xref: /linux/drivers/iio/light/rohm-bu27034.c (revision c94cd9508b1335b949fd13ebd269313c65492df0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BU27034ANUC ROHM Ambient Light Sensor
4  *
5  * Copyright (c) 2023, ROHM Semiconductor.
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/i2c.h>
12 #include <linux/module.h>
13 #include <linux/property.h>
14 #include <linux/regmap.h>
15 #include <linux/regulator/consumer.h>
16 #include <linux/units.h>
17 
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/iio-gts-helper.h>
21 #include <linux/iio/kfifo_buf.h>
22 
23 #define BU27034_REG_SYSTEM_CONTROL	0x40
24 #define BU27034_MASK_SW_RESET		BIT(7)
25 #define BU27034_MASK_PART_ID		GENMASK(5, 0)
26 #define BU27034_ID			0x19
27 #define BU27034_REG_MODE_CONTROL1	0x41
28 #define BU27034_MASK_MEAS_MODE		GENMASK(2, 0)
29 
30 #define BU27034_REG_MODE_CONTROL2	0x42
31 #define BU27034_MASK_D01_GAIN		GENMASK(7, 3)
32 
33 #define BU27034_REG_MODE_CONTROL3	0x43
34 #define BU27034_REG_MODE_CONTROL4	0x44
35 #define BU27034_MASK_MEAS_EN		BIT(0)
36 #define BU27034_MASK_VALID		BIT(7)
37 #define BU27034_NUM_HW_DATA_CHANS	2
38 #define BU27034_REG_DATA0_LO		0x50
39 #define BU27034_REG_DATA1_LO		0x52
40 #define BU27034_REG_DATA1_HI		0x53
41 #define BU27034_REG_MANUFACTURER_ID	0x92
42 #define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID
43 
44 /*
45  * The BU27034 does not have interrupt to trigger the data read when a
46  * measurement has finished. Hence we poll the VALID bit in a thread. We will
47  * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before
48  * the expected sampling time to prevent the drifting.
49  *
50  * If we constantly wake up a bit too late we would eventually skip a sample.
51  * And because the sleep can't wake up _exactly_ at given time this would be
52  * inevitable even if the sensor clock would be perfectly phase-locked to CPU
53  * clock - which we can't say is the case.
54  *
55  * This is still fragile. No matter how big advance do we have, we will still
56  * risk of losing a sample because things can in a rainy-day scenario be
57  * delayed a lot. Yet, more we reserve the time for polling, more we also lose
58  * the performance by spending cycles polling the register. So, selecting this
59  * value is a balancing dance between severity of wasting CPU time and severity
60  * of losing samples.
61  *
62  * In most cases losing the samples is not _that_ crucial because light levels
63  * tend to change slowly.
64  *
65  * Other option that was pointed to me would be always sleeping 1/2 of the
66  * measurement time, checking the VALID bit and just sleeping again if the bit
67  * was not set. That should be pretty tolerant against missing samples due to
68  * the scheduling delays while also not wasting much of cycles for polling.
69  * Downside is that the time-stamps would be very inaccurate as the wake-up
70  * would not really be tied to the sensor toggling the valid bit. This would also
71  * result 'jumps' in the time-stamps when the delay drifted so that wake-up was
72  * performed during the consecutive wake-ups (Or, when sensor and CPU clocks
73  * were very different and scheduling the wake-ups was very close to given
74  * timeout - and when the time-outs were very close to the actual sensor
75  * sampling, Eg. once in a blue moon, two consecutive time-outs would occur
76  * without having a sample ready).
77  */
78 #define BU27034_MEAS_WAIT_PREMATURE_MS	5
79 #define BU27034_DATA_WAIT_TIME_US	1000
80 #define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000)
81 
82 #define BU27034_RETRY_LIMIT 18
83 
84 enum {
85 	BU27034_CHAN_ALS,
86 	BU27034_CHAN_DATA0,
87 	BU27034_CHAN_DATA1,
88 	BU27034_NUM_CHANS
89 };
90 
91 static const unsigned long bu27034_scan_masks[] = {
92 	GENMASK(BU27034_CHAN_DATA1, BU27034_CHAN_DATA0),
93 	GENMASK(BU27034_CHAN_DATA1, BU27034_CHAN_ALS), 0
94 };
95 
96 /*
97  * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS
98  * Time impacts to gain: 1x, 2x, 4x, 8x.
99  *
100  * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192
101  * if 1x gain is scale 1, scale for 2x gain is 0.5, 4x => 0.25,
102  * ... 8192x => 0.0001220703125 => 122070.3125 nanos
103  *
104  * Using NANO precision for scale, we must use scale 16x corresponding gain 1x
105  * to avoid precision loss. (8x would result scale 976 562.5(nanos).
106  */
107 #define BU27034_SCALE_1X	16
108 
109 /* See the data sheet for the "Gain Setting" table */
110 #define BU27034_GSEL_1X		0x00 /* 00000 */
111 #define BU27034_GSEL_4X		0x08 /* 01000 */
112 #define BU27034_GSEL_32X	0x0b /* 01011 */
113 #define BU27034_GSEL_256X	0x18 /* 11000 */
114 #define BU27034_GSEL_512X	0x19 /* 11001 */
115 #define BU27034_GSEL_1024X	0x1a /* 11010 */
116 
117 /* Available gain settings */
118 static const struct iio_gain_sel_pair bu27034_gains[] = {
119 	GAIN_SCALE_GAIN(1, BU27034_GSEL_1X),
120 	GAIN_SCALE_GAIN(4, BU27034_GSEL_4X),
121 	GAIN_SCALE_GAIN(32, BU27034_GSEL_32X),
122 	GAIN_SCALE_GAIN(256, BU27034_GSEL_256X),
123 	GAIN_SCALE_GAIN(512, BU27034_GSEL_512X),
124 	GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X),
125 };
126 
127 /*
128  * Measurement modes are 55, 100, 200 and 400 mS modes - which do have direct
129  * multiplying impact to the data register values (similar to gain).
