xref: /linux/drivers/iio/light/ltr501.c (revision be709d48329a500621d2a05835283150ae137b45)
1 /*
2  * ltr501.c - Support for Lite-On LTR501 ambient light and proximity sensor
3  *
4  * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net>
5  *
6  * This file is subject to the terms and conditions of version 2 of
7  * the GNU General Public License.  See the file COPYING in the main
8  * directory of this archive for more details.
9  *
10  * 7-bit I2C slave address 0x23
11  *
12  * TODO: IR LED characteristics
13  */
14 
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/delay.h>
19 #include <linux/regmap.h>
20 #include <linux/acpi.h>
21 
22 #include <linux/iio/iio.h>
23 #include <linux/iio/events.h>
24 #include <linux/iio/sysfs.h>
25 #include <linux/iio/trigger_consumer.h>
26 #include <linux/iio/buffer.h>
27 #include <linux/iio/triggered_buffer.h>
28 
29 #define LTR501_DRV_NAME "ltr501"
30 
31 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */
32 #define LTR501_PS_CONTR 0x81 /* PS operation mode */
33 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/
34 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/
35 #define LTR501_PART_ID 0x86
36 #define LTR501_MANUFAC_ID 0x87
37 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */
38 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */
39 #define LTR501_ALS_PS_STATUS 0x8c
40 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */
41 #define LTR501_INTR 0x8f /* output mode, polarity, mode */
42 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */
43 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */
44 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */
45 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */
46 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */
47 #define LTR501_MAX_REG 0x9f
48 
49 #define LTR501_ALS_CONTR_SW_RESET BIT(2)
50 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2))
51 #define LTR501_CONTR_PS_GAIN_SHIFT 2
52 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3)
53 #define LTR501_CONTR_ACTIVE BIT(1)
54 
55 #define LTR501_STATUS_ALS_INTR BIT(3)
56 #define LTR501_STATUS_ALS_RDY BIT(2)
57 #define LTR501_STATUS_PS_INTR BIT(1)
58 #define LTR501_STATUS_PS_RDY BIT(0)
59 
60 #define LTR501_PS_DATA_MASK 0x7ff
61 #define LTR501_PS_THRESH_MASK 0x7ff
62 #define LTR501_ALS_THRESH_MASK 0xffff
63 
64 #define LTR501_ALS_DEF_PERIOD 500000
65 #define LTR501_PS_DEF_PERIOD 100000
66 
67 #define LTR501_REGMAP_NAME "ltr501_regmap"
68 
69 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \
70 			((vis_coeff * vis_data) - (ir_coeff * ir_data))
71 
72 static const int int_time_mapping[] = {100000, 50000, 200000, 400000};
73 
74 static const struct reg_field reg_field_it =
75 				REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4);
76 static const struct reg_field reg_field_als_intr =
77 				REG_FIELD(LTR501_INTR, 1, 1);
78 static const struct reg_field reg_field_ps_intr =
79 				REG_FIELD(LTR501_INTR, 0, 0);
80 static const struct reg_field reg_field_als_rate =
81 				REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2);
82 static const struct reg_field reg_field_ps_rate =
83 				REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3);
84 static const struct reg_field reg_field_als_prst =
85 				REG_FIELD(LTR501_INTR_PRST, 0, 3);
86 static const struct reg_field reg_field_ps_prst =
87 				REG_FIELD(LTR501_INTR_PRST, 4, 7);
88 
89 struct ltr501_samp_table {
90 	int freq_val;  /* repetition frequency in micro HZ*/
91 	int time_val; /* repetition rate in micro seconds */
92 };
93 
94 #define LTR501_RESERVED_GAIN -1
95 
96 enum {
97 	ltr501 = 0,
98 	ltr559,
99 	ltr301,
100 };
101 
102 struct ltr501_gain {
103 	int scale;
104 	int uscale;
105 };
106 
107 static struct ltr501_gain ltr501_als_gain_tbl[] = {
108 	{1, 0},
109 	{0, 5000},
110 };
111 
112 static struct ltr501_gain ltr559_als_gain_tbl[] = {
113 	{1, 0},
114 	{0, 500000},
115 	{0, 250000},
116 	{0, 125000},
117 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
118 	{LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN},
119 	{0, 20000},
120 	{0, 10000},
121 };
122 
123 static struct ltr501_gain ltr501_ps_gain_tbl[] = {
124 	{1, 0},
125 	{0, 250000},
126 	{0, 125000},
127 	{0, 62500},
128 };
129 
130 static struct ltr501_gain ltr559_ps_gain_tbl[] = {
131 	{0, 62500}, /* x16 gain */
132 	{0, 31250}, /* x32 gain */
133 	{0, 15625}, /* bits X1 are for x64 gain */
134 	{0, 15624},
135 };
136 
137 struct ltr501_chip_info {
138 	u8 partid;
139 	struct ltr501_gain *als_gain;
140 	int als_gain_tbl_size;
141 	struct ltr501_gain *ps_gain;
142 	int ps_gain_tbl_size;
143 	u8 als_mode_active;
144 	u8 als_gain_mask;
145 	u8 als_gain_shift;
146 	struct iio_chan_spec const *channels;
147 	const int no_channels;
148 	const struct iio_info *info;
149 	const struct iio_info *info_no_irq;
150 };
151 
152 struct ltr501_data {
153 	struct i2c_client *client;
154 	struct mutex lock_als, lock_ps;
155 	struct ltr501_chip_info *chip_info;
156 	u8 als_contr, ps_contr;
157 	int als_period, ps_period; /* period in micro seconds */
158 	struct regmap *regmap;
159 	struct regmap_field *reg_it;
160 	struct regmap_field *reg_als_intr;
161 	struct regmap_field *reg_ps_intr;
162 	struct regmap_field *reg_als_rate;
163 	struct regmap_field *reg_ps_rate;
164 	struct regmap_field *reg_als_prst;
165 	struct regmap_field *reg_ps_prst;
166 };
167 
