xref: /linux/drivers/iio/magnetometer/ak8975.c (revision e7e2296b0ecf9b6e934f7a1118cee91d4d486a84)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A sensor driver for the magnetometer AK8975.
4  *
5  * Magnetic compass sensor driver for monitoring magnetic flux information.
6  *
7  * Copyright (c) 2010, NVIDIA Corporation.
8  */
9 
10 #include <linux/module.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/i2c.h>
15 #include <linux/interrupt.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <linux/bitops.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/pm_runtime.h>
23 
24 #include <linux/iio/iio.h>
25 #include <linux/iio/sysfs.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/trigger.h>
28 #include <linux/iio/trigger_consumer.h>
29 #include <linux/iio/triggered_buffer.h>
30 
31 /*
32  * Register definitions, as well as various shifts and masks to get at the
33  * individual fields of the registers.
34  */
35 #define AK8975_REG_WIA			0x00
36 #define AK8975_DEVICE_ID		0x48
37 
38 #define AK8975_REG_INFO			0x01
39 
40 #define AK8975_REG_ST1			0x02
41 #define AK8975_REG_ST1_DRDY_SHIFT	0
42 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
43 
44 #define AK8975_REG_HXL			0x03
45 #define AK8975_REG_HXH			0x04
46 #define AK8975_REG_HYL			0x05
47 #define AK8975_REG_HYH			0x06
48 #define AK8975_REG_HZL			0x07
49 #define AK8975_REG_HZH			0x08
50 #define AK8975_REG_ST2			0x09
51 #define AK8975_REG_ST2_DERR_SHIFT	2
52 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
53 
54 #define AK8975_REG_ST2_HOFL_SHIFT	3
55 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
56 
57 #define AK8975_REG_CNTL			0x0A
58 #define AK8975_REG_CNTL_MODE_SHIFT	0
59 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
60 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
61 #define AK8975_REG_CNTL_MODE_ONCE	0x01
62 #define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
63 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
64 
65 #define AK8975_REG_RSVC			0x0B
66 #define AK8975_REG_ASTC			0x0C
67 #define AK8975_REG_TS1			0x0D
68 #define AK8975_REG_TS2			0x0E
69 #define AK8975_REG_I2CDIS		0x0F
70 #define AK8975_REG_ASAX			0x10
71 #define AK8975_REG_ASAY			0x11
72 #define AK8975_REG_ASAZ			0x12
73 
74 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
75 
76 /*
77  * AK09912 Register definitions
78  */
79 #define AK09912_REG_WIA1		0x00
80 #define AK09912_REG_WIA2		0x01
81 #define AK09918_DEVICE_ID		0x0C
82 #define AK09916_DEVICE_ID		0x09
83 #define AK09912_DEVICE_ID		0x04
84 #define AK09911_DEVICE_ID		0x05
85 
86 #define AK09911_REG_INFO1		0x02
87 #define AK09911_REG_INFO2		0x03
88 
89 #define AK09912_REG_ST1			0x10
90 
91 #define AK09912_REG_ST1_DRDY_SHIFT	0
92 #define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
93 
94 #define AK09912_REG_HXL			0x11
95 #define AK09912_REG_HXH			0x12
96 #define AK09912_REG_HYL			0x13
97 #define AK09912_REG_HYH			0x14
98 #define AK09912_REG_HZL			0x15
99 #define AK09912_REG_HZH			0x16
100 #define AK09912_REG_TMPS		0x17
101 
102 #define AK09912_REG_ST2			0x18
103 #define AK09912_REG_ST2_HOFL_SHIFT	3
104 #define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
105 
106 #define AK09912_REG_CNTL1		0x30
107 
108 #define AK09912_REG_CNTL2		0x31
109 #define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
110 #define AK09912_REG_CNTL_MODE_ONCE	0x01
111 #define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
112 #define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
113 #define AK09912_REG_CNTL2_MODE_SHIFT	0
114 #define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
115 
116 #define AK09912_REG_CNTL3		0x32
117 
118 #define AK09912_REG_TS1			0x33
119 #define AK09912_REG_TS2			0x34
120 #define AK09912_REG_TS3			0x35
121 #define AK09912_REG_I2CDIS		0x36
122 #define AK09912_REG_TS4			0x37
123 
124 #define AK09912_REG_ASAX		0x60
125 #define AK09912_REG_ASAY		0x61
126 #define AK09912_REG_ASAZ		0x62
127 
128 #define AK09912_MAX_REGS		AK09912_REG_ASAZ
129 
130 /*
131  * Miscellaneous values.
132  */
133 #define AK8975_MAX_CONVERSION_TIMEOUT	500
134 #define AK8975_CONVERSION_DONE_POLL_TIME 10
135 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
136 
137 /*
138  * Precalculate scale factor (in Gauss units) for each axis and
139  * store in the device data.
140  *
141  * This scale factor is axis-dependent, and is derived from 3 calibration
142  * factors ASA(x), ASA(y), and ASA(z).
143  *
144  * These ASA values are read from the sensor device at start of day, and
145  * cached in the device context struct.
