1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * RPR-0521 ROHM Ambient Light and Proximity Sensor 4 * 5 * Copyright (c) 2015, Intel Corporation. 6 * 7 * IIO driver for RPR-0521RS (7-bit I2C slave address 0x38). 8 * 9 * TODO: illuminance channel 10 */ 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/cleanup.h> 15 #include <linux/init.h> 16 #include <linux/i2c.h> 17 #include <linux/regmap.h> 18 #include <linux/delay.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/buffer.h> 22 #include <linux/iio/trigger.h> 23 #include <linux/iio/trigger_consumer.h> 24 #include <linux/iio/triggered_buffer.h> 25 #include <linux/iio/sysfs.h> 26 #include <linux/pm_runtime.h> 27 28 #define RPR0521_REG_SYSTEM_CTRL 0x40 29 #define RPR0521_REG_MODE_CTRL 0x41 30 #define RPR0521_REG_ALS_CTRL 0x42 31 #define RPR0521_REG_PXS_CTRL 0x43 32 #define RPR0521_REG_PXS_DATA 0x44 /* 16-bit, little endian */ 33 #define RPR0521_REG_ALS_DATA0 0x46 /* 16-bit, little endian */ 34 #define RPR0521_REG_ALS_DATA1 0x48 /* 16-bit, little endian */ 35 #define RPR0521_REG_INTERRUPT 0x4A 36 #define RPR0521_REG_PS_OFFSET_LSB 0x53 37 #define RPR0521_REG_ID 0x92 38 39 #define RPR0521_MODE_ALS_MASK BIT(7) 40 #define RPR0521_MODE_PXS_MASK BIT(6) 41 #define RPR0521_MODE_MEAS_TIME_MASK GENMASK(3, 0) 42 #define RPR0521_ALS_DATA0_GAIN_MASK GENMASK(5, 4) 43 #define RPR0521_ALS_DATA0_GAIN_SHIFT 4 44 #define RPR0521_ALS_DATA1_GAIN_MASK GENMASK(3, 2) 45 #define RPR0521_ALS_DATA1_GAIN_SHIFT 2 46 #define RPR0521_PXS_GAIN_MASK GENMASK(5, 4) 47 #define RPR0521_PXS_GAIN_SHIFT 4 48 #define RPR0521_PXS_PERSISTENCE_MASK GENMASK(3, 0) 49 #define RPR0521_INTERRUPT_INT_TRIG_PS_MASK BIT(0) 50 #define RPR0521_INTERRUPT_INT_TRIG_ALS_MASK BIT(1) 51 #define RPR0521_INTERRUPT_INT_REASSERT_MASK BIT(3) 52 #define RPR0521_INTERRUPT_ALS_INT_STATUS_MASK BIT(6) 53 #define RPR0521_INTERRUPT_PS_INT_STATUS_MASK BIT(7) 54 55 #define RPR0521_MODE_ALS_ENABLE BIT(7) 56 #define RPR0521_MODE_ALS_DISABLE 0x00 57 #define RPR0521_MODE_PXS_ENABLE BIT(6) 58 #define RPR0521_MODE_PXS_DISABLE 0x00 59 #define RPR0521_PXS_PERSISTENCE_DRDY 0x00 60 61 #define RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE BIT(0) 62 #define RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE 0x00 63 #define RPR0521_INTERRUPT_INT_TRIG_ALS_ENABLE BIT(1) 64 #define RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE 0x00 65 #define RPR0521_INTERRUPT_INT_REASSERT_ENABLE BIT(3) 66 #define RPR0521_INTERRUPT_INT_REASSERT_DISABLE 0x00 67 68 #define RPR0521_MANUFACT_ID 0xE0 69 #define RPR0521_DEFAULT_MEAS_TIME 0x06 /* ALS - 100ms, PXS - 100ms */ 70 71 #define RPR0521_DRV_NAME "RPR0521" 72 73 #define RPR0521_SLEEP_DELAY_MS 2000 74 75 #define RPR0521_ALS_SCALE_AVAIL "0.007812 0.015625 0.5 1" 76 #define RPR0521_PXS_SCALE_AVAIL "0.125 0.5 1" 77 78 struct rpr0521_gain { 79 int scale; 80 int uscale; 81 }; 82 83 static const struct rpr0521_gain rpr0521_als_gain[4] = { 84 {1, 0}, /* x1 */ 85 {0, 500000}, /* x2 */ 86 {0, 15625}, /* x64 */ 87 {0, 7812}, /* x128 */ 88 }; 89 90 static const struct rpr0521_gain rpr0521_pxs_gain[3] = { 91 {1, 0}, /* x1 */ 92 {0, 500000}, /* x2 */ 93 {0, 125000}, /* x4 */ 94 }; 95 96 enum rpr0521_channel { 97 RPR0521_CHAN_PXS, 98 RPR0521_CHAN_ALS_DATA0, 99 RPR0521_CHAN_ALS_DATA1, 100 }; 101 102 struct rpr0521_reg_desc { 103 u8 address; 104 u8 device_mask; 105 }; 106 107 static const struct rpr0521_reg_desc rpr0521_data_reg[] = { 108 [RPR0521_CHAN_PXS] = { 109 .address = RPR0521_REG_PXS_DATA, 110 .device_mask = RPR0521_MODE_PXS_MASK, 111 }, 112 [RPR0521_CHAN_ALS_DATA0] = { 113 .address = RPR0521_REG_ALS_DATA0, 114 .device_mask = RPR0521_MODE_ALS_MASK, 115 }, 116 [RPR0521_CHAN_ALS_DATA1] = { 117 .address = RPR0521_REG_ALS_DATA1, 118 .device_mask = RPR0521_MODE_ALS_MASK, 119 }, 120 }; 121 122 static const struct