xref: /linux/drivers/iio/light/rohm-bu27034.c (revision f9bff0e31881d03badf191d3b0005839391f5f2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BU27034 ROHM Ambient Light Sensor
4  *
5  * Copyright (c) 2023, ROHM Semiconductor.
6  * https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/light/bu27034nuc-e.pdf
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/device.h>
12 #include <linux/i2c.h>
13 #include <linux/module.h>
14 #include <linux/property.h>
15 #include <linux/regmap.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/units.h>
18 
19 #include <linux/iio/buffer.h>
20 #include <linux/iio/iio.h>
21 #include <linux/iio/iio-gts-helper.h>
22 #include <linux/iio/kfifo_buf.h>
23 
24 #define BU27034_REG_SYSTEM_CONTROL	0x40
25 #define BU27034_MASK_SW_RESET		BIT(7)
26 #define BU27034_MASK_PART_ID		GENMASK(5, 0)
27 #define BU27034_ID			0x19
28 #define BU27034_REG_MODE_CONTROL1	0x41
29 #define BU27034_MASK_MEAS_MODE		GENMASK(2, 0)
30 
31 #define BU27034_REG_MODE_CONTROL2	0x42
32 #define BU27034_MASK_D01_GAIN		GENMASK(7, 3)
33 #define BU27034_MASK_D2_GAIN_HI		GENMASK(7, 6)
34 #define BU27034_MASK_D2_GAIN_LO		GENMASK(2, 0)
35 
36 #define BU27034_REG_MODE_CONTROL3	0x43
37 #define BU27034_REG_MODE_CONTROL4	0x44
38 #define BU27034_MASK_MEAS_EN		BIT(0)
39 #define BU27034_MASK_VALID		BIT(7)
40 #define BU27034_REG_DATA0_LO		0x50
41 #define BU27034_REG_DATA1_LO		0x52
42 #define BU27034_REG_DATA2_LO		0x54
43 #define BU27034_REG_DATA2_HI		0x55
44 #define BU27034_REG_MANUFACTURER_ID	0x92
45 #define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID
46 
47 /*
48  * The BU27034 does not have interrupt to trigger the data read when a
49  * measurement has finished. Hence we poll the VALID bit in a thread. We will
50  * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before
51  * the expected sampling time to prevent the drifting.
52  *
53  * If we constantly wake up a bit too late we would eventually skip a sample.
54  * And because the sleep can't wake up _exactly_ at given time this would be
55  * inevitable even if the sensor clock would be perfectly phase-locked to CPU
56  * clock - which we can't say is the case.
57  *
58  * This is still fragile. No matter how big advance do we have, we will still
59  * risk of losing a sample because things can in a rainy-day scenario be
60  * delayed a lot. Yet, more we reserve the time for polling, more we also lose
61  * the performance by spending cycles polling the register. So, selecting this
62  * value is a balancing dance between severity of wasting CPU time and severity
63  * of losing samples.
64  *
65  * In most cases losing the samples is not _that_ crucial because light levels
66  * tend to change slowly.
67  *
68  * Other option that was pointed to me would be always sleeping 1/2 of the
69  * measurement time, checking the VALID bit and just sleeping again if the bit
70  * was not set. That should be pretty tolerant against missing samples due to
71  * the scheduling delays while also not wasting much of cycles for polling.
72  * Downside is that the time-stamps would be very inaccurate as the wake-up
73  * would not really be tied to the sensor toggling the valid bit. This would also
74  * result 'jumps' in the time-stamps when the delay drifted so that wake-up was
75  * performed during the consecutive wake-ups (Or, when sensor and CPU clocks
76  * were very different and scheduling the wake-ups was very close to given
77  * timeout - and when the time-outs were very close to the actual sensor
78  * sampling, Eg. once in a blue moon, two consecutive time-outs would occur
79  * without having a sample ready).
80  */
81 #define BU27034_MEAS_WAIT_PREMATURE_MS	5
82 #define BU27034_DATA_WAIT_TIME_US	1000
83 #define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000)
84 
85 #define BU27034_RETRY_LIMIT 18
86 
87 enum {
88 	BU27034_CHAN_ALS,
89 	BU27034_CHAN_DATA0,
90 	BU27034_CHAN_DATA1,
91 	BU27034_CHAN_DATA2,
92 	BU27034_NUM_CHANS
93 };
94 
95 static const unsigned long bu27034_scan_masks[] = {
96 	GENMASK(BU27034_CHAN_DATA2, BU27034_CHAN_ALS), 0
97 };
98 
99 /*
100  * Available scales with gain 1x - 4096x, timings 55, 100, 200, 400 mS
101  * Time impacts to gain: 1x, 2x, 4x, 8x.
102  *
103  * => Max total gain is HWGAIN * gain by integration time (8 * 4096) = 32768
104  *
105  * Using NANO precision for scale we must use scale 64x corresponding gain 1x
106  * to avoid precision loss. (32x would result scale 976 562.5(nanos).
107  */
108 #define BU27034_SCALE_1X	64
109 
110 /* See the data sheet for the "Gain Setting" table */
111 #define BU27034_GSEL_1X		0x00 /* 00000 */
112 #define BU27034_GSEL_4X		0x08 /* 01000 */
113 #define BU27034_GSEL_16X	0x0a /* 01010 */
114 #define BU27034_GSEL_32X	0x0b /* 01011 */
115 #define BU27034_GSEL_64X	0x0c /* 01100 */
116 #define BU27034_GSEL_256X	0x18 /* 11000 */
117 #define BU27034_GSEL_512X	0x19 /* 11001 */
118 #define BU27034_GSEL_1024X	0x1a /* 11010 */
119 #define BU27034_GSEL_2048X	0x1b /* 11011 */
120 #define BU27034_GSEL_4096X	0x1c /* 11100 */
121 
122 /* Available gain settings */
123 static const struct iio_gain_sel_pair bu27034_gains[] = {
124 	GAIN_SCALE_GAIN(1, BU27034_GSEL_1X),
125 	GAIN_SCALE_GAIN(4, BU27034_GSEL_4X),
126 	GAIN_SCALE_GAIN(16, BU27034_GSEL_16X),
127 	GAIN_SCALE_GAIN(32, BU27034_GSEL_32X),
128 	GAIN_SCALE_GAIN(64, BU27034_GSEL_64X),
129 	GAIN_SCALE_GAIN(256, BU27034_GSEL_256X),
130 	GAIN_SCALE_GAIN(512, BU27034_GSEL_512X),
131 	GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X),
132 	GAIN_SCALE_GAIN(2048, BU27034_GSEL_2048X),
133 	GAIN_SCALE_GAIN(4096, BU27034_GSEL_4096X),
134 };
135 
136 /*
137  * The IC has 5 modes for sampling time. 5 mS mode is exceptional as it limits
138  * the data collection to data0-channel only and cuts the supported range to
139  * 10 bit. It is not supported by the driver.
