1 /* 2 * Bosch BMC150 three-axis magnetic field sensor driver 3 * 4 * Copyright (c) 2015, Intel Corporation. 5 * 6 * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com: 7 * 8 * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved 9 * 10 * This program is free software; you can redistribute it and/or modify it 11 * under the terms and conditions of the GNU General Public License, 12 * version 2, as published by the Free Software Foundation. 13 * 14 * This program is distributed in the hope it will be useful, but WITHOUT 15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 17 * more details. 18 */ 19 20 #include <linux/module.h> 21 #include <linux/i2c.h> 22 #include <linux/interrupt.h> 23 #include <linux/delay.h> 24 #include <linux/slab.h> 25 #include <linux/acpi.h> 26 #include <linux/gpio/consumer.h> 27 #include <linux/pm.h> 28 #include <linux/pm_runtime.h> 29 #include <linux/iio/iio.h> 30 #include <linux/iio/sysfs.h> 31 #include <linux/iio/buffer.h> 32 #include <linux/iio/events.h> 33 #include <linux/iio/trigger.h> 34 #include <linux/iio/trigger_consumer.h> 35 #include <linux/iio/triggered_buffer.h> 36 #include <linux/regmap.h> 37 38 #define BMC150_MAGN_DRV_NAME "bmc150_magn" 39 #define BMC150_MAGN_IRQ_NAME "bmc150_magn_event" 40 #define BMC150_MAGN_GPIO_INT "interrupt" 41 42 #define BMC150_MAGN_REG_CHIP_ID 0x40 43 #define BMC150_MAGN_CHIP_ID_VAL 0x32 44 45 #define BMC150_MAGN_REG_X_L 0x42 46 #define BMC150_MAGN_REG_X_M 0x43 47 #define BMC150_MAGN_REG_Y_L 0x44 48 #define BMC150_MAGN_REG_Y_M 0x45 49 #define BMC150_MAGN_SHIFT_XY_L 3 50 #define BMC150_MAGN_REG_Z_L 0x46 51 #define BMC150_MAGN_REG_Z_M 0x47 52 #define BMC150_MAGN_SHIFT_Z_L 1 53 #define BMC150_MAGN_REG_RHALL_L 0x48 54 #define BMC150_MAGN_REG_RHALL_M 0x49 55 #define BMC150_MAGN_SHIFT_RHALL_L 2 56 57 #define BMC150_MAGN_REG_INT_STATUS 0x4A 58 59 #define BMC150_MAGN_REG_POWER 0x4B 60 #define BMC150_MAGN_MASK_POWER_CTL BIT(0) 61 62 #define BMC150_MAGN_REG_OPMODE_ODR 0x4C 63 #define BMC150_MAGN_MASK_OPMODE GENMASK(2, 1) 64 #define BMC150_MAGN_SHIFT_OPMODE 1 65 #define BMC150_MAGN_MODE_NORMAL 0x00 66 #define BMC150_MAGN_MODE_FORCED 0x01 67 #define BMC150_MAGN_MODE_SLEEP 0x03 68 #define BMC150_MAGN_MASK_ODR GENMASK(5, 3) 69 #define BMC150_MAGN_SHIFT_ODR 3 70 71 #define BMC150_MAGN_REG_INT 0x4D 72 73 #define BMC150_MAGN_REG_INT_DRDY 0x4E 74 #define BMC150_MAGN_MASK_DRDY_EN BIT(7) 75 #define BMC150_MAGN_SHIFT_DRDY_EN 7 76 #define BMC150_MAGN_MASK_DRDY_INT3 BIT(6) 77 #define BMC150_MAGN_MASK_DRDY_Z_EN BIT(5) 78 #define BMC150_MAGN_MASK_DRDY_Y_EN BIT(4) 79 #define BMC150_MAGN_MASK_DRDY_X_EN BIT(3) 80 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY BIT(2) 81 #define BMC150_MAGN_MASK_DRDY_LATCHING BIT(1) 82 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY BIT(0) 83 84 #define BMC150_MAGN_REG_LOW_THRESH 0x4F 85 #define BMC150_MAGN_REG_HIGH_THRESH 0x50 86 #define BMC150_MAGN_REG_REP_XY 0x51 87 #define BMC150_MAGN_REG_REP_Z 0x52 88 #define BMC150_MAGN_REG_REP_DATAMASK GENMASK(7, 0) 89 90 #define BMC150_MAGN_REG_TRIM_START 0x5D 91 #define BMC150_MAGN_REG_TRIM_END 0x71 92 93 #define BMC150_MAGN_XY_OVERFLOW_VAL -4096 94 #define BMC150_MAGN_Z_OVERFLOW_VAL -16384 95 96 /* Time from SUSPEND to SLEEP */ 97 #define BMC150_MAGN_START_UP_TIME_MS 3 98 99 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS 2000 100 101 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1) 102 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1) 103 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2) 104 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1) 105 106 enum bmc150_magn_axis { 107 AXIS_X, 108 AXIS_Y, 109 AXIS_Z, 110 RHALL, 111 AXIS_XYZ_MAX = RHALL, 112 AXIS_XYZR_MAX, 113 }; 114 115 enum bmc150_magn_power_modes { 116 BMC150_MAGN_POWER_MODE_SUSPEND, 117 BMC150_MAGN_POWER_MODE_SLEEP, 118 BMC150_MAGN_POWER_MODE_NORMAL, 119 }; 120 121 struct bmc150_magn_trim_regs { 122 s8 x1; 123 s8 y1; 124 __le16 reserved1; 125 u8 reserved2; 126 __le16 z4; 127 s8 x2; 128 s8 y2; 129 __le16 reserved3; 130 __le16 z2; 131 __le16 z1; 132 __le16 xyz1; 133 __le16 z3; 134 s8 xy2; 135 u8 xy1; 136 } __packed; 137 138 struct bmc150_magn_data { 139 struct i2c_client *client; 140 /* 141 * 1. Protect this structure. 