130  *
131  * This means that if meas-mode is changed for example from 400 => 200,
132  * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8.
133  */
134 #define BU27034_MEAS_MODE_100MS		0
135 #define BU27034_MEAS_MODE_55MS		1
136 #define BU27034_MEAS_MODE_200MS		2
137 #define BU27034_MEAS_MODE_400MS		4
138 
139 static const struct iio_itime_sel_mul bu27034_itimes[] = {
140 	GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8),
141 	GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4),
142 	GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2),
143 	GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1),
144 };
145 
146 #define BU27034_CHAN_DATA(_name)					\
147 {									\
148 	.type = IIO_INTENSITY,						\
149 	.channel = BU27034_CHAN_##_name,				\
150 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |			\
151 			      BIT(IIO_CHAN_INFO_SCALE) |		\
152 			      BIT(IIO_CHAN_INFO_HARDWAREGAIN),		\
153 	.info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE),	\
154 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),		\
155 	.info_mask_shared_by_all_available =				\
156 					BIT(IIO_CHAN_INFO_INT_TIME),	\
157 	.address = BU27034_REG_##_name##_LO,				\
158 	.scan_index = BU27034_CHAN_##_name,				\
159 	.scan_type = {							\
160 		.sign = 'u',						\
161 		.realbits = 16,						\
162 		.storagebits = 16,					\
163 		.endianness = IIO_LE,					\
164 	},								\
165 	.indexed = 1,							\
166 }
167 
168 static const struct iio_chan_spec bu27034_channels[] = {
169 	{
170 		.type = IIO_LIGHT,
171 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
172 				      BIT(IIO_CHAN_INFO_SCALE),
173 		.channel = BU27034_CHAN_ALS,
174 		.scan_index = BU27034_CHAN_ALS,
175 		.scan_type = {
176 			.sign = 'u',
177 			.realbits = 32,
178 			.storagebits = 32,
179 			.endianness = IIO_CPU,
180 		},
181 	},
182 	/*
183 	 * The BU27034 DATA0 and DATA1 channels are both on the visible light
184 	 * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm.
185 	 * These wave lengths are cyan(ish) and orange(ish), making these
186 	 * sub-optiomal candidates for R/G/B standardization. Hence the
187 	 * colour modifier is omitted.
188 	 */
189 	BU27034_CHAN_DATA(DATA0),
190 	BU27034_CHAN_DATA(DATA1),
191 	IIO_CHAN_SOFT_TIMESTAMP(4),
192 };
193 
194 struct bu27034_data {
195 	struct regmap *regmap;
196 	struct device *dev;
197 	/*
198 	 * Protect gain and time during scale adjustment and data reading.
199 	 * Protect measurement enabling/disabling.
200 	 */
201 	struct mutex mutex;
202 	struct iio_gts gts;
203 	struct task_struct *task;
204 	__le16 raw[BU27034_NUM_HW_DATA_CHANS];
205 	struct {
206 		u32 mlux;
207 		__le16 channels[BU27034_NUM_HW_DATA_CHANS];
208 		s64 ts __aligned(8);
209 	} scan;
210 };
211 
212 static const struct regmap_range bu27034_volatile_ranges[] = {
213 	{
214 		.range_min = BU27034_REG_SYSTEM_CONTROL,
215 		.range_max = BU27034_REG_SYSTEM_CONTROL,
216 	}, {
217 		.range_min = BU27034_REG_MODE_CONTROL4,
218 		.range_max = BU27034_REG_MODE_CONTROL4,
219 	}, {
220 		.range_min = BU27034_REG_DATA0_LO,
221 		.range_max = BU27034_REG_DATA1_HI,
222 	},
223 };
224 
225 static const struct regmap_access_table bu27034_volatile_regs = {
226 	.yes_ranges = &bu27034_volatile_ranges[0],
227 	.n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges),
228 };
229 
230 static const struct regmap_range bu27034_read_only_ranges[] = {
231 	{
232 		.range_min = BU27034_REG_DATA0_LO,
233 		.range_max = BU27034_REG_DATA1_HI,
234 	}, {
235 		.range_min = BU27034_REG_MANUFACTURER_ID,
236 		.range_max = BU27034_REG_MANUFACTURER_ID,
237 	}
238 };
239 
240 static const struct regmap_access_table bu27034_ro_regs = {
241 	.no_ranges = &bu27034_read_only_ranges[0],
242 	.n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges),
243 };
244 
245 static const struct regmap_config bu27034_regmap = {
246 	.reg_bits = 8,
247 	.val_bits = 8,
248 	.max_register = BU27034_REG_MAX,
249 	.cache_type = REGCACHE_RBTREE,
250 	.volatile_table = &bu27034_volatile_regs,
251 	.wr_table = &bu27034_ro_regs,
252 };
253 
254 struct bu27034_gain_check {
255 	int old_gain;
256 	int new_gain;
257 	int chan;
258 };
259 
260 static int bu27034_get_gain_sel(struct bu27034_data *data, int chan)
261 {
262 	int reg[] = {
263 		[BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2,
264 		[BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3,
265 	};
266 	int ret, val;
267 
268 	ret = regmap_read(data->regmap, reg[chan], &val);
269 	if (ret)
270 		return ret;
271 