140  *
141  * "normal" modes are 55, 100, 200 and 400 mS modes - which do have direct
142  * multiplying impact to the register values (similar to gain).
143  *
144  * This means that if meas-mode is changed for example from 400 => 200,
145  * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8.
146  */
147 #define BU27034_MEAS_MODE_100MS		0
148 #define BU27034_MEAS_MODE_55MS		1
149 #define BU27034_MEAS_MODE_200MS		2
150 #define BU27034_MEAS_MODE_400MS		4
151 
152 static const struct iio_itime_sel_mul bu27034_itimes[] = {
153 	GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8),
154 	GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4),
155 	GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2),
156 	GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1),
157 };
158 
159 #define BU27034_CHAN_DATA(_name, _ch2)					\
160 {									\
161 	.type = IIO_INTENSITY,						\
162 	.channel = BU27034_CHAN_##_name,				\
163 	.channel2 = (_ch2),						\
164 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
165 			      BIT(IIO_CHAN_INFO_SCALE),			\
166 	.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE),	\
167 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),		\
168 	.info_mask_shared_by_all_available =				\
169 					BIT(IIO_CHAN_INFO_INT_TIME),	\
170 	.address = BU27034_REG_##_name##_LO,				\
171 	.scan_index = BU27034_CHAN_##_name,				\
172 	.scan_type = {							\
173 		.sign = 'u',						\
174 		.realbits = 16,						\
175 		.storagebits = 16,					\
176 		.endianness = IIO_LE,					\
177 	},								\
178 	.indexed = 1,							\
179 }
180 
181 static const struct iio_chan_spec bu27034_channels[] = {
182 	{
183 		.type = IIO_LIGHT,
184 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
185 				      BIT(IIO_CHAN_INFO_SCALE),
186 		.channel = BU27034_CHAN_ALS,
187 		.scan_index = BU27034_CHAN_ALS,
188 		.scan_type = {
189 			.sign = 'u',
190 			.realbits = 32,
191 			.storagebits = 32,
192 			.endianness = IIO_CPU,
193 		},
194 	},
195 	/*
196 	 * The BU27034 DATA0 and DATA1 channels are both on the visible light
197 	 * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm.
198 	 * These wave lengths are pretty much on the border of colours making
199 	 * these a poor candidates for R/G/B standardization. Hence they're both
200 	 * marked as clear channels
201 	 */
202 	BU27034_CHAN_DATA(DATA0, IIO_MOD_LIGHT_CLEAR),
203 	BU27034_CHAN_DATA(DATA1, IIO_MOD_LIGHT_CLEAR),
204 	BU27034_CHAN_DATA(DATA2, IIO_MOD_LIGHT_IR),
205 	IIO_CHAN_SOFT_TIMESTAMP(4),
206 };
207 
208 struct bu27034_data {
209 	struct regmap *regmap;
210 	struct device *dev;
211 	/*
212 	 * Protect gain and time during scale adjustment and data reading.
213 	 * Protect measurement enabling/disabling.
214 	 */
215 	struct mutex mutex;
216 	struct iio_gts gts;
217 	struct task_struct *task;
218 	__le16 raw[3];
219 	struct {
220 		u32 mlux;
221 		__le16 channels[3];
222 		s64 ts __aligned(8);
223 	} scan;
224 };
225 
226 struct bu27034_result {
227 	u16 ch0;
228 	u16 ch1;
229 	u16 ch2;
230 };
231 
232 static const struct regmap_range bu27034_volatile_ranges[] = {
233 	{
234 		.range_min = BU27034_REG_SYSTEM_CONTROL,
235 		.range_max = BU27034_REG_SYSTEM_CONTROL,
236 	}, {
237 		.range_min = BU27034_REG_MODE_CONTROL4,
238 		.range_max = BU27034_REG_MODE_CONTROL4,
239 	}, {
240 		.range_min = BU27034_REG_DATA0_LO,
241 		.range_max = BU27034_REG_DATA2_HI,
242 	},
243 };
244 
245 static const struct regmap_access_table bu27034_volatile_regs = {
246 	.yes_ranges = &bu27034_volatile_ranges[0],
247 	.n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges),
248 };
249 
250 static const struct regmap_range bu27034_read_only_ranges[] = {
251 	{
252 		.range_min = BU27034_REG_DATA0_LO,
253 		.range_max = BU27034_REG_DATA2_HI,
254 	}, {
255 		.range_min = BU27034_REG_MANUFACTURER_ID,
256 		.range_max = BU27034_REG_MANUFACTURER_ID,
257 	}
258 };
259 
260 static const struct regmap_access_table bu27034_ro_regs = {
261 	.no_ranges = &bu27034_read_only_ranges[0],
262 	.n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges),
263 };
264 
265 static const struct regmap_config bu27034_regmap = {
266 	.reg_bits = 8,
267 	.val_bits = 8,
268 	.max_register = BU27034_REG_MAX,
269 	.cache_type = REGCACHE_RBTREE,
270 	.volatile_table = &bu27034_volatile_regs,
271 	.wr_table = &bu27034_ro_regs,
272 };
273 
274 struct bu27034_gain_check {
275 	int old_gain;
276 	int new_gain;
277 	int chan;
278 };
279 
280 static int bu27034_get_gain_sel(struct bu27034_data *data, int chan)
281 {
282 	int ret, val;
283 
284 	switch (chan) {
285 	case BU27034_CHAN_DATA0:
286 	case BU27034_CHAN_DATA1:
287 	{
288 		int reg[] = {
289 			[BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2,
290 			[BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3,
291 		};
292 		ret = regmap_read(data->regmap, reg[chan], &val);
293 		if (ret)
294 			return ret;
295 
296 		return FIELD_GET(BU27034_MASK_D01_GAIN, val);
297 	}
298 	case BU27034_CHAN_DATA2:
299 	{
300 		int d2_lo_bits = fls(BU27034_MASK_D2_GAIN_LO);
301 
302 		ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL2, &val);
303 		if (ret)
304 			return ret;
305 
306 		/*
307 		 * The data2 channel gain is composed by 5 non continuous bits
308 		 * [7:6], [2:0]. Thus when we combine the 5-bit 'selector'
309 		 * from register value we must right shift the high bits by 3.
