1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BU27034ANUC ROHM Ambient Light Sensor 4 * 5 * Copyright (c) 2023, ROHM Semiconductor. 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bits.h> 10 #include <linux/device.h> 11 #include <linux/i2c.h> 12 #include <linux/module.h> 13 #include <linux/property.h> 14 #include <linux/regmap.h> 15 #include <linux/regulator/consumer.h> 16 #include <linux/units.h> 17 18 #include <linux/iio/buffer.h> 19 #include <linux/iio/iio.h> 20 #include <linux/iio/iio-gts-helper.h> 21 #include <linux/iio/kfifo_buf.h> 22 23 #define BU27034_REG_SYSTEM_CONTROL 0x40 24 #define BU27034_MASK_SW_RESET BIT(7) 25 #define BU27034_MASK_PART_ID GENMASK(5, 0) 26 #define BU27034_ID 0x19 27 #define BU27034_REG_MODE_CONTROL1 0x41 28 #define BU27034_MASK_MEAS_MODE GENMASK(2, 0) 29 30 #define BU27034_REG_MODE_CONTROL2 0x42 31 #define BU27034_MASK_D01_GAIN GENMASK(7, 3) 32 33 #define BU27034_REG_MODE_CONTROL3 0x43 34 #define BU27034_REG_MODE_CONTROL4 0x44 35 #define BU27034_MASK_MEAS_EN BIT(0) 36 #define BU27034_MASK_VALID BIT(7) 37 #define BU27034_NUM_HW_DATA_CHANS 2 38 #define BU27034_REG_DATA0_LO 0x50 39 #define BU27034_REG_DATA1_LO 0x52 40 #define BU27034_REG_DATA1_HI 0x53 41 #define BU27034_REG_MANUFACTURER_ID 0x92 42 #define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID 43 44 /* 45 * The BU27034 does not have interrupt to trigger the data read when a 46 * measurement has finished. Hence we poll the VALID bit in a thread. We will 47 * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before 48 * the expected sampling time to prevent the drifting. 49 * 50 * If we constantly wake up a bit too late we would eventually skip a sample. 51 * And because the sleep can't wake up _exactly_ at given time this would be 52 * inevitable even if the sensor clock would be perfectly phase-locked to CPU 53 * clock - which we can't say is the case. 54 * 55 * This is still fragile. No matter how big advance do we have, we will still 56 * risk of losing a sample because things can in a rainy-day scenario be 57 * delayed a lot. Yet, more we reserve the time for polling, more we also lose 58 * the performance by spending cycles polling the register. So, selecting this 59 * value is a balancing dance between severity of wasting CPU time and severity 60 * of losing samples. 61 * 62 * In most cases losing the samples is not _that_ crucial because light levels 63 * tend to change slowly. 64 * 65 * Other option that was pointed to me would be always sleeping 1/2 of the 66 * measurement time, checking the VALID bit and just sleeping again if the bit 67 * was not set. That should be pretty tolerant against missing samples due to 68 * the scheduling delays while also not wasting much of cycles for polling. 69 * Downside is that the time-stamps would be very inaccurate as the wake-up 70 * would not really be tied to the sensor toggling the valid bit. This would also 71 * result 'jumps' in the time-stamps when the delay drifted so that wake-up was 72 * performed during the consecutive wake-ups (Or, when sensor and CPU clocks 73 * were very different and scheduling the wake-ups was very close to given 74 * timeout - and when the time-outs were very close to the actual sensor 75 * sampling, Eg. once in a blue moon, two consecutive time-outs would occur 76 * without having a sample ready). 77 */ 78 #define BU27034_MEAS_WAIT_PREMATURE_MS 5 79 #define BU27034_DATA_WAIT_TIME_US 1000 80 #define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000) 81 82 #define BU27034_RETRY_LIMIT 18 83 84 enum { 85 BU27034_CHAN_ALS, 86 BU27034_CHAN_DATA0, 87 BU27034_CHAN_DATA1, 88 BU27034_NUM_CHANS 89 }; 90 91 static const unsigned long bu27034_scan_masks[] = { 92 GENMASK(BU27034_CHAN_DATA1, BU27034_CHAN_DATA0), 93 GENMASK(BU27034_CHAN_DATA1, BU27034_CHAN_ALS), 0 94 }; 95 96 /* 97 * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS 98 * Time impacts to gain: 1x, 2x, 4x, 8x. 99 * 100 * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192 101 * if 1x gain is scale 1, scale for 2x gain is 0.5, 4x => 0.25, 102 * ... 8192x => 0.0001220703125 => 122070.3125 nanos 103 * 104 * Using NANO precision for scale, we must use scale 16x corresponding gain 1x 105 * to avoid precision loss. (8x would result scale 976 562.5(nanos). 