272 	return FIELD_GET(BU27034_MASK_D01_GAIN, val);
273 }
274 
275 static int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain)
276 {
277 	int ret, sel;
278 
279 	ret = bu27034_get_gain_sel(data, chan);
280 	if (ret < 0)
281 		return ret;
282 
283 	sel = ret;
284 
285 	ret = iio_gts_find_gain_by_sel(&data->gts, sel);
286 	if (ret < 0) {
287 		dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan,
288 			sel);
289 
290 		return ret;
291 	}
292 
293 	*gain = ret;
294 
295 	return 0;
296 }
297 
298 static int bu27034_get_int_time(struct bu27034_data *data)
299 {
300 	int ret, sel;
301 
302 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel);
303 	if (ret)
304 		return ret;
305 
306 	return iio_gts_find_int_time_by_sel(&data->gts,
307 					    sel & BU27034_MASK_MEAS_MODE);
308 }
309 
310 static int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val,
311 			      int *val2)
312 {
313 	int gain, ret;
314 
315 	ret = bu27034_get_gain(data, channel, &gain);
316 	if (ret)
317 		return ret;
318 
319 	ret = bu27034_get_int_time(data);
320 	if (ret < 0)
321 		return ret;
322 
323 	return iio_gts_get_scale(&data->gts, gain, ret, val, val2);
324 }
325 
326 static int bu27034_get_scale(struct bu27034_data *data, int channel, int *val,
327 			      int *val2)
328 {
329 	int ret;
330 
331 	if (channel == BU27034_CHAN_ALS) {
332 		*val = 0;
333 		*val2 = 1000;
334 		return IIO_VAL_INT_PLUS_MICRO;
335 	}
336 
337 	mutex_lock(&data->mutex);
338 	ret = _bu27034_get_scale(data, channel, val, val2);
339 	mutex_unlock(&data->mutex);
340 	if (ret)
341 		return ret;
342 
343 	return IIO_VAL_INT_PLUS_NANO;
344 }
345 
346 /* Caller should hold the lock to protect lux reading */
347 static int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel)
348 {
349 	static const int reg[] = {
350 		[BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2,
351 		[BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3,
352 	};
353 	int mask, val;
354 
355 	val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel);
356 	mask = BU27034_MASK_D01_GAIN;
357 
358 	return regmap_update_bits(data->regmap, reg[chan], mask, val);
359 }
360 
361 static int bu27034_set_gain(struct bu27034_data *data, int chan, int gain)
362 {
363 	int ret;
364 
365 	ret = iio_gts_find_sel_by_gain(&data->gts, gain);
366 	if (ret < 0)
367 		return ret;
368 
369 	return bu27034_write_gain_sel(data, chan, ret);
370 }
371 
372 /* Caller should hold the lock to protect data->int_time */
373 static int bu27034_set_int_time(struct bu27034_data *data, int time)
374 {
375 	int ret;
376 
377 	ret = iio_gts_find_sel_by_int_time(&data->gts, time);
378 	if (ret < 0)
379 		return ret;
380 
381 	return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1,
382 				 BU27034_MASK_MEAS_MODE, ret);
383 }
384 
385 /*
386  * We try to change the time in such way that the scale is maintained for
387  * given channels by adjusting gain so that it compensates the time change.
388  */
389 static int bu27034_try_set_int_time(struct bu27034_data *data, int time_us)
390 {
391 	struct bu27034_gain_check gains[] = {
392 		{ .chan = BU27034_CHAN_DATA0 },
393 		{ .chan = BU27034_CHAN_DATA1 },
394 	};
395 	int numg = ARRAY_SIZE(gains);
396 	int ret, int_time_old, i;
397 
398 	mutex_lock(&data->mutex);
399 	ret = bu27034_get_int_time(data);
400 	if (ret < 0)
401 		goto unlock_out;
402 
403 	int_time_old = ret;
404 
405 	if (!iio_gts_valid_time(&data->gts, time_us)) {
406 		dev_err(data->dev, "Unsupported integration time %u\n",
407 			time_us);
408 		ret = -EINVAL;
409 
410 		goto unlock_out;
411 	}
412 
413 	if (time_us == int_time_old) {
414 		ret = 0;
415 		goto unlock_out;
416 	}
417 
418 	for (i = 0; i < numg; i++) {
419 		ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain);
420 		if (ret)
421 			goto unlock_out;
422 
423 		ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts,
424 							     gains[i].old_gain,
425 							     int_time_old, time_us,
426 							     &gains[i].new_gain);
427 		if (ret) {
428 			int scale1, scale2;
429 			bool ok;
430 
431 			_bu27034_get_scale(data, gains[i].chan, &scale1, &scale2);
432 			dev_dbg(data->dev,
433 				"chan %u, can't support time %u with scale %u %u\n",
434 				gains[i].chan, time_us, scale1, scale2);
435 
436 			if (gains[i].new_gain < 0)
437 				goto unlock_out;
438 
439 			/*
440 			 * If caller requests for integration time change and we
441 			 * can't support the scale - then the caller should be
442 			 * prepared to 'pick up the pieces and deal with the
443 			 * fact that the scale changed'.