310 		 */
311 		return FIELD_GET(BU27034_MASK_D2_GAIN_HI, val) << d2_lo_bits |
312 		       FIELD_GET(BU27034_MASK_D2_GAIN_LO, val);
313 	}
314 	default:
315 		return -EINVAL;
316 	}
317 }
318 
319 static int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain)
320 {
321 	int ret, sel;
322 
323 	ret = bu27034_get_gain_sel(data, chan);
324 	if (ret < 0)
325 		return ret;
326 
327 	sel = ret;
328 
329 	ret = iio_gts_find_gain_by_sel(&data->gts, sel);
330 	if (ret < 0) {
331 		dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan,
332 			sel);
333 
334 		return ret;
335 	}
336 
337 	*gain = ret;
338 
339 	return 0;
340 }
341 
342 static int bu27034_get_int_time(struct bu27034_data *data)
343 {
344 	int ret, sel;
345 
346 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel);
347 	if (ret)
348 		return ret;
349 
350 	return iio_gts_find_int_time_by_sel(&data->gts,
351 					    sel & BU27034_MASK_MEAS_MODE);
352 }
353 
354 static int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val,
355 			      int *val2)
356 {
357 	int gain, ret;
358 
359 	ret = bu27034_get_gain(data, channel, &gain);
360 	if (ret)
361 		return ret;
362 
363 	ret = bu27034_get_int_time(data);
364 	if (ret < 0)
365 		return ret;
366 
367 	return iio_gts_get_scale(&data->gts, gain, ret, val, val2);
368 }
369 
370 static int bu27034_get_scale(struct bu27034_data *data, int channel, int *val,
371 			      int *val2)
372 {
373 	int ret;
374 
375 	if (channel == BU27034_CHAN_ALS) {
376 		*val = 0;
377 		*val2 = 1000;
378 		return IIO_VAL_INT_PLUS_MICRO;
379 	}
380 
381 	mutex_lock(&data->mutex);
382 	ret = _bu27034_get_scale(data, channel, val, val2);
383 	mutex_unlock(&data->mutex);
384 	if (ret)
385 		return ret;
386 
387 	return IIO_VAL_INT_PLUS_NANO;
388 }
389 
390 /* Caller should hold the lock to protect lux reading */
391 static int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel)
392 {
393 	static const int reg[] = {
394 		[BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2,
395 		[BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3,
396 	};
397 	int mask, val;
398 
399 	if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1)
400 		return -EINVAL;
401 
402 	val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel);
403 
404 	mask = BU27034_MASK_D01_GAIN;
405 
406 	if (chan == BU27034_CHAN_DATA0) {
407 		/*
408 		 * We keep the same gain for channel 2 as we set for channel 0
409 		 * We can't allow them to be individually controlled because
410 		 * setting one will impact also the other. Also, if we don't
411 		 * always update both gains we may result unsupported bit
412 		 * combinations.
413 		 *
414 		 * This is not nice but this is yet another place where the
415 		 * user space must be prepared to surprizes. Namely, see chan 2
416 		 * gain changed when chan 0 gain is changed.
417 		 *
418 		 * This is not fatal for most users though. I don't expect the
419 		 * channel 2 to be used in any generic cases - the intensity
420 		 * values provided by the sensor for IR area are not openly
421 		 * documented. Also, channel 2 is not used for visible light.
422 		 *
423 		 * So, if there is application which is written to utilize the
424 		 * channel 2 - then it is probably specifically targeted to this
425 		 * sensor and knows how to utilize those values. It is safe to
426 		 * hope such user can also cope with the gain changes.
427 		 */
428 		mask |=  BU27034_MASK_D2_GAIN_LO;
429 
430 		/*
431 		 * The D2 gain bits are directly the lowest bits of selector.
432 		 * Just do add those bits to the value
433 		 */
434 		val |= sel & BU27034_MASK_D2_GAIN_LO;
435 	}
436 
437 	return regmap_update_bits(data->regmap, reg[chan], mask, val);
438 }
439 
440 static int bu27034_set_gain(struct bu27034_data *data, int chan, int gain)
441 {
442 	int ret;
443 
444 	/*
445 	 * We don't allow setting channel 2 gain as it messes up the
446 	 * gain for channel 0 - which shares the high bits
447 	 */
448 	if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1)
449 		return -EINVAL;
450 
451 	ret = iio_gts_find_sel_by_gain(&data->gts, gain);
452 	if (ret < 0)
453 		return ret;
454 
455 	return bu27034_write_gain_sel(data, chan, ret);
456 }
457 
458 /* Caller should hold the lock to protect data->int_time */
459 static int bu27034_set_int_time(struct bu27034_data *data, int time)
460 {
461 	int ret;
462 
463 	ret = iio_gts_find_sel_by_int_time(&data->gts, time);
464 	if (ret < 0)
465 		return ret;
466 
467 	return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1,
468 				 BU27034_MASK_MEAS_MODE, ret);
469 }
470 
471 /*
472  * We try to change the time in such way that the scale is maintained for
473  * given channels by adjusting gain so that it compensates the time change.
474  */
475 static int bu27034_try_set_int_time(struct bu27034_data *data, int time_us)
476 {
477 	struct bu27034_gain_check gains[] = {
478 		{ .chan = BU27034_CHAN_DATA0 },
479 		{ .chan = BU27034_CHAN_DATA1 },
480 	};
481 	int numg = ARRAY_SIZE(gains);
482 	int ret, int_time_old, i;
483 
484 	mutex_lock(&data->mutex);
485 	ret = bu27034_get_int_time(data);
486 	if (ret < 0)
487 		goto unlock_out;
488 
489 	int_time_old = ret;
490 
491 	if (!iio_gts_valid_time(&data->gts, time_us)) {
492 		dev_err(data->dev, "Unsupported integration time %u\n",
493 			time_us);
494 		ret = -EINVAL;
495 
496 		goto unlock_out;
497 	}
498 
499 	if (time_us == int_time_old) {
500 		ret = 0;
501 		goto unlock_out;
502 	}
503 
504 	for (i = 0; i < numg; i++) {
505 		ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain);
506 		if (ret)
507 			goto unlock_out;
508 
509 		ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts,
510 							     gains[i].old_gain,
511 							     int_time_old, time_us,
512 							     &gains[i].new_gain);
513 		if (ret) {
514 			int scale1, scale2;
515 			bool ok;
516 
517 			_bu27034_get_scale(data, gains[i].chan, &scale1, &scale2);
518 			dev_dbg(data->dev,
519 				"chan %u, can't support time %u with scale %u %u\n",
520 				gains[i].chan, time_us, scale1, scale2);
521 
522 			if (gains[i].new_gain < 0)
523 				goto unlock_out;
524 
525 			/*
526 			 * If caller requests for integration time change and we
527 			 * can't support the scale - then the caller should be
528 			 * prepared to 'pick up the pieces and deal with the
529 			 * fact that the scale changed'.