106 */ 107 #define BU27034_SCALE_1X 16 108 109 /* See the data sheet for the "Gain Setting" table */ 110 #define BU27034_GSEL_1X 0x00 /* 00000 */ 111 #define BU27034_GSEL_4X 0x08 /* 01000 */ 112 #define BU27034_GSEL_32X 0x0b /* 01011 */ 113 #define BU27034_GSEL_256X 0x18 /* 11000 */ 114 #define BU27034_GSEL_512X 0x19 /* 11001 */ 115 #define BU27034_GSEL_1024X 0x1a /* 11010 */ 116 117 /* Available gain settings */ 118 static const struct iio_gain_sel_pair bu27034_gains[] = { 119 GAIN_SCALE_GAIN(1, BU27034_GSEL_1X), 120 GAIN_SCALE_GAIN(4, BU27034_GSEL_4X), 121 GAIN_SCALE_GAIN(32, BU27034_GSEL_32X), 122 GAIN_SCALE_GAIN(256, BU27034_GSEL_256X), 123 GAIN_SCALE_GAIN(512, BU27034_GSEL_512X), 124 GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X), 125 }; 126 127 /* 128 * Measurement modes are 55, 100, 200 and 400 mS modes - which do have direct 129 * multiplying impact to the data register values (similar to gain). 130 * 131 * This means that if meas-mode is changed for example from 400 => 200, 132 * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8. 133 */ 134 #define BU27034_MEAS_MODE_100MS 0 135 #define BU27034_MEAS_MODE_55MS 1 136 #define BU27034_MEAS_MODE_200MS 2 137 #define BU27034_MEAS_MODE_400MS 4 138 139 static const struct iio_itime_sel_mul bu27034_itimes[] = { 140 GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8), 141 GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4), 142 GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2), 143 GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1), 144 }; 145 146 #define BU27034_CHAN_DATA(_name) \ 147 { \ 148 .type = IIO_INTENSITY, \ 149 .channel = BU27034_CHAN_##_name, \ 150 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ 151 BIT(IIO_CHAN_INFO_SCALE) | \ 152 BIT(IIO_CHAN_INFO_HARDWAREGAIN), \ 153 .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE), \ 154 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ 155 .info_mask_shared_by_all_available = \ 156 BIT(IIO_CHAN_INFO_INT_TIME), \ 157 .address = BU27034_REG_##_name##_LO, \ 158 .scan_index = BU27034_CHAN_##_name, \ 159 .scan_type = { \ 160 .sign = 'u', \ 161 .realbits = 16, \ 162 .storagebits = 16, \ 163 .endianness = IIO_LE, \ 164 }, \ 165 .indexed = 1, \ 166 } 167 168 static const struct iio_chan_spec bu27034_channels[] = { 169 { 170 .type = IIO_LIGHT, 171 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 172 BIT(IIO_CHAN_INFO_SCALE), 173 .channel = BU27034_CHAN_ALS, 174 .scan_index = BU27034_CHAN_ALS, 175 .scan_type = { 176 .sign = 'u', 177 .realbits = 32, 178 .storagebits = 32, 179 .endianness = IIO_CPU, 180 }, 181 }, 182 /* 183 * The BU27034 DATA0 and DATA1 channels are both on the visible light 184 * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm. 185 * These wave lengths are cyan(ish) and orange(ish), making these 186 * sub-optiomal candidates for R/G/B standardization. Hence the 187 * colour modifier is omitted. 188 */ 189 BU27034_CHAN_DATA(DATA0), 190 BU27034_CHAN_DATA(DATA1), 191 IIO_CHAN_SOFT_TIMESTAMP(4), 192 }; 193 194 struct bu27034_data { 195 struct regmap *regmap; 196 struct device *dev; 197 /* 198 * Protect gain and time during scale adjustment and data reading. 199 * Protect measurement enabling/disabling. 200 */ 201 struct mutex mutex; 202 struct iio_gts gts; 203 struct task_struct *task; 204 __le16 raw[BU27034_NUM_HW_DATA_CHANS]; 205 struct { 206 u32 mlux; 207 __le16 channels[BU27034_NUM_HW_DATA_CHANS]; 208 s64 ts __aligned(8); 209 } scan; 210 }; 211 212 static const struct regmap_range bu27034_volatile_ranges[] = { 213 { 214 .range_min = BU27034_REG_SYSTEM_CONTROL, 215 .range_max = BU27034_REG_SYSTEM_CONTROL, 216 }, { 217 .range_min = BU27034_REG_MODE_CONTROL4, 218 .range_max = BU27034_REG_MODE_CONTROL4, 219 }, { 220 .range_min = BU27034_REG_DATA0_LO, 221 .range_max = BU27034_REG_DATA1_HI, 222 }, 223 }; 224 225 static const struct regmap_access_table bu27034_volatile_regs = { 226 .yes_ranges = &bu27034_volatile_ranges[0], 227 .n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges), 228 }; 229 230 static const struct regmap_range bu27034_read_only_ranges[] = { 231 { 232 .range_min = BU27034_REG_DATA0_LO, 233 .range_max = BU27034_REG_DATA1_HI, 234 }, { 235 .range_min = BU27034_REG_MANUFACTURER_ID, 236 .range_max = BU27034_REG_MANUFACTURER_ID, 237 } 238 }; 239 240 static const struct regmap_access_table bu27034_ro_regs = { 241 .no_ranges = &bu27034_read_only_ranges[0], 242 .n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges), 243 }; 244 245 static const struct regmap_config bu27034_regmap = { 246 .reg_bits = 8, 247 .val_bits = 8, 248 .max_register = BU27034_REG_MAX, 249 .cache_type = REGCACHE_RBTREE, 250 .volatile_table = &bu27034_volatile_regs, 251 .wr_table = &bu27034_ro_regs, 252 }; 253 254 struct bu27034_gain_check { 255 int old_gain; 256 int new_gain; 257 int chan; 258 }; 259 260 static int bu27034_get_gain_sel(struct bu27034_data *data, int chan) 261 { 262 int reg[] = { 263 [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, 264 [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, 265 }; 266 int ret, val; 267 268 ret = regmap_read(data->regmap, reg[chan], &val); 269 if (ret) 270 return ret; 271 272 return FIELD_GET(BU27034_MASK_D01_GAIN, val); 273 } 274 275 static int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain) 276 { 277 int ret, sel; 278 279 ret = bu27034_get_gain_sel(data, chan); 280 if (ret < 0) 281 return ret; 282 283 sel = ret; 284 285 ret = iio_gts_find_gain_by_sel(&data->gts, sel); 286 if (ret < 0) { 287 dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan, 288 sel); 289 290 return ret; 291 } 292 293 *gain = ret; 294 295 return 0; 296 } 297 298 static int bu27034_get_int_time(struct bu27034_data *data) 299 { 300 int ret, sel; 301 302 ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); 303 if (ret) 304 return ret; 305 306 return iio_gts_find_int_time_by_sel(&data->gts, 307 sel & BU27034_MASK_MEAS_MODE); 308 } 309 310 static int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val, 311 int *val2) 312 { 313 int gain, ret; 314 315 ret = bu27034_get_gain(data, channel, &gain); 316 if (ret) 317 return ret; 318 319 ret = bu27034_get_int_time(data); 320 if (ret < 0) 321 return ret; 322 323 return iio_gts_get_scale(&data->gts, gain, ret, val, val2); 324 } 325 326 static int bu27034_get_scale(struct bu27034_data *data, int channel, int *val, 327 int *val2) 328 { 329 int ret; 330 331 if (channel == BU27034_CHAN_ALS) { 332 *val = 0; 333 *val2 = 1000; 334 return IIO_VAL_INT_PLUS_MICRO; 335 } 336 337 mutex_lock(&data->mutex); 338 ret = _bu27034_get_scale(data, channel, val, val2); 339 mutex_unlock(&data->mutex); 340 if (ret) 341 return ret; 342 343 return IIO_VAL_INT_PLUS_NANO; 344 } 345 346 /* Caller should hold the lock to protect lux reading */ 347 static int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel) 348 { 349 static const int reg[] = { 350 [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, 351 [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, 352 }; 353 int mask, val; 354 355 val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel); 356 mask = BU27034_MASK_D01_GAIN; 357 358 return regmap_update_bits(data->regmap, reg[chan], mask, val); 359 } 360 361 static int bu27034_set_gain(struct bu27034_data *data, int chan, int gain) 362 { 363 int ret; 364 365 ret = iio_gts_find_sel_by_gain(&data->gts, gain); 366 if (ret < 0) 367 return ret; 368 369 return bu27034_write_gain_sel(data, chan, ret); 370 } 371 372 /* Caller should hold the lock to protect data->int_time */ 373 static int bu27034_set_int_time(struct bu27034_data *data, int time) 374 { 375 int ret; 376 377 ret = iio_gts_find_sel_by_int_time(&data->gts, time); 378 if (ret < 0) 379 return ret; 380 381 return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, 382 BU27034_MASK_MEAS_MODE, ret); 383 } 384 385 /* 386 * We try to change the time in such way that the scale is maintained for 387 * given channels by adjusting gain so that it compensates the time change. 388 */ 389 static int bu27034_try_set_int_time(struct bu27034_data *data, int time_us) 390 { 391 struct bu27034_gain_check gains[] = { 392 { .chan = BU27034_CHAN_DATA0 }, 393 { .chan = BU27034_CHAN_DATA1 }, 394 }; 395 int numg = ARRAY_SIZE(gains); 396 int ret, int_time_old, i; 397 398 mutex_lock(&data->mutex); 399 ret = bu27034_get_int_time(data); 400 if (ret < 0) 401 goto unlock_out; 402 403 int_time_old = ret; 404 405 if (!iio_gts_valid_time(&data->gts, time_us)) { 406 dev_err(data->dev, "Unsupported integration time %u\n", 407 time_us); 408 ret = -EINVAL; 409 410 goto unlock_out; 411 } 412 413 if (time_us == int_time_old) { 414 ret = 0; 415 goto unlock_out; 416 } 417 418 for (i = 0; i < numg; i++) { 419 ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain); 420 if (ret) 421 goto unlock_out; 422 423 ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts, 424 gains[i].old_gain, 425 int_time_old, time_us, 426 &gains[i].new_gain); 427 if (ret) { 428 int scale1, scale2; 429 bool ok; 430 431 _bu27034_get_scale(data, gains[i].chan, &scale1, &scale2); 432 dev_dbg(data->dev, 433 "chan %u, can't support time %u with scale %u %u\n", 434 gains[i].chan, time_us, scale1, scale2); 435 436 if (gains[i].new_gain < 0) 437 goto unlock_out; 438 439 /* 440 * If caller requests for integration time change and we 441 * can't support the scale - then the caller should be 442 * prepared to 'pick up the pieces and deal with the 443 * fact that the scale changed'. 