (ret) 1235 return ret; 1236 1237 ret = yas530_measure(yas5xx, &t, &x, &y1, &y2); 1238 if (ret) 1239 return ret; 1240 dev_dbg(yas5xx->dev, "measurement %d: x=%d, y1=%d, y2=%d\n", 1241 5-i, x, y1, y2); 1242 1243 ox = yas530_adjust_offset(ox, i, center, x); 1244 oy1 = yas530_adjust_offset(oy1, i, center, y1); 1245 oy2 = yas530_adjust_offset(oy2, i, center, y2); 1246 } 1247 1248 /* Needed for calibration algorithm */ 1249 yas5xx->hard_offsets[0] = ox; 1250 yas5xx->hard_offsets[1] = oy1; 1251 yas5xx->hard_offsets[2] = oy2; 1252 ret = yas530_set_offsets(yas5xx, ox, oy1, oy2); 1253 if (ret) 1254 return ret; 1255 1256 dev_info(yas5xx->dev, "discovered hard offsets: x=%d, y1=%d, y2=%d\n", 1257 ox, oy1, oy2); 1258 return 0; 1259 } 1260 1261 /* Used by YAS530, YAS532 and YAS533 */ 1262 static int yas530_power_on(struct yas5xx *yas5xx) 1263 { 1264 unsigned int val; 1265 int ret; 1266 1267 /* Zero the test registers */ 1268 ret = regmap_write(yas5xx->map, YAS530_TEST1, 0); 1269 if (ret) 1270 return ret; 1271 ret = regmap_write(yas5xx->map, YAS530_TEST2, 0); 1272 if (ret) 1273 return ret; 1274 1275 /* Set up for no interrupts, calibrated clock divider */ 1276 val = FIELD_PREP(YAS5XX_CONFIG_CCK_MASK, yas5xx->calibration.dck); 1277 ret = regmap_write(yas5xx->map, YAS530_CONFIG, val); 1278 if (ret) 1279 return ret; 1280 1281 /* Measure interval 0 (back-to-back?) */ 1282 return regmap_write(yas5xx->map, YAS530_MEASURE_INTERVAL, 0); 1283 } 1284 1285 static int yas537_power_on(struct yas5xx *yas5xx) 1286 { 1287 __be16 buf; 1288 int ret; 1289 u8 intrvl; 1290 1291 /* Writing ADCCAL and TRM registers */ 1292 buf = cpu_to_be16(GENMASK(9, 3)); 1293 ret = regmap_bulk_write(yas5xx->map, YAS537_ADCCAL, &buf, sizeof(buf)); 1294 if (ret) 1295 return ret; 1296 ret = regmap_write(yas5xx->map, YAS537_TRM, GENMASK(7, 0)); 1297 if (ret) 1298 return ret; 1299 1300 /* The interval value is static in regular operation */ 1301 intrvl = (YAS537_DEFAULT_SENSOR_DELAY_MS * MILLI 1302 - YAS537_MEASURE_TIME_WORST_US) / 4100; 1303 ret = regmap_write(yas5xx->map, YAS537_MEASURE_INTERVAL, intrvl); 1304 if (ret) 1305 return ret; 1306 1307 /* The average value is also static in regular operation */ 1308 ret = regmap_write(yas5xx->map, YAS537_AVR, YAS537_MAG_AVERAGE_32_MASK); 1309 if (ret) 1310 return ret; 1311 1312 /* Perform the "rcoil" part but skip the "last_after_rcoil" read */ 1313 ret = regmap_write(yas5xx->map, YAS537_CONFIG, BIT(3)); 1314 if (ret) 1315 return ret; 1316 1317 /* Wait until the coil has ramped up */ 1318 usleep_range(YAS537_MAG_RCOIL_TIME_US, YAS537_MAG_RCOIL_TIME_US + 100); 1319 1320 return 0; 1321 } 1322 1323 static const struct yas5xx_chip_info yas5xx_chip_info_tbl[] = { 1324 [yas530] = { 1325 .devid = YAS530_DEVICE_ID, 1326 .product_name = "YAS530 MS-3E", 1327 .version_names = { "A", "B" }, 1328 .volatile_reg = yas530_volatile_reg, 1329 .volatile_reg_qty = ARRAY_SIZE(yas530_volatile_reg), 1330 .scaling_val2 = 100000000, /* picotesla to Gauss */ 1331 .t_ref = 182, /* counts */ 1332 .min_temp_x10 = -620, /* 1/10:s degrees Celsius */ 1333 .get_measure = yas530_get_measure, 1334 .get_calibration_data = yas530_get_calibration_data, 1335 .dump_calibration = yas530_dump_calibration, 1336 .measure_offsets = yas530_measure_offsets, 1337 .power_on = yas530_power_on, 1338 }, 1339 [yas532] = { 1340 .devid = YAS532_DEVICE_ID, 1341 .product_name = "YAS532 MS-3R", 1342 .version_names = { "AB", "AC" }, 1343 .volatile_reg = yas530_volatile_reg, 1344 .volatile_reg_qty = ARRAY_SIZE(yas530_volatile_reg), 1345 .scaling_val2 = 100000, /* nanotesla to Gauss */ 1346 .t_ref = 390, /* counts */ 1347 .min_temp_x10 = -500, /* 1/10:s degrees Celsius */ 1348 .get_measure = yas530_get_measure, 1349 .get_calibration_data = yas532_get_calibration_data, 1350 .dump_calibration = yas530_dump_calibration, 1351 .measure_offsets = yas530_measure_offsets, 1352 .power_on = yas530_power_on, 1353 }, 1354 [yas533] = { 1355 .devid = YAS532_DEVICE_ID, 1356 .product_name = "YAS533 MS-3F", 1357 .version_names = { "AB", "AC" }, 1358 .volatile_reg = yas530_volatile_reg, 1359 .volatile_reg_qty = ARRAY_SIZE(yas530_volatile_reg), 1360 .scaling_val2 = 100000, /* nanotesla to Gauss */ 1361 .t_ref = 390, /* counts */ 1362 .min_temp_x10 = -500, /* 1/10:s degrees Celsius */ 1363 .get_measure = yas530_get_measure, 1364 .get_calibration_data = yas532_get_calibration_data, 1365 .dump_calibration = yas530_dump_calibration, 1366 .measure_offsets = yas530_measure_offsets, 1367 .power_on = yas530_power_on, 1368 }, 1369 [yas537] = { 1370 .devid = YAS537_DEVICE_ID, 1371 .product_name = "YAS537 MS-3T", 1372 .version_names = { "v0", "v1" }, /* version naming unknown */ 1373 .volatile_reg = yas537_volatile_reg, 1374 .volatile_reg_qty = ARRAY_SIZE(yas537_volatile_reg), 1375 .scaling_val2 = 100000, /* nanotesla to Gauss */ 1376 .t_ref = 8120, /* counts */ 1377 .min_temp_x10 = -3860, /* 1/10:s degrees Celsius */ 1378 .get_measure = yas537_get_measure, 1379 .get_calibration_data = yas537_get_calibration_data, 1380 .dump_calibration = yas537_dump_calibration, 1381 /* .measure_offets is not needed for yas537 */ 1382 .power_on = yas537_power_on, 1383 }, 1384 }; 1385 1386 static int yas5xx_probe(struct i2c_client *i2c) 1387 { 1388 const struct i2c_device_id *id = i2c_client_get_device_id(i2c); 1389 struct iio_dev *indio_dev; 1390 struct device *dev = &i2c->dev; 1391 struct yas5xx *yas5xx; 1392 const struct yas5xx_chip_info *ci; 1393 int id_check; 1394 int ret; 1395 1396 indio_dev = devm_iio_device_alloc(dev, sizeof(*yas5xx)); 1397 if (!indio_dev) 1398 return -ENOMEM; 1399 1400 yas5xx = iio_priv(indio_dev); 1401 i2c_set_clientdata(i2c, indio_dev); 1402 yas5xx->dev = dev; 1403 mutex_init(&yas5xx->lock); 1404 1405 ret = iio_read_mount_matrix(dev, &yas5xx->orientation); 1406 if (ret) 1407 return ret; 1408 1409 yas5xx->regs[0].supply = "vdd"; 1410 yas5xx->regs[1].supply = "iovdd"; 1411 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(yas5xx->regs), 1412 yas5xx->regs); 1413 if (ret) 1414 return dev_err_probe(dev, ret, "cannot get regulators\n"); 1415 1416 ret = regulator_bulk_enable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); 