444 			 */
445 			ret = iio_find_closest_gain_low(&data->gts,
446 							gains[i].new_gain, &ok);
447 
448 			if (!ok)
449 				dev_dbg(data->dev,
450 					"optimal gain out of range for chan %u\n",
451 					gains[i].chan);
452 
453 			if (ret < 0) {
454 				dev_dbg(data->dev,
455 					 "Total gain increase. Risk of saturation");
456 				ret = iio_gts_get_min_gain(&data->gts);
457 				if (ret < 0)
458 					goto unlock_out;
459 			}
460 			dev_dbg(data->dev, "chan %u scale changed\n",
461 				 gains[i].chan);
462 			gains[i].new_gain = ret;
463 			dev_dbg(data->dev, "chan %u new gain %u\n",
464 				gains[i].chan, gains[i].new_gain);
465 		}
466 	}
467 
468 	for (i = 0; i < numg; i++) {
469 		ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain);
470 		if (ret)
471 			goto unlock_out;
472 	}
473 
474 	ret = bu27034_set_int_time(data, time_us);
475 
476 unlock_out:
477 	mutex_unlock(&data->mutex);
478 
479 	return ret;
480 }
481 
482 static int bu27034_set_scale(struct bu27034_data *data, int chan,
483 			    int val, int val2)
484 {
485 	int ret, time_sel, gain_sel, i;
486 	bool found = false;
487 
488 	if (chan == BU27034_CHAN_ALS) {
489 		if (val == 0 && val2 == 1000000)
490 			return 0;
491 
492 		return -EINVAL;
493 	}
494 
495 	mutex_lock(&data->mutex);
496 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel);
497 	if (ret)
498 		goto unlock_out;
499 
500 	ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
501 						val, val2, &gain_sel);
502 	if (ret) {
503 		/*
504 		 * Could not support scale with given time. Need to change time.
505 		 * We still want to maintain the scale for all channels
506 		 */
507 		struct bu27034_gain_check gain;
508 		int new_time_sel;
509 
510 		/*
511 		 * Populate information for the other channel which should also
512 		 * maintain the scale.
513 		 */
514 		if (chan == BU27034_CHAN_DATA0)
515 			gain.chan = BU27034_CHAN_DATA1;
516 		else if (chan == BU27034_CHAN_DATA1)
517 			gain.chan = BU27034_CHAN_DATA0;
518 
519 		ret = bu27034_get_gain(data, gain.chan, &gain.old_gain);
520 		if (ret)
521 			goto unlock_out;
522 
523 		/*
524 		 * Iterate through all the times to see if we find one which
525 		 * can support requested scale for requested channel, while
526 		 * maintaining the scale for the other channel
527 		 */
528 		for (i = 0; i < data->gts.num_itime; i++) {
529 			new_time_sel = data->gts.itime_table[i].sel;
530 
531 			if (new_time_sel == time_sel)
532 				continue;
533 
534 			/* Can we provide requested scale with this time? */
535 			ret = iio_gts_find_gain_sel_for_scale_using_time(
536 				&data->gts, new_time_sel, val, val2,
537 				&gain_sel);
538 			if (ret)
539 				continue;
540 
541 			/* Can the other channel maintain scale? */
542 			ret = iio_gts_find_new_gain_sel_by_old_gain_time(
543 				&data->gts, gain.old_gain, time_sel,
544 				new_time_sel, &gain.new_gain);
545 			if (!ret) {
546 				/* Yes - we found suitable time */
547 				found = true;
548 				break;
549 			}
550 		}
551 		if (!found) {
552 			dev_dbg(data->dev,
553 				"Can't set scale maintaining other channel\n");
554 			ret = -EINVAL;
555 
556 			goto unlock_out;
557 		}
558 
559 		ret = bu27034_set_gain(data, gain.chan, gain.new_gain);
560 		if (ret)
561 			goto unlock_out;
562 
563 		ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1,
564 				  BU27034_MASK_MEAS_MODE, new_time_sel);
565 		if (ret)
566 			goto unlock_out;
567 	}
568 
569 	ret = bu27034_write_gain_sel(data, chan, gain_sel);
570 unlock_out:
571 	mutex_unlock(&data->mutex);
572 
573 	return ret;
574 }
575 
576 /*
577  * for (D1/D0 < 1.5):
578  *    lx = (0.001193 * D0 + (-0.0000747) * D1) * ((D1/D0 – 1.5) * (0.25) + 1)
579  *
580  *    => -0.000745625 * D0 + 0.0002515625 * D1 + -0.000018675 * D1 * D1 / D0
581  *
582  *    => (6.44 * ch1 / gain1 + 19.088 * ch0 / gain0 -
583  *       0.47808 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) /
584  *       mt
585  *
586  * Else
587  *    lx = 0.001193 * D0 - 0.0000747 * D1
588  *
589  *    => (1.91232 * ch1 / gain1 + 30.5408 * ch0 / gain0 +
590  *        [0 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0] ) /
591  *        mt
592  *
593  * This can be unified to format:
594  * lx = [
595  *	 A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) +
596  *	 B * ch1 / gain1 +
597  *	 C * ch0 / gain0
598  *	] / mt
599  *
600  * For case 1:
601  * A = -0.47808,
602  * B = 6.44,
603  * C = 19.088
604  *
605  * For case 2:
606  * A = 0
607  * B = 1.91232
608  * C = 30.5408
609  */
610 
611 struct bu27034_lx_coeff {
612 	unsigned int A;
613 	unsigned int B;
614 	unsigned int C;
615 	/* Indicate which of the coefficients above are negative */
616 	bool is_neg[3];
617 };
618 
619 static inline u64 gain_mul_div_helper(u64 val, unsigned int gain,
620 				      unsigned int div)
621 {
622 	/*
623 	 * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL)
624 	 * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored).
625 	 * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply
626 	 * with the gain, no matter what gain is set.
627 	 *
628 	 * So, multiplication with max gain may overflow if val is greater than
629 	 * 0xFFFFFFFFFFFFF (52 bits set)..
630 	 *
631 	 * If this is the case we divide first.