146  *
147  * Adjusting the flux value with the sensitivity adjustment value should be
148  * done via the following formula:
149  *
150  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
151  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
152  * is the resultant adjusted value.
153  *
154  * We reduce the formula to:
155  *
156  * Hadj = H * (ASA + 128) / 256
157  *
158  * H is in the range of -4096 to 4095.  The magnetometer has a range of
159  * +-1229uT.  To go from the raw value to uT is:
160  *
161  * HuT = H * 1229/4096, or roughly, 3/10.
162  *
163  * Since 1uT = 0.01 gauss, our final scale factor becomes:
164  *
165  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
166  * Hadj = H * ((ASA + 128) * 0.003) / 256
167  *
168  * Since ASA doesn't change, we cache the resultant scale factor into the
169  * device context in ak8975_setup().
170  *
171  * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
172  * multiply the stored scale value by 1e6.
173  */
174 static long ak8975_raw_to_gauss(u16 data)
175 {
176 	return (((long)data + 128) * 3000) / 256;
177 }
178 
179 /*
180  * For AK8963 and AK09911, same calculation, but the device is less sensitive:
181  *
182  * H is in the range of +-8190.  The magnetometer has a range of
183  * +-4912uT.  To go from the raw value to uT is:
184  *
185  * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
186  */
187 
188 static long ak8963_09911_raw_to_gauss(u16 data)
189 {
190 	return (((long)data + 128) * 6000) / 256;
191 }
192 
193 /*
194  * For AK09912, same calculation, except the device is more sensitive:
195  *
196  * H is in the range of -32752 to 32752.  The magnetometer has a range of
197  * +-4912uT.  To go from the raw value to uT is:
198  *
199  * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
200  */
201 static long ak09912_raw_to_gauss(u16 data)
202 {
203 	return (((long)data + 128) * 1500) / 256;
204 }
205 
206 /* Compatible Asahi Kasei Compass parts */
207 enum asahi_compass_chipset {
208 	AK8975,
209 	AK8963,
210 	AK09911,
211 	AK09912,
212 	AK09916,
213 	AK09918,
214 };
215 
216 enum ak_ctrl_reg_addr {
217 	ST1,
218 	ST2,
219 	CNTL,
220 	ASA_BASE,
221 	MAX_REGS,
222 	REGS_END,
223 };
224 
225 enum ak_ctrl_reg_mask {
226 	ST1_DRDY,
227 	ST2_HOFL,
228 	ST2_DERR,
229 	CNTL_MODE,
230 	MASK_END,
231 };
232 
233 enum ak_ctrl_mode {
234 	POWER_DOWN,
235 	MODE_ONCE,
236 	SELF_TEST,
237 	FUSE_ROM,
238 	MODE_END,
239 };
240 
241 struct ak_def {
242 	enum asahi_compass_chipset type;
243 	long (*raw_to_gauss)(u16 data);
244 	u16 range;
245 	u8 ctrl_regs[REGS_END];
246 	u8 ctrl_masks[MASK_END];
247 	u8 ctrl_modes[MODE_END];
248 	u8 data_regs[3];
249 };
250 
251 static const struct ak_def ak_def_array[] = {
252 	[AK8975] = {
253 		.type = AK8975,
254 		.raw_to_gauss = ak8975_raw_to_gauss,
255 		.range = 4096,
256 		.ctrl_regs = {
257 			AK8975_REG_ST1,
258 			AK8975_REG_ST2,
259 			AK8975_REG_CNTL,
260 			AK8975_REG_ASAX,
261 			AK8975_MAX_REGS},
262 		.ctrl_masks = {
263 			AK8975_REG_ST1_DRDY_MASK,
264 			AK8975_REG_ST2_HOFL_MASK,
265 			AK8975_REG_ST2_DERR_MASK,
266 			AK8975_REG_CNTL_MODE_MASK},
267 		.ctrl_modes = {
268 			AK8975_REG_CNTL_MODE_POWER_DOWN,
269 			AK8975_REG_CNTL_MODE_ONCE,
270 			AK8975_REG_CNTL_MODE_SELF_TEST,
271 			AK8975_REG_CNTL_MODE_FUSE_ROM},
272 		.data_regs = {
273 			AK8975_REG_HXL,
274 			AK8975_REG_HYL,
275 			AK8975_REG_HZL},
276 	},
277 	[AK8963] = {
278 		.type = AK8963,