1417 if (ret) 1418 return dev_err_probe(dev, ret, "cannot enable regulators\n"); 1419 1420 /* See comment in runtime resume callback */ 1421 usleep_range(31000, 40000); 1422 1423 /* This will take the device out of reset if need be */ 1424 yas5xx->reset = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); 1425 if (IS_ERR(yas5xx->reset)) { 1426 ret = dev_err_probe(dev, PTR_ERR(yas5xx->reset), "failed to get reset line\n"); 1427 goto reg_off; 1428 } 1429 1430 yas5xx->map = devm_regmap_init_i2c(i2c, &yas5xx_regmap_config); 1431 if (IS_ERR(yas5xx->map)) { 1432 ret = dev_err_probe(dev, PTR_ERR(yas5xx->map), "failed to allocate register map\n"); 1433 goto assert_reset; 1434 } 1435 1436 ci = i2c_get_match_data(i2c); 1437 yas5xx->chip_info = ci; 1438 1439 ret = regmap_read(yas5xx->map, YAS5XX_DEVICE_ID, &id_check); 1440 if (ret) 1441 goto assert_reset; 1442 1443 if (id_check != ci->devid) { 1444 ret = dev_err_probe(dev, -ENODEV, 1445 "device ID %02x doesn't match %s\n", 1446 id_check, id->name); 1447 goto assert_reset; 1448 } 1449 1450 ret = ci->get_calibration_data(yas5xx); 1451 if (ret) 1452 goto assert_reset; 1453 1454 dev_info(dev, "detected %s %s\n", ci->product_name, 1455 ci->version_names[yas5xx->version]); 1456 1457 ci->dump_calibration(yas5xx); 1458 1459 ret = ci->power_on(yas5xx); 1460 if (ret) 1461 goto assert_reset; 1462 1463 if (ci->measure_offsets) { 1464 ret = ci->measure_offsets(yas5xx); 1465 if (ret) 1466 goto assert_reset; 1467 } 1468 1469 indio_dev->info = &yas5xx_info; 1470 indio_dev->available_scan_masks = yas5xx_scan_masks; 1471 indio_dev->modes = INDIO_DIRECT_MODE; 1472 indio_dev->name = id->name; 1473 indio_dev->channels = yas5xx_channels; 1474 indio_dev->num_channels = ARRAY_SIZE(yas5xx_channels); 1475 1476 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1477 yas5xx_handle_trigger, 1478 NULL); 1479 if (ret) { 1480 dev_err_probe(dev, ret, "triggered buffer setup failed\n"); 1481 goto assert_reset; 1482 } 1483 1484 ret = iio_device_register(indio_dev); 1485 if (ret) { 1486 dev_err_probe(dev, ret, "device register failed\n"); 1487 goto cleanup_buffer; 1488 } 1489 1490 /* Take runtime PM online */ 1491 pm_runtime_get_noresume(dev); 1492 pm_runtime_set_active(dev); 1493 pm_runtime_enable(dev); 1494 1495 pm_runtime_set_autosuspend_delay(dev, YAS5XX_AUTOSUSPEND_DELAY_MS); 1496 pm_runtime_use_autosuspend(dev); 1497 pm_runtime_put(dev); 1498 1499 return 0; 1500 1501 cleanup_buffer: 1502 iio_triggered_buffer_cleanup(indio_dev); 1503 assert_reset: 1504 gpiod_set_value_cansleep(yas5xx->reset, 1); 1505 reg_off: 1506 regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); 1507 1508 return ret; 1509 } 1510 1511 static void yas5xx_remove(struct i2c_client *i2c) 1512 { 1513 struct iio_dev *indio_dev = i2c_get_clientdata(i2c); 1514 struct yas5xx *yas5xx = iio_priv(indio_dev); 1515 struct device *dev = &i2c->dev; 1516 1517 iio_device_unregister(indio_dev); 1518 iio_triggered_buffer_cleanup(indio_dev); 1519 /* 1520 * Now we can't get any more reads from the device, which would 1521 * also call pm_runtime* functions