444 */ 445 ret = iio_find_closest_gain_low(&data->gts, 446 gains[i].new_gain, &ok); 447 448 if (!ok) 449 dev_dbg(data->dev, 450 "optimal gain out of range for chan %u\n", 451 gains[i].chan); 452 453 if (ret < 0) { 454 dev_dbg(data->dev, 455 "Total gain increase. Risk of saturation"); 456 ret = iio_gts_get_min_gain(&data->gts); 457 if (ret < 0) 458 goto unlock_out; 459 } 460 dev_dbg(data->dev, "chan %u scale changed\n", 461 gains[i].chan); 462 gains[i].new_gain = ret; 463 dev_dbg(data->dev, "chan %u new gain %u\n", 464 gains[i].chan, gains[i].new_gain); 465 } 466 } 467 468 for (i = 0; i < numg; i++) { 469 ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain); 470 if (ret) 471 goto unlock_out; 472 } 473 474 ret = bu27034_set_int_time(data, time_us); 475 476 unlock_out: 477 mutex_unlock(&data->mutex); 478 479 return ret; 480 } 481 482 static int bu27034_set_scale(struct bu27034_data *data, int chan, 483 int val, int val2) 484 { 485 int ret, time_sel, gain_sel, i; 486 bool found = false; 487 488 if (chan == BU27034_CHAN_ALS) { 489 if (val == 0 && val2 == 1000000) 490 return 0; 491 492 return -EINVAL; 493 } 494 495 mutex_lock(&data->mutex); 496 ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel); 497 if (ret) 498 goto unlock_out; 499 500 ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, 501 val, val2, &gain_sel); 502 if (ret) { 503 /* 504 * Could not support scale with given time. Need to change time. 505 * We still want to maintain the scale for all channels 506 */ 507 struct bu27034_gain_check gain; 508 int new_time_sel; 509 510 /* 511 * Populate information for the other channel which should also 512 * maintain the scale. 513 */ 514 if (chan == BU27034_CHAN_DATA0) 515 gain.chan = BU27034_CHAN_DATA1; 516 else if (chan == BU27034_CHAN_DATA1) 517 gain.chan = BU27034_CHAN_DATA0; 518 519 ret = bu27034_get_gain(data, gain.chan, &gain.old_gain); 520 if (ret) 521 goto unlock_out; 522 523 /* 524 * Iterate through all the times to see if we find one which 525 * can support requested scale for requested channel, while 526 * maintaining the scale for the other channel 527 */ 528 for (i = 0; i < data->gts.num_itime; i++) { 529 new_time_sel = data->gts.itime_table[i].sel; 530 531 if (new_time_sel == time_sel) 532 continue; 533 534 /* Can we provide requested scale with this time? */ 535 ret = iio_gts_find_gain_sel_for_scale_using_time( 536 &data->gts, new_time_sel, val, val2, 537 &gain_sel); 538 if (ret) 539 continue; 540 541 /* Can the other channel maintain scale? */ 542 ret = iio_gts_find_new_gain_sel_by_old_gain_time( 543 &data->gts, gain.old_gain, time_sel, 544 new_time_sel, &gain.new_gain); 545 if (!ret) { 546 /* Yes - we found suitable time */ 547 found = true; 548 break; 549 } 550 } 551 if (!found) { 552 dev_dbg(data->dev, 553 "Can't set scale maintaining other channel\n"); 554 ret = -EINVAL; 555 556 goto unlock_out; 557 } 558 559 ret = bu27034_set_gain(data, gain.chan, gain.new_gain); 560 if (ret) 561 goto unlock_out; 562 563 ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, 564 BU27034_MASK_MEAS_MODE, new_time_sel); 565 if (ret) 566 goto unlock_out; 567 } 568 569 ret = bu27034_write_gain_sel(data, chan, gain_sel); 570 unlock_out: 571 mutex_unlock(&data->mutex); 572 573 return ret; 574 } 575 576 /* 577 * for (D1/D0 < 1.5): 578 * lx = (0.001193 * D0 + (-0.0000747) * D1) * ((D1/D0 – 1.5) * (0.25) + 1) 579 * 580 * => -0.000745625 * D0 + 0.0002515625 * D1 + -0.000018675 * D1 * D1 / D0 581 * 582 * => (6.44 * ch1 / gain1 + 19.088 * ch0 / gain0 - 583 * 0.47808 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) / 584 * mt 585 * 586 * Else 587 * lx = 0.001193 * D0 - 0.0000747 * D1 588 * 589 * => (1.91232 * ch1 / gain1 + 30.5408 * ch0 / gain0 + 590 * [0 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0] ) / 591 * mt 592 * 593 * This can be unified to format: 594 * lx = [ 595 * A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + 596 * B * ch1 / gain1 + 597 * C * ch0 / gain0 598 * ] / mt 599 * 600 * For case 1: 601 * A = -0.47808, 602 * B = 6.44, 603 * C = 19.088 604 * 605 * For case 2: 606 * A = 0 607 * B = 1.91232 608 * C = 30.5408 609 */ 610 611 struct bu27034_lx_coeff { 612 unsigned int A; 613 unsigned int B; 614 unsigned int C; 615 /* Indicate which of the coefficients above are negative */ 616 bool is_neg[3]; 617 }; 618 619 static inline u64 gain_mul_div_helper(u64 val, unsigned int gain, 620 unsigned int div) 621 { 622 /* 623 * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL) 624 * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored). 625 * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply 626 * with the gain, no matter what gain is set. 627 * 628 * So, multiplication with max gain may overflow if val is greater than 629 * 0xFFFFFFFFFFFFF (52 bits set).. 