279 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
280 		.range = 8190,
281 		.ctrl_regs = {
282 			AK8975_REG_ST1,
283 			AK8975_REG_ST2,
284 			AK8975_REG_CNTL,
285 			AK8975_REG_ASAX,
286 			AK8975_MAX_REGS},
287 		.ctrl_masks = {
288 			AK8975_REG_ST1_DRDY_MASK,
289 			AK8975_REG_ST2_HOFL_MASK,
290 			0,
291 			AK8975_REG_CNTL_MODE_MASK},
292 		.ctrl_modes = {
293 			AK8975_REG_CNTL_MODE_POWER_DOWN,
294 			AK8975_REG_CNTL_MODE_ONCE,
295 			AK8975_REG_CNTL_MODE_SELF_TEST,
296 			AK8975_REG_CNTL_MODE_FUSE_ROM},
297 		.data_regs = {
298 			AK8975_REG_HXL,
299 			AK8975_REG_HYL,
300 			AK8975_REG_HZL},
301 	},
302 	[AK09911] = {
303 		.type = AK09911,
304 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
305 		.range = 8192,
306 		.ctrl_regs = {
307 			AK09912_REG_ST1,
308 			AK09912_REG_ST2,
309 			AK09912_REG_CNTL2,
310 			AK09912_REG_ASAX,
311 			AK09912_MAX_REGS},
312 		.ctrl_masks = {
313 			AK09912_REG_ST1_DRDY_MASK,
314 			AK09912_REG_ST2_HOFL_MASK,
315 			0,
316 			AK09912_REG_CNTL2_MODE_MASK},
317 		.ctrl_modes = {
318 			AK09912_REG_CNTL_MODE_POWER_DOWN,
319 			AK09912_REG_CNTL_MODE_ONCE,
320 			AK09912_REG_CNTL_MODE_SELF_TEST,
321 			AK09912_REG_CNTL_MODE_FUSE_ROM},
322 		.data_regs = {
323 			AK09912_REG_HXL,
324 			AK09912_REG_HYL,
325 			AK09912_REG_HZL},
326 	},
327 	[AK09912] = {
328 		.type = AK09912,
329 		.raw_to_gauss = ak09912_raw_to_gauss,
330 		.range = 32752,
331 		.ctrl_regs = {
332 			AK09912_REG_ST1,
333 			AK09912_REG_ST2,
334 			AK09912_REG_CNTL2,
335 			AK09912_REG_ASAX,
336 			AK09912_MAX_REGS},
337 		.ctrl_masks = {
338 			AK09912_REG_ST1_DRDY_MASK,
339 			AK09912_REG_ST2_HOFL_MASK,
340 			0,
341 			AK09912_REG_CNTL2_MODE_MASK},
342 		.ctrl_modes = {
343 			AK09912_REG_CNTL_MODE_POWER_DOWN,
344 			AK09912_REG_CNTL_MODE_ONCE,
345 			AK09912_REG_CNTL_MODE_SELF_TEST,
346 			AK09912_REG_CNTL_MODE_FUSE_ROM},
347 		.data_regs = {
348 			AK09912_REG_HXL,
349 			AK09912_REG_HYL,
350 			AK09912_REG_HZL},
351 	},
352 	[AK09916] = {
353 		.type = AK09916,
354 		.raw_to_gauss = ak09912_raw_to_gauss,
355 		.range = 32752,
356 		.ctrl_regs = {
357 			AK09912_REG_ST1,
358 			AK09912_REG_ST2,
359 			AK09912_REG_CNTL2,
360 			AK09912_REG_ASAX,
361 			AK09912_MAX_REGS},
362 		.ctrl_masks = {
363 			AK09912_REG_ST1_DRDY_MASK,
364 			AK09912_REG_ST2_HOFL_MASK,
365 			0,
366 			AK09912_REG_CNTL2_MODE_MASK},
367 		.ctrl_modes = {
368 			AK09912_REG_CNTL_MODE_POWER_DOWN,
369 			AK09912_REG_CNTL_MODE_ONCE,
370 			AK09912_REG_CNTL_MODE_SELF_TEST,
371 			AK09912_REG_CNTL_MODE_FUSE_ROM},
372 		.data_regs = {
373 			AK09912_REG_HXL,
374 			AK09912_REG_HYL,
375 			AK09912_REG_HZL},
376 	},
377 	[AK09918] = {
378 		/* ak09918 is register compatible with ak09912 this is for avoid
379 		 * unknown id messages.
380 		 */
381 		.type = AK09918,
382 		.raw_to_gauss = ak09912_raw_to_gauss,
383 		.range = 32752,
384 		.ctrl_regs = {
385 			AK09912_REG_ST1,
386 			AK09912_REG_ST2,
387 			AK09912_REG_CNTL2,
388 			AK09912_REG_ASAX,
389 			AK09912_MAX_REGS},
390 		.ctrl_masks = {
391 			AK09912_REG_ST1_DRDY_MASK,
392 			AK09912_REG_ST2_HOFL_MASK,
393 			0,
394 			AK09912_REG_CNTL2_MODE_MASK},
395 		.ctrl_modes = {
396 			AK09912_REG_CNTL_MODE_POWER_DOWN,
397 			AK09912_REG_CNTL_MODE_ONCE,
398 			AK09912_REG_CNTL_MODE_SELF_TEST,
399 			AK09912_REG_CNTL_MODE_FUSE_ROM},
400 		.data_regs = {
401 			AK09912_REG_HXL,
402 			AK09912_REG_HYL,
403 			AK09912_REG_HZL},
404 	}
405 };
406 
407 /*
408  * Per-instance context data for the device.