168 static const struct ltr501_samp_table ltr501_als_samp_table[] = {
169 			{20000000, 50000}, {10000000, 100000},
170 			{5000000, 200000}, {2000000, 500000},
171 			{1000000, 1000000}, {500000, 2000000},
172 			{500000, 2000000}, {500000, 2000000}
173 };
174 
175 static const struct ltr501_samp_table ltr501_ps_samp_table[] = {
176 			{20000000, 50000}, {14285714, 70000},
177 			{10000000, 100000}, {5000000, 200000},
178 			{2000000, 500000}, {1000000, 1000000},
179 			{500000, 2000000}, {500000, 2000000},
180 			{500000, 2000000}
181 };
182 
183 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab,
184 					   int len, int val, int val2)
185 {
186 	int i, freq;
187 
188 	freq = val * 1000000 + val2;
189 
190 	for (i = 0; i < len; i++) {
191 		if (tab[i].freq_val == freq)
192 			return i;
193 	}
194 
195 	return -EINVAL;
196 }
197 
198 static int ltr501_als_read_samp_freq(struct ltr501_data *data,
199 				     int *val, int *val2)
200 {
201 	int ret, i;
202 
203 	ret = regmap_field_read(data->reg_als_rate, &i);
204 	if (ret < 0)
205 		return ret;
206 
207 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
208 		return -EINVAL;
209 
210 	*val = ltr501_als_samp_table[i].freq_val / 1000000;
211 	*val2 = ltr501_als_samp_table[i].freq_val % 1000000;
212 
213 	return IIO_VAL_INT_PLUS_MICRO;
214 }
215 
216 static int ltr501_ps_read_samp_freq(struct ltr501_data *data,
217 				    int *val, int *val2)
218 {
219 	int ret, i;
220 
221 	ret = regmap_field_read(data->reg_ps_rate, &i);
222 	if (ret < 0)
223 		return ret;
224 
225 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
226 		return -EINVAL;
227 
228 	*val = ltr501_ps_samp_table[i].freq_val / 1000000;
229 	*val2 = ltr501_ps_samp_table[i].freq_val % 1000000;
230 
231 	return IIO_VAL_INT_PLUS_MICRO;
232 }
233 
234 static int ltr501_als_write_samp_freq(struct ltr501_data *data,
235 				      int val, int val2)
236 {
237 	int i, ret;
238 
239 	i = ltr501_match_samp_freq(ltr501_als_samp_table,
240 				   ARRAY_SIZE(ltr501_als_samp_table),
241 				   val, val2);
242 
243 	if (i < 0)
244 		return i;
245 
246 	mutex_lock(&data->lock_als);
247 	ret = regmap_field_write(data->reg_als_rate, i);
248 	mutex_unlock(&data->lock_als);
249 
250 	return ret;
251 }
252 
253 static int ltr501_ps_write_samp_freq(struct ltr501_data *data,
254 				     int val, int val2)
255 {
256 	int i, ret;
257 
258 	i = ltr501_match_samp_freq(ltr501_ps_samp_table,
259 				   ARRAY_SIZE(ltr501_ps_samp_table),
260 				   val, val2);
261 
262 	if (i < 0)
263 		return i;
264 
265 	mutex_lock(&data->lock_ps);
266 	ret = regmap_field_write(data->reg_ps_rate, i);
267 	mutex_unlock(&data->lock_ps);
268 
269 	return ret;
270 }
271 
272 static int ltr501_als_read_samp_period(struct ltr501_data *data, int *val)
273 {
274 	int ret, i;
275 
276 	ret = regmap_field_read(data->reg_als_rate, &i);
277 	if (ret < 0)
278 		return ret;
279 
280 	if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table))
281 		return -EINVAL;
282 
283 	*val = ltr501_als_samp_table[i].time_val;
284 
285 	return IIO_VAL_INT;
286 }
287 
288 static int ltr501_ps_read_samp_period(struct ltr501_data *data, int *val)
289 {
290 	int ret, i;
291 
292 	ret = regmap_field_read(data->reg_ps_rate, &i);
293 	if (ret < 0)
294 		return ret;
295 
296 	if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table))
297 		return -EINVAL;
298 
299 	*val = ltr501_ps_samp_table[i].time_val;
300 
301 	return IIO_VAL_INT;
302 }
303 
304 /* IR and visible spectrum coeff's are given in data sheet */
305 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data)
306 {
307 	unsigned long ratio, lux;
308 
309 	if (vis_data == 0)
310 		return 0;
311 
312 	/* multiply numerator by 100 to avoid handling ratio < 1 */
313 	ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data);
314 
315 	if (ratio < 45)
316 		lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data);
317 	else if (ratio >= 45 && ratio < 64)
318 		lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data);
319 	else if (ratio >= 64 && ratio < 85)
320 		lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data);
321 	else
322 		lux = 0;
323 
324 	return lux / 1000;
325 }
326 
327 static int ltr501_drdy(struct ltr501_data *data, u8 drdy_mask)
328 {
329 	int tries = 100;
330 	int ret, status;
331 
332 	while (tries--) {
333 		ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
334 		if (ret < 0)
335 			return ret;
336 		if ((status & drdy_mask) == drdy_mask)
337 			return 0;
338 		msleep(25);
339 	}
340 
341 	dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n");
342 	return -EIO;
343 }
344 
345 static int ltr501_set_it_time(struct ltr501_data *data, int it)
346 {
347 	int ret, i, index = -1, status;
348 
349 	for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) {
350 		if (int_time_mapping[i] == it) {
351 			index = i;
352 			break;
353 		}
354 	}
355 	/* Make sure integ time index is valid */
356 	if (index < 0)
357 		return -EINVAL;
358 
359 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
360 	if (ret < 0)
361 		return ret;
362 
363 	if (status & LTR501_CONTR_ALS_GAIN_MASK) {
364 		/*
365 		 * 200 ms and 400 ms integ time can only be
366 		 * used in dynamic range 1
367 		 */
368 		if (index > 1)
369 			return -EINVAL;
370 	} else
371 		/* 50 ms integ time can only be used in dynamic range 2 */
372 		if (index == 1)
373 			return -EINVAL;
374 
375 	return regmap_field_write(data->reg_it, index);