rpr0521_gain_info { 123 u8 reg; 124 u8 mask; 125 u8 shift; 126 const struct rpr0521_gain *gain; 127 int size; 128 } rpr0521_gain[] = { 129 [RPR0521_CHAN_PXS] = { 130 .reg = RPR0521_REG_PXS_CTRL, 131 .mask = RPR0521_PXS_GAIN_MASK, 132 .shift = RPR0521_PXS_GAIN_SHIFT, 133 .gain = rpr0521_pxs_gain, 134 .size = ARRAY_SIZE(rpr0521_pxs_gain), 135 }, 136 [RPR0521_CHAN_ALS_DATA0] = { 137 .reg = RPR0521_REG_ALS_CTRL, 138 .mask = RPR0521_ALS_DATA0_GAIN_MASK, 139 .shift = RPR0521_ALS_DATA0_GAIN_SHIFT, 140 .gain = rpr0521_als_gain, 141 .size = ARRAY_SIZE(rpr0521_als_gain), 142 }, 143 [RPR0521_CHAN_ALS_DATA1] = { 144 .reg = RPR0521_REG_ALS_CTRL, 145 .mask = RPR0521_ALS_DATA1_GAIN_MASK, 146 .shift = RPR0521_ALS_DATA1_GAIN_SHIFT, 147 .gain = rpr0521_als_gain, 148 .size = ARRAY_SIZE(rpr0521_als_gain), 149 }, 150 }; 151 152 struct rpr0521_samp_freq { 153 int als_hz; 154 int als_uhz; 155 int pxs_hz; 156 int pxs_uhz; 157 }; 158 159 static const struct rpr0521_samp_freq rpr0521_samp_freq_i[13] = { 160 /* {ALS, PXS}, W==currently writable option */ 161 {0, 0, 0, 0}, /* W0000, 0=standby */ 162 {0, 0, 100, 0}, /* 0001 */ 163 {0, 0, 25, 0}, /* 0010 */ 164 {0, 0, 10, 0}, /* 0011 */ 165 {0, 0, 2, 500000}, /* 0100 */ 166 {10, 0, 20, 0}, /* 0101 */ 167 {10, 0, 10, 0}, /* W0110 */ 168 {10, 0, 2, 500000}, /* 0111 */ 169 {2, 500000, 20, 0}, /* 1000, measurement 100ms, sleep 300ms */ 170 {2, 500000, 10, 0}, /* 1001, measurement 100ms, sleep 300ms */ 171 {2, 500000, 0, 0}, /* 1010, high sensitivity mode */ 172 {2, 500000, 2, 500000}, /* W1011, high sensitivity mode */ 173 {20, 0, 20, 0} /* 1100, ALS_data x 0.5, see specification P.18 */ 174 }; 175 176 struct rpr0521_data { 177 struct i2c_client *client; 178 179 /* protect device params updates (e.g state, gain) */ 180 struct mutex lock; 181 182 /* device active status */ 183 bool als_dev_en; 184 bool pxs_dev_en; 185 186 struct iio_trigger *drdy_trigger0; 187 s64 irq_timestamp; 188 189 /* optimize runtime pm ops - enable/disable device only if needed */ 190 bool als_ps_need_en; 191 bool pxs_ps_need_en; 192 bool als_need_dis; 193 bool pxs_need_dis; 194 195 struct regmap *regmap; 196 197 /* 198 * Ensure correct naturally aligned timestamp. 199 * Note that the read will put garbage data into 200 * the padding but this should not be a problem 201 */ 202 struct { 203 __le16 channels[3]; 204 u8 garbage; 205 aligned_s64 ts; 206 } scan; 207 }; 208 209 static IIO_CONST_ATTR(in_intensity_scale_available, RPR0521_ALS_SCALE_AVAIL); 210 static IIO_CONST_ATTR(in_proximity_scale_available, RPR0521_PXS_SCALE_AVAIL); 211 212 /* 213 * Start with easy freq first, whole table of freq combinations is more 214 * complicated. 215 */ 216 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("2.5 10"); 217 218 static struct attribute *rpr0521_attributes[] = { 219 &iio_const_attr_in_intensity_scale_available.dev_attr.attr, 220 &iio_const_attr_in_proximity_scale_available.dev_attr.attr, 221 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 222 NULL, 223 }; 224 225 static const struct attribute_group rpr0521_attribute_group = { 226 .attrs = rpr0521_attributes, 227 }; 228 229 /* Order of the channel data in buffer */ 230 enum rpr0521_scan_index_order { 231 RPR0521_CHAN_INDEX_PXS, 232 RPR0521_CHAN_INDEX_BOTH, 233 RPR0521_CHAN_INDEX_IR, 234 }; 235 236 static const unsigned long rpr0521_available_scan_masks[] = { 237 BIT(RPR0521_CHAN_INDEX_PXS) | BIT(RPR0521_CHAN_INDEX_BOTH) | 238 BIT(RPR0521_CHAN_INDEX_IR), 239 0 240 }; 241 242 static const struct iio_chan_spec rpr0521_channels[] = { 243 { 244 .type = IIO_PROXIMITY, 245 .address = RPR0521_CHAN_PXS, 246 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 247 BIT(IIO_CHAN_INFO_OFFSET) | 248 BIT(IIO_CHAN_INFO_SCALE), 249 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 250 .scan_index = RPR0521_CHAN_INDEX_PXS, 251 .scan_type = { 252 .sign = 'u', 253 .realbits = 16, 254 .storagebits = 16, 255 .endianness = IIO_LE, 256 }, 257 }, 258 { 259 .type = IIO_INTENSITY, 260 .modified = 1, 261 .address = RPR0521_CHAN_ALS_DATA0, 262 .channel2 = IIO_MOD_LIGHT_BOTH, 263 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 264 BIT(IIO_CHAN_INFO_SCALE), 265 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 266 .scan_index = RPR0521_CHAN_INDEX_BOTH, 267 .scan_type = { 268 .sign = 'u', 269 .realbits = 16, 270 .storagebits = 16, 271 .endianness = IIO_LE, 272 }, 273 }, 274 { 275 .type = IIO_INTENSITY, 276 .modified = 1, 277 .address = RPR0521_CHAN_ALS_DATA1, 278 .channel2 = IIO_MOD_LIGHT_IR, 279 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 280 BIT(IIO_CHAN_INFO_SCALE), 281 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), 282 .scan_index = RPR0521_CHAN_INDEX_IR, 283 .scan_type = { 284 .sign = 'u', 285 .realbits = 16, 286 .storagebits = 16, 287 .endianness = IIO_LE, 288 }, 289 }, 290 }; 291 292 static int rpr0521_als_enable(struct rpr0521_data *data, u8 status) 293 { 294 int ret; 295 296 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL, 297 RPR0521_MODE_ALS_MASK, 298 status); 299 if (ret < 0) 300 return ret; 301 302 if (status & RPR0521_MODE_ALS_MASK) 303 data->als_dev_en = true; 304 else 305 data->als_dev_en = false; 306 307 return 0; 308 } 309 310 static int rpr0521_pxs_enable(struct rpr0521_data *data, u8 status) 311 { 312 int ret; 313 314 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL, 315 RPR0521_MODE_PXS_MASK, 316 status); 317 if (ret < 0) 318 return ret; 319 320 if (status & RPR0521_MODE_PXS_MASK) 321 data->pxs_dev_en = true; 322 else 323 data->pxs_dev_en = false; 324 325 return 0; 326 } 327 328 /** 329 * rpr0521_set_power_state - handles runtime PM state and sensors enabled status 330 * 331 * @data: rpr0521 device private data 332 * @on: state to be set for devices in @device_mask 333 * @device_mask: bitmask specifying for which device we need to update @on state 334 * 335 * Calls for this function must be balanced so that each ON should have matching 336 * OFF. Otherwise pm usage_count gets out of sync. 337 */ 338 static int rpr0521_set_power_state(struct rpr0521_data *data, bool on, 339 u8 device_mask) 340 { 341 #ifdef CONFIG_PM 342 int ret; 343 344 if (device_mask & RPR0521_MODE_ALS_MASK) { 345 data->als_ps_need_en = on; 346 data->als_need_dis = !on; 347 } 348 349 if (device_mask & RPR0521_MODE_PXS_MASK) { 350 data->pxs_ps_need_en = on; 351 data->pxs_need_dis = !on; 352 } 353 354 /* 355 * On: _resume() is called only when we are suspended 356 * Off: _suspend() is called after delay if _resume() is not 357 * called before that. 358 * Note: If either measurement is re-enabled before _suspend(), 359 * both stay enabled until _suspend(). 360 */ 361 if (on) 362 ret = pm_runtime_resume_and_get(&data->client->dev); 363 else 364 ret = pm_runtime_put_autosuspend(&data->client->dev); 365 if (ret < 0) { 366 dev_err(&data->client->dev, 367 "Failed: rpr0521_set_power_state for %d, ret %d\n", 368 on, ret); 369 return ret; 370 } 371 372 if (on) { 373 /* If _resume() was not called, enable measurement now. */ 374 if (data->als_ps_need_en) { 375 ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE); 376 if (ret) 377 return ret; 378 data->als_ps_need_en = false; 379 } 380 381 if (data->pxs_ps_need_en) { 382 ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE); 383 if (ret) 384 return ret; 385 data->pxs_ps_need_en = false; 386 } 387 } 388 #endif 389 return 0; 390 } 391 392 /* Interrupt register tells if this sensor caused the interrupt or not. */ 393 static inline bool rpr0521_is_triggered(struct rpr0521_data *data) 394 { 395 int ret; 396 int reg; 397 398 ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, ®); 