409  */
410 struct ak8975_data {
411 	struct i2c_client	*client;
412 	const struct ak_def	*def;
413 	struct mutex		lock;
414 	u8			asa[3];
415 	long			raw_to_gauss[3];
416 	struct gpio_desc	*eoc_gpiod;
417 	struct gpio_desc	*reset_gpiod;
418 	int			eoc_irq;
419 	wait_queue_head_t	data_ready_queue;
420 	unsigned long		flags;
421 	u8			cntl_cache;
422 	struct iio_mount_matrix orientation;
423 	struct regulator	*vdd;
424 	struct regulator	*vid;
425 
426 	/* Ensure natural alignment of timestamp */
427 	struct {
428 		s16 channels[3];
429 		aligned_s64 ts;
430 	} scan;
431 };
432 
433 /* Enable attached power regulator if any. */
434 static int ak8975_power_on(const struct ak8975_data *data)
435 {
436 	int ret;
437 
438 	ret = regulator_enable(data->vdd);
439 	if (ret) {
440 		dev_warn(&data->client->dev,
441 			 "Failed to enable specified Vdd supply\n");
442 		return ret;
443 	}
444 	ret = regulator_enable(data->vid);
445 	if (ret) {
446 		dev_warn(&data->client->dev,
447 			 "Failed to enable specified Vid supply\n");
448 		regulator_disable(data->vdd);
449 		return ret;
450 	}
451 
452 	gpiod_set_value_cansleep(data->reset_gpiod, 0);
453 
454 	/*
455 	 * According to the datasheet the power supply rise time is 200us
456 	 * and the minimum wait time before mode setting is 100us, in
457 	 * total 300us. Add some margin and say minimum 500us here.
458 	 */
459 	usleep_range(500, 1000);
460 	return 0;
461 }
462 
463 /* Disable attached power regulator if any. */
464 static void ak8975_power_off(const struct ak8975_data *data)
465 {
466 	gpiod_set_value_cansleep(data->reset_gpiod, 1);
467 
468 	regulator_disable(data->vid);
469 	regulator_disable(data->vdd);
470 }
471 
472 /*
473  * Return 0 if the i2c device is the one we expect.
474  * return a negative error number otherwise
475  */
476 static int ak8975_who_i_am(struct i2c_client *client,
477 			   enum asahi_compass_chipset type)
478 {
479 	u8 wia_val[2];
480 	int ret;
481 
482 	/*
483 	 * Signature for each device:
484 	 * Device   |  WIA1      |  WIA2
485 	 * AK09918  |  DEVICE_ID_|  AK09918_DEVICE_ID
486 	 * AK09916  |  DEVICE_ID_|  AK09916_DEVICE_ID
487 	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
488 	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
489 	 * AK8975   |  DEVICE_ID |  NA
490 	 * AK8963   |  DEVICE_ID |  NA
491 	 */
492 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
493 			client, AK09912_REG_WIA1, 2, wia_val);
494 	if (ret < 0) {
495 		dev_err(&client->dev, "Error reading WIA\n");
496 		return ret;
497 	}
498 
499 	if (wia_val[0] != AK8975_DEVICE_ID)
500 		return -ENODEV;
501 
502 	switch (type) {
503 	case AK8975:
504 	case AK8963:
505 		return 0;
506 	case AK09911:
507 		if (wia_val[1] == AK09911_DEVICE_ID)
508 			return 0;
509 		break;
510 	case AK09912:
511 		if (wia_val[1] == AK09912_DEVICE_ID)
512 			return 0;
513 		break;
514 	case AK09916:
515 		if (wia_val[1] == AK09916_DEVICE_ID)
516 			return 0;
517 		break;
518 	case AK09918:
519 		if (wia_val[1] == AK09918_DEVICE_ID)
520 			return 0;
521 		break;
522 	}
523 
524 	dev_info(&client->dev, "Device ID %x is unknown.\n", wia_val[1]);
525 	/*
526 	 * Let driver to probe on unknown id for support more register
527 	 * compatible variants.
528 	 */
529 	return 0;
530 }
531 
532 /*
533  * Helper function to write to CNTL register.
534  */
535 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
536 {
537 	u8 regval;
538 	int ret;
539 
540 	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
541 		 data->def->ctrl_modes[mode];
542 	ret = i2c_smbus_write_byte_data(data->client,
543 					data->def->ctrl_regs[CNTL], regval);
544 	if (ret < 0) {
545 		return ret;
546 	}
547 	data->cntl_cache = regval;
548 	/* After mode change wait atleast 100us */
549 	usleep_range(100, 500);
550 
551 	return 0;
552 }
553 
554 /*
555  * Handle data ready irq
556  */
557 static irqreturn_t ak8975_irq_handler(int irq, void *data)
558 {
559 	struct ak8975_data *ak8975 = data;
560 
561 	set_bit(0, &ak8975->flags);
562 	wake_up(&ak8975->data_ready_queue);
563 
564 	return IRQ_HANDLED;
565 }
566 
567 /*
568  * Install data ready interrupt handler
569  */
570 static int ak8975_setup_irq(struct ak8975_data *data)
571 {
572 	struct i2c_client *client = data->client;
573 	int rc;
574 	int irq;
575 
576 	init_waitqueue_head(&data->data_ready_queue);
577 	clear_bit(0, &data->flags);
578 	if (client->irq)
579 		irq = client->irq;
580 	else
581 		irq = gpiod_to_irq(data->eoc_gpiod);
582 
583 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
584 			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
585 			      dev_name(&client->dev), data);
586 	if (rc < 0) {
587 		dev_err(&client->dev, "irq %d request failed: %d\n", irq, rc);
588 		return rc;
589 	}
590 
591 	data->eoc_irq = irq;
592 
593 	return rc;
594 }
595 
596 
597 /*
598  * Perform some start-of-day setup, including reading the asa calibration
599  * values and caching them.