632 	 */
633 	if (val < GENMASK_ULL(51, 0)) {
634 		val *= gain;
635 		do_div(val, div);
636 	} else {
637 		do_div(val, div);
638 		val *= gain;
639 	}
640 
641 	return val;
642 }
643 
644 static u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0,
645 				      unsigned int ch1, unsigned int gain0,
646 				      unsigned int gain1)
647 {
648 	unsigned int helper;
649 	u64 helper64;
650 
651 	helper64 = (u64)coeff * (u64)ch1 * (u64)ch1;
652 
653 	helper = gain1 * gain1;
654 	if (helper > ch0) {
655 		do_div(helper64, helper);
656 
657 		return gain_mul_div_helper(helper64, gain0, ch0);
658 	}
659 
660 	do_div(helper64, ch0);
661 
662 	return gain_mul_div_helper(helper64, gain0, helper);
663 
664 }
665 
666 static u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0,
667 				unsigned int ch1, unsigned int gain0,
668 				unsigned int gain1)
669 {
670 	unsigned int helper, tmp;
671 
672 	/*
673 	 * Here we could overflow even the 64bit value. Hence we
674 	 * multiply with gain0 only after the divisions - even though
675 	 * it may result loss of accuracy
676 	 */
677 	helper = coeff * ch1 * ch1;
678 	tmp = helper * gain0;
679 
680 	helper = ch1 * ch1;
681 
682 	if (check_mul_overflow(helper, coeff, &helper))
683 		return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1);
684 
685 	if (check_mul_overflow(helper, gain0, &tmp))
686 		return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1);
687 
688 	return tmp / (gain1 * gain1) / ch0;
689 
690 }
691 
692 static u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch,
693 				 unsigned int gain)
694 {
695 	unsigned int helper;
696 	u64 helper64;
697 
698 	if (!check_mul_overflow(coeff, ch, &helper))
699 		return helper / gain;
700 
701 	helper64 = (u64)coeff * (u64)ch;
702 	do_div(helper64, gain);
703 
704 	return helper64;
705 }
706 
707 static int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1,
708 				unsigned int gain0, unsigned int gain1,
709 				unsigned int meastime, int coeff_idx)
710 {
711 	static const struct bu27034_lx_coeff coeff[] = {
712 		{
713 			.A = 4780800,		/* -0.47808 */
714 			.B = 64400000,		/* 6.44 */
715 			.C = 190880000,		/* 19.088 */
716 			.is_neg = { true, false, false },
717 		}, {
718 			.A = 0,			/* 0 */
719 			.B = 19123200,		/* 1.91232 */
720 			.C = 305408000,		/* 30.5408 */
721 			/* All terms positive */
722 		},
723 	};
724 	const struct bu27034_lx_coeff *c = &coeff[coeff_idx];
725 	u64 res = 0, terms[3];
726 	int i;
727 
728 	if (coeff_idx >= ARRAY_SIZE(coeff))
729 		return -EINVAL;
730 
731 	terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1);
732 	terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1);
733 	terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0);
734 
735 	/* First, add positive terms */
736 	for (i = 0; i < 3; i++)
737 		if (!c->is_neg[i])
738 			res += terms[i];
739 
740 	/* No positive term => zero lux */
741 	if (!res)
742 		return 0;
743 
744 	/* Then, subtract negative terms (if any) */
745 	for (i = 0; i < 3; i++)
746 		if (c->is_neg[i]) {
747 			/*
748 			 * If the negative term is greater than positive - then
749 			 * the darkness has taken over and we are all doomed! Eh,
750 			 * I mean, then we can just return 0 lx and go out
751 			 */
752 			if (terms[i] >= res)
753 				return 0;
754 
755 			res -= terms[i];
756 		}
757 
758 	meastime *= 10;
759 	do_div(res, meastime);
760 
761 	return (int) res;
762 }
763 
764 static bool bu27034_has_valid_sample(struct bu27034_data *data)
765 {
766 	int ret, val;
767 
768 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val);
769 	if (ret) {
770 		dev_err(data->dev, "Read failed %d\n", ret);
771 
772 		return false;
773 	}
774 
775 	return val & BU27034_MASK_VALID;
776 }
777 
778 /*
779  * Reading the register where VALID bit is clears this bit. (So does changing
780  * any gain / integration time configuration registers) The bit gets
781  * set when we have acquired new data. We use this bit to indicate data
782  * validity.
