xref: /linux/drivers/iio/light/rohm-bu27008.c (revision 8b6d678fede700db6466d73f11fcbad496fa515e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ROHM Colour Sensor driver for
4  * - BU27008 RGBC sensor
5  * - BU27010 RGBC + Flickering sensor
6  *
7  * Copyright (c) 2023, ROHM Semiconductor.
8  */
9 
10 #include <linux/bitfield.h>
11 #include <linux/bitops.h>
12 #include <linux/device.h>
13 #include <linux/i2c.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/property.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/units.h>
20 
21 #include <linux/iio/iio.h>
22 #include <linux/iio/iio-gts-helper.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 
27 /*
28  * A word about register address and mask definitions.
29  *
30  * At a quick glance to the data-sheet register tables, the BU27010 has all the
31  * registers that the BU27008 has. On top of that the BU27010 adds couple of new
32  * ones.
33  *
34  * So, all definitions BU27008_REG_* are there also for BU27010 but none of the
35  * BU27010_REG_* are present on BU27008. This makes sense as BU27010 just adds
36  * some features (Flicker FIFO, more power control) on top of the BU27008.
37  *
38  * Unfortunately, some of the wheel has been re-invented. Even though the names
39  * of the registers have stayed the same, pretty much all of the functionality
40  * provided by the registers has changed place. Contents of all MODE_CONTROL
41  * registers on BU27008 and BU27010 are different.
42  *
43  * Chip-specific mapping from register addresses/bits to functionality is done
44  * in bu27_chip_data structures.
45  */
46 #define BU27008_REG_SYSTEM_CONTROL	0x40
47 #define BU27008_MASK_SW_RESET		BIT(7)
48 #define BU27008_MASK_PART_ID		GENMASK(5, 0)
49 #define BU27008_ID			0x1a
50 #define BU27008_REG_MODE_CONTROL1	0x41
51 #define BU27008_MASK_MEAS_MODE		GENMASK(2, 0)
52 #define BU27008_MASK_CHAN_SEL		GENMASK(3, 2)
53 
54 #define BU27008_REG_MODE_CONTROL2	0x42
55 #define BU27008_MASK_RGBC_GAIN		GENMASK(7, 3)
56 #define BU27008_MASK_IR_GAIN_LO		GENMASK(2, 0)
57 #define BU27008_SHIFT_IR_GAIN		3
58 
59 #define BU27008_REG_MODE_CONTROL3	0x43
60 #define BU27008_MASK_VALID		BIT(7)
61 #define BU27008_MASK_INT_EN		BIT(1)
62 #define BU27008_INT_EN			BU27008_MASK_INT_EN
63 #define BU27008_INT_DIS			0
64 #define BU27008_MASK_MEAS_EN		BIT(0)
65 #define BU27008_MEAS_EN			BIT(0)
66 #define BU27008_MEAS_DIS		0
67 
68 #define BU27008_REG_DATA0_LO		0x50
69 #define BU27008_REG_DATA1_LO		0x52
70 #define BU27008_REG_DATA2_LO		0x54
71 #define BU27008_REG_DATA3_LO		0x56
72 #define BU27008_REG_DATA3_HI		0x57
73 #define BU27008_REG_MANUFACTURER_ID	0x92
74 #define BU27008_REG_MAX BU27008_REG_MANUFACTURER_ID
75 
76 /* BU27010 specific definitions */
77 
78 #define BU27010_MASK_SW_RESET		BIT(7)
79 #define BU27010_ID			0x1b
80 #define BU27010_REG_POWER		0x3e
81 #define BU27010_MASK_POWER		BIT(0)
82 
83 #define BU27010_REG_RESET		0x3f
84 #define BU27010_MASK_RESET		BIT(0)
85 #define BU27010_RESET_RELEASE		BU27010_MASK_RESET
86 
87 #define BU27010_MASK_MEAS_EN		BIT(1)
88 
89 #define BU27010_MASK_CHAN_SEL		GENMASK(7, 6)
90 #define BU27010_MASK_MEAS_MODE		GENMASK(5, 4)
91 #define BU27010_MASK_RGBC_GAIN		GENMASK(3, 0)
92 
93 #define BU27010_MASK_DATA3_GAIN		GENMASK(7, 6)
94 #define BU27010_MASK_DATA2_GAIN		GENMASK(5, 4)
95 #define BU27010_MASK_DATA1_GAIN		GENMASK(3, 2)
96 #define BU27010_MASK_DATA0_GAIN		GENMASK(1, 0)
97 
98 #define BU27010_MASK_FLC_MODE		BIT(7)
99 #define BU27010_MASK_FLC_GAIN		GENMASK(4, 0)
100 
101 #define BU27010_REG_MODE_CONTROL4	0x44
102 /* If flicker is ever to be supported the IRQ must be handled as a field */
103 #define BU27010_IRQ_DIS_ALL		GENMASK(1, 0)
104 #define BU27010_DRDY_EN			BIT(0)
105 #define BU27010_MASK_INT_SEL		GENMASK(1, 0)
106 
107 #define BU27010_REG_MODE_CONTROL5	0x45
108 #define BU27010_MASK_RGB_VALID		BIT(7)
109 #define BU27010_MASK_FLC_VALID		BIT(6)
110 #define BU27010_MASK_WAIT_EN		BIT(3)
111 #define BU27010_MASK_FIFO_EN		BIT(2)
112 #define BU27010_MASK_RGB_EN		BIT(1)
113 #define BU27010_MASK_FLC_EN		BIT(0)
114 
115 #define BU27010_REG_DATA_FLICKER_LO	0x56
116 #define BU27010_MASK_DATA_FLICKER_HI	GENMASK(2, 0)
117 #define BU27010_REG_FLICKER_COUNT	0x5a
118 #define BU27010_REG_FIFO_LEVEL_LO	0x5b
119 #define BU27010_MASK_FIFO_LEVEL_HI	BIT(0)
120 #define BU27010_REG_FIFO_DATA_LO	0x5d
121 #define BU27010_REG_FIFO_DATA_HI	0x5e
122 #define BU27010_MASK_FIFO_DATA_HI	GENMASK(2, 0)
123 #define BU27010_REG_MANUFACTURER_ID	0x92
124 #define BU27010_REG_MAX BU27010_REG_MANUFACTURER_ID
125 
126 /**
127  * enum bu27008_chan_type - BU27008 channel types
128  * @BU27008_RED:	Red channel. Always via data0.
129  * @BU27008_GREEN:	Green channel. Always via data1.
130  * @BU27008_BLUE:	Blue channel. Via data2 (when used).
131  * @BU27008_CLEAR:	Clear channel. Via data2 or data3 (when used).
132  * @BU27008_IR:		IR channel. Via data3 (when used).
133  * @BU27008_LUX:	Illuminance channel, computed using RGB and IR.
134  * @BU27008_NUM_CHANS:	Number of channel types.
135  */
136 enum bu27008_chan_type {
137 	BU27008_RED,
138 	BU27008_GREEN,
139 	BU27008_BLUE,
140 	BU27008_CLEAR,
141 	BU27008_IR,
142 	BU27008_LUX,
143 	BU27008_NUM_CHANS
144 };
145 
146 /**
147  * enum bu27008_chan - BU27008 physical data channel
148  * @BU27008_DATA0:		Always red.
149  * @BU27008_DATA1:		Always green.
150  * @BU27008_DATA2:		Blue or clear.
151  * @BU27008_DATA3:		IR or clear.
152  * @BU27008_NUM_HW_CHANS:	Number of physical channels
153  */
154 enum bu27008_chan {
155 	BU27008_DATA0,
156 	BU27008_DATA1,
157 	BU27008_DATA2,
158 	BU27008_DATA3,
159 	BU27008_NUM_HW_CHANS
160 };
161 
162 /* We can always measure red and green at same time */
163 #define ALWAYS_SCANNABLE (BIT(BU27008_RED) | BIT(BU27008_GREEN))
164 
165 /* We use these data channel configs. Ensure scan_masks below follow them too */
166 #define BU27008_BLUE2_CLEAR3		0x0 /* buffer is R, G, B, C */
167 #define BU27008_CLEAR2_IR3		0x1 /* buffer is R, G, C, IR */
168 #define BU27008_BLUE2_IR3		0x2 /* buffer is R, G, B, IR */
169 
170 static const unsigned long bu27008_scan_masks[] = {
171 	/* buffer is R, G, B, C */
172 	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_CLEAR),
173 	/* buffer is R, G, C, IR */
174 	ALWAYS_SCANNABLE | BIT(BU27008_CLEAR) | BIT(BU27008_IR),
175 	/* buffer is R, G, B, IR */
176 	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR),
177 	/* buffer is R, G, B, IR, LUX */
178 	ALWAYS_SCANNABLE | BIT(BU27008_BLUE) | BIT(BU27008_IR) | BIT(BU27008_LUX),
179 	0
180 };
181 
182 /*
183  * Available scales with gain 1x - 1024x, timings 55, 100, 200, 400 mS
184  * Time impacts to gain: 1x, 2x, 4x, 8x.