600  */
601 static int ak8975_setup(struct i2c_client *client)
602 {
603 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
604 	struct ak8975_data *data = iio_priv(indio_dev);
605 	int ret;
606 
607 	/* Write the fused rom access mode. */
608 	ret = ak8975_set_mode(data, FUSE_ROM);
609 	if (ret < 0) {
610 		dev_err(&client->dev, "Error in setting fuse access mode\n");
611 		return ret;
612 	}
613 
614 	/* Get asa data and store in the device data. */
615 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
616 			client, data->def->ctrl_regs[ASA_BASE],
617 			3, data->asa);
618 	if (ret < 0) {
619 		dev_err(&client->dev, "Not able to read asa data\n");
620 		return ret;
621 	}
622 
623 	/* After reading fuse ROM data set power-down mode */
624 	ret = ak8975_set_mode(data, POWER_DOWN);
625 	if (ret < 0) {
626 		dev_err(&client->dev, "Error in setting power-down mode\n");
627 		return ret;
628 	}
629 
630 	if (data->eoc_gpiod || client->irq > 0) {
631 		ret = ak8975_setup_irq(data);
632 		if (ret < 0) {
633 			dev_err(&client->dev,
634 				"Error setting data ready interrupt\n");
635 			return ret;
636 		}
637 	}
638 
639 	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
640 	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
641 	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
642 
643 	return 0;
644 }
645 
646 static int wait_conversion_complete_gpio(struct ak8975_data *data)
647 {
648 	struct i2c_client *client = data->client;
649 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
650 	int ret;
651 
652 	/* Wait for the conversion to complete. */
653 	while (timeout_ms) {
654 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
655 		if (gpiod_get_value(data->eoc_gpiod))
656 			break;
657 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
658 	}
659 	if (!timeout_ms) {
660 		dev_err(&client->dev, "Conversion timeout happened\n");
661 		return -EINVAL;
662 	}
663 
664 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
665 	if (ret < 0)
666 		dev_err(&client->dev, "Error in reading ST1\n");
667 
668 	return ret;
669 }
670 
671 static int wait_conversion_complete_polled(struct ak8975_data *data)
672 {
673 	struct i2c_client *client = data->client;
674 	u8 read_status;
675 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
676 	int ret;
677 
678 	/* Wait for the conversion to complete. */
679 	while (timeout_ms) {
680 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
681 		ret = i2c_smbus_read_byte_data(client,
682 					       data->def->ctrl_regs[ST1]);
683 		if (ret < 0) {
684 			dev_err(&client->dev, "Error in reading ST1\n");
685 			return ret;
686 		}
687 		read_status = ret;
688 		if (read_status)
689 			break;
690 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
691 	}
692 	if (!timeout_ms) {
693 		dev_err(&client->dev, "Conversion timeout happened\n");
694 		return -EINVAL;
695 	}
696 
697 	return read_status;
698 }
699 
700 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
701 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
702 {
703 	int ret;
704 
705 	ret = wait_event_timeout(data->data_ready_queue,
706 				 test_bit(0, &data->flags),
707 				 AK8975_DATA_READY_TIMEOUT);
708 	clear_bit(0, &data->flags);
709 
710 	return ret > 0 ? 0 : -ETIME;
711 }
712 
713 static int ak8975_start_read_axis(struct ak8975_data *data,
714 				  const struct i2c_client *client)
715 {
716 	/* Set up the device for taking a sample. */
717 	int ret = ak8975_set_mode(data, MODE_ONCE);
718 
719 	if (ret < 0) {
720 		dev_err(&client->dev, "Error in setting operating mode\n");
721 		return ret;
722 	}
723 
724 	/* Wait for the conversion to complete. */
725 	if (data->eoc_irq)
726 		ret = wait_conversion_complete_interrupt(data);
727 	else if (data->eoc_gpiod)
728 		ret = wait_conversion_complete_gpio(data);
729 	else
730 		ret = wait_conversion_complete_polled(data);
731 	if (ret < 0)
732 		return ret;
733 
734 	/* Return with zero if the data is ready. */
735 	return !data->def->ctrl_regs[ST1_DRDY];
736 }
737 
738 /* Retrieve raw flux value for one of the x, y, or z axis.  */
739 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
740 {
741 	struct ak8975_data *data = iio_priv(indio_dev);
742 	const struct i2c_client *client = data->client;
743 	const struct ak_def *def = data->def;
744 	__le16 rval;
745 	u16 buff;
746 	int ret;
747 
748 	pm_runtime_get_sync(&data->client->dev);
749 
750 	mutex_lock(&data->lock);
751 
752 	ret = ak8975_start_read_axis(data, client);
753 	if (ret)
754 		goto exit;
755 
756 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