783  */
784 static void bu27034_invalidate_read_data(struct bu27034_data *data)
785 {
786 	bu27034_has_valid_sample(data);
787 }
788 
789 static int bu27034_read_result(struct bu27034_data *data, int chan, int *res)
790 {
791 	int reg[] = {
792 		[BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO,
793 		[BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO,
794 	};
795 	int valid, ret;
796 	__le16 val;
797 
798 	ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4,
799 				       valid, (valid & BU27034_MASK_VALID),
800 				       BU27034_DATA_WAIT_TIME_US, 0);
801 	if (ret)
802 		return ret;
803 
804 	ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val));
805 	if (ret)
806 		return ret;
807 
808 	*res = le16_to_cpu(val);
809 
810 	return 0;
811 }
812 
813 static int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res,
814 				       int size)
815 {
816 	int ret = 0, retry_cnt = 0;
817 
818 retry:
819 	/* Get new value from sensor if data is ready */
820 	if (bu27034_has_valid_sample(data)) {
821 		ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO,
822 				       res, size);
823 		if (ret)
824 			return ret;
825 
826 		bu27034_invalidate_read_data(data);
827 	} else {
828 		/* No new data in sensor. Wait and retry */
829 		retry_cnt++;
830 
831 		if (retry_cnt > BU27034_RETRY_LIMIT) {
832 			dev_err(data->dev, "No data from sensor\n");
833 
834 			return -ETIMEDOUT;
835 		}
836 
837 		msleep(25);
838 
839 		goto retry;
840 	}
841 
842 	return ret;
843 }
844 
845 static int bu27034_meas_set(struct bu27034_data *data, bool en)
846 {
847 	if (en)
848 		return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4,
849 				       BU27034_MASK_MEAS_EN);
850 
851 	return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4,
852 				 BU27034_MASK_MEAS_EN);
853 }
854 
855 static int bu27034_get_single_result(struct bu27034_data *data, int chan,
856 				     int *val)
857 {
858 	int ret;
859 
860 	if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA1)
861 		return -EINVAL;
862 
863 	ret = bu27034_meas_set(data, true);
864 	if (ret)
865 		return ret;
866 
867 	ret = bu27034_get_int_time(data);
868 	if (ret < 0)
869 		return ret;
870 
871 	msleep(ret / 1000);
872 
873 	return bu27034_read_result(data, chan, val);
874 }
875 
876 /*
877  * The formula given by vendor for computing luxes out of data0 and data1
878  * (in open air) is as follows:
879  *
880  * Let's mark:
881  * D0 = data0/ch0_gain/meas_time_ms * 25600
882  * D1 = data1/ch1_gain/meas_time_ms * 25600
883  *
884  * Then:
885  * If (D1/D0 < 1.5)
886  *    lx = (0.001193 * D0 + (-0.0000747) * D1) * ((D1 / D0 – 1.5) * 0.25 + 1)
887  * Else
888  *    lx = (0.001193 * D0 + (-0.0000747) * D1)
889  *
890  * We use it here. Users who have for example some colored lens
891  * need to modify the calculation but I hope this gives a starting point for
892  * those working with such devices.
893  */
894 
895 static int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val)
896 {
897 	unsigned int gain0, gain1, meastime;
898 	unsigned int d1_d0_ratio_scaled;
899 	u16 ch0, ch1;
900 	u64 helper64;
901 	int ret;
902 
903 	/*
904 	 * We return 0 lux if calculation fails. This should be reasonably
905 	 * easy to spot from the buffers especially if raw-data channels show
906 	 * valid values
907 	 */
908 	*val = 0;
909 
910 	ch0 = max_t(u16, 1, le16_to_cpu(res[0]));
911 	ch1 = max_t(u16, 1, le16_to_cpu(res[1]));
912 
913 	ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0);
914 	if (ret)
915 		return ret;
916 
917 	ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1);
918 	if (ret)
919 		return ret;
920 
921 	ret = bu27034_get_int_time(data);
922 	if (ret < 0)
923 		return ret;
924 
925 	meastime = ret;
926 
927 	d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100;
928 	helper64 = (u64)ch1 * (u64)gain0 * 100LLU;
929 
930 	if (helper64 != d1_d0_ratio_scaled) {
931 		unsigned int div = (unsigned int)ch0 * gain1;
932 
933 		do_div(helper64, div);
934 		d1_d0_ratio_scaled = helper64;
935 	} else {
936 		d1_d0_ratio_scaled /= ch0 * gain1;
937 	}
938 
939 	if (d1_d0_ratio_scaled < 150)
940 		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0);
941 	else
942 		ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1);
943 
944 	if (ret < 0)
945 		return ret;
946 
947 	*val = ret;
948 
949 	return 0;
950 
951 }
952 
953 static int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val)
954 {
955 	__le16 res[BU27034_NUM_HW_DATA_CHANS];
956 	int ret;
957 
958 	ret = bu27034_meas_set(data, true);
959 	if (ret)
960 		return ret;
961 
962 	ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res));
963 	if (ret)
964 		return ret;
965 
966 	ret = bu27034_calc_mlux(data, res, val);
967 	if (ret)
968 		return ret;
969 
970 	ret = bu27034_meas_set(data, false);
971 	if (ret)
972 		dev_err(data->dev, "failed to disable measurement\n");
973 
974 	return 0;
975 }
976 
977 static int bu27034_read_raw(struct iio_dev *idev,
978 			   struct iio_chan_spec const *chan,
979 			   int *val, int *val2, long mask)
980 {
981 	struct bu27034_data *data = iio_priv(idev);
982 	int ret;
983 
984 	switch (mask) {
985 	case IIO_CHAN_INFO_INT_TIME:
986 		*val = 0;
987 		*val2 = bu27034_get_int_time(data);
988 		if (*val2 < 0)
989 			return *val2;
990 
991 		return IIO_VAL_INT_PLUS_MICRO;
992 
993 	case IIO_CHAN_INFO_HARDWAREGAIN:
994 		ret = bu27034_get_gain(data, chan->channel, val);
995 		if (ret)
996 			return ret;
997 
998 		return IIO_VAL_INT;
999 
1000 	case IIO_CHAN_INFO_SCALE:
1001 		return bu27034_get_scale(data, chan->channel, val, val2);
1002 
1003 	case IIO_CHAN_INFO_RAW:
1004 	{
1005 		int (*result_get)(struct bu27034_data *data, int chan, int *val);
1006 
1007 		if (chan->type == IIO_INTENSITY)
1008 			result_get = bu27034_get_single_result;
1009 		else if (chan->type == IIO_LIGHT)
1010 			result_get = bu27034_get_mlux;
1011 		else
1012 			return -EINVAL;
1013 
1014 		/* Don't mess with measurement enabling while buffering */
1015 		ret = iio_device_claim_direct_mode(idev);
1016 		if (ret)
1017 			return ret;
1018 
1019 		mutex_lock(&data->mutex);
1020 		/*
1021 		 * Reading one channel at a time is inefficient but we
1022 		 * don't care here. Buffered version should be used if
1023 		 * performance is an issue.