185  *
186  * => Max total gain is HWGAIN * gain by integration time (8 * 1024) = 8192
187  *
188  * Max amplification is (HWGAIN * MAX integration-time multiplier) 1024 * 8
189  * = 8192. With NANO scale we get rid of accuracy loss when we start with the
190  * scale 16.0 for HWGAIN1, INT-TIME 55 mS. This way the nano scale for MAX
191  * total gain 8192 will be 1953125
192  */
193 #define BU27008_SCALE_1X 16
194 
195 /*
196  * On BU27010 available scales with gain 1x - 4096x,
197  * timings 55, 100, 200, 400 mS. Time impacts to gain: 1x, 2x, 4x, 8x.
198  *
199  * => Max total gain is HWGAIN * gain by integration time (8 * 4096)
200  *
201  * Using NANO precision for scale we must use scale 64x corresponding gain 1x
202  * to avoid precision loss.
203  */
204 #define BU27010_SCALE_1X 64
205 
206 /* See the data sheet for the "Gain Setting" table */
207 #define BU27008_GSEL_1X		0x00
208 #define BU27008_GSEL_4X		0x08
209 #define BU27008_GSEL_8X		0x09
210 #define BU27008_GSEL_16X	0x0a
211 #define BU27008_GSEL_32X	0x0b
212 #define BU27008_GSEL_64X	0x0c
213 #define BU27008_GSEL_256X	0x18
214 #define BU27008_GSEL_512X	0x19
215 #define BU27008_GSEL_1024X	0x1a
216 
217 static const struct iio_gain_sel_pair bu27008_gains[] = {
218 	GAIN_SCALE_GAIN(1, BU27008_GSEL_1X),
219 	GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
220 	GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
221 	GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
222 	GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
223 	GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
224 	GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
225 	GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
226 	GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
227 };
228 
229 static const struct iio_gain_sel_pair bu27008_gains_ir[] = {
230 	GAIN_SCALE_GAIN(2, BU27008_GSEL_1X),
231 	GAIN_SCALE_GAIN(4, BU27008_GSEL_4X),
232 	GAIN_SCALE_GAIN(8, BU27008_GSEL_8X),
233 	GAIN_SCALE_GAIN(16, BU27008_GSEL_16X),
234 	GAIN_SCALE_GAIN(32, BU27008_GSEL_32X),
235 	GAIN_SCALE_GAIN(64, BU27008_GSEL_64X),
236 	GAIN_SCALE_GAIN(256, BU27008_GSEL_256X),
237 	GAIN_SCALE_GAIN(512, BU27008_GSEL_512X),
238 	GAIN_SCALE_GAIN(1024, BU27008_GSEL_1024X),
239 };
240 
241 #define BU27010_GSEL_1X		0x00	/* 000000 */
242 #define BU27010_GSEL_4X		0x08	/* 001000 */
243 #define BU27010_GSEL_16X	0x09	/* 001001 */
244 #define BU27010_GSEL_64X	0x0e	/* 001110 */
245 #define BU27010_GSEL_256X	0x1e	/* 011110 */
246 #define BU27010_GSEL_1024X	0x2e	/* 101110 */
247 #define BU27010_GSEL_4096X	0x3f	/* 111111 */
248 
249 static const struct iio_gain_sel_pair bu27010_gains[] = {
250 	GAIN_SCALE_GAIN(1, BU27010_GSEL_1X),
251 	GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
252 	GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
253 	GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
254 	GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
255 	GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
256 	GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
257 };
258 
259 static const struct iio_gain_sel_pair bu27010_gains_ir[] = {
260 	GAIN_SCALE_GAIN(2, BU27010_GSEL_1X),
261 	GAIN_SCALE_GAIN(4, BU27010_GSEL_4X),
262 	GAIN_SCALE_GAIN(16, BU27010_GSEL_16X),
263 	GAIN_SCALE_GAIN(64, BU27010_GSEL_64X),
264 	GAIN_SCALE_GAIN(256, BU27010_GSEL_256X),
265 	GAIN_SCALE_GAIN(1024, BU27010_GSEL_1024X),
266 	GAIN_SCALE_GAIN(4096, BU27010_GSEL_4096X),
267 };
268 
269 #define BU27008_MEAS_MODE_100MS		0x00
270 #define BU27008_MEAS_MODE_55MS		0x01
271 #define BU27008_MEAS_MODE_200MS		0x02
272 #define BU27008_MEAS_MODE_400MS		0x04
273 
274 #define BU27010_MEAS_MODE_100MS		0x00
275 #define BU27010_MEAS_MODE_55MS		0x03
276 #define BU27010_MEAS_MODE_200MS		0x01
277 #define BU27010_MEAS_MODE_400MS		0x02
278 
279 #define BU27008_MEAS_TIME_MAX_MS	400
280 
281 static const struct iio_itime_sel_mul bu27008_itimes[] = {
282 	GAIN_SCALE_ITIME_US(400000, BU27008_MEAS_MODE_400MS, 8),
283 	GAIN_SCALE_ITIME_US(200000, BU27008_MEAS_MODE_200MS, 4),
284 	GAIN_SCALE_ITIME_US(100000, BU27008_MEAS_MODE_100MS, 2),
285 	GAIN_SCALE_ITIME_US(55000, BU27008_MEAS_MODE_55MS, 1),
286 };
287 
288 static const struct iio_itime_sel_mul bu27010_itimes[] = {
289 	GAIN_SCALE_ITIME_US(400000, BU27010_MEAS_MODE_400MS, 8),
290 	GAIN_SCALE_ITIME_US(200000, BU27010_MEAS_MODE_200MS, 4),
291 	GAIN_SCALE_ITIME_US(100000, BU27010_MEAS_MODE_100MS, 2),
292 	GAIN_SCALE_ITIME_US(55000, BU27010_MEAS_MODE_55MS, 1),
293 };
294 
295 /*
296  * All the RGBC channels share the same gain.
297  * IR gain can be fine-tuned from the gain set for the RGBC by 2 bit, but this
298  * would yield quite complex gain setting. Especially since not all bit
299  * compinations are supported. And in any case setting GAIN for RGBC will
300  * always also change the IR-gain.
301  *
302  * On top of this, the selector '0' which corresponds to hw-gain 1X on RGBC,
303  * corresponds to gain 2X on IR. Rest of the selctors correspond to same gains
304  * though. This, however, makes it not possible to use shared gain for all
305  * RGBC and IR settings even though they are all changed at the one go.
306  */
307 #define BU27008_CHAN(color, data, separate_avail)				\
308 {										\
309 	.type = IIO_INTENSITY,							\
310 	.modified = 1,								\
311 	.channel2 = IIO_MOD_LIGHT_##color,					\
312 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |				\
313 			      BIT(IIO_CHAN_INFO_SCALE),				\
314 	.info_mask_separate_available = (separate_avail),			\
315 	.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME),			\
316 	.info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME),	\
317 	.address = BU27008_REG_##data##_LO,					\
318 	.scan_index = BU27008_##color,						\
319 	.scan_type = {								\
320 		.sign = 'u',							\
321 		.realbits = 16,							\
322 		.storagebits = 16,						\
323 		.endianness = IIO_LE,						\
324 	},									\
325 }
326 
327 /* For raw reads we always configure DATA3 for CLEAR */
328 static const struct iio_chan_spec bu27008_channels[] = {
329 	BU27008_CHAN(RED, DATA0, BIT(IIO_CHAN_INFO_SCALE)),
330 	BU27008_CHAN(GREEN, DATA1, BIT(IIO_CHAN_INFO_SCALE)),
331 	BU27008_CHAN(BLUE, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
332 	BU27008_CHAN(CLEAR, DATA2, BIT(IIO_CHAN_INFO_SCALE)),
333 	/*
334 	 * We don't allow setting scale for IR (because of shared gain bits).
335 	 * Hence we don't advertise available ones either.