757 			client, def->data_regs[index],
758 			sizeof(rval), (u8*)&rval);
759 	if (ret < 0)
760 		goto exit;
761 
762 	/* Read out ST2 for release lock on measurment data. */
763 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST2]);
764 	if (ret < 0) {
765 		dev_err(&client->dev, "Error in reading ST2\n");
766 		goto exit;
767 	}
768 
769 	if (ret & (data->def->ctrl_masks[ST2_DERR] |
770 		   data->def->ctrl_masks[ST2_HOFL])) {
771 		dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
772 		ret = -EINVAL;
773 		goto exit;
774 	}
775 
776 	mutex_unlock(&data->lock);
777 
778 	pm_runtime_put_autosuspend(&data->client->dev);
779 
780 	/* Swap bytes and convert to valid range. */
781 	buff = le16_to_cpu(rval);
782 	*val = clamp_t(s16, buff, -def->range, def->range);
783 	return IIO_VAL_INT;
784 
785 exit:
786 	mutex_unlock(&data->lock);
787 	dev_err(&client->dev, "Error in reading axis\n");
788 	return ret;
789 }
790 
791 static int ak8975_read_raw(struct iio_dev *indio_dev,
792 			   struct iio_chan_spec const *chan,
793 			   int *val, int *val2,
794 			   long mask)
795 {
796 	struct ak8975_data *data = iio_priv(indio_dev);
797 
798 	switch (mask) {
799 	case IIO_CHAN_INFO_RAW:
800 		return ak8975_read_axis(indio_dev, chan->address, val);
801 	case IIO_CHAN_INFO_SCALE:
802 		*val = 0;
803 		*val2 = data->raw_to_gauss[chan->address];
804 		return IIO_VAL_INT_PLUS_MICRO;
805 	}
806 	return -EINVAL;
807 }
808 
809 static const struct iio_mount_matrix *
810 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
811 			const struct iio_chan_spec *chan)
812 {
813 	struct ak8975_data *data = iio_priv(indio_dev);
814 
815 	return &data->orientation;
816 }
817 
818 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
819 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
820 	{ }
821 };
822 
823 #define AK8975_CHANNEL(axis, index)					\
824 	{								\
825 		.type = IIO_MAGN,					\
826 		.modified = 1,						\
827 		.channel2 = IIO_MOD_##axis,				\
828 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
829 			     BIT(IIO_CHAN_INFO_SCALE),			\
830 		.address = index,					\
831 		.scan_index = index,					\
832 		.scan_type = {						\
833 			.sign = 's',					\
834 			.realbits = 16,					\
835 			.storagebits = 16,				\
836 			.endianness = IIO_CPU				\
837 		},							\
838 		.ext_info = ak8975_ext_info,				\
839 	}
840 
841 static const struct iio_chan_spec ak8975_channels[] = {
842 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
843 	IIO_CHAN_SOFT_TIMESTAMP(3),
844 };
845 
846 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
847 
848 static const struct iio_info ak8975_info = {
849 	.read_raw = &ak8975_read_raw,
850 };
851 
852 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
853 {
854 	struct ak8975_data *data = iio_priv(indio_dev);
855 	const struct i2c_client *client = data->client;
856 	const struct ak_def *def = data->def;
857 	int ret;
858 	__le16 fval[3];
859 
860 	mutex_lock(&data->lock);
861 
862 	ret = ak8975_start_read_axis(data, client);
863 	if (ret)
864 		goto unlock;
865 
866 	/*
867 	 * For each axis, read the flux value from the appropriate register
868 	 * (the register is specified in the iio device attributes).
869 	 */
870 	ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
871 							def->data_regs[0],
872 							3 * sizeof(fval[0]),
873 							(u8 *)fval);
874 	if (ret < 0)
875 		goto unlock;
876 
877 	mutex_unlock(&data->lock);
878 
879 	/* Clamp to valid range. */
880 	data->scan.channels[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
881 	data->scan.channels[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
882 	data->scan.channels[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
883 
884 	iio_push_to_buffers_with_ts(indio_dev, &data->scan, sizeof(data->scan),
885 				    iio_get_time_ns(indio_dev));
886 
887 	return;
888 
889 unlock:
890 	mutex_unlock(&data->lock);
891 	dev_err(&client->dev, "Error in reading axes block\n");
892 }
893 
894 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
895 {
896 	const struct iio_poll_func *pf = p;
897 	struct iio_dev *indio_dev = pf->indio_dev;
898 
899 	ak8975_fill_buffer(indio_dev);
900 	iio_trigger_notify_done(indio_dev->trig);
901 	return IRQ_HANDLED;
902 }
903 
904 static int ak8975_probe(struct i2c_client *client)
905 {
906 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
907 	struct ak8975_data *data;
908 	struct iio_dev *indio_dev;
909 	struct gpio_desc *eoc_gpiod;
910 	struct gpio_desc *reset_gpiod;
911 	int err;
912 	const char *name = NULL;
913 
914 	/*
915 	 * Grab and set up the supplied GPIO.