1024 		 */
1025 		ret = result_get(data, chan->channel, val);
1026 
1027 		mutex_unlock(&data->mutex);
1028 		iio_device_release_direct_mode(idev);
1029 
1030 		if (ret)
1031 			return ret;
1032 
1033 		return IIO_VAL_INT;
1034 	}
1035 	default:
1036 		return -EINVAL;
1037 	}
1038 }
1039 
1040 static int bu27034_write_raw_get_fmt(struct iio_dev *indio_dev,
1041 				     struct iio_chan_spec const *chan,
1042 				     long mask)
1043 {
1044 	struct bu27034_data *data = iio_priv(indio_dev);
1045 
1046 	switch (mask) {
1047 	case IIO_CHAN_INFO_SCALE:
1048 		return IIO_VAL_INT_PLUS_NANO;
1049 	case IIO_CHAN_INFO_INT_TIME:
1050 		return IIO_VAL_INT_PLUS_MICRO;
1051 	case IIO_CHAN_INFO_HARDWAREGAIN:
1052 		dev_dbg(data->dev,
1053 			"HARDWAREGAIN is read-only, use scale to set\n");
1054 		return -EINVAL;
1055 	default:
1056 		return -EINVAL;
1057 	}
1058 }
1059 
1060 static int bu27034_write_raw(struct iio_dev *idev,
1061 			     struct iio_chan_spec const *chan,
1062 			     int val, int val2, long mask)
1063 {
1064 	struct bu27034_data *data = iio_priv(idev);
1065 	int ret;
1066 
1067 	ret = iio_device_claim_direct_mode(idev);
1068 	if (ret)
1069 		return ret;
1070 
1071 	switch (mask) {
1072 	case IIO_CHAN_INFO_SCALE:
1073 		ret = bu27034_set_scale(data, chan->channel, val, val2);
1074 		break;
1075 	case IIO_CHAN_INFO_INT_TIME:
1076 		if (!val)
1077 			ret = bu27034_try_set_int_time(data, val2);
1078 		else
1079 			ret = -EINVAL;
1080 		break;
1081 	default:
1082 		ret = -EINVAL;
1083 		break;
1084 	}
1085 
1086 	iio_device_release_direct_mode(idev);
1087 
1088 	return ret;
1089 }
1090 
1091 static int bu27034_read_avail(struct iio_dev *idev,
1092 			      struct iio_chan_spec const *chan, const int **vals,
1093 			      int *type, int *length, long mask)
1094 {
1095 	struct bu27034_data *data = iio_priv(idev);
1096 
1097 	switch (mask) {
1098 	case IIO_CHAN_INFO_INT_TIME:
1099 		return iio_gts_avail_times(&data->gts, vals, type, length);
1100 	case IIO_CHAN_INFO_SCALE:
1101 		return iio_gts_all_avail_scales(&data->gts, vals, type, length);
1102 	default:
1103 		return -EINVAL;
1104 	}
1105 }
1106 
1107 static const struct iio_info bu27034_info = {
1108 	.read_raw = &bu27034_read_raw,
1109 	.write_raw = &bu27034_write_raw,
1110 	.write_raw_get_fmt = &bu27034_write_raw_get_fmt,
1111 	.read_avail = &bu27034_read_avail,
1112 };
1113 
1114 static int bu27034_chip_init(struct bu27034_data *data)
1115 {
1116 	int ret, sel;
1117 
1118 	/* Reset */
1119 	ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL,
1120 			   BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET);
1121 	if (ret)
1122 		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
1123 
1124 	msleep(1);
1125 
1126 	ret = regmap_reinit_cache(data->regmap, &bu27034_regmap);
1127 	if (ret) {
1128 		dev_err(data->dev, "Failed to reinit reg cache\n");
1129 		return ret;
1130 	}
1131 
1132 	/*
1133 	 * Read integration time here to ensure it is in regmap cache. We do
1134 	 * this to speed-up the int-time acquisition in the start of the buffer
1135 	 * handling thread where longer delays could make it more likely we end
1136 	 * up skipping a sample, and where the longer delays make timestamps
1137 	 * less accurate.