336 	 */
337 	BU27008_CHAN(IR, DATA3, 0),
338 	{
339 		.type = IIO_LIGHT,
340 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
341 				      BIT(IIO_CHAN_INFO_SCALE),
342 		.channel = BU27008_LUX,
343 		.scan_index = BU27008_LUX,
344 		.scan_type = {
345 			.sign = 'u',
346 			.realbits = 64,
347 			.storagebits = 64,
348 			.endianness = IIO_CPU,
349 		},
350 	},
351 	IIO_CHAN_SOFT_TIMESTAMP(BU27008_NUM_CHANS),
352 };
353 
354 struct bu27008_data;
355 
356 struct bu27_chip_data {
357 	const char *name;
358 	int (*chip_init)(struct bu27008_data *data);
359 	int (*get_gain_sel)(struct bu27008_data *data, int *sel);
360 	int (*write_gain_sel)(struct bu27008_data *data, int sel);
361 	const struct regmap_config *regmap_cfg;
362 	const struct iio_gain_sel_pair *gains;
363 	const struct iio_gain_sel_pair *gains_ir;
364 	const struct iio_itime_sel_mul *itimes;
365 	int num_gains;
366 	int num_gains_ir;
367 	int num_itimes;
368 	int scale1x;
369 
370 	int drdy_en_reg;
371 	int drdy_en_mask;
372 	int meas_en_reg;
373 	int meas_en_mask;
374 	int valid_reg;
375 	int chan_sel_reg;
376 	int chan_sel_mask;
377 	int int_time_mask;
378 	u8 part_id;
379 };
380 
381 struct bu27008_data {
382 	const struct bu27_chip_data *cd;
383 	struct regmap *regmap;
384 	struct iio_trigger *trig;
385 	struct device *dev;
386 	struct iio_gts gts;
387 	struct iio_gts gts_ir;
388 	int irq;
389 
390 	/*
391 	 * Prevent changing gain/time config when scale is read/written.
392 	 * Similarly, protect the integration_time read/change sequence.
393 	 * Prevent changing gain/time when data is read.
394 	 */
395 	struct mutex mutex;
396 };
397 
398 static const struct regmap_range bu27008_volatile_ranges[] = {
399 	{
400 		.range_min = BU27008_REG_SYSTEM_CONTROL,	/* SWRESET */
401 		.range_max = BU27008_REG_SYSTEM_CONTROL,
402 	}, {
403 		.range_min = BU27008_REG_MODE_CONTROL3,		/* VALID */
404 		.range_max = BU27008_REG_MODE_CONTROL3,
405 	}, {
406 		.range_min = BU27008_REG_DATA0_LO,		/* DATA */
407 		.range_max = BU27008_REG_DATA3_HI,
408 	},
409 };
410 
411 static const struct regmap_range bu27010_volatile_ranges[] = {
412 	{
413 		.range_min = BU27010_REG_RESET,			/* RSTB */
414 		.range_max = BU27008_REG_SYSTEM_CONTROL,	/* RESET */
415 	}, {
416 		.range_min = BU27010_REG_MODE_CONTROL5,		/* VALID bits */
417 		.range_max = BU27010_REG_MODE_CONTROL5,
418 	}, {
419 		.range_min = BU27008_REG_DATA0_LO,
420 		.range_max = BU27010_REG_FIFO_DATA_HI,
421 	},
422 };
423 
424 static const struct regmap_access_table bu27008_volatile_regs = {
425 	.yes_ranges = &bu27008_volatile_ranges[0],
426 	.n_yes_ranges = ARRAY_SIZE(bu27008_volatile_ranges),
427 };
428 
429 static const struct regmap_access_table bu27010_volatile_regs = {
430 	.yes_ranges = &bu27010_volatile_ranges[0],
431 	.n_yes_ranges = ARRAY_SIZE(bu27010_volatile_ranges),
432 };
433 
434 static const struct regmap_range bu27008_read_only_ranges[] = {
435 	{
436 		.range_min = BU27008_REG_DATA0_LO,
437 		.range_max = BU27008_REG_DATA3_HI,
438 	}, {
439 		.range_min = BU27008_REG_MANUFACTURER_ID,
440 		.range_max = BU27008_REG_MANUFACTURER_ID,
441 	},
442 };
443 
444 static const struct regmap_range bu27010_read_only_ranges[] = {
445 	{
446 		.range_min = BU27008_REG_DATA0_LO,
447 		.range_max = BU27010_REG_FIFO_DATA_HI,
448 	}, {
449 		.range_min = BU27010_REG_MANUFACTURER_ID,
450 		.range_max = BU27010_REG_MANUFACTURER_ID,
451 	}
452 };
453 
454 static const struct regmap_access_table bu27008_ro_regs = {
455 	.no_ranges = &bu27008_read_only_ranges[0],
456 	.n_no_ranges = ARRAY_SIZE(bu27008_read_only_ranges),
457 };
458 
459 static const struct regmap_access_table bu27010_ro_regs = {
460 	.no_ranges = &bu27010_read_only_ranges[0],
461 	.n_no_ranges = ARRAY_SIZE(bu27010_read_only_ranges),
462 };
463 
464 static const struct regmap_config bu27008_regmap = {
465 	.reg_bits = 8,
466 	.val_bits = 8,
467 	.max_register = BU27008_REG_MAX,
468 	.cache_type = REGCACHE_RBTREE,
469 	.volatile_table = &bu27008_volatile_regs,
470 	.wr_table = &bu27008_ro_regs,
471 	/*
472 	 * All register writes are serialized by the mutex which protects the
473 	 * scale setting/getting. This is needed because scale is combined by
474 	 * gain and integration time settings and we need to ensure those are
475 	 * not read / written when scale is being computed.
476 	 *
477 	 * As a result of this serializing, we don't need regmap locking. Note,
478 	 * this is not true if we add any configurations which are not
479 	 * serialized by the mutex and which may need for example a protected
480 	 * read-modify-write cycle (eg. regmap_update_bits()). Please, revise
481 	 * this when adding features to the driver.
482 	 */
483 	.disable_locking = true,
484 };
485 
486 static const struct regmap_config bu27010_regmap = {
487 	.reg_bits	= 8,
488 	.val_bits	= 8,
489 
490 	.max_register	= BU27010_REG_MAX,
491 	.cache_type	= REGCACHE_RBTREE,
492 	.volatile_table = &bu27010_volatile_regs,
493 	.wr_table	= &bu27010_ro_regs,
494 	.disable_locking = true,
495 };
496 
497 static int bu27008_write_gain_sel(struct bu27008_data *data, int sel)
498 {
499 	int regval;
500 
501 	regval = FIELD_PREP(BU27008_MASK_RGBC_GAIN, sel);
502 
503 	/*
504 	 * We do always set also the LOW bits of IR-gain because othervice we
505 	 * would risk resulting an invalid GAIN register value.
506 	 *
507 	 * We could allow setting separate gains for RGBC and IR when the
508 	 * values were such that HW could support both gain settings.
509 	 * Eg, when the shared bits were same for both gain values.
510 	 *
511 	 * This, however, has a negligible benefit compared to the increased
512 	 * software complexity when we would need to go through the gains
513 	 * for both channels separately when the integration time changes.
514 	 * This would end up with nasty logic for computing gain values for
515 	 * both channels - and rejecting them if shared bits changed.
516 	 *
517 	 * We should then build the logic by guessing what a user prefers.
518 	 * RGBC or IR gains correctly set while other jumps to odd value?
519 	 * Maybe look-up a value where both gains are somehow optimized
520 	 * <what this somehow is, is ATM unknown to us>. Or maybe user would
521 	 * expect us to reject changes when optimal gains can't be set to both
522 	 * channels w/given integration time. At best that would result
523 	 * solution that works well for a very specific subset of
524 	 * configurations but causes unexpected corner-cases.
525 	 *
526 	 * So, we keep it simple. Always set same selector to IR and RGBC.
527 	 * We disallow setting IR (as I expect that most of the users are
528 	 * interested in RGBC). This way we can show the user that the scales
529 	 * for RGBC and IR channels are different (1X Vs 2X with sel 0) while
530 	 * still keeping the operation deterministic.
531 	 */
532 	regval |= FIELD_PREP(BU27008_MASK_IR_GAIN_LO, sel);
533 
534 	return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL2,
535 				  BU27008_MASK_RGBC_GAIN, regval);
536 }
537 
538 static int bu27010_write_gain_sel(struct bu27008_data *data, int sel)
539 {
540 	unsigned int regval;
541 	int ret, chan_selector;
542 
543 	/*
544 	 * Gain 'selector' is composed of two registers. Selector is 6bit value,
545 	 * 4 high bits being the RGBC gain fieild in MODE_CONTROL1 register and
546 	 * two low bits being the channel specific gain in MODE_CONTROL2.