142 * 2. Serialize sequences that power on/off the device and access HW. 143 */ 144 struct mutex mutex; 145 struct regmap *regmap; 146 /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */ 147 s32 buffer[6]; 148 struct iio_trigger *dready_trig; 149 bool dready_trigger_on; 150 int max_odr; 151 }; 152 153 static const struct { 154 int freq; 155 u8 reg_val; 156 } bmc150_magn_samp_freq_table[] = { {2, 0x01}, 157 {6, 0x02}, 158 {8, 0x03}, 159 {10, 0x00}, 160 {15, 0x04}, 161 {20, 0x05}, 162 {25, 0x06}, 163 {30, 0x07} }; 164 165 enum bmc150_magn_presets { 166 LOW_POWER_PRESET, 167 REGULAR_PRESET, 168 ENHANCED_REGULAR_PRESET, 169 HIGH_ACCURACY_PRESET 170 }; 171 172 static const struct bmc150_magn_preset { 173 u8 rep_xy; 174 u8 rep_z; 175 u8 odr; 176 } bmc150_magn_presets_table[] = { 177 [LOW_POWER_PRESET] = {3, 3, 10}, 178 [REGULAR_PRESET] = {9, 15, 10}, 179 [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, 180 [HIGH_ACCURACY_PRESET] = {47, 83, 20}, 181 }; 182 183 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET 184 185 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg) 186 { 187 switch (reg) { 188 case BMC150_MAGN_REG_POWER: 189 case BMC150_MAGN_REG_OPMODE_ODR: 190 case BMC150_MAGN_REG_INT: 191 case BMC150_MAGN_REG_INT_DRDY: 192 case BMC150_MAGN_REG_LOW_THRESH: 193 case BMC150_MAGN_REG_HIGH_THRESH: 194 case BMC150_MAGN_REG_REP_XY: 195 case BMC150_MAGN_REG_REP_Z: 196 return true; 197 default: 198 return false; 199 }; 200 } 201 202 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg) 203 { 204 switch (reg) { 205 case BMC150_MAGN_REG_X_L: 206 case BMC150_MAGN_REG_X_M: 207 case BMC150_MAGN_REG_Y_L: 208 case BMC150_MAGN_REG_Y_M: 209 case BMC150_MAGN_REG_Z_L: 210 case BMC150_MAGN_REG_Z_M: 211 case BMC150_MAGN_REG_RHALL_L: 212 case BMC150_MAGN_REG_RHALL_M: 213 case BMC150_MAGN_REG_INT_STATUS: 214 return true; 215 default: 216 return false; 217 } 218 } 219 220 static const struct regmap_config bmc150_magn_regmap_config = { 221 .reg_bits = 8, 222 .val_bits = 8, 223 224 .max_register = BMC150_MAGN_REG_TRIM_END, 225 .cache_type = REGCACHE_RBTREE, 226 227 .writeable_reg = bmc150_magn_is_writeable_reg, 228 .volatile_reg = bmc150_magn_is_volatile_reg, 229 }; 230 231 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data, 232 enum bmc150_magn_power_modes mode, 233 bool state) 234 { 235 int ret; 236 237 switch (mode) { 238 case BMC150_MAGN_POWER_MODE_SUSPEND: 239 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER, 240 BMC150_MAGN_MASK_POWER_CTL, !state); 241 if (ret < 0) 242 return ret; 243 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000); 244 return 0; 245 case BMC150_MAGN_POWER_MODE_SLEEP: 246 return regmap_update_bits(data->regmap, 247 BMC150_MAGN_REG_OPMODE_ODR, 248 BMC150_MAGN_MASK_OPMODE, 249 BMC150_MAGN_MODE_SLEEP << 250 BMC150_MAGN_SHIFT_OPMODE); 251 case BMC150_MAGN_POWER_MODE_NORMAL: 252 return regmap_update_bits(data->regmap, 253 BMC150_MAGN_REG_OPMODE_ODR, 254 BMC150_MAGN_MASK_OPMODE, 255 BMC150_MAGN_MODE_NORMAL << 256 BMC150_MAGN_SHIFT_OPMODE); 257 } 258 259 return -EINVAL; 260 } 261 262 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on) 263 { 264 #ifdef CONFIG_PM 265 int ret; 266 267 if (on) { 268 ret = pm_runtime_get_sync(&data->client->dev); 269 } else { 270 pm_runtime_mark_last_busy(&data->client->dev); 271 ret = pm_runtime_put_autosuspend(&data->client->dev); 