530 			 */
531 			ret = iio_find_closest_gain_low(&data->gts,
532 							gains[i].new_gain, &ok);
533 
534 			if (!ok)
535 				dev_dbg(data->dev,
536 					"optimal gain out of range for chan %u\n",
537 					gains[i].chan);
538 
539 			if (ret < 0) {
540 				dev_dbg(data->dev,
541 					 "Total gain increase. Risk of saturation");
542 				ret = iio_gts_get_min_gain(&data->gts);
543 				if (ret < 0)
544 					goto unlock_out;
545 			}
546 			dev_dbg(data->dev, "chan %u scale changed\n",
547 				 gains[i].chan);
548 			gains[i].new_gain = ret;
549 			dev_dbg(data->dev, "chan %u new gain %u\n",
550 				gains[i].chan, gains[i].new_gain);
551 		}
552 	}
553 
554 	for (i = 0; i < numg; i++) {
555 		ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain);
556 		if (ret)
557 			goto unlock_out;
558 	}
559 
560 	ret = bu27034_set_int_time(data, time_us);
561 
562 unlock_out:
563 	mutex_unlock(&data->mutex);
564 
565 	return ret;
566 }
567 
568 static int bu27034_set_scale(struct bu27034_data *data, int chan,
569 			    int val, int val2)
570 {
571 	int ret, time_sel, gain_sel, i;
572 	bool found = false;
573 
574 	if (chan == BU27034_CHAN_DATA2)
575 		return -EINVAL;
576 
577 	if (chan == BU27034_CHAN_ALS) {
578 		if (val == 0 && val2 == 1000)
579 			return 0;
580 
581 		return -EINVAL;
582 	}
583 
584 	mutex_lock(&data->mutex);
585 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel);
586 	if (ret)
587 		goto unlock_out;
588 
589 	ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
590 						val, val2 * 1000, &gain_sel);
591 	if (ret) {
592 		/*
593 		 * Could not support scale with given time. Need to change time.
594 		 * We still want to maintain the scale for all channels
595 		 */
596 		struct bu27034_gain_check gain;
597 		int new_time_sel;
598 
599 		/*
600 		 * Populate information for the other channel which should also
601 		 * maintain the scale. (Due to the HW limitations the chan2
602 		 * gets the same gain as chan0, so we only need to explicitly
603 		 * set the chan 0 and 1).
604 		 */
605 		if (chan == BU27034_CHAN_DATA0)
606 			gain.chan = BU27034_CHAN_DATA1;
607 		else if (chan == BU27034_CHAN_DATA1)
608 			gain.chan = BU27034_CHAN_DATA0;
609 
610 		ret = bu27034_get_gain(data, gain.chan, &gain.old_gain);
611 		if (ret)
612 			goto unlock_out;
613 
614 		/*
615 		 * Iterate through all the times to see if we find one which
616 		 * can support requested scale for requested channel, while
617 		 * maintaining the scale for other channels
618 		 */
619 		for (i = 0; i < data->gts.num_itime; i++) {
620 			new_time_sel = data->gts.itime_table[i].sel;
621 
622 			if (new_time_sel == time_sel)
623 				continue;
624 
625 			/* Can we provide requested scale with this time? */
626 			ret = iio_gts_find_gain_sel_for_scale_using_time(
627 				&data->gts, new_time_sel, val, val2 * 1000,
628 				&gain_sel);
629 			if (ret)
630 				continue;
631 
632 			/* Can the other channel(s) maintain scale? */
633 			ret = iio_gts_find_new_gain_sel_by_old_gain_time(
634 				&data->gts, gain.old_gain, time_sel,
635 				new_time_sel, &gain.new_gain);
636 			if (!ret) {
637 				/* Yes - we found suitable time */
638 				found = true;
639 				break;
640 			}
641 		}
642 		if (!found) {
643 			dev_dbg(data->dev,
644 				"Can't set scale maintaining other channels\n");
645 			ret = -EINVAL;
646 
647 			goto unlock_out;
648 		}
649 
650 		ret = bu27034_set_gain(data, gain.chan, gain.new_gain);
651 		if (ret)
652 			goto unlock_out;
653 
654 		ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1,
655 				  BU27034_MASK_MEAS_MODE, new_time_sel);
656 		if (ret)
657 			goto unlock_out;
658 	}
659 
660 	ret = bu27034_write_gain_sel(data, chan, gain_sel);
661 unlock_out:
662 	mutex_unlock(&data->mutex);
663 
664 	return ret;
665 }
666 
667 /*
668  * for (D1/D0 < 0.87):
669  * lx = 0.004521097 * D1 - 0.002663996 * D0 +
670  *	0.00012213 * D1 * D1 / D0
671  *
672  * =>	115.7400832 * ch1 / gain1 / mt -
673  *	68.1982976 * ch0 / gain0 / mt +
674  *	0.00012213 * 25600 * (ch1 / gain1 / mt) * 25600 *
675  *	(ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt)
676  *
677  * A =	0.00012213 * 25600 * (ch1 /gain1 / mt) * 25600 *
678  *	(ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt)
679  * =>	0.00012213 * 25600 * (ch1 /gain1 / mt) *
680  *	(ch1 /gain1 / mt) / (ch0 / gain0 / mt)
681  * =>	0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) /
682  *	(ch0 / gain0)
683  * =>	0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) *
684  *	gain0 / ch0
685  * =>	3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /ch0
686  *
687  * lx = (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) /
688  *	mt + A
689  * =>	(115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) /
690  *	mt + 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /
691  *	ch0
692  *
693  * =>	(115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0 +
694  *	  3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) /
695  *	  mt
696  *
697  * For (0.87 <= D1/D0 < 1.00)
698  * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 0.87) * (0.385) + 1)
699  * =>	(0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 *
700  *	100 * ch1 / gain1 / mt) * ((D1/D0 -  0.87) * (0.385) + 1)
701  * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
702  *	((D1/D0 -  0.87) * (0.385) + 1)
703  * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
704  *	(0.385 * D1/D0 - 0.66505)
705  * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