547 	 *
548 	 * Let's take the 4 high bits of whole 6 bit selector, and prepare
549 	 * the MODE_CONTROL1 value (RGBC gain part).
550 	 */
551 	regval = FIELD_PREP(BU27010_MASK_RGBC_GAIN, (sel >> 2));
552 
553 	ret = regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
554 				  BU27010_MASK_RGBC_GAIN, regval);
555 	if (ret)
556 		return ret;
557 
558 	/*
559 	 * Two low two bits of the selector must be written for all 4
560 	 * channels in the MODE_CONTROL2 register. Copy these two bits for
561 	 * all channels.
562 	 */
563 	chan_selector = sel & GENMASK(1, 0);
564 
565 	regval = FIELD_PREP(BU27010_MASK_DATA0_GAIN, chan_selector);
566 	regval |= FIELD_PREP(BU27010_MASK_DATA1_GAIN, chan_selector);
567 	regval |= FIELD_PREP(BU27010_MASK_DATA2_GAIN, chan_selector);
568 	regval |= FIELD_PREP(BU27010_MASK_DATA3_GAIN, chan_selector);
569 
570 	return regmap_write(data->regmap, BU27008_REG_MODE_CONTROL2, regval);
571 }
572 
573 static int bu27008_get_gain_sel(struct bu27008_data *data, int *sel)
574 {
575 	int ret;
576 
577 	/*
578 	 * If we always "lock" the gain selectors for all channels to prevent
579 	 * unsupported configs, then it does not matter which channel is used
580 	 * we can just return selector from any of them.
581 	 *
582 	 * This, however is not true if we decide to support only 4X and 16X
583 	 * and then individual gains for channels. Currently this is not the
584 	 * case.
585 	 *
586 	 * If we some day decide to support individual gains, then we need to
587 	 * have channel information here.
588 	 */
589 
590 	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
591 	if (ret)
592 		return ret;
593 
594 	*sel = FIELD_GET(BU27008_MASK_RGBC_GAIN, *sel);
595 
596 	return 0;
597 }
598 
599 static int bu27010_get_gain_sel(struct bu27008_data *data, int *sel)
600 {
601 	int ret, tmp;
602 
603 	/*
604 	 * We always "lock" the gain selectors for all channels to prevent
605 	 * unsupported configs. It does not matter which channel is used
606 	 * we can just return selector from any of them.
607 	 *
608 	 * Read the channel0 gain.
609 	 */
610 	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL2, sel);
611 	if (ret)
612 		return ret;
613 
614 	*sel = FIELD_GET(BU27010_MASK_DATA0_GAIN, *sel);
615 
616 	/* Read the shared gain */
617 	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &tmp);
618 	if (ret)
619 		return ret;
620 
621 	/*
622 	 * The gain selector is made as a combination of common RGBC gain and
623 	 * the channel specific gain. The channel specific gain forms the low
624 	 * bits of selector and RGBC gain is appended right after it.
625 	 *
626 	 * Compose the selector from channel0 gain and shared RGBC gain.
627 	 */
628 	*sel |= FIELD_GET(BU27010_MASK_RGBC_GAIN, tmp) << fls(BU27010_MASK_DATA0_GAIN);
629 
630 	return ret;
631 }
632 
633 static int bu27008_chip_init(struct bu27008_data *data)
634 {
635 	int ret;
636 
637 	ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
638 				BU27008_MASK_SW_RESET, BU27008_MASK_SW_RESET);
639 	if (ret)
640 		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
641 
642 	/*
643 	 * The data-sheet does not tell how long performing the IC reset takes.
644 	 * However, the data-sheet says the minimum time it takes the IC to be
645 	 * able to take inputs after power is applied, is 100 uS. I'd assume
646 	 * > 1 mS is enough.
647 	 */
648 	msleep(1);
649 
650 	ret = regmap_reinit_cache(data->regmap, data->cd->regmap_cfg);
651 	if (ret)
652 		dev_err(data->dev, "Failed to reinit reg cache\n");
653 
654 	return ret;
655 }
656 
657 static int bu27010_chip_init(struct bu27008_data *data)
658 {
659 	int ret;
660 
661 	ret = regmap_write_bits(data->regmap, BU27008_REG_SYSTEM_CONTROL,
662 				BU27010_MASK_SW_RESET, BU27010_MASK_SW_RESET);
663 	if (ret)
664 		return dev_err_probe(data->dev, ret, "Sensor reset failed\n");
665 
666 	msleep(1);
667 
668 	/* Power ON*/
669 	ret = regmap_write_bits(data->regmap, BU27010_REG_POWER,
670 				BU27010_MASK_POWER, BU27010_MASK_POWER);
671 	if (ret)
672 		return dev_err_probe(data->dev, ret, "Sensor power-on failed\n");
673 
674 	msleep(1);
675 
676 	/* Release blocks from reset */
677 	ret = regmap_write_bits(data->regmap, BU27010_REG_RESET,
678 				BU27010_MASK_RESET, BU27010_RESET_RELEASE);
679 	if (ret)
680 		return dev_err_probe(data->dev, ret, "Sensor powering failed\n");
681 
682 	msleep(1);
683 
684 	/*
685 	 * The IRQ enabling on BU27010 is done in a peculiar way. The IRQ
686 	 * enabling is not a bit mask where individual IRQs could be enabled but
687 	 * a field which values are:
688 	 * 00 => IRQs disabled
689 	 * 01 => Data-ready (RGBC/IR)
690 	 * 10 => Data-ready (flicker)
691 	 * 11 => Flicker FIFO
692 	 *
693 	 * So, only one IRQ can be enabled at a time and enabling for example
694 	 * flicker FIFO would automagically disable data-ready IRQ.
695 	 *
696 	 * Currently the driver does not support the flicker. Hence, we can
697 	 * just treat the RGBC data-ready as single bit which can be enabled /
698 	 * disabled. This works for as long as the second bit in the field
699 	 * stays zero. Here we ensure it gets zeroed.