916 	 * We may not have a GPIO based IRQ to scan, that is fine, we will
917 	 * poll if so.
918 	 */
919 	eoc_gpiod = devm_gpiod_get_optional(&client->dev, NULL, GPIOD_IN);
920 	if (IS_ERR(eoc_gpiod))
921 		return PTR_ERR(eoc_gpiod);
922 	if (eoc_gpiod)
923 		gpiod_set_consumer_name(eoc_gpiod, "ak_8975");
924 
925 	/*
926 	 * According to AK09911 datasheet, if reset GPIO is provided then
927 	 * deassert reset on ak8975_power_on() and assert reset on
928 	 * ak8975_power_off().
929 	 */
930 	reset_gpiod = devm_gpiod_get_optional(&client->dev,
931 					      "reset", GPIOD_OUT_HIGH);
932 	if (IS_ERR(reset_gpiod))
933 		return PTR_ERR(reset_gpiod);
934 
935 	/* Register with IIO */
936 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
937 	if (indio_dev == NULL)
938 		return -ENOMEM;
939 
940 	data = iio_priv(indio_dev);
941 	i2c_set_clientdata(client, indio_dev);
942 
943 	data->client = client;
944 	data->eoc_gpiod = eoc_gpiod;
945 	data->reset_gpiod = reset_gpiod;
946 	data->eoc_irq = 0;
947 
948 	err = iio_read_mount_matrix(&client->dev, &data->orientation);
949 	if (err)
950 		return err;
951 
952 	/* id will be NULL when enumerated via ACPI */
953 	data->def = i2c_get_match_data(client);
954 	if (!data->def)
955 		return -ENODEV;
956 
957 	/* If enumerated via firmware node, fix the ABI */
958 	if (dev_fwnode(&client->dev))
959 		name = dev_name(&client->dev);
960 	else
961 		name = id->name;
962 
963 	/* Fetch the regulators */
964 	data->vdd = devm_regulator_get(&client->dev, "vdd");
965 	if (IS_ERR(data->vdd))
966 		return PTR_ERR(data->vdd);
967 	data->vid = devm_regulator_get(&client->dev, "vid");
968 	if (IS_ERR(data->vid))
969 		return PTR_ERR(data->vid);
970 
971 	err = ak8975_power_on(data);
972 	if (err)
973 		return err;
974 
975 	err = ak8975_who_i_am(client, data->def->type);
976 	if (err < 0) {
977 		dev_err(&client->dev, "Unexpected device\n");
978 		goto power_off;
979 	}
980 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
981 
982 	/* Perform some basic start-of-day setup of the device. */
983 	err = ak8975_setup(client);
984 	if (err < 0) {
985 		dev_err(&client->dev, "%s initialization fails\n", name);
986 		goto power_off;
987 	}
988 
989 	mutex_init(&data->lock);
990 	indio_dev->channels = ak8975_channels;
991 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
992 	indio_dev->info = &ak8975_info;
993 	indio_dev->available_scan_masks = ak8975_scan_masks;
994 	indio_dev->modes = INDIO_DIRECT_MODE;
995 	indio_dev->name = name;
996 
997 	err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
998 					 NULL);
999 	if (err) {
1000 		dev_err(&client->dev, "triggered buffer setup failed\n");
1001 		goto power_off;
1002 	}
1003 
1004 	err = iio_device_register(indio_dev);
1005 	if (err) {
1006 		dev_err(&client->dev, "device register failed\n");
1007 		goto cleanup_buffer;
1008 	}
1009 
1010 	/* Enable runtime PM */
1011 	pm_runtime_get_noresume(&client->dev);
1012 	pm_runtime_set_active(&client->dev);
1013 	pm_runtime_enable(&client->dev);
1014 	/*
1015 	 * The device comes online in 500us, so add two orders of magnitude
1016 	 * of delay before autosuspending: 50 ms.