and race with our disable 1522 * code. Disable PM runtime in orderly fashion and power down. 1523 */ 1524 pm_runtime_get_sync(dev); 1525 pm_runtime_put_noidle(dev); 1526 pm_runtime_disable(dev); 1527 gpiod_set_value_cansleep(yas5xx->reset, 1); 1528 regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); 1529 } 1530 1531 static int yas5xx_runtime_suspend(struct device *dev) 1532 { 1533 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1534 struct yas5xx *yas5xx = iio_priv(indio_dev); 1535 1536 gpiod_set_value_cansleep(yas5xx->reset, 1); 1537 regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); 1538 1539 return 0; 1540 } 1541 1542 static int yas5xx_runtime_resume(struct device *dev) 1543 { 1544 struct iio_dev *indio_dev = dev_get_drvdata(dev); 1545 struct yas5xx *yas5xx = iio_priv(indio_dev); 1546 const struct yas5xx_chip_info *ci = yas5xx->chip_info; 1547 int ret; 1548 1549 ret = regulator_bulk_enable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); 1550 if (ret) { 1551 dev_err(dev, "cannot enable regulators\n"); 1552 return ret; 1553 } 1554 1555 /* 1556 * The YAS530 datasheet says TVSKW is up to 30 ms, after that 1 ms 1557 * for all voltages to settle. The YAS532 is 10ms then 4ms for the 1558 * I2C to come online. Let's keep it safe and put this at 31ms. 1559 */ 1560 usleep_range(31000, 40000); 1561 gpiod_set_value_cansleep(yas5xx->reset, 0); 1562 1563 ret = ci->power_on(yas5xx); 1564 if (ret) { 1565 dev_err(dev, "cannot power on\n"); 1566 goto out_reset; 1567 } 1568 1569 return 0; 1570 1571 out_reset: 1572 gpiod_set_value_cansleep(yas5xx->reset, 1); 1573 regulator_bulk_disable(ARRAY_SIZE(yas5xx->regs), yas5xx->regs); 1574 1575 return ret; 1576 } 1577 1578 static DEFINE_RUNTIME_DEV_PM_OPS(yas5xx_dev_pm_ops, yas5xx_runtime_suspend, 1579 yas5xx_runtime_resume, NULL); 1580 1581 static const struct i2c_device_id yas5xx_id[] = { 1582 {"yas530", (kernel_ulong_t)&yas5xx_chip_info_tbl[yas530] }, 1583 {"yas532", (kernel_ulong_t)&yas5xx_chip_info_tbl[yas532] }, 1584 {"yas533", (kernel_ulong_t)&yas5xx_chip_info_tbl[yas533] }, 1585 {"yas537", (kernel_ulong_t)&yas5xx_chip_info_tbl[yas537] }, 1586 { } 1587 }; 1588 MODULE_DEVICE_TABLE(i2c, yas5xx_id); 1589 1590 static const struct of_device_id yas5xx_of_match[] = { 1591 { .compatible = "yamaha,yas530", &yas5xx_chip_info_tbl[yas530] }, 1592 { .compatible = "yamaha,yas532", &yas5xx_chip_info_tbl[yas532] }, 1593 { .compatible = "yamaha,yas533", &yas5xx_chip_info_tbl[yas533] }, 1594 { .compatible = "yamaha,yas537", &yas5xx_chip_info_tbl[yas537] }, 1595 { } 1596 }; 1597 MODULE_DEVICE_TABLE(of, yas5xx_of_match); 1598 1599 static struct i2c_driver yas5xx_driver = { 1600 .driver = { 1601 .name = "yas5xx", 1602 .of_match_table = yas5xx_of_match, 1603 .pm = pm_ptr(&yas5xx_dev_pm_ops), 1604 }, 1605 .probe = yas5xx_probe, 1606 .remove = yas5xx_remove, 1607 .id_table = yas5xx_id, 1608 }; 1609 module_i2c_driver(yas5xx_driver); 1610 1611 MODULE_DESCRIPTION("Yamaha YAS53x 3-axis magnetometer driver"); 1612 MODULE_AUTHOR("Linus Walleij"); 1613 MODULE_LICENSE("GPL v2"); 1614