399 if (ret < 0) 400 return false; /* Reg read failed. */ 401 if (reg & 402 (RPR0521_INTERRUPT_ALS_INT_STATUS_MASK | 403 RPR0521_INTERRUPT_PS_INT_STATUS_MASK)) 404 return true; 405 else 406 return false; /* Int not from this sensor. */ 407 } 408 409 /* IRQ to trigger handler */ 410 static irqreturn_t rpr0521_drdy_irq_handler(int irq, void *private) 411 { 412 struct iio_dev *indio_dev = private; 413 struct rpr0521_data *data = iio_priv(indio_dev); 414 415 data->irq_timestamp = iio_get_time_ns(indio_dev); 416 /* 417 * We need to wake the thread to read the interrupt reg. It 418 * is not possible to do that here because regmap_read takes a 419 * mutex. 420 */ 421 422 return IRQ_WAKE_THREAD; 423 } 424 425 static irqreturn_t rpr0521_drdy_irq_thread(int irq, void *private) 426 { 427 struct iio_dev *indio_dev = private; 428 struct rpr0521_data *data = iio_priv(indio_dev); 429 430 if (rpr0521_is_triggered(data)) { 431 iio_trigger_poll_nested(data->drdy_trigger0); 432 return IRQ_HANDLED; 433 } 434 435 return IRQ_NONE; 436 } 437 438 static irqreturn_t rpr0521_trigger_consumer_handler(int irq, void *p) 439 { 440 struct iio_poll_func *pf = p; 441 struct iio_dev *indio_dev = pf->indio_dev; 442 struct rpr0521_data *data = iio_priv(indio_dev); 443 int err; 444 445 /* Use irq timestamp when reasonable. */ 446 if (iio_trigger_using_own(indio_dev) && data->irq_timestamp) { 447 pf->timestamp = data->irq_timestamp; 448 data->irq_timestamp = 0; 449 } 450 /* Other chained trigger polls get timestamp only here. */ 451 if (!pf->timestamp) 452 pf->timestamp = iio_get_time_ns(indio_dev); 453 454 err = regmap_bulk_read(data->regmap, RPR0521_REG_PXS_DATA, 455 data->scan.channels, 456 (3 * 2) + 1); /* 3 * 16-bit + (discarded) int clear reg. */ 457 if (!err) 458 iio_push_to_buffers_with_ts(indio_dev, &data->scan, 459 sizeof(data->scan), pf->timestamp); 460 else 461 dev_err(&data->client->dev, 462 "Trigger consumer can't read from sensor.\n"); 463 pf->timestamp = 0; 464 465 iio_trigger_notify_done(indio_dev->trig); 466 467 return IRQ_HANDLED; 468 } 469 470 static int rpr0521_write_int_enable(struct rpr0521_data *data) 471 { 472 int err; 473 474 /* Interrupt after each measurement */ 475 err = regmap_update_bits(data->regmap, RPR0521_REG_PXS_CTRL, 476 RPR0521_PXS_PERSISTENCE_MASK, 477 RPR0521_PXS_PERSISTENCE_DRDY); 478 if (err) { 479 dev_err(&data->client->dev, "PS control reg write fail.\n"); 480 return -EBUSY; 481 } 482 483 /* Ignore latch and mode because of drdy */ 484 err = regmap_write(data->regmap, RPR0521_REG_INTERRUPT, 485 RPR0521_INTERRUPT_INT_REASSERT_DISABLE | 486 RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE | 487 RPR0521_INTERRUPT_INT_TRIG_PS_ENABLE 488 ); 489 if (err) { 490 dev_err(&data->client->dev, "Interrupt setup write fail.\n"); 491 return -EBUSY; 492 } 493 494 return 0; 495 } 496 497 static int rpr0521_write_int_disable(struct rpr0521_data *data) 498 { 499 /* Don't care of clearing mode, assert and latch. */ 500 return regmap_write(data->regmap, RPR0521_REG_INTERRUPT, 501 RPR0521_INTERRUPT_INT_TRIG_ALS_DISABLE | 502 RPR0521_INTERRUPT_INT_TRIG_PS_DISABLE 503 ); 504 } 505 506 /* 507 * Trigger producer enable / disable. Note that there will be trigs only when 508 * measurement data is ready to be read. 509 */ 510 static int rpr0521_pxs_drdy_set_state(struct iio_trigger *trigger, 511 bool enable_drdy) 512 { 513 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trigger); 514 struct rpr0521_data *data = iio_priv(indio_dev); 515 int err; 516 517 if (enable_drdy) 518 err = rpr0521_write_int_enable(data); 519 else 520 err = rpr0521_write_int_disable(data); 521 if (err) 522 dev_err(&data->client->dev, "rpr0521_pxs_drdy_set_state failed\n"); 523 524 return err; 525 } 526 527 static const struct iio_trigger_ops rpr0521_trigger_ops = { 528 .set_trigger_state = rpr0521_pxs_drdy_set_state, 529 }; 530 531 532 static int rpr0521_buffer_preenable(struct iio_dev *indio_dev) 533 { 534 int err; 535 struct rpr0521_data *data = iio_priv(indio_dev); 536 537 mutex_lock(&data->lock); 538 err = rpr0521_set_power_state(data, true, 539 (RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK)); 540 mutex_unlock(&data->lock); 541 if (err) 542 dev_err(&data->client->dev, "_buffer_preenable fail\n"); 543 544 return err; 545 } 546 547 static int rpr0521_buffer_postdisable(struct iio_dev *indio_dev) 548 { 549 int err; 550 struct rpr0521_data *data = iio_priv(indio_dev); 551 552 mutex_lock(&data->lock); 553 err = rpr0521_set_power_state(data, false, 554 (RPR0521_MODE_PXS_MASK | RPR0521_MODE_ALS_MASK)); 555 mutex_unlock(&data->lock); 556 if (err) 557 dev_err(&data->client->dev, "_buffer_postdisable fail\n"); 558 559 return err; 560 } 561 562 static const struct iio_buffer_setup_ops rpr0521_buffer_setup_ops = { 563 .preenable = rpr0521_buffer_preenable, 564 .postdisable = rpr0521_buffer_postdisable, 565 }; 566 567 static int rpr0521_get_gain(struct rpr0521_data *data, int chan, 568 int *val, int *val2) 569 { 570 int ret, reg, idx; 571 572 ret = regmap_read(data->regmap, rpr0521_gain[chan].reg, ®); 573 if (ret < 0) 574 return ret; 575 576 idx = (rpr0521_gain[chan].mask & reg) >> rpr0521_gain[chan].shift; 577 *val = rpr0521_gain[chan].gain[idx].scale; 578 *val2 = rpr0521_gain[chan].gain[idx].uscale; 579 580 return 0; 581 } 582 583 static int rpr0521_set_gain(struct rpr0521_data *data, int chan, 584 int val, int val2) 585 { 586 int i, idx = -EINVAL; 587 588 /* get gain index */ 589 for (i = 0; i < rpr0521_gain[chan].size; i++) 590 if (val == rpr0521_gain[chan].gain[i].scale && 591 val2 == rpr0521_gain[chan].gain[i].uscale) { 592 idx = i; 593 break; 594 } 595 596 if (idx < 0) 597 return idx; 598 599 return regmap_update_bits(data->regmap, rpr0521_gain[chan].reg, 600 rpr0521_gain[chan].mask, 601 idx << rpr0521_gain[chan].shift); 602 } 603 604 static int rpr0521_read_samp_freq(struct rpr0521_data *data, 605 enum iio_chan_type chan_type, 606 int *val, int *val2) 607 { 608 int reg, ret; 609 610 ret = regmap_read(data->regmap, RPR0521_REG_MODE_CTRL, ®); 611 if (ret < 0) 612 return ret; 613 614 reg &= RPR0521_MODE_MEAS_TIME_MASK; 615 if (reg >= ARRAY_SIZE(rpr0521_samp_freq_i)) 616 return -EINVAL; 617 618 switch (chan_type) { 619 case IIO_INTENSITY: 620 *val = rpr0521_samp_freq_i[reg].als_hz; 621 *val2 = rpr0521_samp_freq_i[reg].als_uhz; 622 return 0; 623 624 case IIO_PROXIMITY: 625 *val = rpr0521_samp_freq_i[reg].pxs_hz; 626 *val2 = rpr0521_samp_freq_i[reg].pxs_uhz; 627 return 0; 628 629 default: 630 return -EINVAL; 631 } 632 } 633 634 static int rpr0521_write_samp_freq_common(struct rpr0521_data *data, 635 enum iio_chan_type chan_type, 636 int val, int val2) 637 { 638 int i; 639 640 /* 641 * Ignore channel 642 * both pxs and als are setup only to same freq because of simplicity 643 */ 644 switch (val) { 645 case 0: 646 i = 0; 647 break; 648 649 case 2: 650 if (val2 != 500000) 651 return -EINVAL; 652 653 i = 11; 654 break; 655 656 case 10: 657 i = 6; 658 break; 659 660 default: 661 return -EINVAL; 662 } 663 664 return regmap_update_bits(data->regmap, 665 RPR0521_REG_MODE_CTRL, 666 RPR0521_MODE_MEAS_TIME_MASK, 667 i); 668 } 669 670 static int rpr0521_read_ps_offset(struct rpr0521_data *data, int *offset) 671 { 672 int ret; 673 __le16 buffer; 674 675 ret = regmap_bulk_read(data->regmap, 676 RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer)); 677 678 if (ret < 0) { 679 dev_err(&data->client->dev, "Failed to read PS OFFSET register\n"); 680 return ret; 681 } 682 *offset = le16_to_cpu(buffer); 683 684 return ret; 685 } 686 687 static int rpr0521_write_ps_offset(struct rpr0521_data *data, int offset) 