1017 	 */
1018 	pm_runtime_set_autosuspend_delay(&client->dev, 50);
1019 	pm_runtime_use_autosuspend(&client->dev);
1020 	pm_runtime_put(&client->dev);
1021 
1022 	return 0;
1023 
1024 cleanup_buffer:
1025 	iio_triggered_buffer_cleanup(indio_dev);
1026 power_off:
1027 	ak8975_power_off(data);
1028 	return err;
1029 }
1030 
1031 static void ak8975_remove(struct i2c_client *client)
1032 {
1033 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1034 	struct ak8975_data *data = iio_priv(indio_dev);
1035 
1036 	pm_runtime_get_sync(&client->dev);
1037 	pm_runtime_put_noidle(&client->dev);
1038 	pm_runtime_disable(&client->dev);
1039 	iio_device_unregister(indio_dev);
1040 	iio_triggered_buffer_cleanup(indio_dev);
1041 	ak8975_set_mode(data, POWER_DOWN);
1042 	ak8975_power_off(data);
1043 }
1044 
1045 static int ak8975_runtime_suspend(struct device *dev)
1046 {
1047 	struct i2c_client *client = to_i2c_client(dev);
1048 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1049 	struct ak8975_data *data = iio_priv(indio_dev);
1050 	int ret;
1051 
1052 	/* Set the device in power down if it wasn't already */
1053 	ret = ak8975_set_mode(data, POWER_DOWN);
1054 	if (ret < 0) {
1055 		dev_err(&client->dev, "Error in setting power-down mode\n");
1056 		return ret;
1057 	}
1058 	/* Next cut the regulators */
1059 	ak8975_power_off(data);
1060 
1061 	return 0;
1062 }
1063 
1064 static int ak8975_runtime_resume(struct device *dev)
1065 {
1066 	struct i2c_client *client = to_i2c_client(dev);
1067 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1068 	struct ak8975_data *data = iio_priv(indio_dev);
1069 	int ret;
1070 
1071 	/* Take up the regulators */
1072 	ak8975_power_on(data);
1073 	/*
1074 	 * We come up in powered down mode, the reading routines will
1075 	 * put us in the mode to read values later.
1076 	 */
1077 	ret = ak8975_set_mode(data, POWER_DOWN);
1078 	if (ret < 0) {
1079 		dev_err(&client->dev, "Error in setting power-down mode\n");
1080 		return ret;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 static DEFINE_RUNTIME_DEV_PM_OPS(ak8975_dev_pm_ops, ak8975_runtime_suspend,
1087 				 ak8975_runtime_resume, NULL);
1088 
1089 static const struct acpi_device_id ak_acpi_match[] = {
1090 	{"AK8963", (kernel_ulong_t)&ak_def_array[AK8963] },
1091 	{"AK8975", (kernel_ulong_t)&ak_def_array[AK8975] },
1092 	{"AK009911", (kernel_ulong_t)&ak_def_array[AK09911] },
1093 	{"AK09911", (kernel_ulong_t)&ak_def_array[AK09911] },
1094 	{"AK09912", (kernel_ulong_t)&ak_def_array[AK09912] },
1095 	{"AKM9911", (kernel_ulong_t)&ak_def_array[AK09911] },
1096 	{"INVN6500", (kernel_ulong_t)&ak_def_array[AK8963] },
1097 	{ }
1098 };
1099 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
1100 
1101 static const struct i2c_device_id ak8975_id[] = {
1102 	{"AK8963", (kernel_ulong_t)&ak_def_array[AK8963] },
1103 	{"ak8963", (kernel_ulong_t)&ak_def_array[AK8963] },
1104 	{"ak8975", (kernel_ulong_t)&ak_def_array[AK8975] },
1105 	{"ak09911", (kernel_ulong_t)&ak_def_array[AK09911] },
1106 	{"ak09912", (kernel_ulong_t)&ak_def_array[AK09912] },
1107 	{"ak09916", (kernel_ulong_t)&ak_def_array[AK09916] },
1108 	{"ak09918", (kernel_ulong_t)&ak_def_array[AK09918] },
1109 	{ }
1110 };
1111 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1112 
1113 static const struct of_device_id ak8975_of_match[] = {
1114 	{ .compatible = "asahi-kasei,ak8975", .data = &ak_def_array[AK8975] },
1115 	{ .compatible = "ak8975", .data = &ak_def_array[AK8975] },
1116 	{ .compatible = "asahi-kasei,ak8963", .data = &ak_def_array[AK8963] },
1117 	{ .compatible = "ak8963", .data = &ak_def_array[AK8963] },
1118 	{ .compatible = "asahi-kasei,ak09911", .data = &ak_def_array[AK09911] },
1119 	{ .compatible = "ak09911", .data = &ak_def_array[AK09911] },
1120 	{ .compatible = "asahi-kasei,ak09912", .data = &ak_def_array[AK09912] },
1121 	{ .compatible = "ak09912", .data = &ak_def_array[AK09912] },
1122 	{ .compatible = "asahi-kasei,ak09916", .data = &ak_def_array[AK09916] },
1123 	{ .compatible = "asahi-kasei,ak09918", .data = &ak_def_array[AK09918] },
1124 	{ }
1125 };
1126 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1127 
1128 static struct i2c_driver ak8975_driver = {
1129 	.driver = {
1130 		.name	= "ak8975",
1131 		.pm = pm_ptr(&ak8975_dev_pm_ops),
1132 		.of_match_table = ak8975_of_match,
1133 		.acpi_match_table = ak_acpi_match,
1134 	},
1135 	.probe		= ak8975_probe,
1136 	.remove		= ak8975_remove,
1137 	.id_table	= ak8975_id,
1138 };
1139 module_i2c_driver(ak8975_driver);
1140 
1141 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1142 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1143 MODULE_LICENSE("GPL");
1144