700 	 */
701 	return regmap_clear_bits(data->regmap, BU27010_REG_MODE_CONTROL4,
702 				 BU27010_IRQ_DIS_ALL);
703 }
704 
705 static const struct bu27_chip_data bu27010_chip = {
706 	.name = "bu27010",
707 	.chip_init = bu27010_chip_init,
708 	.get_gain_sel = bu27010_get_gain_sel,
709 	.write_gain_sel = bu27010_write_gain_sel,
710 	.regmap_cfg = &bu27010_regmap,
711 	.gains = &bu27010_gains[0],
712 	.gains_ir = &bu27010_gains_ir[0],
713 	.itimes = &bu27010_itimes[0],
714 	.num_gains = ARRAY_SIZE(bu27010_gains),
715 	.num_gains_ir = ARRAY_SIZE(bu27010_gains_ir),
716 	.num_itimes = ARRAY_SIZE(bu27010_itimes),
717 	.scale1x = BU27010_SCALE_1X,
718 	.drdy_en_reg = BU27010_REG_MODE_CONTROL4,
719 	.drdy_en_mask = BU27010_DRDY_EN,
720 	.meas_en_reg = BU27010_REG_MODE_CONTROL5,
721 	.meas_en_mask = BU27010_MASK_MEAS_EN,
722 	.valid_reg = BU27010_REG_MODE_CONTROL5,
723 	.chan_sel_reg = BU27008_REG_MODE_CONTROL1,
724 	.chan_sel_mask = BU27010_MASK_CHAN_SEL,
725 	.int_time_mask = BU27010_MASK_MEAS_MODE,
726 	.part_id = BU27010_ID,
727 };
728 
729 static const struct bu27_chip_data bu27008_chip = {
730 	.name = "bu27008",
731 	.chip_init = bu27008_chip_init,
732 	.get_gain_sel = bu27008_get_gain_sel,
733 	.write_gain_sel = bu27008_write_gain_sel,
734 	.regmap_cfg = &bu27008_regmap,
735 	.gains = &bu27008_gains[0],
736 	.gains_ir = &bu27008_gains_ir[0],
737 	.itimes = &bu27008_itimes[0],
738 	.num_gains = ARRAY_SIZE(bu27008_gains),
739 	.num_gains_ir = ARRAY_SIZE(bu27008_gains_ir),
740 	.num_itimes = ARRAY_SIZE(bu27008_itimes),
741 	.scale1x = BU27008_SCALE_1X,
742 	.drdy_en_reg = BU27008_REG_MODE_CONTROL3,
743 	.drdy_en_mask = BU27008_MASK_INT_EN,
744 	.valid_reg = BU27008_REG_MODE_CONTROL3,
745 	.meas_en_reg = BU27008_REG_MODE_CONTROL3,
746 	.meas_en_mask = BU27008_MASK_MEAS_EN,
747 	.chan_sel_reg = BU27008_REG_MODE_CONTROL3,
748 	.chan_sel_mask = BU27008_MASK_CHAN_SEL,
749 	.int_time_mask = BU27008_MASK_MEAS_MODE,
750 	.part_id = BU27008_ID,
751 };
752 
753 #define BU27008_MAX_VALID_RESULT_WAIT_US	50000
754 #define BU27008_VALID_RESULT_WAIT_QUANTA_US	1000
755 
756 static int bu27008_chan_read_data(struct bu27008_data *data, int reg, int *val)
757 {
758 	int ret, valid;
759 	__le16 tmp;
760 
761 	ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
762 				       valid, (valid & BU27008_MASK_VALID),
763 				       BU27008_VALID_RESULT_WAIT_QUANTA_US,
764 				       BU27008_MAX_VALID_RESULT_WAIT_US);
765 	if (ret)
766 		return ret;
767 
768 	ret = regmap_bulk_read(data->regmap, reg, &tmp, sizeof(tmp));
769 	if (ret)
770 		dev_err(data->dev, "Reading channel data failed\n");
771 
772 	*val = le16_to_cpu(tmp);
773 
774 	return ret;
775 }
776 
777 static int bu27008_get_gain(struct bu27008_data *data, struct iio_gts *gts, int *gain)
778 {
779 	int ret, sel;
780 
781 	ret = data->cd->get_gain_sel(data, &sel);
782 	if (ret)
783 		return ret;
784 
785 	ret = iio_gts_find_gain_by_sel(gts, sel);
786 	if (ret < 0) {
787 		dev_err(data->dev, "unknown gain value 0x%x\n", sel);
788 		return ret;
789 	}
790 
791 	*gain = ret;
792 
793 	return 0;
794 }
795 
796 static int bu27008_set_gain(struct bu27008_data *data, int gain)
797 {
798 	int ret;
799 
800 	ret = iio_gts_find_sel_by_gain(&data->gts, gain);
801 	if (ret < 0)
802 		return ret;
803 
804 	return data->cd->write_gain_sel(data, ret);
805 }
806 
807 static int bu27008_get_int_time_sel(struct bu27008_data *data, int *sel)
808 {
809 	int ret, val;
810 
811 	ret = regmap_read(data->regmap, BU27008_REG_MODE_CONTROL1, &val);
812 	if (ret)
813 		return ret;
814 
815 	val &= data->cd->int_time_mask;
816 	val >>= ffs(data->cd->int_time_mask) - 1;
817 
818 	*sel = val;
819 
820 	return 0;
821 }
822 
823 static int bu27008_set_int_time_sel(struct bu27008_data *data, int sel)
824 {
825 	sel <<= ffs(data->cd->int_time_mask) - 1;
826 
827 	return regmap_update_bits(data->regmap, BU27008_REG_MODE_CONTROL1,
828 				  data->cd->int_time_mask, sel);
829 }
830 
831 static int bu27008_get_int_time_us(struct bu27008_data *data)
832 {
833 	int ret, sel;
834 
835 	ret = bu27008_get_int_time_sel(data, &sel);
836 	if (ret)
837 		return ret;
838 
839 	return iio_gts_find_int_time_by_sel(&data->gts, sel);
840 }
841 
842 static int _bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
843 			      int *val2)
844 {
845 	struct iio_gts *gts;
846 	int gain, ret;
847 
848 	if (ir)
849 		gts = &data->gts_ir;
850 	else
851 		gts = &data->gts;
852 
853 	ret = bu27008_get_gain(data, gts, &gain);
854 	if (ret)
855 		return ret;
856 
857 	ret = bu27008_get_int_time_us(data);
858 	if (ret < 0)
859 		return ret;
860 
861 	return iio_gts_get_scale(gts, gain, ret, val, val2);
862 }
863 
864 static int bu27008_get_scale(struct bu27008_data *data, bool ir, int *val,
865 			     int *val2)
866 {
867 	int ret;
868 
869 	mutex_lock(&data->mutex);
870 	ret = _bu27008_get_scale(data, ir, val, val2);
871 	mutex_unlock(&data->mutex);
872 
873 	return ret;
874 }
875 
876 static int bu27008_set_int_time(struct bu27008_data *data, int time)
877 {
878 	int ret;
879 
880 	ret = iio_gts_find_sel_by_int_time(&data->gts, time);
881 	if (ret < 0)
882 		return ret;
883 
884 	return bu27008_set_int_time_sel(data, ret);
885 }
886 
887 /* Try to change the time so that the scale is maintained */
888 static int bu27008_try_set_int_time(struct bu27008_data *data, int int_time_new)
889 {
890 	int ret, old_time_sel, new_time_sel,  old_gain, new_gain;
891 
892 	mutex_lock(&data->mutex);
893 
894 	ret = bu27008_get_int_time_sel(data, &old_time_sel);
895 	if (ret < 0)
896 		goto unlock_out;
897 
898 	if (!iio_gts_valid_time(&data->gts, int_time_new)) {
899 		dev_dbg(data->dev, "Unsupported integration time %u\n",
900 			int_time_new);
901 
902 		ret = -EINVAL;
903 		goto unlock_out;
904 	}
905 
906 	/* If we already use requested time, then we're done */
907 	new_time_sel = iio_gts_find_sel_by_int_time(&data->gts, int_time_new);
908 	if (new_time_sel == old_time_sel)
909 		goto unlock_out;
910 
911 	ret = bu27008_get_gain(data, &data->gts, &old_gain);
912 	if (ret)
913 		goto unlock_out;
914 
915 	ret = iio_gts_find_new_gain_sel_by_old_gain_time(&data->gts, old_gain,
916 				old_time_sel, new_time_sel, &new_gain);
917 	if (ret) {
918 		int scale1, scale2;
919 		bool ok;
920 
921 		_bu27008_get_scale(data, false, &scale1, &scale2);
922 		dev_dbg(data->dev,
923 			"Can't support time %u with current scale %u %u\n",
924 			int_time_new, scale1, scale2);
925 
926 		if (new_gain < 0)
927 			goto unlock_out;
928 
929 		/*
930 		 * If caller requests for integration time change and we
931 		 * can't support the scale - then the caller should be
932 		 * prepared to 'pick up the pieces and deal with the
933 		 * fact that the scale changed'.
934 		 */
935 		ret = iio_find_closest_gain_low(&data->gts, new_gain, &ok);
936 		if (!ok)
937 			dev_dbg(data->dev, "optimal gain out of range\n");
938 
939 		if (ret < 0) {
940 			dev_dbg(data->dev,
941 				 "Total gain increase. Risk of saturation");
942 			ret = iio_gts_get_min_gain(&data->gts);
943 			if (ret < 0)
944 				goto unlock_out;
945 		}
946 		new_gain = ret;
947 		dev_dbg(data->dev, "scale changed, new gain %u\n", new_gain);
948 	}
949 
950 	ret = bu27008_set_gain(data, new_gain);
951 	if (ret)
952 		goto unlock_out;
953 
954 	ret = bu27008_set_int_time(data, int_time_new);
955 
956 unlock_out:
957 	mutex_unlock(&data->mutex);
958 
959 	return ret;
960 }
961 
962 static int bu27008_meas_set(struct bu27008_data *data, bool enable)
963 {
964 	if (enable)
965 		return regmap_set_bits(data->regmap, data->cd->meas_en_reg,
966 				       data->cd->meas_en_mask);
967 	return regmap_clear_bits(data->regmap, data->cd->meas_en_reg,
968 				 data->cd->meas_en_mask);
969 }
970 
971 static int bu27008_chan_cfg(struct bu27008_data *data,
972 			    struct iio_chan_spec const *chan)
973 {
974 	int chan_sel;
975 
976 	if (chan->scan_index == BU27008_BLUE)
977 		chan_sel = BU27008_BLUE2_CLEAR3;
978 	else
979 		chan_sel = BU27008_CLEAR2_IR3;
980 
981 	/*
982 	 * prepare bitfield for channel sel. The FIELD_PREP works only when
983 	 * mask is constant. In our case the mask is assigned based on the
984 	 * chip type. Hence the open-coded FIELD_PREP here. We don't bother
985 	 * zeroing the irrelevant bits though - update_bits takes care of that.