376 }
377 
378 /* read int time in micro seconds */
379 static int ltr501_read_it_time(struct ltr501_data *data, int *val, int *val2)
380 {
381 	int ret, index;
382 
383 	ret = regmap_field_read(data->reg_it, &index);
384 	if (ret < 0)
385 		return ret;
386 
387 	/* Make sure integ time index is valid */
388 	if (index < 0 || index >= ARRAY_SIZE(int_time_mapping))
389 		return -EINVAL;
390 
391 	*val2 = int_time_mapping[index];
392 	*val = 0;
393 
394 	return IIO_VAL_INT_PLUS_MICRO;
395 }
396 
397 static int ltr501_read_als(struct ltr501_data *data, __le16 buf[2])
398 {
399 	int ret;
400 
401 	ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY);
402 	if (ret < 0)
403 		return ret;
404 	/* always read both ALS channels in given order */
405 	return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
406 				buf, 2 * sizeof(__le16));
407 }
408 
409 static int ltr501_read_ps(struct ltr501_data *data)
410 {
411 	int ret, status;
412 
413 	ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY);
414 	if (ret < 0)
415 		return ret;
416 
417 	ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
418 			       &status, 2);
419 	if (ret < 0)
420 		return ret;
421 
422 	return status;
423 }
424 
425 static int ltr501_read_intr_prst(struct ltr501_data *data,
426 				 enum iio_chan_type type,
427 				 int *val2)
428 {
429 	int ret, samp_period, prst;
430 
431 	switch (type) {
432 	case IIO_INTENSITY:
433 		ret = regmap_field_read(data->reg_als_prst, &prst);
434 		if (ret < 0)
435 			return ret;
436 
437 		ret = ltr501_als_read_samp_period(data, &samp_period);
438 
439 		if (ret < 0)
440 			return ret;
441 		*val2 = samp_period * prst;
442 		return IIO_VAL_INT_PLUS_MICRO;
443 	case IIO_PROXIMITY:
444 		ret = regmap_field_read(data->reg_ps_prst, &prst);
445 		if (ret < 0)
446 			return ret;
447 
448 		ret = ltr501_ps_read_samp_period(data, &samp_period);
449 
450 		if (ret < 0)
451 			return ret;
452 
453 		*val2 = samp_period * prst;
454 		return IIO_VAL_INT_PLUS_MICRO;
455 	default:
456 		return -EINVAL;
457 	}
458 
459 	return -EINVAL;
460 }
461 
462 static int ltr501_write_intr_prst(struct ltr501_data *data,
463 				  enum iio_chan_type type,
464 				  int val, int val2)
465 {
466 	int ret, samp_period, new_val;
467 	unsigned long period;
468 
469 	if (val < 0 || val2 < 0)
470 		return -EINVAL;
471 
472 	/* period in microseconds */
473 	period = ((val * 1000000) + val2);
474 
475 	switch (type) {
476 	case IIO_INTENSITY:
477 		ret = ltr501_als_read_samp_period(data, &samp_period);
478 		if (ret < 0)
479 			return ret;
480 
481 		/* period should be atleast equal to sampling period */
482 		if (period < samp_period)
483 			return -EINVAL;
484 
485 		new_val = DIV_ROUND_UP(period, samp_period);
486 		if (new_val < 0 || new_val > 0x0f)
487 			return -EINVAL;
488 
489 		mutex_lock(&data->lock_als);
490 		ret = regmap_field_write(data->reg_als_prst, new_val);
491 		mutex_unlock(&data->lock_als);
492 		if (ret >= 0)
493 			data->als_period = period;
494 
495 		return ret;
496 	case IIO_PROXIMITY:
497 		ret = ltr501_ps_read_samp_period(data, &samp_period);
498 		if (ret < 0)
499 			return ret;
500 
501 		/* period should be atleast equal to rate */
502 		if (period < samp_period)
503 			return -EINVAL;
504 
505 		new_val = DIV_ROUND_UP(period, samp_period);
506 		if (new_val < 0 || new_val > 0x0f)
507 			return -EINVAL;
508 
509 		mutex_lock(&data->lock_ps);
510 		ret = regmap_field_write(data->reg_ps_prst, new_val);
511 		mutex_unlock(&data->lock_ps);
512 		if (ret >= 0)
513 			data->ps_period = period;
514 
515 		return ret;
516 	default:
517 		return -EINVAL;
518 	}
519 
520 	return -EINVAL;
521 }
522 
523 static const struct iio_event_spec ltr501_als_event_spec[] = {
524 	{
525 		.type = IIO_EV_TYPE_THRESH,
526 		.dir = IIO_EV_DIR_RISING,
527 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
528 	}, {
529 		.type = IIO_EV_TYPE_THRESH,
530 		.dir = IIO_EV_DIR_FALLING,
531 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
532 	}, {
533 		.type = IIO_EV_TYPE_THRESH,
534 		.dir = IIO_EV_DIR_EITHER,
535 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
536 				 BIT(IIO_EV_INFO_PERIOD),
537 	},
538 
539 };
540 
541 static const struct iio_event_spec ltr501_pxs_event_spec[] = {
542 	{
543 		.type = IIO_EV_TYPE_THRESH,
544 		.dir = IIO_EV_DIR_RISING,
545 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
546 	}, {
547 		.type = IIO_EV_TYPE_THRESH,
548 		.dir = IIO_EV_DIR_FALLING,
549 		.mask_separate = BIT(IIO_EV_INFO_VALUE),
550 	}, {
551 		.type = IIO_EV_TYPE_THRESH,
552 		.dir = IIO_EV_DIR_EITHER,
553 		.mask_separate = BIT(IIO_EV_INFO_ENABLE) |
554 				 BIT(IIO_EV_INFO_PERIOD),
555 	},
556 };
557 
558 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \
559 				 _evspec, _evsize) { \
560 	.type = IIO_INTENSITY, \
561 	.modified = 1, \
562 	.address = (_addr), \
563 	.channel2 = (_mod), \
564 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
565 	.info_mask_shared_by_type = (_shared), \
566 	.scan_index = (_idx), \
567 	.scan_type = { \
568 		.sign = 'u', \
569 		.realbits = 16, \
570 		.storagebits = 16, \
571 		.endianness = IIO_CPU, \
572 	}, \
573 	.event_spec = _evspec,\
574 	.num_event_specs = _evsize,\
575 }
576 
577 #define LTR501_LIGHT_CHANNEL() { \
578 	.type = IIO_LIGHT, \
579 	.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
580 	.scan_index = -1, \