688 { 689 int ret; 690 __le16 buffer; 691 692 buffer = cpu_to_le16(offset & 0x3ff); 693 ret = regmap_raw_write(data->regmap, 694 RPR0521_REG_PS_OFFSET_LSB, &buffer, sizeof(buffer)); 695 696 if (ret < 0) { 697 dev_err(&data->client->dev, "Failed to write PS OFFSET register\n"); 698 return ret; 699 } 700 701 return ret; 702 } 703 704 static int rpr0521_read_info_raw(struct rpr0521_data *data, 705 struct iio_chan_spec const *chan, 706 int *val) 707 { 708 u8 device_mask; 709 __le16 raw_data; 710 int ret; 711 712 device_mask = rpr0521_data_reg[chan->address].device_mask; 713 714 guard(mutex)(&data->lock); 715 ret = rpr0521_set_power_state(data, true, device_mask); 716 if (ret < 0) 717 return ret; 718 719 ret = regmap_bulk_read(data->regmap, 720 rpr0521_data_reg[chan->address].address, 721 &raw_data, sizeof(raw_data)); 722 if (ret < 0) { 723 rpr0521_set_power_state(data, false, device_mask); 724 return ret; 725 } 726 727 ret = rpr0521_set_power_state(data, false, device_mask); 728 if (ret < 0) 729 return ret; 730 731 *val = le16_to_cpu(raw_data); 732 733 return 0; 734 } 735 736 static int rpr0521_read_raw(struct iio_dev *indio_dev, 737 struct iio_chan_spec const *chan, int *val, 738 int *val2, long mask) 739 { 740 struct rpr0521_data *data = iio_priv(indio_dev); 741 int ret; 742 743 switch (mask) { 744 case IIO_CHAN_INFO_RAW: 745 if (chan->type != IIO_INTENSITY && chan->type != IIO_PROXIMITY) 746 return -EINVAL; 747 748 if (!iio_device_claim_direct(indio_dev)) 749 return -EBUSY; 750 751 ret = rpr0521_read_info_raw(data, chan, val); 752 iio_device_release_direct(indio_dev); 753 if (ret < 0) 754 return ret; 755 756 return IIO_VAL_INT; 757 758 case IIO_CHAN_INFO_SCALE: 759 mutex_lock(&data->lock); 760 ret = rpr0521_get_gain(data, chan->address, val, val2); 761 mutex_unlock(&data->lock); 762 if (ret < 0) 763 return ret; 764 765 return IIO_VAL_INT_PLUS_MICRO; 766 767 case IIO_CHAN_INFO_SAMP_FREQ: 768 mutex_lock(&data->lock); 769 ret = rpr0521_read_samp_freq(data, chan->type, val, val2); 770 mutex_unlock(&data->lock); 771 if (ret < 0) 772 return ret; 773 774 return IIO_VAL_INT_PLUS_MICRO; 775 776 case IIO_CHAN_INFO_OFFSET: 777 mutex_lock(&data->lock); 778 ret = rpr0521_read_ps_offset(data, val); 779 mutex_unlock(&data->lock); 780 if (ret < 0) 781 return ret; 782 783 return IIO_VAL_INT; 784 785 default: 786 return -EINVAL; 787 } 788 } 789 790 static int rpr0521_write_raw(struct iio_dev *indio_dev, 791 struct iio_chan_spec const *chan, int val, 792 int val2, long mask) 793 { 794 struct rpr0521_data *data = iio_priv(indio_dev); 795 int ret; 796 797 switch (mask) { 798 case IIO_CHAN_INFO_SCALE: 799 mutex_lock(&data->lock); 800 ret = rpr0521_set_gain(data, chan->address, val, val2); 801 mutex_unlock(&data->lock); 802 803 return ret; 804 805 case IIO_CHAN_INFO_SAMP_FREQ: 806 mutex_lock(&data->lock); 807 ret = rpr0521_write_samp_freq_common(data, chan->type, 808 val, val2); 809 mutex_unlock(&data->lock); 810 811 return ret; 812 813 case IIO_CHAN_INFO_OFFSET: 814 mutex_lock(&data->lock); 815 ret = rpr0521_write_ps_offset(data, val); 816 mutex_unlock(&data->lock); 817 818 return ret; 819 820 default: 821 return -EINVAL; 822 } 823 } 824 825 static const struct iio_info rpr0521_info = { 826 .read_raw = rpr0521_read_raw, 827 .write_raw = rpr0521_write_raw, 828 .attrs = &rpr0521_attribute_group, 829 }; 830 831 static int rpr0521_init(struct rpr0521_data *data) 832 { 833 int ret; 834 int id; 835 836 ret = regmap_read(data->regmap, RPR0521_REG_ID, &id); 837 if (ret < 0) { 838 dev_err(&data->client->dev, "Failed to read REG_ID register\n"); 839 return ret; 840 } 841 842 if (id != RPR0521_MANUFACT_ID) { 843 dev_err(&data->client->dev, "Wrong id, got %x, expected %x\n", 844 id, RPR0521_MANUFACT_ID); 845 return -ENODEV; 846 } 847 848 /* set default measurement time - 100 ms for both ALS and PS */ 849 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL, 850 RPR0521_MODE_MEAS_TIME_MASK, 851 RPR0521_DEFAULT_MEAS_TIME); 852 if (ret) { 853 pr_err("regmap_update_bits returned %d\n", ret); 854 return ret; 855 } 856 857 #ifndef CONFIG_PM 858 ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE); 859 if (ret < 0) 860 return ret; 861 ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE); 862 if (ret < 0) 863 return ret; 864 #endif 865 866 data->irq_timestamp = 0; 867 868 return 0; 869 } 870 871 static int rpr0521_poweroff(struct rpr0521_data *data) 872 { 873 int ret; 874 int tmp; 875 876 ret = regmap_update_bits(data->regmap, RPR0521_REG_MODE_CTRL, 877 RPR0521_MODE_ALS_MASK | 878 RPR0521_MODE_PXS_MASK, 879 RPR0521_MODE_ALS_DISABLE | 880 RPR0521_MODE_PXS_DISABLE); 881 if (ret < 0) 882 return ret; 883 884 data->als_dev_en = false; 885 data->pxs_dev_en = false; 886 887 /* 888 * Int pin keeps state after power off. Set pin to high impedance 889 * mode to prevent power drain. 890 */ 891 ret = regmap_read(data->regmap, RPR0521_REG_INTERRUPT, &tmp); 892 if (ret) { 893 dev_err(&data->client->dev, "Failed to reset int pin.\n"); 894 return ret; 895 } 896 897 return 0; 898 } 899 900 static bool rpr0521_is_volatile_reg(struct device *dev, unsigned int reg) 901 { 902 switch (reg) { 903 case RPR0521_REG_MODE_CTRL: 904 case RPR0521_REG_ALS_CTRL: 905 case RPR0521_REG_PXS_CTRL: 906 return false; 907 default: 908 return true; 909 } 910 } 911 912 static const struct regmap_config rpr0521_regmap_config = { 913 .name = "rpr0521_regmap", 914 915 .reg_bits = 8, 916 .val_bits = 8, 917 918 .max_register = RPR0521_REG_ID, 919 .cache_type = REGCACHE_RBTREE, 920 .volatile_reg = rpr0521_is_volatile_reg, 921 }; 922 923 static int rpr0521_probe(struct i2c_client *client) 924 { 925 struct rpr0521_data *data; 926 struct iio_dev *indio_dev; 927 struct regmap *regmap; 928 int ret; 929 930 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 931 if (!indio_dev) 932 return -ENOMEM; 933 934 regmap = devm_regmap_init_i2c(client, &rpr0521_regmap_config); 935 if (IS_ERR(regmap)) { 936 dev_err(&client->dev, "regmap_init failed!\n"); 937 return PTR_ERR(regmap); 938 } 939 940 data = iio_priv(indio_dev); 941 i2c_set_clientdata(client, indio_dev); 942 data->client = client; 943 data->regmap = regmap; 944 945 mutex_init(&data->lock); 946 947 indio_dev->info = &rpr0521_info; 948 indio_dev->name = RPR0521_DRV_NAME; 949 indio_dev->channels = rpr0521_channels; 950 indio_dev->num_channels = ARRAY_SIZE(rpr0521_channels); 951 indio_dev->modes = INDIO_DIRECT_MODE; 952 953 ret = rpr0521_init(data); 954 if (ret < 0) { 955 dev_err(&client->dev, "rpr0521 chip init failed\n"); 956 return ret; 957 } 958 959 ret = pm_runtime_set_active(&client->dev); 960 if (ret < 0) 961 goto err_poweroff; 962 963 pm_runtime_enable(&client->dev); 964 pm_runtime_set_autosuspend_delay(&client->dev, RPR0521_SLEEP_DELAY_MS); 965 pm_runtime_use_autosuspend(&client->dev); 966 967 /* 968 * If sensor write/read is needed in _probe after _use_autosuspend, 969 * sensor needs to be _resumed first using rpr0521_set_power_state(). 970 */ 971 972 /* IRQ to trigger setup */ 973 if (client->irq) { 974 /* Trigger0 producer setup */ 975 data->drdy_trigger0 = devm_iio_trigger_alloc( 976 indio_dev->dev.parent, 977 "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); 978 if (!data->drdy_trigger0) { 979 ret = -ENOMEM; 980 goto err_pm_disable; 981 } 982 data->drdy_trigger0->ops = &rpr0521_trigger_ops; 983 indio_dev->available_scan_masks = rpr0521_available_scan_masks; 984 iio_trigger_set_drvdata(data->drdy_trigger0, indio_dev); 985 986 /* Ties irq to trigger producer handler. */ 987 ret = devm_request_threaded_irq(&client->dev, client->irq, 988 rpr0521_drdy_irq_handler, rpr0521_drdy_irq_thread, 