986 	 */
987 	chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
988 
989 	return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
990 				  BU27008_MASK_CHAN_SEL, chan_sel);
991 }
992 
993 static int bu27008_read_one(struct bu27008_data *data, struct iio_dev *idev,
994 			    struct iio_chan_spec const *chan, int *val, int *val2)
995 {
996 	int ret, int_time;
997 
998 	ret = bu27008_chan_cfg(data, chan);
999 	if (ret)
1000 		return ret;
1001 
1002 	ret = bu27008_meas_set(data, true);
1003 	if (ret)
1004 		return ret;
1005 
1006 	ret = bu27008_get_int_time_us(data);
1007 	if (ret < 0)
1008 		int_time = BU27008_MEAS_TIME_MAX_MS;
1009 	else
1010 		int_time = ret / USEC_PER_MSEC;
1011 
1012 	msleep(int_time);
1013 
1014 	ret = bu27008_chan_read_data(data, chan->address, val);
1015 	if (!ret)
1016 		ret = IIO_VAL_INT;
1017 
1018 	if (bu27008_meas_set(data, false))
1019 		dev_warn(data->dev, "measurement disabling failed\n");
1020 
1021 	return ret;
1022 }
1023 
1024 #define BU27008_LUX_DATA_RED	0
1025 #define BU27008_LUX_DATA_GREEN	1
1026 #define BU27008_LUX_DATA_BLUE	2
1027 #define BU27008_LUX_DATA_IR	3
1028 #define LUX_DATA_SIZE (BU27008_NUM_HW_CHANS * sizeof(__le16))
1029 
1030 static int bu27008_read_lux_chans(struct bu27008_data *data, unsigned int time,
1031 				  __le16 *chan_data)
1032 {
1033 	int ret, chan_sel, tmpret, valid;
1034 
1035 	chan_sel = BU27008_BLUE2_IR3 << (ffs(data->cd->chan_sel_mask) - 1);
1036 
1037 	ret = regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
1038 				 data->cd->chan_sel_mask, chan_sel);
1039 	if (ret)
1040 		return ret;
1041 
1042 	ret = bu27008_meas_set(data, true);
1043 	if (ret)
1044 		return ret;
1045 
1046 	msleep(time / USEC_PER_MSEC);
1047 
1048 	ret = regmap_read_poll_timeout(data->regmap, data->cd->valid_reg,
1049 				       valid, (valid & BU27008_MASK_VALID),
1050 				       BU27008_VALID_RESULT_WAIT_QUANTA_US,
1051 				       BU27008_MAX_VALID_RESULT_WAIT_US);
1052 	if (ret)
1053 		goto out;
1054 
1055 	ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, chan_data,
1056 			       LUX_DATA_SIZE);
1057 	if (ret)
1058 		goto out;
1059 out:
1060 	tmpret = bu27008_meas_set(data, false);
1061 	if (tmpret)
1062 		dev_warn(data->dev, "Stopping measurement failed\n");
1063 
1064 	return ret;
1065 }
1066 
1067 /*
1068  * Following equation for computing lux out of register values was given by
1069  * ROHM HW colleagues;
1070  *
1071  * Red = RedData*1024 / Gain * 20 / meas_mode
1072  * Green = GreenData* 1024 / Gain * 20 / meas_mode
1073  * Blue = BlueData* 1024 / Gain * 20 / meas_mode
1074  * IR = IrData* 1024 / Gain * 20 / meas_mode
1075  *
1076  * where meas_mode is the integration time in mS / 10
1077  *
1078  * IRratio = (IR > 0.18 * Green) ? 0 : 1
1079  *
1080  * Lx = max(c1*Red + c2*Green + c3*Blue,0)
1081  *
1082  * for
1083  * IRratio 0: c1 = -0.00002237, c2 = 0.0003219, c3 = -0.000120371
1084  * IRratio 1: c1 = -0.00001074, c2 = 0.000305415, c3 = -0.000129367
1085  */
1086 
1087 /*
1088  * The max chan data is 0xffff. When we multiply it by 1024 * 20, we'll get
1089  * 0x4FFFB000 which still fits in 32-bit integer. This won't overflow.
1090  */
1091 #define NORM_CHAN_DATA_FOR_LX_CALC(chan, gain, time) (le16_to_cpu(chan) * \
1092 				   1024 * 20 / (gain) / (time))
1093 static u64 bu27008_calc_nlux(struct bu27008_data *data, __le16 *lux_data,
1094 		unsigned int gain, unsigned int gain_ir, unsigned int time)
1095 {
1096 	unsigned int red, green, blue, ir;
1097 	s64 c1, c2, c3, nlux;
1098 
1099 	time /= 10000;
1100 	ir = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_IR], gain_ir, time);
1101 	red = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_RED], gain, time);
1102 	green = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_GREEN], gain, time);
1103 	blue = NORM_CHAN_DATA_FOR_LX_CALC(lux_data[BU27008_LUX_DATA_BLUE], gain, time);
1104 
1105 	if ((u64)ir * 100LLU > (u64)green * 18LLU) {
1106 		c1 = -22370;
1107 		c2 = 321900;
1108 		c3 = -120371;
1109 	} else {
1110 		c1 = -10740;
1111 		c2 = 305415;
1112 		c3 = -129367;
1113 	}
1114 	nlux = c1 * red + c2 * green + c3 * blue;
1115 
1116 	return max_t(s64, 0, nlux);
1117 }
1118 
1119 static int bu27008_get_time_n_gains(struct bu27008_data *data,
1120 		unsigned int *gain, unsigned int *gain_ir, unsigned int *time)
1121 {
1122 	int ret;
1123 
1124 	ret = bu27008_get_gain(data, &data->gts, gain);
1125 	if (ret < 0)
1126 		return ret;
1127 
1128 	ret = bu27008_get_gain(data, &data->gts_ir, gain_ir);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	ret = bu27008_get_int_time_us(data);
1133 	if (ret < 0)
1134 		return ret;
1135 
1136 	/* Max integration time is 400000. Fits in signed int. */
1137 	*time = ret;
1138 
1139 	return 0;
1140 }
1141 
1142 struct bu27008_buf {
1143 	__le16 chan[BU27008_NUM_HW_CHANS];
1144 	u64 lux __aligned(8);
1145 	s64 ts __aligned(8);
1146 };
1147 
1148 static int bu27008_buffer_fill_lux(struct bu27008_data *data,
1149 				   struct bu27008_buf *raw)
1150 {
1151 	unsigned int gain, gain_ir, time;
1152 	int ret;
1153 
1154 	ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
1155 	if (ret)
1156 		return ret;
1157 
1158 	raw->lux = bu27008_calc_nlux(data, raw->chan, gain, gain_ir, time);
1159 
1160 	return 0;
1161 }
1162 
1163 static int bu27008_read_lux(struct bu27008_data *data, struct iio_dev *idev,
1164 			    struct iio_chan_spec const *chan,
1165 			    int *val, int *val2)
1166 {
1167 	__le16 lux_data[BU27008_NUM_HW_CHANS];
1168 	unsigned int gain, gain_ir, time;
1169 	u64 nlux;
1170 	int ret;
1171 
1172 	ret = bu27008_get_time_n_gains(data, &gain, &gain_ir, &time);
1173 	if (ret)
1174 		return ret;
1175 
1176 	ret = bu27008_read_lux_chans(data, time, lux_data);
1177 	if (ret)
1178 		return ret;
1179 
1180 	nlux = bu27008_calc_nlux(data, lux_data, gain, gain_ir, time);
1181 	*val = (int)nlux;
1182 	*val2 = nlux >> 32LLU;
1183 
1184 	return IIO_VAL_INT_64;
1185 }
1186 
1187 static int bu27008_read_raw(struct iio_dev *idev,
1188 			   struct iio_chan_spec const *chan,
1189 			   int *val, int *val2, long mask)
1190 {
1191 	struct bu27008_data *data = iio_priv(idev);
1192 	int busy, ret;
1193 
1194 	switch (mask) {
1195 	case IIO_CHAN_INFO_RAW:
1196 		busy = iio_device_claim_direct_mode(idev);
1197 		if (busy)
1198 			return -EBUSY;
1199 
1200 		mutex_lock(&data->mutex);
1201 		if (chan->type == IIO_LIGHT)
1202 			ret = bu27008_read_lux(data, idev, chan, val, val2);
1203 		else
1204 			ret = bu27008_read_one(data, idev, chan, val, val2);
1205 		mutex_unlock(&data->mutex);
1206 
1207 		iio_device_release_direct_mode(idev);
1208 
1209 		return ret;
1210 
1211 	case IIO_CHAN_INFO_SCALE:
1212 		if (chan->type == IIO_LIGHT) {
1213 			*val = 0;
1214 			*val2 = 1;
1215 			return IIO_VAL_INT_PLUS_NANO;
1216 		}
1217 		ret = bu27008_get_scale(data, chan->scan_index == BU27008_IR,
1218 					val, val2);
1219 		if (ret)
1220 			return ret;
1221 
1222 		return IIO_VAL_INT_PLUS_NANO;
1223 
1224 	case IIO_CHAN_INFO_INT_TIME:
1225 		ret = bu27008_get_int_time_us(data);
1226 		if (ret < 0)
1227 			return ret;
1228 
1229 		*val = 0;
1230 		*val2 = ret;
1231 
1232 		return IIO_VAL_INT_PLUS_MICRO;
1233 
1234 	default:
1235 		return -EINVAL;