581 }
582 
583 static const struct iio_chan_spec ltr501_channels[] = {
584 	LTR501_LIGHT_CHANNEL(),
585 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
586 				 ltr501_als_event_spec,
587 				 ARRAY_SIZE(ltr501_als_event_spec)),
588 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
589 				 BIT(IIO_CHAN_INFO_SCALE) |
590 				 BIT(IIO_CHAN_INFO_INT_TIME) |
591 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
592 				 NULL, 0),
593 	{
594 		.type = IIO_PROXIMITY,
595 		.address = LTR501_PS_DATA,
596 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
597 			BIT(IIO_CHAN_INFO_SCALE),
598 		.scan_index = 2,
599 		.scan_type = {
600 			.sign = 'u',
601 			.realbits = 11,
602 			.storagebits = 16,
603 			.endianness = IIO_CPU,
604 		},
605 		.event_spec = ltr501_pxs_event_spec,
606 		.num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec),
607 	},
608 	IIO_CHAN_SOFT_TIMESTAMP(3),
609 };
610 
611 static const struct iio_chan_spec ltr301_channels[] = {
612 	LTR501_LIGHT_CHANNEL(),
613 	LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0,
614 				 ltr501_als_event_spec,
615 				 ARRAY_SIZE(ltr501_als_event_spec)),
616 	LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR,
617 				 BIT(IIO_CHAN_INFO_SCALE) |
618 				 BIT(IIO_CHAN_INFO_INT_TIME) |
619 				 BIT(IIO_CHAN_INFO_SAMP_FREQ),
620 				 NULL, 0),
621 	IIO_CHAN_SOFT_TIMESTAMP(2),
622 };
623 
624 static int ltr501_read_raw(struct iio_dev *indio_dev,
625 			   struct iio_chan_spec const *chan,
626 			   int *val, int *val2, long mask)
627 {
628 	struct ltr501_data *data = iio_priv(indio_dev);
629 	__le16 buf[2];
630 	int ret, i;
631 
632 	switch (mask) {
633 	case IIO_CHAN_INFO_PROCESSED:
634 		switch (chan->type) {
635 		case IIO_LIGHT:
636 			ret = iio_device_claim_direct_mode(indio_dev);
637 			if (ret)
638 				return ret;
639 
640 			mutex_lock(&data->lock_als);
641 			ret = ltr501_read_als(data, buf);
642 			mutex_unlock(&data->lock_als);
643 			iio_device_release_direct_mode(indio_dev);
644 			if (ret < 0)
645 				return ret;
646 			*val = ltr501_calculate_lux(le16_to_cpu(buf[1]),
647 						    le16_to_cpu(buf[0]));
648 			return IIO_VAL_INT;
649 		default:
650 			return -EINVAL;
651 		}
652 	case IIO_CHAN_INFO_RAW:
653 		ret = iio_device_claim_direct_mode(indio_dev);
654 		if (ret)
655 			return ret;
656 
657 		switch (chan->type) {
658 		case IIO_INTENSITY:
659 			mutex_lock(&data->lock_als);
660 			ret = ltr501_read_als(data, buf);
661 			mutex_unlock(&data->lock_als);
662 			if (ret < 0)
663 				break;
664 			*val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ?
665 					   buf[0] : buf[1]);
666 			ret = IIO_VAL_INT;
667 			break;
668 		case IIO_PROXIMITY:
669 			mutex_lock(&data->lock_ps);
670 			ret = ltr501_read_ps(data);
671 			mutex_unlock(&data->lock_ps);
672 			if (ret < 0)
673 				break;
674 			*val = ret & LTR501_PS_DATA_MASK;
675 			ret = IIO_VAL_INT;
676 			break;
677 		default:
678 			ret = -EINVAL;
679 			break;
680 		}
681 
682 		iio_device_release_direct_mode(indio_dev);
683 		return ret;
684 
685 	case IIO_CHAN_INFO_SCALE:
686 		switch (chan->type) {
687 		case IIO_INTENSITY:
688 			i = (data->als_contr & data->chip_info->als_gain_mask)
689 			     >> data->chip_info->als_gain_shift;
690 			*val = data->chip_info->als_gain[i].scale;
691 			*val2 = data->chip_info->als_gain[i].uscale;
692 			return IIO_VAL_INT_PLUS_MICRO;
693 		case IIO_PROXIMITY:
694 			i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >>
695 				LTR501_CONTR_PS_GAIN_SHIFT;
696 			*val = data->chip_info->ps_gain[i].scale;
697 			*val2 = data->chip_info->ps_gain[i].uscale;
698 			return IIO_VAL_INT_PLUS_MICRO;
699 		default:
700 			return -EINVAL;
701 		}
702 	case IIO_CHAN_INFO_INT_TIME:
703 		switch (chan->type) {
704 		case IIO_INTENSITY:
705 			return ltr501_read_it_time(data, val, val2);
706 		default:
707 			return -EINVAL;
708 		}
709 	case IIO_CHAN_INFO_SAMP_FREQ:
710 		switch (chan->type) {
711 		case IIO_INTENSITY:
712 			return ltr501_als_read_samp_freq(data, val, val2);
713 		case IIO_PROXIMITY:
714 			return ltr501_ps_read_samp_freq(data, val, val2);
715 		default:
716 			return -EINVAL;
717 		}
718 	}
719 	return -EINVAL;
720 }
721 
722 static int ltr501_get_gain_index(struct ltr501_gain *gain, int size,
723 				 int val, int val2)
724 {
725 	int i;
726 
727 	for (i = 0; i < size; i++)
728 		if (val == gain[i].scale && val2 == gain[i].uscale)
729 			return i;
730 
731 	return -1;
732 }
733 
734 static int ltr501_write_raw(struct iio_dev *indio_dev,
735 			    struct iio_chan_spec const *chan,
736 			    int val, int val2, long mask)
737 {
738 	struct ltr501_data *data = iio_priv(indio_dev);
739 	int i, ret, freq_val, freq_val2;
740 	struct ltr501_chip_info *info = data->chip_info;
741 
742 	ret = iio_device_claim_direct_mode(indio_dev);
743 	if (ret)
744 		return ret;
745 
746 	switch (mask) {
747 	case IIO_CHAN_INFO_SCALE:
748 		switch (chan->type) {
749 		case IIO_INTENSITY:
750 			i = ltr501_get_gain_index(info->als_gain,
751 						  info->als_gain_tbl_size,
752 						  val, val2);
753 			if (i < 0) {
754 				ret = -EINVAL;
755 				break;
756 			}
757 
758 			data->als_contr &= ~info->als_gain_mask;
759 			data->als_contr |= i << info->als_gain_shift;
760 
761 			ret = regmap_write(data->regmap, LTR501_ALS_CONTR,
762 					   data->als_contr);
763 			break;
764 		case IIO_PROXIMITY:
765 			i = ltr501_get_gain_index(info->ps_gain,