272 } 273 274 if (ret < 0) { 275 dev_err(&data->client->dev, 276 "failed to change power state to %d\n", on); 277 if (on) 278 pm_runtime_put_noidle(&data->client->dev); 279 280 return ret; 281 } 282 #endif 283 284 return 0; 285 } 286 287 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val) 288 { 289 int ret, reg_val; 290 u8 i, odr_val; 291 292 ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, ®_val); 293 if (ret < 0) 294 return ret; 295 odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; 296 297 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) 298 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { 299 *val = bmc150_magn_samp_freq_table[i].freq; 300 return 0; 301 } 302 303 return -EINVAL; 304 } 305 306 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val) 307 { 308 int ret; 309 u8 i; 310 311 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 312 if (bmc150_magn_samp_freq_table[i].freq == val) { 313 ret = regmap_update_bits(data->regmap, 314 BMC150_MAGN_REG_OPMODE_ODR, 315 BMC150_MAGN_MASK_ODR, 316 bmc150_magn_samp_freq_table[i]. 317 reg_val << 318 BMC150_MAGN_SHIFT_ODR); 319 if (ret < 0) 320 return ret; 321 return 0; 322 } 323 } 324 325 return -EINVAL; 326 } 327 328 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy, 329 int rep_z, int odr) 330 { 331 int ret, reg_val, max_odr; 332 333 if (rep_xy <= 0) { 334 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 335 ®_val); 336 if (ret < 0) 337 return ret; 338 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val); 339 } 340 if (rep_z <= 0) { 341 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 342 ®_val); 343 if (ret < 0) 344 return ret; 345 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val); 346 } 347 if (odr <= 0) { 348 ret = bmc150_magn_get_odr(data, &odr); 349 if (ret < 0) 350 return ret; 351 } 352 /* the maximum selectable read-out frequency from datasheet */ 353 max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); 354 if (odr > max_odr) { 355 dev_err(&data->client->dev, 356 "Can't set oversampling with sampling freq %d\n", 357 odr); 358 return -EINVAL; 359 } 360 data->max_odr = max_odr; 361 362 return 0; 363 } 364 365 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x, 366 u16 rhall) 367 { 368 s16 val; 369 u16 xyz1 = le16_to_cpu(tregs->xyz1); 370 371 if (x == BMC150_MAGN_XY_OVERFLOW_VAL) 372 return S32_MIN; 373 374 if (!rhall) 375 rhall = xyz1; 376 377 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 378 val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) * 379 ((s32)val)) >> 7)) + (((s32)val) * 380 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 381 ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) + 382 (((s16)tregs->x1) << 3); 383 384 return (s32)val; 385 } 386 387 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y, 388 u16 rhall) 389 { 390 s16 val; 391 u16 xyz1 = le16_to_cpu(tregs->xyz1); 392 393 if (y == BMC150_MAGN_XY_OVERFLOW_VAL) 394 return S32_MIN; 395 396 if (!rhall) 397 rhall = xyz1; 398 399 val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000))); 400 val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) * 401 ((s32)val)) >> 7)) + (((s32)val) * 402 ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) * 403 ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) + 404 (((s16)tregs->y1) << 3); 405 406 return (s32)val; 407 } 408 409 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z, 410 u16 rhall) 411 { 412 s32 val; 413 u16 xyz1 = le16_to_cpu(tregs->xyz1); 414 u16 z1 = le16_to_cpu(tregs->z1); 415 s16 z2 = le16_to_cpu(tregs->z2); 416 s16 z3 = le16_to_cpu(tregs->z3); 417 s16 z4 = le16_to_cpu(tregs->z4); 418 419 if (z == BMC150_MAGN_Z_OVERFLOW_VAL) 420 return S32_MIN; 421 422 val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) - 423 ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) * 424 ((((s16)rhall) << 1))) + (1 << 15)) >> 16)))); 425 426 return val; 427 } 428 429 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer) 430 { 431 int ret; 432 __le16 values[AXIS_XYZR_MAX]; 433 s16 raw_x, raw_y, raw_z; 434 u16 rhall; 435 struct bmc150_magn_trim_regs tregs; 436 437 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L, 438 values, sizeof(values)); 439 if (ret < 0) 440 return ret; 441 442 raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; 443 raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; 444 raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; 445 rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; 446 447 ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START, 448 &tregs, sizeof(tregs)); 449 if (ret < 0) 450 return ret; 451 452 buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall); 453 buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall); 454 buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall); 455 456 return 0; 457 } 458 459 static int bmc150_magn_read_raw(struct iio_dev *indio_dev, 460 struct iio_chan_spec const *chan, 461 int *val, int *val2, long mask) 462 { 463 struct bmc150_magn_data *data = iio_priv(indio_dev); 464 int ret, tmp; 465 s32 values[AXIS_XYZ_MAX]; 466 467 switch (mask) { 468 case IIO_CHAN_INFO_RAW: 469 if (iio_buffer_enabled(indio_dev)) 470 return -EBUSY; 471 mutex_lock(&data->mutex); 472 473 ret = bmc150_magn_set_power_state(data, true); 474 if (ret < 0) { 475 mutex_unlock(&data->mutex); 476 return ret; 477 } 478 479 ret = bmc150_magn_read_xyz(data, values); 480 if (ret < 0) { 481 bmc150_magn_set_power_state(data, false); 482 mutex_unlock(&data->mutex); 483 return ret; 484 } 485 *val = values[chan->scan_index]; 486 487 ret = bmc150_magn_set_power_state(data, false); 488 if (ret < 0) { 489 mutex_unlock(&data->mutex); 490 return ret; 491 } 492 493 mutex_unlock(&data->mutex); 494 return IIO_VAL_INT; 495 case IIO_CHAN_INFO_SCALE: 496 /* 497 * The API/driver performs an off-chip temperature 498 * compensation and outputs x/y/z magnetic field data in 499 * 16 LSB/uT to the upper application layer. 500 */ 501 *val = 0; 502 *val2 = 625; 503 return IIO_VAL_INT_PLUS_MICRO; 504 case IIO_CHAN_INFO_SAMP_FREQ: 505 ret = bmc150_magn_get_odr(data, val); 506 if (ret < 0) 507 return ret; 508 return IIO_VAL_INT; 509 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 510 switch (chan->channel2) { 511 case IIO_MOD_X: 512 case IIO_MOD_Y: 513 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY, 514 &tmp); 515 if (ret < 0) 516 return ret; 517 *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp); 518 return IIO_VAL_INT; 519 case IIO_MOD_Z: 520 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z, 521 &tmp); 522 if (ret < 0) 523 return ret; 524 *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp); 525 return IIO_VAL_INT; 526 default: 527 return -EINVAL; 528 } 529 default: 530 return -EINVAL; 531 } 532 } 533 534 static int bmc150_magn_write_raw(struct iio_dev *indio_dev, 535 struct iio_chan_spec const *chan, 536 int val, int val2, long mask) 537 { 538 struct bmc150_magn_data *data = iio_priv(indio_dev); 539 int ret; 540 541 switch (mask) { 542 case IIO_CHAN_INFO_SAMP_FREQ: 543 if (val > data->max_odr) 544 return -EINVAL; 545 mutex_lock(&data->mutex); 546 ret = bmc150_magn_set_odr(data, val); 547 mutex_unlock(&data->mutex); 548 return ret; 549 case IIO_CHAN_INFO_OVERSAMPLING_RATIO: 550 switch (chan->channel2) { 551 case IIO_MOD_X: 552 case IIO_MOD_Y: 553 if (val < 1 || val > 511) 554 return -EINVAL; 555 mutex_lock(&data->mutex); 556 ret = bmc150_magn_set_max_odr(data, val, 0, 0); 557 if (ret < 0) { 558 mutex_unlock(&data->mutex); 559 return ret; 560 } 561 ret = regmap_update_bits(data->regmap, 