1236 	}
1237 }
1238 
1239 /* Called if the new scale could not be supported with existing int-time */
1240 static int bu27008_try_find_new_time_gain(struct bu27008_data *data, int val,
1241 					  int val2, int *gain_sel)
1242 {
1243 	int i, ret, new_time_sel;
1244 
1245 	for (i = 0; i < data->gts.num_itime; i++) {
1246 		new_time_sel = data->gts.itime_table[i].sel;
1247 		ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts,
1248 					new_time_sel, val, val2, gain_sel);
1249 		if (!ret)
1250 			break;
1251 	}
1252 	if (i == data->gts.num_itime) {
1253 		dev_err(data->dev, "Can't support scale %u %u\n", val, val2);
1254 
1255 		return -EINVAL;
1256 	}
1257 
1258 	return bu27008_set_int_time_sel(data, new_time_sel);
1259 }
1260 
1261 static int bu27008_set_scale(struct bu27008_data *data,
1262 			     struct iio_chan_spec const *chan,
1263 			     int val, int val2)
1264 {
1265 	int ret, gain_sel, time_sel;
1266 
1267 	if (chan->scan_index == BU27008_IR)
1268 		return -EINVAL;
1269 
1270 	mutex_lock(&data->mutex);
1271 
1272 	ret = bu27008_get_int_time_sel(data, &time_sel);
1273 	if (ret < 0)
1274 		goto unlock_out;
1275 
1276 	ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel,
1277 						val, val2, &gain_sel);
1278 	if (ret) {
1279 		ret = bu27008_try_find_new_time_gain(data, val, val2, &gain_sel);
1280 		if (ret)
1281 			goto unlock_out;
1282 
1283 	}
1284 	ret = data->cd->write_gain_sel(data, gain_sel);
1285 
1286 unlock_out:
1287 	mutex_unlock(&data->mutex);
1288 
1289 	return ret;
1290 }
1291 
1292 static int bu27008_write_raw_get_fmt(struct iio_dev *indio_dev,
1293 				     struct iio_chan_spec const *chan,
1294 				     long mask)
1295 {
1296 
1297 	switch (mask) {
1298 	case IIO_CHAN_INFO_SCALE:
1299 		return IIO_VAL_INT_PLUS_NANO;
1300 	case IIO_CHAN_INFO_INT_TIME:
1301 		return IIO_VAL_INT_PLUS_MICRO;
1302 	default:
1303 		return -EINVAL;
1304 	}
1305 }
1306 
1307 static int bu27008_write_raw(struct iio_dev *idev,
1308 			     struct iio_chan_spec const *chan,
1309 			     int val, int val2, long mask)
1310 {
1311 	struct bu27008_data *data = iio_priv(idev);
1312 	int ret;
1313 
1314 	/*
1315 	 * Do not allow changing scale when measurement is ongoing as doing so
1316 	 * could make values in the buffer inconsistent.
1317 	 */
1318 	ret = iio_device_claim_direct_mode(idev);
1319 	if (ret)
1320 		return ret;
1321 
1322 	switch (mask) {
1323 	case IIO_CHAN_INFO_SCALE:
1324 		ret = bu27008_set_scale(data, chan, val, val2);
1325 		break;
1326 	case IIO_CHAN_INFO_INT_TIME:
1327 		if (val) {
1328 			ret = -EINVAL;
1329 			break;
1330 		}
1331 		ret = bu27008_try_set_int_time(data, val2);
1332 		break;
1333 	default:
1334 		ret = -EINVAL;
1335 		break;
1336 	}
1337 	iio_device_release_direct_mode(idev);
1338 
1339 	return ret;
1340 }
1341 
1342 static int bu27008_read_avail(struct iio_dev *idev,
1343 			      struct iio_chan_spec const *chan, const int **vals,
1344 			      int *type, int *length, long mask)
1345 {
1346 	struct bu27008_data *data = iio_priv(idev);
1347 
1348 	switch (mask) {
1349 	case IIO_CHAN_INFO_INT_TIME:
1350 		return iio_gts_avail_times(&data->gts, vals, type, length);
1351 	case IIO_CHAN_INFO_SCALE:
1352 		if (chan->channel2 == IIO_MOD_LIGHT_IR)
1353 			return iio_gts_all_avail_scales(&data->gts_ir, vals,
1354 							type, length);
1355 		return iio_gts_all_avail_scales(&data->gts, vals, type, length);
1356 	default:
1357 		return -EINVAL;
1358 	}
1359 }
1360 
1361 static int bu27008_update_scan_mode(struct iio_dev *idev,
1362 				    const unsigned long *scan_mask)
1363 {
1364 	struct bu27008_data *data = iio_priv(idev);
1365 	int chan_sel;
1366 
1367 	/* Configure channel selection */
1368 	if (test_bit(BU27008_BLUE, idev->active_scan_mask)) {
1369 		if (test_bit(BU27008_CLEAR, idev->active_scan_mask))
1370 			chan_sel = BU27008_BLUE2_CLEAR3;
1371 		else
1372 			chan_sel = BU27008_BLUE2_IR3;
1373 	} else {
1374 		chan_sel = BU27008_CLEAR2_IR3;
1375 	}
1376 
1377 	chan_sel <<= ffs(data->cd->chan_sel_mask) - 1;
1378 
1379 	return regmap_update_bits(data->regmap, data->cd->chan_sel_reg,
1380 				  data->cd->chan_sel_mask, chan_sel);
1381 }
1382 
1383 static const struct iio_info bu27008_info = {
1384 	.read_raw = &bu27008_read_raw,
1385 	.write_raw = &bu27008_write_raw,
1386 	.write_raw_get_fmt = &bu27008_write_raw_get_fmt,
1387 	.read_avail = &bu27008_read_avail,
1388 	.update_scan_mode = bu27008_update_scan_mode,
1389 	.validate_trigger = iio_validate_own_trigger,
1390 };
1391 
1392 static int bu27008_trigger_set_state(struct iio_trigger *trig, bool state)
1393 {
1394 	struct bu27008_data *data = iio_trigger_get_drvdata(trig);
1395 	int ret;
1396 
1397 
1398 	if (state)
1399 		ret = regmap_set_bits(data->regmap, data->cd->drdy_en_reg,
1400 				      data->cd->drdy_en_mask);
1401 	else
1402 		ret = regmap_clear_bits(data->regmap, data->cd->drdy_en_reg,
1403 					data->cd->drdy_en_mask);
1404 	if (ret)
1405 		dev_err(data->dev, "Failed to set trigger state\n");
1406 
1407 	return ret;
1408 }
1409 
1410 static void bu27008_trigger_reenable(struct iio_trigger *trig)
1411 {
1412 	struct bu27008_data *data = iio_trigger_get_drvdata(trig);
1413 
1414 	enable_irq(data->irq);
1415 }
1416 
1417 static const struct iio_trigger_ops bu27008_trigger_ops = {
1418 	.set_trigger_state = bu27008_trigger_set_state,
1419 	.reenable = bu27008_trigger_reenable,
1420 };
1421 
1422 static irqreturn_t bu27008_trigger_handler(int irq, void *p)
1423 {
1424 	struct iio_poll_func *pf = p;
1425 	struct iio_dev *idev = pf->indio_dev;
1426 	struct bu27008_data *data = iio_priv(idev);
1427 	struct bu27008_buf raw;
1428 	int ret, dummy;
1429 
1430 	memset(&raw, 0, sizeof(raw));
1431 
1432 	/*
1433 	 * After some measurements, it seems reading the
1434 	 * BU27008_REG_MODE_CONTROL3 debounces the IRQ line
1435 	 */
1436 	ret = regmap_read(data->regmap, data->cd->valid_reg, &dummy);
1437 	if (ret < 0)
1438 		goto err_read;
1439 
1440 	ret = regmap_bulk_read(data->regmap, BU27008_REG_DATA0_LO, &raw.chan,
1441 			       sizeof(raw.chan));
1442 	if (ret < 0)
1443 		goto err_read;
1444 
1445 	if (test_bit(BU27008_LUX, idev->active_scan_mask)) {
1446 		ret = bu27008_buffer_fill_lux(data, &raw);
1447 		if (ret)
1448 			goto err_read;
1449 	}
1450 
1451 	iio_push_to_buffers_with_timestamp(idev, &raw, pf->timestamp);
1452 err_read:
1453 	iio_trigger_notify_done(idev->trig);
1454 
1455 	return IRQ_HANDLED;
1456 }
1457 
1458 static int bu27008_buffer_preenable(struct iio_dev *idev)
1459 {
1460 	struct bu27008_data *data = iio_priv(idev);
1461 
1462 	return bu27008_meas_set(data, true);
1463 }
1464 
1465 static int bu27008_buffer_postdisable(struct iio_dev *idev)
1466 {
1467 	struct bu27008_data *data = iio_priv(idev);
1468 
1469 	return bu27008_meas_set(data, false);
1470 }
1471 
1472 static const struct iio_buffer_setup_ops bu27008_buffer_ops = {
1473 	.preenable = bu27008_buffer_preenable,
1474 	.postdisable = bu27008_buffer_postdisable,
1475 };
1476 
1477 static irqreturn_t bu27008_data_rdy_poll(int irq, void *private)
1478 {
1479 	/*
1480 	 * The BU27008 keeps IRQ asserted until we read the VALID bit from
1481 	 * a register. We need to keep the IRQ disabled until then.