766 						  info->ps_gain_tbl_size,
767 						  val, val2);
768 			if (i < 0) {
769 				ret = -EINVAL;
770 				break;
771 			}
772 			data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK;
773 			data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT;
774 
775 			ret = regmap_write(data->regmap, LTR501_PS_CONTR,
776 					   data->ps_contr);
777 			break;
778 		default:
779 			ret = -EINVAL;
780 			break;
781 		}
782 		break;
783 
784 	case IIO_CHAN_INFO_INT_TIME:
785 		switch (chan->type) {
786 		case IIO_INTENSITY:
787 			if (val != 0) {
788 				ret = -EINVAL;
789 				break;
790 			}
791 			mutex_lock(&data->lock_als);
792 			ret = ltr501_set_it_time(data, val2);
793 			mutex_unlock(&data->lock_als);
794 			break;
795 		default:
796 			ret = -EINVAL;
797 			break;
798 		}
799 		break;
800 
801 	case IIO_CHAN_INFO_SAMP_FREQ:
802 		switch (chan->type) {
803 		case IIO_INTENSITY:
804 			ret = ltr501_als_read_samp_freq(data, &freq_val,
805 							&freq_val2);
806 			if (ret < 0)
807 				break;
808 
809 			ret = ltr501_als_write_samp_freq(data, val, val2);
810 			if (ret < 0)
811 				break;
812 
813 			/* update persistence count when changing frequency */
814 			ret = ltr501_write_intr_prst(data, chan->type,
815 						     0, data->als_period);
816 
817 			if (ret < 0)
818 				ret = ltr501_als_write_samp_freq(data, freq_val,
819 								 freq_val2);
820 			break;
821 		case IIO_PROXIMITY:
822 			ret = ltr501_ps_read_samp_freq(data, &freq_val,
823 						       &freq_val2);
824 			if (ret < 0)
825 				break;
826 
827 			ret = ltr501_ps_write_samp_freq(data, val, val2);
828 			if (ret < 0)
829 				break;
830 
831 			/* update persistence count when changing frequency */
832 			ret = ltr501_write_intr_prst(data, chan->type,
833 						     0, data->ps_period);
834 
835 			if (ret < 0)
836 				ret = ltr501_ps_write_samp_freq(data, freq_val,
837 								freq_val2);
838 			break;
839 		default:
840 			ret = -EINVAL;
841 			break;
842 		}
843 		break;
844 
845 	default:
846 		ret = -EINVAL;
847 		break;
848 	}
849 
850 	iio_device_release_direct_mode(indio_dev);
851 	return ret;
852 }
853 
854 static int ltr501_read_thresh(struct iio_dev *indio_dev,
855 			      const struct iio_chan_spec *chan,
856 			      enum iio_event_type type,
857 			      enum iio_event_direction dir,
858 			      enum iio_event_info info,
859 			      int *val, int *val2)
860 {
861 	struct ltr501_data *data = iio_priv(indio_dev);
862 	int ret, thresh_data;
863 
864 	switch (chan->type) {
865 	case IIO_INTENSITY:
866 		switch (dir) {
867 		case IIO_EV_DIR_RISING:
868 			ret = regmap_bulk_read(data->regmap,
869 					       LTR501_ALS_THRESH_UP,
870 					       &thresh_data, 2);
871 			if (ret < 0)
872 				return ret;
873 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
874 			return IIO_VAL_INT;
875 		case IIO_EV_DIR_FALLING:
876 			ret = regmap_bulk_read(data->regmap,
877 					       LTR501_ALS_THRESH_LOW,
878 					       &thresh_data, 2);
879 			if (ret < 0)
880 				return ret;
881 			*val = thresh_data & LTR501_ALS_THRESH_MASK;
882 			return IIO_VAL_INT;
883 		default:
884 			return -EINVAL;
885 		}
886 	case IIO_PROXIMITY:
887 		switch (dir) {
888 		case IIO_EV_DIR_RISING:
889 			ret = regmap_bulk_read(data->regmap,
890 					       LTR501_PS_THRESH_UP,
891 					       &thresh_data, 2);
892 			if (ret < 0)
893 				return ret;
894 			*val = thresh_data & LTR501_PS_THRESH_MASK;
895 			return IIO_VAL_INT;
896 		case IIO_EV_DIR_FALLING:
897 			ret = regmap_bulk_read(data->regmap,
898 					       LTR501_PS_THRESH_LOW,
899 					       &thresh_data, 2);
900 			if (ret < 0)
901 				return ret;
902 			*val = thresh_data & LTR501_PS_THRESH_MASK;
903 			return IIO_VAL_INT;
904 		default:
905 			return -EINVAL;
906 		}
907 	default:
908 		return -EINVAL;
909 	}
910 
911 	return -EINVAL;
912 }
913 
914 static int ltr501_write_thresh(struct iio_dev *indio_dev,
915 			       const struct iio_chan_spec *chan,
916 			       enum iio_event_type type,
917 			       enum iio_event_direction dir,
918 			       enum iio_event_info info,
919 			       int val, int val2)
920 {
921 	struct ltr501_data *data = iio_priv(indio_dev);
922 	int ret;
923 
924 	if (val < 0)
925 		return -EINVAL;
926 
927 	switch (chan->type) {
928 	case IIO_INTENSITY:
929 		if (val > LTR501_ALS_THRESH_MASK)
930 			return -EINVAL;
931 		switch (dir) {
932 		case IIO_EV_DIR_RISING:
933 			mutex_lock(&data->lock_als);
934 			ret = regmap_bulk_write(data->regmap,
935 						LTR501_ALS_THRESH_UP,
936 						&val, 2);
937 			mutex_unlock(&data->lock_als);
938 			return ret;
939 		case IIO_EV_DIR_FALLING:
940 			mutex_lock(&data->lock_als);
941 			ret = regmap_bulk_write(data->regmap,
942 						LTR501_ALS_THRESH_LOW,
943 						&val, 2);
944 			mutex_unlock(&data->lock_als);
945 			return ret;
946 		default:
947 			return -EINVAL;
948 		}
949 	case IIO_PROXIMITY:
950 		if (val > LTR501_PS_THRESH_MASK)
951 			return -EINVAL;
952 		switch (dir) {
953 		case IIO_EV_DIR_RISING:
954 			mutex_lock(&data->lock_ps);
955 			ret = regmap_bulk_write(data->regmap,
956 						LTR501_PS_THRESH_UP,
957 						&val, 2);
958 			mutex_unlock(&data->lock_ps);
959 			return ret;
960 		case IIO_EV_DIR_FALLING:
961 			mutex_lock(&data->lock_ps);
962 			ret = regmap_bulk_write(data->regmap,
963 						LTR501_PS_THRESH_LOW,
964 						&val, 2);
965 			mutex_unlock(&data->lock_ps);