630 * 631 * If this is the case we divide first. 632 */ 633 if (val < GENMASK_ULL(51, 0)) { 634 val *= gain; 635 do_div(val, div); 636 } else { 637 do_div(val, div); 638 val *= gain; 639 } 640 641 return val; 642 } 643 644 static u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0, 645 unsigned int ch1, unsigned int gain0, 646 unsigned int gain1) 647 { 648 unsigned int helper; 649 u64 helper64; 650 651 helper64 = (u64)coeff * (u64)ch1 * (u64)ch1; 652 653 helper = gain1 * gain1; 654 if (helper > ch0) { 655 do_div(helper64, helper); 656 657 return gain_mul_div_helper(helper64, gain0, ch0); 658 } 659 660 do_div(helper64, ch0); 661 662 return gain_mul_div_helper(helper64, gain0, helper); 663 664 } 665 666 static u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0, 667 unsigned int ch1, unsigned int gain0, 668 unsigned int gain1) 669 { 670 unsigned int helper, tmp; 671 672 /* 673 * Here we could overflow even the 64bit value. Hence we 674 * multiply with gain0 only after the divisions - even though 675 * it may result loss of accuracy 676 */ 677 helper = coeff * ch1 * ch1; 678 tmp = helper * gain0; 679 680 helper = ch1 * ch1; 681 682 if (check_mul_overflow(helper, coeff, &helper)) 683 return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); 684 685 if (check_mul_overflow(helper, gain0, &tmp)) 686 return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); 687 688 return tmp / (gain1 * gain1) / ch0; 689 690 } 691 692 static u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch, 693 unsigned int gain) 694 { 695 unsigned int helper; 696 u64 helper64; 697 698 if (!check_mul_overflow(coeff, ch, &helper)) 699 return helper / gain; 700 701 helper64 = (u64)coeff * (u64)ch; 702 do_div(helper64, gain); 703 704 return helper64; 705 } 706 707 static int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1, 708 unsigned int gain0, unsigned int gain1, 709 unsigned int meastime, int coeff_idx) 710 { 711 static const struct bu27034_lx_coeff coeff[] = { 712 { 713 .A = 4780800, /* -0.47808 */ 714 .B = 64400000, /* 6.44 */ 715 .C = 190880000, /* 19.088 */ 716 .is_neg = { true, false, false }, 717 }, { 718 .A = 0, /* 0 */ 719 .B = 19123200, /* 1.91232 */ 720 .C = 305408000, /* 30.5408 */ 721 /* All terms positive */ 722 }, 723 }; 724 const struct bu27034_lx_coeff *c = &coeff[coeff_idx]; 725 u64 res = 0, terms[3]; 726 int i; 727 728 if (coeff_idx >= ARRAY_SIZE(coeff)) 729 return -EINVAL; 730 731 terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1); 732 terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1); 733 terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0); 734 735 /* First, add positive terms */ 736 for (i = 0; i < 3; i++) 737 if (!c->is_neg[i]) 738 res += terms[i]; 739 740 /* No positive term => zero lux */ 741 if (!res) 742 return 0; 743 744 /* Then, subtract negative terms (if any) */ 745 for (i = 0; i < 3; i++) 746 if (c->is_neg[i]) { 747 /* 748 * If the negative term is greater than positive - then 749 * the darkness has taken over and we are all doomed! Eh, 750 * I mean, then we can just return 0 lx and go out 751 */ 752 if (terms[i] >= res) 753 return 0; 754 755 res -= terms[i]; 756 } 757 758 meastime *= 10; 759 do_div(res, meastime); 760 761 return (int) res; 762 } 763 764 static bool bu27034_has_valid_sample(struct bu27034_data *data) 765 { 766 int ret, val; 767 768 ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val); 769 if (ret) { 770 dev_err(data->dev, "Read failed %d\n", ret); 771 772 return false; 773 } 774 775 return val & BU27034_MASK_VALID; 776 } 777 778 /* 779 * Reading the register where VALID bit is clears this bit. (So does changing 780 * any gain / integration time configuration registers) The bit gets 781 * set when we have acquired new data. We use this bit to indicate data 782 * validity. 783 */ 784 static void bu27034_invalidate_read_data(struct bu27034_data *data) 785 { 786 bu27034_has_valid_sample(data); 787 } 788 789 static int bu27034_read_result(struct bu27034_data *data, int chan, int *res) 790 { 791 int reg[] = { 792 [BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO, 793 [BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO, 794 }; 795 int valid, ret; 796 __le16 val; 797 798 ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, 799 valid, (valid & BU27034_MASK_VALID), 800 BU27034_DATA_WAIT_TIME_US, 0); 801 if (ret) 802 return ret; 803 804 ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val)); 805 if (ret) 806 return ret; 807 808 *res = le16_to_cpu(val); 809 810 return 0; 811 } 812 813 static int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res, 