706  *	(0.385 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) - 0.66505)
707  * =>	(34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
708  *	(9856 * ch1 / gain1 / mt / (25600 * ch0 / gain0 / mt) + 0.66505)
709  * =>	13.118336 * ch1 / (gain1 * mt)
710  *	+ 22.66064768 * ch0 / (gain0 * mt)
711  *	+ 8931.90144 * ch1 * ch1 * gain0 /
712  *	  (25600 * ch0 * gain1 * gain1 * mt)
713  *	+ 0.602694912 * ch1 / (gain1 * mt)
714  *
715  * =>	[0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1)
716  *	 + 22.66064768 * ch0 / gain0
717  *	 + 13.721030912 * ch1 / gain1
718  *	] / mt
719  *
720  * For (D1/D0 >= 1.00)
721  *
722  * lx	= (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 2.0) * (-0.05) + 1)
723  *	=> (0.001331* D0 + 0.0000354 * D1) * (-0.05D1/D0 + 1.1)
724  *	=> (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 *
725  *	   100 * ch1 / gain1 / mt) * (-0.05D1/D0 + 1.1)
726  *	=> (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
727  *	   (-0.05 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) + 1.1)
728  *	=> (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) *
729  *	   (-1280 * ch1 / (gain1 * mt * 25600 * ch0 / gain0 / mt) + 1.1)
730  *	=> (34.0736 * ch0 * -1280 * ch1 * gain0 * mt /( gain0 * mt * gain1 * mt * 25600 * ch0)
731  *	    + 34.0736 * 1.1 * ch0 / (gain0 * mt)
732  *	    + 0.90624 * ch1 * -1280 * ch1 *gain0 * mt / (gain1 * mt *gain1 * mt * 25600 * ch0)
733  *	    + 1.1 * 0.90624 * ch1 / (gain1 * mt)
734  *	=> -43614.208 * ch1 / (gain1 * mt * 25600)
735  *	    + 37.48096  ch0 / (gain0 * mt)
736  *	    - 1159.9872 * ch1 * ch1 * gain0 / (gain1 * gain1 * mt * 25600 * ch0)
737  *	    + 0.996864 ch1 / (gain1 * mt)
738  *	=> [
739  *		- 0.045312 * ch1 * ch1 * gain0 / (gain1 * gain1 * ch0)
740  *		- 0.706816 * ch1 / gain1
741  *		+ 37.48096  ch0 /gain0
742  *	   ] * mt
743  *
744  *
745  * So, the first case (D1/D0 < 0.87) can be computed to a form:
746  *
747  * lx = (3.126528 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
748  *	 115.7400832 * ch1 / gain1 +
749  *	-68.1982976 * ch0 / gain0
750  *	 / mt
751  *
752  * Second case (0.87 <= D1/D0 < 1.00) goes to form:
753  *
754  *	=> [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
755  *	    13.721030912 * ch1 / gain1 +
756  *	    22.66064768 * ch0 / gain0
757  *	   ] / mt
758  *
759  * Third case (D1/D0 >= 1.00) goes to form:
760  *	=> [-0.045312 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
761  *	    -0.706816 * ch1 / gain1 +
762  *	    37.48096  ch0 /(gain0
763  *	   ] / mt
764  *
765  * This can be unified to format:
766  * lx = [
767  *	 A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
768  *	 B * ch1 / gain1 +
769  *	 C * ch0 / gain0
770  *	] / mt
771  *
772  * For case 1:
773  * A = 3.126528,
774  * B = 115.7400832
775  * C = -68.1982976
776  *
777  * For case 2:
778  * A = 0.3489024
779  * B = 13.721030912
780  * C = 22.66064768
781  *
782  * For case 3:
783  * A = -0.045312
784  * B = -0.706816
785  * C = 37.48096
786  */
787 
788 struct bu27034_lx_coeff {
789 	unsigned int A;
790 	unsigned int B;
791 	unsigned int C;
792 	/* Indicate which of the coefficients above are negative */
793 	bool is_neg[3];
794 };
795 
796 static inline u64 gain_mul_div_helper(u64 val, unsigned int gain,
797 				      unsigned int div)
798 {
799 	/*
800 	 * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL)
801 	 * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored).
802 	 * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply
803 	 * with the gain, no matter what gain is set.
804 	 *
805 	 * So, multiplication with max gain may overflow if val is greater than
806 	 * 0xFFFFFFFFFFFFF (52 bits set)..
807 	 *
808 	 * If this is the case we divide first.
809 	 */
810 	if (val < GENMASK_ULL(51, 0)) {
811 		val *= gain;
812 		do_div(val, div);
813 	} else {
814 		do_div(val, div);
815 		val *= gain;
816 	}
817 
818 	return val;
819 }
820 
821 static u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0,
822 				      unsigned int ch1, unsigned int gain0,
823 				      unsigned int gain1)
824 {
825 	unsigned int helper;
826 	u64 helper64;
827 
828 	helper64 = (u64)coeff * (u64)ch1 * (u64)ch1;
829 
830 	helper = gain1 * gain1;
831 	if (helper > ch0) {
832 		do_div(helper64, helper);
833 
834 		return gain_mul_div_helper(helper64, gain0, ch0);
835 	}
836 
837 	do_div(helper64, ch0);
838 
839 	return gain_mul_div_helper(helper64, gain0, helper);
840 
841 }
842 
843 static u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0,
844 				unsigned int ch1, unsigned int gain0,
845 				unsigned int gain1)
846 {
847 	unsigned int helper, tmp;
848 
849 	/*
850 	 * Here we could overflow even the 64bit value. Hence we
851 	 * multiply with gain0 only after the divisions - even though
852 	 * it may result loss of accuracy
853 	 */
854 	helper = coeff * ch1 * ch1;
855 	tmp = helper * gain0;
856 
857 	helper = ch1 * ch1;
858 
859 	if (check_mul_overflow(helper, coeff, &helper))
860 		return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1);
861 
862 	if (check_mul_overflow(helper, gain0, &tmp))
863 		return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1);
864 
865 	return tmp / (gain1 * gain1) / ch0;
866 
867 }
868 
869 static u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch,
870 				 unsigned int gain)
871 {
872 	unsigned int helper;
873 	u64 helper64;
874 
875 	if (!check_mul_overflow(coeff, ch, &helper))
876 		return helper / gain;
877 
878 	helper64 = (u64)coeff * (u64)ch;
879 	do_div(helper64, gain);
880 
881 	return helper64;
882 }