966 			return ret;
967 		default:
968 			return -EINVAL;
969 		}
970 	default:
971 		return -EINVAL;
972 	}
973 
974 	return -EINVAL;
975 }
976 
977 static int ltr501_read_event(struct iio_dev *indio_dev,
978 			     const struct iio_chan_spec *chan,
979 			     enum iio_event_type type,
980 			     enum iio_event_direction dir,
981 			     enum iio_event_info info,
982 			     int *val, int *val2)
983 {
984 	int ret;
985 
986 	switch (info) {
987 	case IIO_EV_INFO_VALUE:
988 		return ltr501_read_thresh(indio_dev, chan, type, dir,
989 					  info, val, val2);
990 	case IIO_EV_INFO_PERIOD:
991 		ret = ltr501_read_intr_prst(iio_priv(indio_dev),
992 					    chan->type, val2);
993 		*val = *val2 / 1000000;
994 		*val2 = *val2 % 1000000;
995 		return ret;
996 	default:
997 		return -EINVAL;
998 	}
999 
1000 	return -EINVAL;
1001 }
1002 
1003 static int ltr501_write_event(struct iio_dev *indio_dev,
1004 			      const struct iio_chan_spec *chan,
1005 			      enum iio_event_type type,
1006 			      enum iio_event_direction dir,
1007 			      enum iio_event_info info,
1008 			      int val, int val2)
1009 {
1010 	switch (info) {
1011 	case IIO_EV_INFO_VALUE:
1012 		if (val2 != 0)
1013 			return -EINVAL;
1014 		return ltr501_write_thresh(indio_dev, chan, type, dir,
1015 					   info, val, val2);
1016 	case IIO_EV_INFO_PERIOD:
1017 		return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type,
1018 					      val, val2);
1019 	default:
1020 		return -EINVAL;
1021 	}
1022 
1023 	return -EINVAL;
1024 }
1025 
1026 static int ltr501_read_event_config(struct iio_dev *indio_dev,
1027 				    const struct iio_chan_spec *chan,
1028 				    enum iio_event_type type,
1029 				    enum iio_event_direction dir)
1030 {
1031 	struct ltr501_data *data = iio_priv(indio_dev);
1032 	int ret, status;
1033 
1034 	switch (chan->type) {
1035 	case IIO_INTENSITY:
1036 		ret = regmap_field_read(data->reg_als_intr, &status);
1037 		if (ret < 0)
1038 			return ret;
1039 		return status;
1040 	case IIO_PROXIMITY:
1041 		ret = regmap_field_read(data->reg_ps_intr, &status);
1042 		if (ret < 0)
1043 			return ret;
1044 		return status;
1045 	default:
1046 		return -EINVAL;
1047 	}
1048 
1049 	return -EINVAL;
1050 }
1051 
1052 static int ltr501_write_event_config(struct iio_dev *indio_dev,
1053 				     const struct iio_chan_spec *chan,
1054 				     enum iio_event_type type,
1055 				     enum iio_event_direction dir, int state)
1056 {
1057 	struct ltr501_data *data = iio_priv(indio_dev);
1058 	int ret;
1059 
1060 	/* only 1 and 0 are valid inputs */
1061 	if (state != 1  && state != 0)
1062 		return -EINVAL;
1063 
1064 	switch (chan->type) {
1065 	case IIO_INTENSITY:
1066 		mutex_lock(&data->lock_als);
1067 		ret = regmap_field_write(data->reg_als_intr, state);
1068 		mutex_unlock(&data->lock_als);
1069 		return ret;
1070 	case IIO_PROXIMITY:
1071 		mutex_lock(&data->lock_ps);
1072 		ret = regmap_field_write(data->reg_ps_intr, state);
1073 		mutex_unlock(&data->lock_ps);
1074 		return ret;
1075 	default:
1076 		return -EINVAL;
1077 	}
1078 
1079 	return -EINVAL;
1080 }
1081 
1082 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev,
1083 						 struct device_attribute *attr,
1084 						 char *buf)
1085 {
1086 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1087 	struct ltr501_chip_info *info = data->chip_info;
1088 	ssize_t len = 0;
1089 	int i;
1090 
1091 	for (i = 0; i < info->ps_gain_tbl_size; i++) {
1092 		if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN)
1093 			continue;
1094 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1095 				 info->ps_gain[i].scale,
1096 				 info->ps_gain[i].uscale);
1097 	}
1098 
1099 	buf[len - 1] = '\n';
1100 
1101 	return len;
1102 }
1103 
1104 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev,
1105 						 struct device_attribute *attr,
1106 						 char *buf)
1107 {
1108 	struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev));
1109 	struct ltr501_chip_info *info = data->chip_info;
1110 	ssize_t len = 0;
1111 	int i;
1112 
1113 	for (i = 0; i < info->als_gain_tbl_size; i++) {
1114 		if (info->als_gain[i].scale == LTR501_RESERVED_GAIN)
1115 			continue;
1116 		len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ",
1117 				 info->als_gain[i].scale,
1118 				 info->als_gain[i].uscale);
1119 	}
1120 
1121 	buf[len - 1] = '\n';
1122 
1123 	return len;
1124 }
1125 
1126 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4");
1127 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5");
1128 
1129 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO,
1130 		       ltr501_show_proximity_scale_avail, NULL, 0);
1131 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO,
1132 		       ltr501_show_intensity_scale_avail, NULL, 0);
1133 
1134 static struct attribute *ltr501_attributes[] = {
1135 	&iio_dev_attr_in_proximity_scale_available.dev_attr.attr,
1136 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1137 	&iio_const_attr_integration_time_available.dev_attr.attr,
1138 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1139 	NULL
1140 };
1141 
1142 static struct attribute *ltr301_attributes[] = {
1143 	&iio_dev_attr_in_intensity_scale_available.dev_attr.attr,
1144 	&iio_const_attr_integration_time_available.dev_attr.attr,
1145 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
1146 	NULL
1147 };
1148 
1149 static const struct attribute_group ltr501_attribute_group = {