814 int size) 815 { 816 int ret = 0, retry_cnt = 0; 817 818 retry: 819 /* Get new value from sensor if data is ready */ 820 if (bu27034_has_valid_sample(data)) { 821 ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, 822 res, size); 823 if (ret) 824 return ret; 825 826 bu27034_invalidate_read_data(data); 827 } else { 828 /* No new data in sensor. Wait and retry */ 829 retry_cnt++; 830 831 if (retry_cnt > BU27034_RETRY_LIMIT) { 832 dev_err(data->dev, "No data from sensor\n"); 833 834 return -ETIMEDOUT; 835 } 836 837 msleep(25); 838 839 goto retry; 840 } 841 842 return ret; 843 } 844 845 static int bu27034_meas_set(struct bu27034_data *data, bool en) 846 { 847 if (en) 848 return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4, 849 BU27034_MASK_MEAS_EN); 850 851 return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4, 852 BU27034_MASK_MEAS_EN); 853 } 854 855 static int bu27034_get_single_result(struct bu27034_data *data, int chan, 856 int *val) 857 { 858 int ret; 859 860 if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA1) 861 return -EINVAL; 862 863 ret = bu27034_meas_set(data, true); 864 if (ret) 865 return ret; 866 867 ret = bu27034_get_int_time(data); 868 if (ret < 0) 869 return ret; 870 871 msleep(ret / 1000); 872 873 return bu27034_read_result(data, chan, val); 874 } 875 876 /* 877 * The formula given by vendor for computing luxes out of data0 and data1 878 * (in open air) is as follows: 879 * 880 * Let's mark: 881 * D0 = data0/ch0_gain/meas_time_ms * 25600 882 * D1 = data1/ch1_gain/meas_time_ms * 25600 883 * 884 * Then: 885 * If (D1/D0 < 1.5) 886 * lx = (0.001193 * D0 + (-0.0000747) * D1) * ((D1 / D0 – 1.5) * 0.25 + 1) 887 * Else 888 * lx = (0.001193 * D0 + (-0.0000747) * D1) 889 * 890 * We use it here. Users who have for example some colored lens 891 * need to modify the calculation but I hope this gives a starting point for 892 * those working with such devices. 893 */ 894 895 static int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val) 896 { 897 unsigned int gain0, gain1, meastime; 898 unsigned int d1_d0_ratio_scaled; 899 u16 ch0, ch1; 900 u64 helper64; 901 int ret; 902 903 /* 904 * We return 0 lux if calculation fails. This should be reasonably 905 * easy to spot from the buffers especially if raw-data channels show 906 * valid values 907 */ 908 *val = 0; 909 910 ch0 = max_t(u16, 1, le16_to_cpu(res[0])); 911 ch1 = max_t(u16, 1, le16_to_cpu(res[1])); 912 913 ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0); 914 if (ret) 915 return ret; 916 917 ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1); 918 if (ret) 919 return ret; 920 921 ret = bu27034_get_int_time(data); 922 if (ret < 0) 923 return ret; 924 925 meastime = ret; 926 927 d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100; 928 helper64 = (u64)ch1 * (u64)gain0 * 100LLU; 929 930 if (helper64 != d1_d0_ratio_scaled) { 931 unsigned int div = (unsigned int)ch0 * gain1; 932 933 do_div(helper64, div); 934 d1_d0_ratio_scaled = helper64; 935 } else { 936 d1_d0_ratio_scaled /= ch0 * gain1; 937 } 938 939 if (d1_d0_ratio_scaled < 150) 940 ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0); 941 else 942 ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1); 943 944 if (ret < 0) 945 return ret; 946 947 *val = ret; 948 949 return 0; 950 951 } 952 953 static int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val) 954 { 955 __le16 res[BU27034_NUM_HW_DATA_CHANS]; 956 int ret; 957 958 ret = bu27034_meas_set(data, true); 959 if (ret) 960 return ret; 961 962 ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res)); 963 if (ret) 964 return ret; 965 966 ret = bu27034_calc_mlux(data, res, val); 967 if (ret) 968 return ret; 969 970 ret = bu27034_meas_set(data, false); 971 if (ret) 972 dev_err(data->dev, "failed to disable measurement\n"); 973 974 return 0; 975 } 976 977 static int bu27034_read_raw(struct iio_dev *idev, 978 struct iio_chan_spec const *chan, 979 int *val, int *val2, long mask) 980 { 981 struct bu27034_data *data = iio_priv(idev); 982 int ret; 983 984 switch (mask) { 985 case IIO_CHAN_INFO_INT_TIME: 986 *val = 0; 987 *val2 = bu27034_get_int_time(data); 988 if (*val2 < 0) 989 return *val2; 990 991 return IIO_VAL_INT_PLUS_MICRO; 992 993 case IIO_CHAN_INFO_HARDWAREGAIN: 994 ret = bu27034_get_gain(data, chan->channel, val); 995 if (ret) 996 return ret; 997 998 return IIO_VAL_INT; 999 1000 case IIO_CHAN_INFO_SCALE: 1001 return bu27034_get_scale(data, chan->channel, val, val2); 1002 1003 case IIO_CHAN_INFO_RAW: 1004 { 1005 int (*result_get)(struct bu27034_data *data, int chan, int *val); 1006 1007 if (chan->type == IIO_INTENSITY) 1008 result_get = bu27034_get_single_result; 1009 else if (chan->type == IIO_LIGHT) 1010 result_get = bu27034_get_mlux; 1011 else 1012 return -EINVAL; 1013 1014 /* Don't mess with measurement enabling while buffering */ 1015 ret = iio_device_claim_direct_mode(idev); 1016 if (ret) 1017 return ret; 1018 1019 mutex_lock(&data->mutex); 1020 /* 1021 * Reading one channel at a time is inefficient but we 1022 * don't care here. Buffered version should be used if 1023 * performance is an issue. 