883 
884 static int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1,
885 				unsigned int gain0, unsigned int gain1,
886 				unsigned int meastime, int coeff_idx)
887 {
888 	static const struct bu27034_lx_coeff coeff[] = {
889 		{
890 			.A = 31265280,		/* 3.126528 */
891 			.B = 1157400832,	/*115.7400832 */
892 			.C = 681982976,		/* -68.1982976 */
893 			.is_neg = {false, false, true},
894 		}, {
895 			.A = 3489024,		/* 0.3489024 */
896 			.B = 137210309,		/* 13.721030912 */
897 			.C = 226606476,		/* 22.66064768 */
898 			/* All terms positive */
899 		}, {
900 			.A = 453120,		/* -0.045312 */
901 			.B = 7068160,		/* -0.706816 */
902 			.C = 374809600,		/* 37.48096 */
903 			.is_neg = {true, true, false},
904 		}
905 	};
906 	const struct bu27034_lx_coeff *c = &coeff[coeff_idx];
907 	u64 res = 0, terms[3];
908 	int i;
909 
910 	if (coeff_idx >= ARRAY_SIZE(coeff))
911 		return -EINVAL;
912 
913 	terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1);
914 	terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1);
915 	terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0);
916 
917 	/* First, add positive terms */
918 	for (i = 0; i < 3; i++)
919 		if (!c->is_neg[i])
920 			res += terms[i];
921 
922 	/* No positive term => zero lux */
923 	if (!res)
924 		return 0;
925 
926 	/* Then, subtract negative terms (if any) */
927 	for (i = 0; i < 3; i++)
928 		if (c->is_neg[i]) {
929 			/*
930 			 * If the negative term is greater than positive - then
931 			 * the darkness has taken over and we are all doomed! Eh,
932 			 * I mean, then we can just return 0 lx and go out
933 			 */
934 			if (terms[i] >= res)
935 				return 0;
936 
937 			res -= terms[i];
938 		}
939 
940 	meastime *= 10;
941 	do_div(res, meastime);
942 
943 	return (int) res;
944 }
945 
946 static bool bu27034_has_valid_sample(struct bu27034_data *data)
947 {
948 	int ret, val;
949 
950 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val);
951 	if (ret) {
952 		dev_err(data->dev, "Read failed %d\n", ret);
953 
954 		return false;
955 	}
956 
957 	return val & BU27034_MASK_VALID;
958 }
959 
960 /*
961  * Reading the register where VALID bit is clears this bit. (So does changing
962  * any gain / integration time configuration registers) The bit gets
963  * set when we have acquired new data. We use this bit to indicate data
964  * validity.
965  */
966 static void bu27034_invalidate_read_data(struct bu27034_data *data)
967 {
968 	bu27034_has_valid_sample(data);
969 }
970 
971 static int bu27034_read_result(struct bu27034_data *data, int chan, int *res)
972 {
973 	int reg[] = {
974 		[BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO,
975 		[BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO,
976 		[BU27034_CHAN_DATA2] = BU27034_REG_DATA2_LO,
977 	};
978 	int valid, ret;
979 	__le16 val;
980 
981 	ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4,
982 				       valid, (valid & BU27034_MASK_VALID),
983 				       BU27034_DATA_WAIT_TIME_US, 0);
984 	if (ret)
985 		return ret;
986 
987 	ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val));
988 	if (ret)
989 		return ret;
990 
991 	*res = le16_to_cpu(val);
992 
993 	return 0;
994 }
995 
996 static int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res,
997 				       int size)
998 {
999 	int ret = 0, retry_cnt = 0;
1000 
1001 retry:
1002 	/* Get new value from sensor if data is ready */
1003 	if (bu27034_has_valid_sample(data)) {
1004 		ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO,
1005 				       res, size);
1006 		if (ret)
1007 			return ret;
1008 
1009 		bu27034_invalidate_read_data(data);
1010 	} else {
1011 		/* No new data in sensor. Wait and retry */
1012 		retry_cnt++;
1013 
1014 		if (retry_cnt > BU27034_RETRY_LIMIT) {
1015 			dev_err(data->dev, "No data from sensor\n");
1016 
1017 			return -ETIMEDOUT;
1018 		}
1019 
1020 		msleep(25);
1021 
1022 		goto retry;
1023 	}
1024 
1025 	return ret;
1026 }
1027 
1028 static int bu27034_meas_set(struct bu27034_data *data, bool en)
1029 {
1030 	if (en)
1031 		return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4,
1032 				       BU27034_MASK_MEAS_EN);
1033 
1034 	return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4,
1035 				 BU27034_MASK_MEAS_EN);
1036 }
1037 
1038 static int bu27034_get_single_result(struct bu27034_data *data, int chan,
1039 				     int *val)
1040 {
1041 	int ret;
1042 
1043 	if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA2)
1044 		return -EINVAL;
1045 
1046 	ret = bu27034_meas_set(data, true);
1047 	if (ret)
1048 		return ret;
1049 
1050 	ret = bu27034_get_int_time(data);
1051 	if (ret < 0)
1052 		return ret;
1053 
1054 	msleep(ret / 1000);
1055 
1056 	return bu27034_read_result(data, chan, val);
1057 }
1058 
1059 /*
1060  * The formula given by vendor for computing luxes out of data0 and data1
1061  * (in open air) is as follows:
1062  *
1063  * Let's mark:
1064  * D0 = data0/ch0_gain/meas_time_ms * 25600
1065  * D1 = data1/ch1_gain/meas_time_ms * 25600
1066  *
1067  * Then:
1068  * if (D1/D0 < 0.87)
1069  *	lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 3.45 + 1)
1070  * else if (D1/D0 < 1)
1071  *	lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 0.385 + 1)
1072  * else
1073  *	lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 2) * -0.05 + 1)
1074  *
1075  * We use it here. Users who have for example some colored lens
1076  * need to modify the calculation but I hope this gives a starting point for
1077  * those working with such devices.