562 BMC150_MAGN_REG_REP_XY, 563 BMC150_MAGN_REG_REP_DATAMASK, 564 BMC150_MAGN_REPXY_TO_REGVAL 565 (val)); 566 mutex_unlock(&data->mutex); 567 return ret; 568 case IIO_MOD_Z: 569 if (val < 1 || val > 256) 570 return -EINVAL; 571 mutex_lock(&data->mutex); 572 ret = bmc150_magn_set_max_odr(data, 0, val, 0); 573 if (ret < 0) { 574 mutex_unlock(&data->mutex); 575 return ret; 576 } 577 ret = regmap_update_bits(data->regmap, 578 BMC150_MAGN_REG_REP_Z, 579 BMC150_MAGN_REG_REP_DATAMASK, 580 BMC150_MAGN_REPZ_TO_REGVAL 581 (val)); 582 mutex_unlock(&data->mutex); 583 return ret; 584 default: 585 return -EINVAL; 586 } 587 default: 588 return -EINVAL; 589 } 590 } 591 592 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev, 593 struct device_attribute *attr, 594 char *buf) 595 { 596 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 597 struct bmc150_magn_data *data = iio_priv(indio_dev); 598 size_t len = 0; 599 u8 i; 600 601 for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) { 602 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr) 603 break; 604 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ", 605 bmc150_magn_samp_freq_table[i].freq); 606 } 607 /* replace last space with a newline */ 608 buf[len - 1] = '\n'; 609 610 return len; 611 } 612 613 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail); 614 615 static struct attribute *bmc150_magn_attributes[] = { 616 &iio_dev_attr_sampling_frequency_available.dev_attr.attr, 617 NULL, 618 }; 619 620 static const struct attribute_group bmc150_magn_attrs_group = { 621 .attrs = bmc150_magn_attributes, 622 }; 623 624 #define BMC150_MAGN_CHANNEL(_axis) { \ 625 .type = IIO_MAGN, \ 626 .modified = 1, \ 627 .channel2 = IIO_MOD_##_axis, \ 628 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 629 BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \ 630 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) | \ 631 BIT(IIO_CHAN_INFO_SCALE), \ 632 .scan_index = AXIS_##_axis, \ 633 .scan_type = { \ 634 .sign = 's', \ 635 .realbits = 32, \ 636 .storagebits = 32, \ 637 .endianness = IIO_LE \ 638 }, \ 639 } 640 641 static const struct iio_chan_spec bmc150_magn_channels[] = { 642 BMC150_MAGN_CHANNEL(X), 643 BMC150_MAGN_CHANNEL(Y), 644 BMC150_MAGN_CHANNEL(Z), 645 IIO_CHAN_SOFT_TIMESTAMP(3), 646 }; 647 648 static const struct iio_info bmc150_magn_info = { 649 .attrs = &bmc150_magn_attrs_group, 650 .read_raw = bmc150_magn_read_raw, 651 .write_raw = bmc150_magn_write_raw, 652 .driver_module = THIS_MODULE, 653 }; 654 655 static const unsigned long bmc150_magn_scan_masks[] = { 656 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z), 657 0}; 658 659 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p) 660 { 661 struct iio_poll_func *pf = p; 662 struct iio_dev *indio_dev = pf->indio_dev; 663 struct bmc150_magn_data *data = iio_priv(indio_dev); 664 int ret; 665 666 mutex_lock(&data->mutex); 667 ret = bmc150_magn_read_xyz(data, data->buffer); 668 if (ret < 0) 669 goto err; 670 671 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, 672 pf->timestamp); 673 674 err: 675 mutex_unlock(&data->mutex); 676 iio_trigger_notify_done(indio_dev->trig); 677 678 return IRQ_HANDLED; 679 } 680 681 static int bmc150_magn_init(struct bmc150_magn_data *data) 682 { 683 int ret, chip_id; 684 struct bmc150_magn_preset preset; 685 686 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, 687 false); 688 if (ret < 0) { 689 dev_err(&data->client->dev, 690 "Failed to bring up device from suspend mode\n"); 691 return ret; 692 } 693 694 ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id); 695 if (ret < 0) { 696 dev_err(&data->client->dev, "Failed reading chip id\n"); 697 goto err_poweroff; 698 } 699 if (chip_id != BMC150_MAGN_CHIP_ID_VAL) { 700 dev_err(&data->client->dev, "Invalid chip