1150 	.attrs = ltr501_attributes,
1151 };
1152 
1153 static const struct attribute_group ltr301_attribute_group = {
1154 	.attrs = ltr301_attributes,
1155 };
1156 
1157 static const struct iio_info ltr501_info_no_irq = {
1158 	.read_raw = ltr501_read_raw,
1159 	.write_raw = ltr501_write_raw,
1160 	.attrs = &ltr501_attribute_group,
1161 };
1162 
1163 static const struct iio_info ltr501_info = {
1164 	.read_raw = ltr501_read_raw,
1165 	.write_raw = ltr501_write_raw,
1166 	.attrs = &ltr501_attribute_group,
1167 	.read_event_value	= &ltr501_read_event,
1168 	.write_event_value	= &ltr501_write_event,
1169 	.read_event_config	= &ltr501_read_event_config,
1170 	.write_event_config	= &ltr501_write_event_config,
1171 };
1172 
1173 static const struct iio_info ltr301_info_no_irq = {
1174 	.read_raw = ltr501_read_raw,
1175 	.write_raw = ltr501_write_raw,
1176 	.attrs = &ltr301_attribute_group,
1177 };
1178 
1179 static const struct iio_info ltr301_info = {
1180 	.read_raw = ltr501_read_raw,
1181 	.write_raw = ltr501_write_raw,
1182 	.attrs = &ltr301_attribute_group,
1183 	.read_event_value	= &ltr501_read_event,
1184 	.write_event_value	= &ltr501_write_event,
1185 	.read_event_config	= &ltr501_read_event_config,
1186 	.write_event_config	= &ltr501_write_event_config,
1187 };
1188 
1189 static struct ltr501_chip_info ltr501_chip_info_tbl[] = {
1190 	[ltr501] = {
1191 		.partid = 0x08,
1192 		.als_gain = ltr501_als_gain_tbl,
1193 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1194 		.ps_gain = ltr501_ps_gain_tbl,
1195 		.ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl),
1196 		.als_mode_active = BIT(0) | BIT(1),
1197 		.als_gain_mask = BIT(3),
1198 		.als_gain_shift = 3,
1199 		.info = &ltr501_info,
1200 		.info_no_irq = &ltr501_info_no_irq,
1201 		.channels = ltr501_channels,
1202 		.no_channels = ARRAY_SIZE(ltr501_channels),
1203 	},
1204 	[ltr559] = {
1205 		.partid = 0x09,
1206 		.als_gain = ltr559_als_gain_tbl,
1207 		.als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl),
1208 		.ps_gain = ltr559_ps_gain_tbl,
1209 		.ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl),
1210 		.als_mode_active = BIT(1),
1211 		.als_gain_mask = BIT(2) | BIT(3) | BIT(4),
1212 		.als_gain_shift = 2,
1213 		.info = &ltr501_info,
1214 		.info_no_irq = &ltr501_info_no_irq,
1215 		.channels = ltr501_channels,
1216 		.no_channels = ARRAY_SIZE(ltr501_channels),
1217 	},
1218 	[ltr301] = {
1219 		.partid = 0x08,
1220 		.als_gain = ltr501_als_gain_tbl,
1221 		.als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl),
1222 		.als_mode_active = BIT(0) | BIT(1),
1223 		.als_gain_mask = BIT(3),
1224 		.als_gain_shift = 3,
1225 		.info = &ltr301_info,
1226 		.info_no_irq = &ltr301_info_no_irq,
1227 		.channels = ltr301_channels,
1228 		.no_channels = ARRAY_SIZE(ltr301_channels),
1229 	},
1230 };
1231 
1232 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val)
1233 {
1234 	int ret;
1235 
1236 	ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val);
1237 	if (ret < 0)
1238 		return ret;
1239 
1240 	return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val);
1241 }
1242 
1243 static irqreturn_t ltr501_trigger_handler(int irq, void *p)
1244 {
1245 	struct iio_poll_func *pf = p;
1246 	struct iio_dev *indio_dev = pf->indio_dev;
1247 	struct ltr501_data *data = iio_priv(indio_dev);
1248 	u16 buf[8];
1249 	__le16 als_buf[2];
1250 	u8 mask = 0;
1251 	int j = 0;
1252 	int ret, psdata;
1253 
1254 	memset(buf, 0, sizeof(buf));
1255 
1256 	/* figure out which data needs to be ready */
1257 	if (test_bit(0, indio_dev->active_scan_mask) ||
1258 	    test_bit(1, indio_dev->active_scan_mask))
1259 		mask |= LTR501_STATUS_ALS_RDY;
1260 	if (test_bit(2, indio_dev->active_scan_mask))
1261 		mask |= LTR501_STATUS_PS_RDY;
1262 
1263 	ret = ltr501_drdy(data, mask);
1264 	if (ret < 0)
1265 		goto done;
1266 
1267 	if (mask & LTR501_STATUS_ALS_RDY) {
1268 		ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1,
1269 				       (u8 *)als_buf, sizeof(als_buf));
1270 		if (ret < 0)
1271 			return ret;
1272 		if (test_bit(0, indio_dev->active_scan_mask))
1273 			buf[j++] = le16_to_cpu(als_buf[1]);
1274 		if (test_bit(1, indio_dev->active_scan_mask))
1275 			buf[j++] = le16_to_cpu(als_buf[0]);
1276 	}
1277 
1278 	if (mask & LTR501_STATUS_PS_RDY) {
1279 		ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA,
1280 				       &psdata, 2);
1281 		if (ret < 0)
1282 			goto done;
1283 		buf[j++] = psdata & LTR501_PS_DATA_MASK;
1284 	}
1285 
1286 	iio_push_to_buffers_with_timestamp(indio_dev, buf,
1287 					   iio_get_time_ns(indio_dev));
1288 
1289 done:
1290 	iio_trigger_notify_done(indio_dev->trig);
1291 
1292 	return IRQ_HANDLED;
1293 }
1294 
1295 static irqreturn_t ltr501_interrupt_handler(int irq, void *private)
1296 {
1297 	struct iio_dev *indio_dev = private;
1298 	struct ltr501_data *data = iio_priv(indio_dev);
1299 	int ret, status;
1300 
1301 	ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status);
1302 	if (ret < 0) {
1303 		dev_err(&data->client->dev,
1304 			"irq read int reg failed\n");
1305 		return IRQ_HANDLED;
1306 	}
1307 
1308 	if (status & LTR501_STATUS_ALS_INTR)
1309 		iio_push_event(indio_dev,
1310 			       IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0,
1311 						    IIO_EV_TYPE_THRESH,
1312 						    IIO_EV_DIR_EITHER),
1313 			       iio_get_time_ns(indio_dev));
1314 