1078  */
1079 
1080 static int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val)
1081 {
1082 	unsigned int gain0, gain1, meastime;
1083 	unsigned int d1_d0_ratio_scaled;
1084 	u16 ch0, ch1;
1085 	u64 helper64;
1086 	int ret;
1087 
1088 	/*
1089 	 * We return 0 lux if calculation fails. This should be reasonably
1090 	 * easy to spot from the buffers especially if raw-data channels show
1091 	 * valid values
1092 	 */
1093 	*val = 0;
1094 
1095 	ch0 = max_t(u16, 1, le16_to_cpu(res[0]));
1096 	ch1 = max_t(u16, 1, le16_to_cpu(res[1]));
1097 
1098 	ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0);
1099 	if (ret)
1100 		return ret;
1101 
1102 	ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1);
1103 	if (ret)
1104 		return ret;
1105 
1106 	ret = bu27034_get_int_time(data);
1107 	if (ret < 0)
1108 		return ret;
1109 
1110 	meastime = ret;
1111 
1112 	d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100;
1113 	helper64 = (u64)ch1 * (u64)gain0 * 100LLU;
1114 
1115 	if (helper64 != d1_d0_ratio_scaled) {
1116 		unsigned int div = (unsigned int)ch0 * gain1;
1117 
1118 		do_div(helper64, div);
1119 		d1_d0_ratio_scaled = helper64;
1120 	} else {
1121 		d1_d0_ratio_scaled /= ch0 * gain1;
1122 	}
1123 
1124 	if (d1_d0_ratio_scaled < 87)
1125 		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0);
1126 	else if (d1_d0_ratio_scaled < 100)
1127 		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1);
1128 	else
1129 		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 2);
1130 
1131 	if (ret < 0)
1132 		return ret;
1133 
1134 	*val = ret;
1135 
1136 	return 0;
1137 
1138 }
1139 
1140 static int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val)
1141 {
1142 	__le16 res[3];
1143 	int ret;
1144 
1145 	ret = bu27034_meas_set(data, true);
1146 	if (ret)
1147 		return ret;
1148 
1149 	ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res));
1150 	if (ret)
1151 		return ret;
1152 
1153 	ret = bu27034_calc_mlux(data, res, val);
1154 	if (ret)
1155 		return ret;
1156 
1157 	ret = bu27034_meas_set(data, false);
1158 	if (ret)
1159 		dev_err(data->dev, "failed to disable measurement\n");
1160 
1161 	return 0;
1162 }
1163 
1164 static int bu27034_read_raw(struct iio_dev *idev,
1165 			   struct iio_chan_spec const *chan,
1166 			   int *val, int *val2, long mask)
1167 {
1168 	struct bu27034_data *data = iio_priv(idev);
1169 	int ret;
1170 
1171 	switch (mask) {
1172 	case IIO_CHAN_INFO_INT_TIME:
1173 		*val = 0;
1174 		*val2 = bu27034_get_int_time(data);
1175 		if (*val2 < 0)
1176 			return *val2;
1177 
1178 		return IIO_VAL_INT_PLUS_MICRO;
1179 
1180 	case IIO_CHAN_INFO_SCALE:
1181 		return bu27034_get_scale(data, chan->channel, val, val2);
1182 
1183 	case IIO_CHAN_INFO_RAW:
1184 	{
1185 		int (*result_get)(struct bu27034_data *data, int chan, int *val);
1186 
1187 		if (chan->type == IIO_INTENSITY)
1188 			result_get = bu27034_get_single_result;
1189 		else if (chan->type == IIO_LIGHT)
1190 			result_get = bu27034_get_mlux;
1191 		else
1192 			return -EINVAL;
1193 
1194 		/* Don't mess with measurement enabling while buffering */
1195 		ret = iio_device_claim_direct_mode(idev);
1196 		if (ret)
1197 			return ret;
1198 
1199 		mutex_lock(&data->mutex);
1200 		/*
1201 		 * Reading one channel at a time is inefficient but we
1202 		 * don't care here. Buffered version should be used if
1203 		 * performance is an issue.
1204 		 */
1205 		ret = result_get(data, chan->channel, val);
1206 
1207 		mutex_unlock(&data->mutex);
1208 		iio_device_release_direct_mode(idev);
1209 
1210 		if (ret)
1211 			return ret;
1212 
1213 		return IIO_VAL_INT;
1214 	}
1215 	default:
1216 		return -EINVAL;
1217 	}
1218 }
1219 
1220 static int bu27034_write_raw(struct iio_dev *idev,
1221 			     struct iio_chan_spec const *chan,
1222 			     int val, int val2, long mask)
1223 {
1224 	struct bu27034_data *data = iio_priv(idev);
1225 	int ret;
1226 
1227 	ret = iio_device_claim_direct_mode(idev);
1228 	if (ret)
1229 		return ret;
1230 
1231 	switch (mask) {
1232 	case IIO_CHAN_INFO_SCALE:
1233 		ret = bu27034_set_scale(data, chan->channel, val, val2);
1234 		break;
1235 	case IIO_CHAN_INFO_INT_TIME:
1236 		if (!val)
1237 			ret = bu27034_try_set_int_time(data, val2);
1238 		else
1239 			ret = -EINVAL;
1240 		break;
1241 	default:
1242 		ret = -EINVAL;
1243 		break;
1244 	}
1245 
1246 	iio_device_release_direct_mode(idev);
1247 
1248 	return ret;
1249 }
1250 
1251 static int bu27034_read_avail(struct iio_dev *idev,
1252 			      struct iio_chan_spec const *chan, const int **vals,
1253 			      int *type, int *length, long mask)
1254 {
1255 	struct bu27034_data *data = iio_priv(idev);
1256 
1257 	switch (mask) {
1258 	case IIO_CHAN_INFO_INT_TIME:
1259 		return iio_gts_avail_times(&data->gts, vals, type, length);
1260 	case IIO_CHAN_INFO_SCALE:
1261 		return iio_gts_all_avail_scales(&data->gts, vals, type, length);
1262 	default:
1263 		return -EINVAL;
1264 	}
1265 }
1266 
1267 static const struct iio_info bu27034_info = {
1268 	.read_raw = &bu27034_read_raw,
1269 	.write_raw = &bu27034_write_raw,
1270 	.read_avail = &bu27034_read_avail,
1271 };
1272 
1273 static int bu27034_chip_init(struct bu27034_data *data)
1274 {
1275 	int ret, sel;
1276 
1277 	/* Reset */
1278 	ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL,
1279 			   BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET);
1280 	if (ret)
1281 		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
1282 
1283 	msleep(1);
1284 
1285 	ret = regmap_reinit_cache(data->regmap, &bu27034_regmap);
1286 	if (ret) {
1287 		dev_err(data->dev, "Failed to reinit reg cache\n");
1288 		return ret;
1289 	}
1290 
1291 	/*
1292 	 * Read integration time here to ensure it is in regmap cache. We do
1293 	 * this to speed-up the int-time acquisition in the start of the buffer
1294 	 * handling thread where longer delays could make it more likely we end
1295 	 * up skipping a sample, and where the longer delays make timestamps
1296 	 * less accurate.