1482 	 */
1483 	disable_irq_nosync(irq);
1484 	iio_trigger_poll(private);
1485 
1486 	return IRQ_HANDLED;
1487 }
1488 
1489 static int bu27008_setup_trigger(struct bu27008_data *data, struct iio_dev *idev)
1490 {
1491 	struct iio_trigger *itrig;
1492 	char *name;
1493 	int ret;
1494 
1495 	ret = devm_iio_triggered_buffer_setup(data->dev, idev,
1496 					      &iio_pollfunc_store_time,
1497 					      bu27008_trigger_handler,
1498 					      &bu27008_buffer_ops);
1499 	if (ret)
1500 		return dev_err_probe(data->dev, ret,
1501 			     "iio_triggered_buffer_setup_ext FAIL\n");
1502 
1503 	itrig = devm_iio_trigger_alloc(data->dev, "%sdata-rdy-dev%d",
1504 				       idev->name, iio_device_id(idev));
1505 	if (!itrig)
1506 		return -ENOMEM;
1507 
1508 	data->trig = itrig;
1509 
1510 	itrig->ops = &bu27008_trigger_ops;
1511 	iio_trigger_set_drvdata(itrig, data);
1512 
1513 	name = devm_kasprintf(data->dev, GFP_KERNEL, "%s-bu27008",
1514 			      dev_name(data->dev));
1515 
1516 	ret = devm_request_irq(data->dev, data->irq,
1517 			       &bu27008_data_rdy_poll,
1518 			       0, name, itrig);
1519 	if (ret)
1520 		return dev_err_probe(data->dev, ret, "Could not request IRQ\n");
1521 
1522 	ret = devm_iio_trigger_register(data->dev, itrig);
1523 	if (ret)
1524 		return dev_err_probe(data->dev, ret,
1525 				     "Trigger registration failed\n");
1526 
1527 	/* set default trigger */
1528 	idev->trig = iio_trigger_get(itrig);
1529 
1530 	return 0;
1531 }
1532 
1533 static int bu27008_probe(struct i2c_client *i2c)
1534 {
1535 	struct device *dev = &i2c->dev;
1536 	struct bu27008_data *data;
1537 	struct regmap *regmap;
1538 	unsigned int part_id, reg;
1539 	struct iio_dev *idev;
1540 	int ret;
1541 
1542 	idev = devm_iio_device_alloc(dev, sizeof(*data));
1543 	if (!idev)
1544 		return -ENOMEM;
1545 
1546 	ret = devm_regulator_get_enable(dev, "vdd");
1547 	if (ret)
1548 		return dev_err_probe(dev, ret, "Failed to get regulator\n");
1549 
1550 	data = iio_priv(idev);
1551 
1552 	data->cd = device_get_match_data(&i2c->dev);
1553 	if (!data->cd)
1554 		return -ENODEV;
1555 
1556 	regmap = devm_regmap_init_i2c(i2c, data->cd->regmap_cfg);
1557 	if (IS_ERR(regmap))
1558 		return dev_err_probe(dev, PTR_ERR(regmap),
1559 				     "Failed to initialize Regmap\n");
1560 
1561 
1562 	ret = regmap_read(regmap, BU27008_REG_SYSTEM_CONTROL, &reg);
1563 	if (ret)
1564 		return dev_err_probe(dev, ret, "Failed to access sensor\n");
1565 
1566 	part_id = FIELD_GET(BU27008_MASK_PART_ID, reg);
1567 
1568 	if (part_id != data->cd->part_id)
1569 		dev_warn(dev, "unknown device 0x%x\n", part_id);
1570 
1571 	ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains,
1572 				    data->cd->num_gains, data->cd->itimes,
1573 				    data->cd->num_itimes, &data->gts);
1574 	if (ret)
1575 		return ret;
1576 
1577 	ret = devm_iio_init_iio_gts(dev, data->cd->scale1x, 0, data->cd->gains_ir,
1578 				    data->cd->num_gains_ir, data->cd->itimes,
1579 				    data->cd->num_itimes, &data->gts_ir);
1580 	if (ret)
1581 		return ret;
1582 
1583 	mutex_init(&data->mutex);
1584 	data->regmap = regmap;
1585 	data->dev = dev;
1586 	data->irq = i2c->irq;
1587 
1588 	idev->channels = bu27008_channels;
1589 	idev->num_channels = ARRAY_SIZE(bu27008_channels);
1590 	idev->name = data->cd->name;
1591 	idev->info = &bu27008_info;
1592 	idev->modes = INDIO_DIRECT_MODE;
1593 	idev->available_scan_masks = bu27008_scan_masks;
1594 
1595 	ret = data->cd->chip_init(data);
1596 	if (ret)
1597 		return ret;
1598 
1599 	if (i2c->irq) {
1600 		ret = bu27008_setup_trigger(data, idev);
1601 		if (ret)
1602 			return ret;
1603 	} else {
1604 		dev_info(dev, "No IRQ, buffered mode disabled\n");
1605 	}
1606 
1607 	ret = devm_iio_device_register(dev, idev);
1608 	if (ret)
1609 		return dev_err_probe(dev, ret,
1610 				     "Unable to register iio device\n");
1611 
1612 	return 0;
1613 }
1614 
1615 static const struct of_device_id bu27008_of_match[] = {
1616 	{ .compatible = "rohm,bu27008", .data = &bu27008_chip },
1617 	{ .compatible = "rohm,bu27010", .data = &bu27010_chip },
1618 	{ }
1619 };
1620 MODULE_DEVICE_TABLE(of, bu27008_of_match);
1621 
1622 static struct i2c_driver bu27008_i2c_driver = {
1623 	.driver = {
1624 		.name = "bu27008",
1625 		.of_match_table = bu27008_of_match,
1626 		.probe_type = PROBE_PREFER_ASYNCHRONOUS,
1627 	},
1628 	.probe = bu27008_probe,
1629 };
1630 module_i2c_driver(bu27008_i2c_driver);
1631 
1632 MODULE_DESCRIPTION("ROHM BU27008 and BU27010 colour sensor driver");
1633 MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>");
1634 MODULE_LICENSE("GPL");
1635 MODULE_IMPORT_NS(IIO_GTS_HELPER);
1636