id 0x%x\n", chip_id); 701 ret = -ENODEV; 702 goto err_poweroff; 703 } 704 dev_dbg(&data->client->dev, "Chip id %x\n", chip_id); 705 706 preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET]; 707 ret = bmc150_magn_set_odr(data, preset.odr); 708 if (ret < 0) { 709 dev_err(&data->client->dev, "Failed to set ODR to %d\n", 710 preset.odr); 711 goto err_poweroff; 712 } 713 714 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY, 715 BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy)); 716 if (ret < 0) { 717 dev_err(&data->client->dev, "Failed to set REP XY to %d\n", 718 preset.rep_xy); 719 goto err_poweroff; 720 } 721 722 ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z, 723 BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)); 724 if (ret < 0) { 725 dev_err(&data->client->dev, "Failed to set REP Z to %d\n", 726 preset.rep_z); 727 goto err_poweroff; 728 } 729 730 ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z, 731 preset.odr); 732 if (ret < 0) 733 goto err_poweroff; 734 735 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 736 true); 737 if (ret < 0) { 738 dev_err(&data->client->dev, "Failed to power on device\n"); 739 goto err_poweroff; 740 } 741 742 return 0; 743 744 err_poweroff: 745 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 746 return ret; 747 } 748 749 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data) 750 { 751 int tmp; 752 753 /* 754 * Data Ready (DRDY) is always cleared after 755 * readout of data registers ends. 756 */ 757 return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp); 758 } 759 760 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig) 761 { 762 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 763 struct bmc150_magn_data *data = iio_priv(indio_dev); 764 int ret; 765 766 if (!data->dready_trigger_on) 767 return 0; 768 769 mutex_lock(&data->mutex); 770 ret = bmc150_magn_reset_intr(data); 771 mutex_unlock(&data->mutex); 772 773 return ret; 774 } 775 776 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig, 777 bool state) 778 { 779 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 780 struct bmc150_magn_data *data = iio_priv(indio_dev); 781 int ret = 0; 782 783 mutex_lock(&data->mutex); 784 if (state == data->dready_trigger_on) 785 goto err_unlock; 786 787 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY, 788 BMC150_MAGN_MASK_DRDY_EN, 789 state << BMC150_MAGN_SHIFT_DRDY_EN); 790 if (ret < 0) 791 goto err_unlock; 792 793 data->dready_trigger_on = state; 794 795 if (state) { 796 ret = bmc150_magn_reset_intr(data); 797 if (ret < 0) 798 goto err_unlock; 799 } 800 mutex_unlock(&data->mutex); 801 802 return 0; 803 804 err_unlock: 805 mutex_unlock(&data->mutex); 806 return ret; 807 } 808 809 static const struct iio_trigger_ops bmc150_magn_trigger_ops = { 810 .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state, 811 .try_reenable = bmc150_magn_trig_try_reen, 812 .owner = THIS_MODULE, 813 }; 814 815 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev) 816 { 817 struct bmc150_magn_data *data = iio_priv(indio_dev); 818 819 return bmc150_magn_set_power_state(data, true); 820 } 821 822 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev) 823 { 824 struct bmc150_magn_data *data = iio_priv(indio_dev); 825 826 return bmc150_magn_set_power_state(data, false); 827 } 828 829 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = { 830 .preenable = bmc150_magn_buffer_preenable, 831 .postenable = iio_triggered_buffer_postenable, 832 .predisable = iio_triggered_buffer_predisable, 833 .postdisable = bmc150_magn_buffer_postdisable, 834 }; 835 836 static int bmc150_magn_gpio_probe(struct i2c_client *client) 837 { 838 struct device *dev; 839 struct gpio_desc *gpio; 840 int ret; 841 842 if (!client) 843 return -EINVAL; 844 845 dev = &client->dev; 846 847 /* data ready GPIO interrupt pin */ 848 gpio = devm_gpiod_get_index(dev, BMC150_MAGN_GPIO_INT, 0, GPIOD_IN); 849 if (IS_ERR(gpio)) { 850 dev_err(dev, "ACPI GPIO get index failed\n"); 851 return PTR_ERR(gpio); 852 } 853 854 ret = gpiod_to_irq(gpio); 855 856 dev_dbg(dev, "GPIO resource, no:%d irq:%d\n", desc_to_gpio(gpio), ret); 857 858 return ret; 859 } 860 861 static const char *bmc150_magn_match_acpi_device(struct device *dev) 862 { 863 const struct acpi_device_id *id; 864 865 id = acpi_match_device(dev->driver->acpi_match_table, dev); 866 if (!id) 867 return NULL; 868 869 return dev_name(dev); 870 } 871 872 static int bmc150_magn_probe(struct i2c_client *client, 873 const struct i2c_device_id *id) 874 { 875 struct bmc150_magn_data *data; 876 struct iio_dev *indio_dev; 877 const char *name = NULL; 878 int ret; 879 880 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 881 if (!indio_dev) 882 return -ENOMEM; 883 884 data = iio_priv(indio_dev); 885 i2c_set_clientdata(client, indio_dev); 886 data->client = client; 887 888 if (id) 889 name = id->name; 890 else if (ACPI_HANDLE(&client->dev)) 891 name = bmc150_magn_match_acpi_device(&client->dev); 892 else 893 return -ENOSYS; 894 895 mutex_init(&data->mutex); 896 data->regmap = devm_regmap_init_i2c(client, &bmc150_magn_regmap_config); 897 if (IS_ERR(data->regmap)) { 898 dev_err(&client->dev, "Failed to allocate register map\n"); 899 return PTR_ERR(data->regmap); 900 } 901 902 ret = bmc150_magn_init(data); 903 if (ret < 0) 904 return ret; 905 906 indio_dev->dev.parent = &client->dev; 907 indio_dev->channels = bmc150_magn_channels; 908 indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels); 909 indio_dev->available_scan_masks = bmc150_magn_scan_masks; 910 indio_dev->name = name; 911 indio_dev->modes = INDIO_DIRECT_MODE; 912 indio_dev->info = &bmc150_magn_info; 913 914 if (client->irq <= 0) 915 client->irq = bmc150_magn_gpio_probe(client); 916 917 if (client->irq > 0) { 918 data->dready_trig = devm_iio_trigger_alloc(&client->dev, 919 "%s-dev%d", 920 indio_dev->name, 921 indio_dev->id); 922 if (!data->dready_trig) { 923 ret = -ENOMEM; 924 dev_err(&client->dev, "iio trigger alloc failed\n"); 925 goto err_poweroff; 926 } 927 928 data->dready_trig->dev.parent = &client->dev; 929 data->dready_trig->ops = &bmc150_magn_trigger_ops; 930 iio_trigger_set_drvdata(data->dready_trig, indio_dev); 931 ret = iio_trigger_register(data->dready_trig); 932 if (ret) { 933 dev_err(&client->dev, "iio trigger register failed\n"); 934 goto err_poweroff; 935 } 936 937 ret = request_threaded_irq(client->irq, 938 iio_trigger_generic_data_rdy_poll, 939 NULL, 940 IRQF_TRIGGER_RISING | IRQF_ONESHOT, 941 BMC150_MAGN_IRQ_NAME, 942 data->dready_trig); 943 if (ret < 0) { 944 dev_err(&client->dev, "request irq %d failed\n", 945 client->irq); 946 goto err_trigger_unregister; 947 } 948 } 949 950 ret = iio_triggered_buffer_setup(indio_dev, 951 iio_pollfunc_store_time, 952 bmc150_magn_trigger_handler, 953 &bmc150_magn_buffer_setup_ops); 954 if (ret < 0) { 955 dev_err(&client->dev, 956 "iio triggered buffer setup failed\n"); 957 goto err_free_irq; 958 } 959 960 ret = iio_device_register(indio_dev); 961 if (ret < 0) { 962 dev_err(&client->dev, "unable to register iio device\n"); 963 goto err_buffer_cleanup; 964 } 965 966 ret = pm_runtime_set_active(&client->dev); 967 if (ret) 968 goto err_iio_unregister; 969 970 pm_runtime_enable(&client->dev); 971 pm_runtime_set_autosuspend_delay(&client->dev, 972 BMC150_MAGN_AUTO_SUSPEND_DELAY_MS); 973 pm_runtime_use_autosuspend(&client->dev); 974 975 dev_dbg(&indio_dev->dev, "Registered device %s\n", name); 976 977 return 0; 978 979 err_iio_unregister: 980 iio_device_unregister(indio_dev); 981 err_buffer_cleanup: 982 iio_triggered_buffer_cleanup(indio_dev); 