1024 */ 1025 ret = result_get(data, chan->channel, val); 1026 1027 mutex_unlock(&data->mutex); 1028 iio_device_release_direct_mode(idev); 1029 1030 if (ret) 1031 return ret; 1032 1033 return IIO_VAL_INT; 1034 } 1035 default: 1036 return -EINVAL; 1037 } 1038 } 1039 1040 static int bu27034_write_raw_get_fmt(struct iio_dev *indio_dev, 1041 struct iio_chan_spec const *chan, 1042 long mask) 1043 { 1044 struct bu27034_data *data = iio_priv(indio_dev); 1045 1046 switch (mask) { 1047 case IIO_CHAN_INFO_SCALE: 1048 return IIO_VAL_INT_PLUS_NANO; 1049 case IIO_CHAN_INFO_INT_TIME: 1050 return IIO_VAL_INT_PLUS_MICRO; 1051 case IIO_CHAN_INFO_HARDWAREGAIN: 1052 dev_dbg(data->dev, 1053 "HARDWAREGAIN is read-only, use scale to set\n"); 1054 return -EINVAL; 1055 default: 1056 return -EINVAL; 1057 } 1058 } 1059 1060 static int bu27034_write_raw(struct iio_dev *idev, 1061 struct iio_chan_spec const *chan, 1062 int val, int val2, long mask) 1063 { 1064 struct bu27034_data *data = iio_priv(idev); 1065 int ret; 1066 1067 ret = iio_device_claim_direct_mode(idev); 1068 if (ret) 1069 return ret; 1070 1071 switch (mask) { 1072 case IIO_CHAN_INFO_SCALE: 1073 ret = bu27034_set_scale(data, chan->channel, val, val2); 1074 break; 1075 case IIO_CHAN_INFO_INT_TIME: 1076 if (!val) 1077 ret = bu27034_try_set_int_time(data, val2); 1078 else 1079 ret = -EINVAL; 1080 break; 1081 default: 1082 ret = -EINVAL; 1083 break; 1084 } 1085 1086 iio_device_release_direct_mode(idev); 1087 1088 return ret; 1089 } 1090 1091 static int bu27034_read_avail(struct iio_dev *idev, 1092 struct iio_chan_spec const *chan, const int **vals, 1093 int *type, int *length, long mask) 1094 { 1095 struct bu27034_data *data = iio_priv(idev); 1096 1097 switch (mask) { 1098 case IIO_CHAN_INFO_INT_TIME: 1099 return iio_gts_avail_times(&data->gts, vals, type, length); 1100 case IIO_CHAN_INFO_SCALE: 1101 return iio_gts_all_avail_scales(&data->gts, vals, type, length); 1102 default: 1103 return -EINVAL; 1104 } 1105 } 1106 1107 static const struct iio_info bu27034_info = { 1108 .read_raw = &bu27034_read_raw, 1109 .write_raw = &bu27034_write_raw, 1110 .write_raw_get_fmt = &bu27034_write_raw_get_fmt, 1111 .read_avail = &bu27034_read_avail, 1112 }; 1113 1114 static int bu27034_chip_init(struct bu27034_data *data) 1115 { 1116 int ret, sel; 1117 1118 /* Reset */ 1119 ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL, 1120 BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET); 1121 if (ret) 1122 return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); 1123 1124 msleep(1); 1125 1126 ret = regmap_reinit_cache(data->regmap, &bu27034_regmap); 1127 if (ret) { 1128 dev_err(data->dev, "Failed to reinit reg cache\n"); 1129 return ret; 1130 } 1131 1132 /* 1133 * Read integration time here to ensure it is in regmap cache. We do 1134 * this to speed-up the int-time acquisition in the start of the buffer 1135 * handling thread where longer delays could make it more likely we end 1136 * up skipping a sample, and where the longer delays make timestamps 1137 * less accurate. 1138 */ 1139 ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); 1140 if (ret) 1141 dev_err(data->dev, "reading integration time failed\n"); 1142 1143 return 0; 1144 } 1145 1146 static int bu27034_wait_for_data(struct bu27034_data *data) 1147 { 1148 int ret, val; 1149 1150 ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, 1151 val, val & BU27034_MASK_VALID, 1152 BU27034_DATA_WAIT_TIME_US, 1153 BU27034_TOTAL_DATA_WAIT_TIME_US); 1154 if (ret) { 1155 dev_err(data->dev, "data polling %s\n", 1156 !