1297 	 */
1298 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel);
1299 	if (ret)
1300 		dev_err(data->dev, "reading integration time failed\n");
1301 
1302 	return 0;
1303 }
1304 
1305 static int bu27034_wait_for_data(struct bu27034_data *data)
1306 {
1307 	int ret, val;
1308 
1309 	ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4,
1310 				       val, val & BU27034_MASK_VALID,
1311 				       BU27034_DATA_WAIT_TIME_US,
1312 				       BU27034_TOTAL_DATA_WAIT_TIME_US);
1313 	if (ret) {
1314 		dev_err(data->dev, "data polling %s\n",
1315 			!(val & BU27034_MASK_VALID) ? "timeout" : "fail");
1316 
1317 		return ret;
1318 	}
1319 
1320 	ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO,
1321 			       &data->scan.channels[0],
1322 			       sizeof(data->scan.channels));
1323 	if (ret)
1324 		return ret;
1325 
1326 	bu27034_invalidate_read_data(data);
1327 
1328 	return 0;
1329 }
1330 
1331 static int bu27034_buffer_thread(void *arg)
1332 {
1333 	struct iio_dev *idev = arg;
1334 	struct bu27034_data *data;
1335 	int wait_ms;
1336 
1337 	data = iio_priv(idev);
1338 
1339 	wait_ms = bu27034_get_int_time(data);
1340 	wait_ms /= 1000;
1341 
1342 	wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS;
1343 
1344 	while (!kthread_should_stop()) {
1345 		int ret;
1346 		int64_t tstamp;
1347 
1348 		msleep(wait_ms);
1349 		ret = bu27034_wait_for_data(data);
1350 		if (ret)
1351 			continue;
1352 
1353 		tstamp = iio_get_time_ns(idev);
1354 
1355 		if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) {
1356 			int mlux;
1357 
1358 			ret = bu27034_calc_mlux(data, &data->scan.channels[0],
1359 					       &mlux);
1360 			if (ret)
1361 				dev_err(data->dev, "failed to calculate lux\n");
1362 
1363 			/*
1364 			 * The maximum Milli lux value we get with gain 1x time
1365 			 * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits
1366 			 * so there should be no problem returning int from
1367 			 * computations and casting it to u32
1368 			 */
1369 			data->scan.mlux = (u32)mlux;
1370 		}
1371 		iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
1372 	}
1373 
1374 	return 0;
1375 }
1376 
1377 static int bu27034_buffer_enable(struct iio_dev *idev)
1378 {
1379 	struct bu27034_data *data = iio_priv(idev);
1380 	struct task_struct *task;
1381 	int ret;
1382 
1383 	mutex_lock(&data->mutex);
1384 	ret = bu27034_meas_set(data, true);
1385 	if (ret)
1386 		goto unlock_out;
1387 
1388 	task = kthread_run(bu27034_buffer_thread, idev,
1389 				 "bu27034-buffering-%u",
1390 				 iio_device_id(idev));
1391 	if (IS_ERR(task)) {
1392 		ret = PTR_ERR(task);
1393 		goto unlock_out;
1394 	}
1395 
1396 	data->task = task;
1397 
1398 unlock_out:
1399 	mutex_unlock(&data->mutex);
1400 
1401 	return ret;
1402 }
1403 
1404 static int bu27034_buffer_disable(struct iio_dev *idev)
1405 {
1406 	struct bu27034_data *data = iio_priv(idev);
1407 	int ret;
1408 
1409 	mutex_lock(&data->mutex);
1410 	if (data->task) {
1411 		kthread_stop(data->task);
1412 		data->task = NULL;
1413 	}
1414 
1415 	ret = bu27034_meas_set(data, false);
1416 	mutex_unlock(&data->mutex);
1417 
1418 	return ret;
1419 }
1420 
1421 static const struct iio_buffer_setup_ops bu27034_buffer_ops = {
1422 	.postenable = &bu27034_buffer_enable,
1423 	.predisable = &bu27034_buffer_disable,
1424 };
1425 
1426 static int bu27034_probe(struct i2c_client *i2c)
1427 {
1428 	struct device *dev = &i2c->dev;
1429 	struct bu27034_data *data;
1430 	struct regmap *regmap;
1431 	struct iio_dev *idev;
1432 	unsigned int part_id, reg;
1433 	int ret;
1434 
1435 	regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap);
1436 	if (IS_ERR(regmap))
1437 		return dev_err_probe(dev, PTR_ERR(regmap),
1438 				     "Failed to initialize Regmap\n");
1439 
1440 	idev = devm_iio_device_alloc(dev, sizeof(*data));
1441 	if (!idev)
1442 		return -ENOMEM;
1443 
1444 	ret = devm_regulator_get_enable(dev, "vdd");
1445 	if (ret)
1446 		return dev_err_probe(dev, ret, "Failed to get regulator\n");
1447 
1448 	data = iio_priv(idev);
1449 
1450 	ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, &reg);
1451 	if (ret)
1452 		return dev_err_probe(dev, ret, "Failed to access sensor\n");
1453 
1454 	part_id = FIELD_GET(BU27034_MASK_PART_ID, reg);
1455 
1456 	if (part_id != BU27034_ID)
1457 		dev_warn(dev, "unknown device 0x%x\n", part_id);
1458 
1459 	ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains,
1460 				    ARRAY_SIZE(bu27034_gains), bu27034_itimes,
1461 				    ARRAY_SIZE(bu27034_itimes), &data->gts);
1462 	if (ret)
1463 		return ret;
1464 
1465 	mutex_init(&data->mutex);
1466 	data->regmap = regmap;
1467 	data->dev = dev;
1468 
1469 	idev->channels = bu27034_channels;
1470 	idev->num_channels = ARRAY_SIZE(bu27034_channels);
1471 	idev->name = "bu27034";
1472 	idev->info = &bu27034_info;
1473 
1474 	idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1475 	idev->available_scan_masks = bu27034_scan_masks;
1476 
1477 	ret = bu27034_chip_init(data);
1478 	if (ret)
1479 		return ret;
1480 
1481 	ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops);
1482 	if (ret)
1483 		return dev_err_probe(dev, ret, "buffer setup failed\n");
1484 
1485 	ret = devm_iio_device_register(dev, idev);
1486 	if (ret < 0)
1487 		return dev_err_probe(dev, ret,
1488 				     "Unable to register iio device\n");
1489 
1490 	return ret;
1491 }
1492 
1493 static const struct of_device_id bu27034_of_match[] = {
1494 	{ .compatible = "rohm,bu27034" },
1495 	{ }
1496 };
1497 MODULE_DEVICE_TABLE(of, bu27034_of_match);
1498 
1499 static struct i2c_driver bu27034_i2c_driver = {
1500 	.driver = {
1501 		.name = "bu27034-als",
1502 		.of_match_table = bu27034_of_match,
1503 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1504 	},
1505 	.probe = bu27034_probe,
1506 };
1507 module_i2c_driver(bu27034_i2c_driver);
1508 
1509 MODULE_LICENSE("GPL");
1510 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
1511 MODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver");
1512 MODULE_IMPORT_NS(IIO_GTS_HELPER);
1513