1138 	 */
1139 	ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel);
1140 	if (ret)
1141 		dev_err(data->dev, "reading integration time failed\n");
1142 
1143 	return 0;
1144 }
1145 
1146 static int bu27034_wait_for_data(struct bu27034_data *data)
1147 {
1148 	int ret, val;
1149 
1150 	ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4,
1151 				       val, val & BU27034_MASK_VALID,
1152 				       BU27034_DATA_WAIT_TIME_US,
1153 				       BU27034_TOTAL_DATA_WAIT_TIME_US);
1154 	if (ret) {
1155 		dev_err(data->dev, "data polling %s\n",
1156 			!(val & BU27034_MASK_VALID) ? "timeout" : "fail");
1157 
1158 		return ret;
1159 	}
1160 
1161 	ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO,
1162 			       &data->scan.channels[0],
1163 			       sizeof(data->scan.channels));
1164 	if (ret)
1165 		return ret;
1166 
1167 	bu27034_invalidate_read_data(data);
1168 
1169 	return 0;
1170 }
1171 
1172 static int bu27034_buffer_thread(void *arg)
1173 {
1174 	struct iio_dev *idev = arg;
1175 	struct bu27034_data *data;
1176 	int wait_ms;
1177 
1178 	data = iio_priv(idev);
1179 
1180 	wait_ms = bu27034_get_int_time(data);
1181 	wait_ms /= 1000;
1182 
1183 	wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS;
1184 
1185 	while (!kthread_should_stop()) {
1186 		int ret;
1187 		int64_t tstamp;
1188 
1189 		msleep(wait_ms);
1190 		ret = bu27034_wait_for_data(data);
1191 		if (ret)
1192 			continue;
1193 
1194 		tstamp = iio_get_time_ns(idev);
1195 
1196 		if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) {
1197 			int mlux;
1198 
1199 			ret = bu27034_calc_mlux(data, &data->scan.channels[0],
1200 					       &mlux);
1201 			if (ret)
1202 				dev_err(data->dev, "failed to calculate lux\n");
1203 
1204 			/*
1205 			 * The maximum Milli lux value we get with gain 1x time
1206 			 * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits
1207 			 * so there should be no problem returning int from
1208 			 * computations and casting it to u32
1209 			 */
1210 			data->scan.mlux = (u32)mlux;
1211 		}
1212 		iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp);
1213 	}
1214 
1215 	return 0;
1216 }
1217 
1218 static int bu27034_buffer_enable(struct iio_dev *idev)
1219 {
1220 	struct bu27034_data *data = iio_priv(idev);
1221 	struct task_struct *task;
1222 	int ret;
1223 
1224 	mutex_lock(&data->mutex);
1225 	ret = bu27034_meas_set(data, true);
1226 	if (ret)
1227 		goto unlock_out;
1228 
1229 	task = kthread_run(bu27034_buffer_thread, idev,
1230 				 "bu27034-buffering-%u",
1231 				 iio_device_id(idev));
1232 	if (IS_ERR(task)) {
1233 		ret = PTR_ERR(task);
1234 		goto unlock_out;
1235 	}
1236 
1237 	data->task = task;
1238 
1239 unlock_out:
1240 	mutex_unlock(&data->mutex);
1241 
1242 	return ret;
1243 }
1244 
1245 static int bu27034_buffer_disable(struct iio_dev *idev)
1246 {
1247 	struct bu27034_data *data = iio_priv(idev);
1248 	int ret;
1249 
1250 	mutex_lock(&data->mutex);
1251 	if (data->task) {
1252 		kthread_stop(data->task);
1253 		data->task = NULL;
1254 	}
1255 
1256 	ret = bu27034_meas_set(data, false);
1257 	mutex_unlock(&data->mutex);
1258 
1259 	return ret;
1260 }
1261 
1262 static const struct iio_buffer_setup_ops bu27034_buffer_ops = {
1263 	.postenable = &bu27034_buffer_enable,
1264 	.predisable = &bu27034_buffer_disable,
1265 };
1266 
1267 static int bu27034_probe(struct i2c_client *i2c)
1268 {
1269 	struct device *dev = &i2c->dev;
1270 	struct bu27034_data *data;
1271 	struct regmap *regmap;
1272 	struct iio_dev *idev;
1273 	unsigned int part_id, reg;
1274 	int ret;
1275 
1276 	regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap);
1277 	if (IS_ERR(regmap))
1278 		return dev_err_probe(dev, PTR_ERR(regmap),
1279 				     "Failed to initialize Regmap\n");
1280 
1281 	idev = devm_iio_device_alloc(dev, sizeof(*data));
1282 	if (!idev)
1283 		return -ENOMEM;
1284 
1285 	ret = devm_regulator_get_enable(dev, "vdd");
1286 	if (ret)
1287 		return dev_err_probe(dev, ret, "Failed to get regulator\n");
1288 
1289 	data = iio_priv(idev);
1290 
1291 	ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, &reg);
1292 	if (ret)
1293 		return dev_err_probe(dev, ret, "Failed to access sensor\n");
1294 
1295 	part_id = FIELD_GET(BU27034_MASK_PART_ID, reg);
1296 
1297 	if (part_id != BU27034_ID)
1298 		dev_warn(dev, "unknown device 0x%x\n", part_id);
1299 
1300 	ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains,
1301 				    ARRAY_SIZE(bu27034_gains), bu27034_itimes,
1302 				    ARRAY_SIZE(bu27034_itimes), &data->gts);
1303 	if (ret)
1304 		return ret;
1305 
1306 	mutex_init(&data->mutex);
1307 	data->regmap = regmap;
1308 	data->dev = dev;
1309 
1310 	idev->channels = bu27034_channels;
1311 	idev->num_channels = ARRAY_SIZE(bu27034_channels);
1312 	idev->name = "bu27034";
1313 	idev->info = &bu27034_info;
1314 
1315 	idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
1316 	idev->available_scan_masks = bu27034_scan_masks;
1317 
1318 	ret = bu27034_chip_init(data);
1319 	if (ret)
1320 		return ret;
1321 
1322 	ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops);
1323 	if (ret)
1324 		return dev_err_probe(dev, ret, "buffer setup failed\n");
1325 
1326 	ret = devm_iio_device_register(dev, idev);
1327 	if (ret < 0)
1328 		return dev_err_probe(dev, ret,
1329 				     "Unable to register iio device\n");
1330 
1331 	return ret;
1332 }
1333 
1334 static const struct of_device_id bu27034_of_match[] = {
1335 	{ .compatible = "rohm,bu27034anuc" },
1336 	{ }
1337 };
1338 MODULE_DEVICE_TABLE(of, bu27034_of_match);
1339 
1340 static struct i2c_driver bu27034_i2c_driver = {
1341 	.driver = {
1342 		.name = "bu27034-als",
1343 		.of_match_table = bu27034_of_match,
1344 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1345 	},
1346 	.probe = bu27034_probe,
1347 };
1348 module_i2c_driver(bu27034_i2c_driver);
1349 
1350 MODULE_LICENSE("GPL");
1351 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
1352 MODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver");
1353 MODULE_IMPORT_NS(IIO_GTS_HELPER);
1354