983 err_free_irq: 984 if (client->irq > 0) 985 free_irq(client->irq, data->dready_trig); 986 err_trigger_unregister: 987 if (data->dready_trig) 988 iio_trigger_unregister(data->dready_trig); 989 err_poweroff: 990 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 991 return ret; 992 } 993 994 static int bmc150_magn_remove(struct i2c_client *client) 995 { 996 struct iio_dev *indio_dev = i2c_get_clientdata(client); 997 struct bmc150_magn_data *data = iio_priv(indio_dev); 998 999 pm_runtime_disable(&client->dev); 1000 pm_runtime_set_suspended(&client->dev); 1001 pm_runtime_put_noidle(&client->dev); 1002 1003 iio_device_unregister(indio_dev); 1004 iio_triggered_buffer_cleanup(indio_dev); 1005 1006 if (client->irq > 0) 1007 free_irq(data->client->irq, data->dready_trig); 1008 1009 if (data->dready_trig) 1010 iio_trigger_unregister(data->dready_trig); 1011 1012 mutex_lock(&data->mutex); 1013 bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true); 1014 mutex_unlock(&data->mutex); 1015 1016 return 0; 1017 } 1018 1019 #ifdef CONFIG_PM 1020 static int bmc150_magn_runtime_suspend(struct device *dev) 1021 { 1022 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 1023 struct bmc150_magn_data *data = iio_priv(indio_dev); 1024 int ret; 1025 1026 mutex_lock(&data->mutex); 1027 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1028 true); 1029 mutex_unlock(&data->mutex); 1030 if (ret < 0) { 1031 dev_err(&data->client->dev, "powering off device failed\n"); 1032 return ret; 1033 } 1034 return 0; 1035 } 1036 1037 /* 1038 * Should be called with data->mutex held. 1039 */ 1040 static int bmc150_magn_runtime_resume(struct device *dev) 1041 { 1042 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 1043 struct bmc150_magn_data *data = iio_priv(indio_dev); 1044 1045 return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1046 true); 1047 } 1048 #endif 1049 1050 #ifdef CONFIG_PM_SLEEP 1051 static int bmc150_magn_suspend(struct device *dev) 1052 { 1053 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 1054 struct bmc150_magn_data *data = iio_priv(indio_dev); 1055 int ret; 1056 1057 mutex_lock(&data->mutex); 1058 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP, 1059 true); 1060 mutex_unlock(&data->mutex); 1061 1062 return ret; 1063 } 1064 1065 static int bmc150_magn_resume(struct device *dev) 1066 { 1067 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 1068 struct bmc150_magn_data *data = iio_priv(indio_dev); 1069 int ret; 1070 1071 mutex_lock(&data->mutex); 1072 ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL, 1073 true); 1074 mutex_unlock(&data->mutex); 1075 1076 return ret; 1077 } 1078 #endif 1079 1080 static const struct dev_pm_ops bmc150_magn_pm_ops = { 1081 SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume) 1082 SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend, 1083 bmc150_magn_runtime_resume, NULL) 1084 }; 1085 1086 static const struct acpi_device_id bmc150_magn_acpi_match[] = { 1087 {"BMC150B", 0}, 1088 {"BMC156B", 0}, 1089 {}, 1090 }; 1091 MODULE_DEVICE_TABLE(acpi, bmc150_magn_acpi_match); 1092 1093 static const struct i2c_device_id bmc150_magn_id[] = { 1094 {"bmc150_magn", 0}, 1095 {"bmc156_magn", 0}, 1096 {}, 1097 }; 1098 MODULE_DEVICE_TABLE(i2c, bmc150_magn_id); 1099 1100 static struct i2c_driver bmc150_magn_driver = { 1101 .driver = { 1102 .name = BMC150_MAGN_DRV_NAME, 1103 .acpi_match_table = ACPI_PTR(bmc150_magn_acpi_match), 1104 .pm = &bmc150_magn_pm_ops, 1105 }, 1106 .probe = bmc150_magn_probe, 1107 .remove = bmc150_magn_remove, 1108 .id_table = bmc150_magn_id, 1109 }; 1110 module_i2c_driver(bmc150_magn_driver); 1111 1112 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>"); 1113 MODULE_LICENSE("GPL v2"); 1114 MODULE_DESCRIPTION("BMC150 magnetometer driver"); 1115