989 IRQF_TRIGGER_FALLING | IRQF_ONESHOT, 990 "rpr0521_event", indio_dev); 991 if (ret < 0) { 992 dev_err(&client->dev, "request irq %d for trigger0 failed\n", 993 client->irq); 994 goto err_pm_disable; 995 } 996 997 ret = devm_iio_trigger_register(indio_dev->dev.parent, 998 data->drdy_trigger0); 999 if (ret) { 1000 dev_err(&client->dev, "iio trigger register failed\n"); 1001 goto err_pm_disable; 1002 } 1003 1004 /* 1005 * Now whole pipe from physical interrupt (irq defined by 1006 * devicetree to device) to trigger0 output is set up. 1007 */ 1008 1009 /* Trigger consumer setup */ 1010 ret = devm_iio_triggered_buffer_setup(indio_dev->dev.parent, 1011 indio_dev, 1012 iio_pollfunc_store_time, 1013 rpr0521_trigger_consumer_handler, 1014 &rpr0521_buffer_setup_ops); 1015 if (ret < 0) { 1016 dev_err(&client->dev, "iio triggered buffer setup failed\n"); 1017 goto err_pm_disable; 1018 } 1019 } 1020 1021 ret = iio_device_register(indio_dev); 1022 if (ret) 1023 goto err_pm_disable; 1024 1025 return 0; 1026 1027 err_pm_disable: 1028 pm_runtime_disable(&client->dev); 1029 pm_runtime_set_suspended(&client->dev); 1030 err_poweroff: 1031 rpr0521_poweroff(data); 1032 1033 return ret; 1034 } 1035 1036 static void rpr0521_remove(struct i2c_client *client) 1037 { 1038 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1039 1040 iio_device_unregister(indio_dev); 1041 1042 pm_runtime_disable(&client->dev); 1043 pm_runtime_set_suspended(&client->dev); 1044 1045 rpr0521_poweroff(iio_priv(indio_dev)); 1046 } 1047 1048 static int rpr0521_runtime_suspend(struct device *dev) 1049 { 1050 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 1051 struct rpr0521_data *data = iio_priv(indio_dev); 1052 int ret; 1053 1054 mutex_lock(&data->lock); 1055 /* If measurements are enabled, enable them on resume */ 1056 if (!data->als_need_dis) 1057 data->als_ps_need_en = data->als_dev_en; 1058 if (!data->pxs_need_dis) 1059 data->pxs_ps_need_en = data->pxs_dev_en; 1060 1061 /* disable channels and sets {als,pxs}_dev_en to false */ 1062 ret = rpr0521_poweroff(data); 1063 regcache_mark_dirty(data->regmap); 1064 mutex_unlock(&data->lock); 1065 1066 return ret; 1067 } 1068 1069 static int rpr0521_runtime_resume(struct device *dev) 1070 { 1071 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 1072 struct rpr0521_data *data = iio_priv(indio_dev); 1073 int ret; 1074 1075 regcache_sync(data->regmap); 1076 if (data->als_ps_need_en) { 1077 ret = rpr0521_als_enable(data, RPR0521_MODE_ALS_ENABLE); 1078 if (ret < 0) 1079 return ret; 1080 data->als_ps_need_en = false; 1081 } 1082 1083 if (data->pxs_ps_need_en) { 1084 ret = rpr0521_pxs_enable(data, RPR0521_MODE_PXS_ENABLE); 1085 if (ret < 0) 1086 return ret; 1087 data->pxs_ps_need_en = false; 1088 } 1089 msleep(100); //wait for first measurement result 1090 1091 return 0; 1092 } 1093 1094 static const struct dev_pm_ops rpr0521_pm_ops = { 1095 RUNTIME_PM_OPS(rpr0521_runtime_suspend, rpr0521_runtime_resume, NULL) 1096 }; 1097 1098 static const struct acpi_device_id rpr0521_acpi_match[] = { 1099 {"RPR0521", 0}, 1100 { } 1101 }; 1102 MODULE_DEVICE_TABLE(acpi, rpr0521_acpi_match); 1103 1104 static const struct i2c_device_id rpr0521_id[] = { 1105 { "rpr0521" }, 1106 { } 1107 }; 1108 1109 MODULE_DEVICE_TABLE(i2c, rpr0521_id); 1110 1111 static struct i2c_driver rpr0521_driver = { 1112 .driver = { 1113 .name = RPR0521_DRV_NAME, 1114 .pm = pm_ptr(&rpr0521_pm_ops), 1115 .acpi_match_table = rpr0521_acpi_match, 1116 }, 1117 .probe = rpr0521_probe, 1118 .remove = rpr0521_remove, 1119 .id_table = rpr0521_id, 1120 }; 1121 1122 module_i2c_driver(rpr0521_driver); 1123 1124 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>"); 1125 MODULE_DESCRIPTION("RPR0521 ROHM Ambient Light and Proximity Sensor driver"); 1126 MODULE_LICENSE("GPL v2"); 1127