(val & BU27034_MASK_VALID) ? "timeout" : "fail"); 1157 1158 return ret; 1159 } 1160 1161 ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, 1162 &data->scan.channels[0], 1163 sizeof(data->scan.channels)); 1164 if (ret) 1165 return ret; 1166 1167 bu27034_invalidate_read_data(data); 1168 1169 return 0; 1170 } 1171 1172 static int bu27034_buffer_thread(void *arg) 1173 { 1174 struct iio_dev *idev = arg; 1175 struct bu27034_data *data; 1176 int wait_ms; 1177 1178 data = iio_priv(idev); 1179 1180 wait_ms = bu27034_get_int_time(data); 1181 wait_ms /= 1000; 1182 1183 wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS; 1184 1185 while (!kthread_should_stop()) { 1186 int ret; 1187 int64_t tstamp; 1188 1189 msleep(wait_ms); 1190 ret = bu27034_wait_for_data(data); 1191 if (ret) 1192 continue; 1193 1194 tstamp = iio_get_time_ns(idev); 1195 1196 if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) { 1197 int mlux; 1198 1199 ret = bu27034_calc_mlux(data, &data->scan.channels[0], 1200 &mlux); 1201 if (ret) 1202 dev_err(data->dev, "failed to calculate lux\n"); 1203 1204 /* 1205 * The maximum Milli lux value we get with gain 1x time 1206 * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits 1207 * so there should be no problem returning int from 1208 * computations and casting it to u32 1209 */ 1210 data->scan.mlux = (u32)mlux; 1211 } 1212 iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); 1213 } 1214 1215 return 0; 1216 } 1217 1218 static int bu27034_buffer_enable(struct iio_dev *idev) 1219 { 1220 struct bu27034_data *data = iio_priv(idev); 1221 struct task_struct *task; 1222 int ret; 1223 1224 mutex_lock(&data->mutex); 1225 ret = bu27034_meas_set(data, true); 1226 if (ret) 1227 goto unlock_out; 1228 1229 task = kthread_run(bu27034_buffer_thread, idev, 1230 "bu27034-buffering-%u", 1231 iio_device_id(idev)); 1232 if (IS_ERR(task)) { 1233 ret = PTR_ERR(task); 1234 goto unlock_out; 1235 } 1236 1237 data->task = task; 1238 1239 unlock_out: 1240 mutex_unlock(&data->mutex); 1241 1242 return ret; 1243 } 1244 1245 static int bu27034_buffer_disable(struct iio_dev *idev) 1246 { 1247 struct bu27034_data *data = iio_priv(idev); 1248 int ret; 1249 1250 mutex_lock(&data->mutex); 1251 if (data->task) { 1252 kthread_stop(data->task); 1253 data->task = NULL; 1254 } 1255 1256 ret = bu27034_meas_set(data, false); 1257 mutex_unlock(&data->mutex); 1258 1259 return ret; 1260 } 1261 1262 static const struct iio_buffer_setup_ops bu27034_buffer_ops = { 1263 .postenable = &bu27034_buffer_enable, 1264 .predisable = &bu27034_buffer_disable, 1265 }; 1266 1267 static int bu27034_probe(struct i2c_client *i2c) 1268 { 1269 struct device *dev = &i2c->dev; 1270 struct bu27034_data *data; 1271 struct regmap *regmap; 1272 struct iio_dev *idev; 1273 unsigned int part_id, reg; 1274 int ret; 1275 1276 regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap); 1277 if (IS_ERR(regmap)) 1278 return dev_err_probe(dev, PTR_ERR(regmap), 1279 "Failed to initialize Regmap\n"); 1280 1281 idev = devm_iio_device_alloc(dev, sizeof(*data)); 1282 if (!idev) 1283 return -ENOMEM; 1284 1285 ret = devm_regulator_get_enable(dev, "vdd"); 1286 if (ret) 1287 return dev_err_probe(dev, ret, "Failed to get regulator\n"); 1288 1289 data = iio_priv(idev); 1290 1291 ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, ®); 1292 if (ret) 1293 return dev_err_probe(dev, ret, "Failed to access sensor\n"); 1294 1295 part_id = FIELD_GET(BU27034_MASK_PART_ID, reg); 1296 1297 if (part_id != BU27034_ID) 1298 dev_warn(dev, "unknown device 0x%x\n", part_id); 1299 1300 ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains, 1301 ARRAY_SIZE(bu27034_gains), bu27034_itimes, 1302 ARRAY_SIZE(bu27034_itimes), &data->gts); 1303 if (ret) 1304 return ret; 1305 1306 mutex_init(&data->mutex); 1307 data->regmap = regmap; 1308 data->dev = dev; 1309 1310 idev->channels = bu27034_channels; 1311 idev->num_channels = ARRAY_SIZE(bu27034_channels); 1312 idev->name = "bu27034"; 1313 idev->info = &bu27034_info; 1314 1315 idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; 1316 idev->available_scan_masks = bu27034_scan_masks; 1317 1318 ret = bu27034_chip_init(data); 1319 if (ret) 1320 return ret; 1321 1322 ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops); 1323 if (ret) 1324 return dev_err_probe(dev, ret, "buffer setup failed\n"); 1325 1326 ret = devm_iio_device_register(dev, idev); 1327 if (ret < 0) 1328 return dev_err_probe(dev, ret, 1329 "Unable to register iio device\n"); 1330 1331 return ret; 1332 } 1333 1334 static const struct of_device_id bu27034_of_match[] = { 1335 { .compatible = "rohm,bu27034anuc" }, 1336 { } 1337 }; 1338 MODULE_DEVICE_TABLE(of, bu27034_of_match); 1339 1340 static struct i2c_driver bu27034_i2c_driver = { 1341 .driver = { 1342 .name = "bu27034-als", 1343 .of_match_table = bu27034_of_match, 1344 .probe_type = PROBE_PREFER_ASYNCHRONOUS, 1345 }, 1346 .probe = bu27034_probe, 1347 }; 1348 module_i2c_driver(bu27034_i2c_driver); 1349 1350 MODULE_LICENSE("GPL"); 1351 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); 1352 MODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver"); 1353 MODULE_IMPORT_NS("IIO_GTS_HELPER"); 1354