1315 	if (status & LTR501_STATUS_PS_INTR)
1316 		iio_push_event(indio_dev,
1317 			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
1318 						    IIO_EV_TYPE_THRESH,
1319 						    IIO_EV_DIR_EITHER),
1320 			       iio_get_time_ns(indio_dev));
1321 
1322 	return IRQ_HANDLED;
1323 }
1324 
1325 static int ltr501_init(struct ltr501_data *data)
1326 {
1327 	int ret, status;
1328 
1329 	ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status);
1330 	if (ret < 0)
1331 		return ret;
1332 
1333 	data->als_contr = status | data->chip_info->als_mode_active;
1334 
1335 	ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status);
1336 	if (ret < 0)
1337 		return ret;
1338 
1339 	data->ps_contr = status | LTR501_CONTR_ACTIVE;
1340 
1341 	ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period);
1346 	if (ret < 0)
1347 		return ret;
1348 
1349 	return ltr501_write_contr(data, data->als_contr, data->ps_contr);
1350 }
1351 
1352 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg)
1353 {
1354 	switch (reg) {
1355 	case LTR501_ALS_DATA1:
1356 	case LTR501_ALS_DATA0:
1357 	case LTR501_ALS_PS_STATUS:
1358 	case LTR501_PS_DATA:
1359 		return true;
1360 	default:
1361 		return false;
1362 	}
1363 }
1364 
1365 static struct regmap_config ltr501_regmap_config = {
1366 	.name =  LTR501_REGMAP_NAME,
1367 	.reg_bits = 8,
1368 	.val_bits = 8,
1369 	.max_register = LTR501_MAX_REG,
1370 	.cache_type = REGCACHE_RBTREE,
1371 	.volatile_reg = ltr501_is_volatile_reg,
1372 };
1373 
1374 static int ltr501_powerdown(struct ltr501_data *data)
1375 {
1376 	return ltr501_write_contr(data, data->als_contr &
1377 				  ~data->chip_info->als_mode_active,
1378 				  data->ps_contr & ~LTR501_CONTR_ACTIVE);
1379 }
1380 
1381 static const char *ltr501_match_acpi_device(struct device *dev, int *chip_idx)
1382 {
1383 	const struct acpi_device_id *id;
1384 
1385 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
1386 	if (!id)
1387 		return NULL;
1388 	*chip_idx = id->driver_data;
1389 	return dev_name(dev);
1390 }
1391 
1392 static int ltr501_probe(struct i2c_client *client,
1393 			const struct i2c_device_id *id)
1394 {
1395 	struct ltr501_data *data;
1396 	struct iio_dev *indio_dev;
1397 	struct regmap *regmap;
1398 	int ret, partid, chip_idx = 0;
1399 	const char *name = NULL;
1400 
1401 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
1402 	if (!indio_dev)
1403 		return -ENOMEM;
1404 
1405 	regmap = devm_regmap_init_i2c(client, &ltr501_regmap_config);
1406 	if (IS_ERR(regmap)) {
1407 		dev_err(&client->dev, "Regmap initialization failed.\n");
1408 		return PTR_ERR(regmap);
1409 	}
1410 
1411 	data = iio_priv(indio_dev);
1412 	i2c_set_clientdata(client, indio_dev);
1413 	data->client = client;
1414 	data->regmap = regmap;
1415 	mutex_init(&data->lock_als);
1416 	mutex_init(&data->lock_ps);
1417 
1418 	data->reg_it = devm_regmap_field_alloc(&client->dev, regmap,
1419 					       reg_field_it);
1420 	if (IS_ERR(data->reg_it)) {
1421 		dev_err(&client->dev, "Integ time reg field init failed.\n");
1422 		return PTR_ERR(data->reg_it);
1423 	}
1424 
1425 	data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap,
1426 						     reg_field_als_intr);
1427 	if (IS_ERR(data->reg_als_intr)) {
1428 		dev_err(&client->dev, "ALS intr mode reg field init failed\n");
1429 		return PTR_ERR(data->reg_als_intr);
1430 	}
1431 
1432 	data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap,
1433 						    reg_field_ps_intr);
1434 	if (IS_ERR(data->reg_ps_intr)) {
1435 		dev_err(&client->dev, "PS intr mode reg field init failed.\n");
1436 		return PTR_ERR(data->reg_ps_intr);
1437 	}
1438 
1439 	data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap,
1440 						     reg_field_als_rate);
1441 	if (IS_ERR(data->reg_als_rate)) {
1442 		dev_err(&client->dev, "ALS samp rate field init failed.\n");
1443 		return PTR_ERR(data->reg_als_rate);
1444 	}
1445 
1446 	data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap,
1447 						    reg_field_ps_rate);
1448 	if (IS_ERR(data->reg_ps_rate)) {
1449 		dev_err(&client->dev, "PS samp rate field init failed.\n");
1450 		return PTR_ERR(data->reg_ps_rate);
1451 	}
1452 
1453 	data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap,
1454 						     reg_field_als_prst);
1455 	if (IS_ERR(data->reg_als_prst)) {
1456 		dev_err(&client->dev, "ALS prst reg field init failed\n");
1457 		return PTR_ERR(data->reg_als_prst);
1458 	}
1459 
1460 	data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap,
1461 						    reg_field_ps_prst);
1462 	if (IS_ERR(data->reg_ps_prst)) {
1463 		dev_err(&client->dev, "PS prst reg field init failed.\n");
1464 		return PTR_ERR(data->reg_ps_prst);
1465 	}
1466 
1467 	ret = regmap_read(data->regmap, LTR501_PART_ID, &partid);
1468 	if (ret < 0)
1469 		return ret;
1470 
1471 	if (id) {
1472 		name = id->name;
1473 		chip_idx = id->driver_data;
1474 	} else  if (ACPI_HANDLE(&client->dev)) {
1475 		name = ltr501_match_acpi_device(&client->dev, &chip_idx);
1476 	} else {
1477 		return -ENODEV;
1478 	}
1479 
1480 	data->chip_info = &ltr501_chip_info_tbl[chip_idx];
1481 
1482 	if ((partid >> 4) != data->chip_info->partid)
1483 		return -ENODEV;
1484 
1485 	indio_dev->dev.parent = &client->dev;
1486 	indio_dev->info = data->chip_info->info;
1487 	indio_dev->channels = data->chip_info->channels;
1488 	indio_dev->num_channels = data->chip_info->no_channels;
1489 	indio_dev->name = name;
1490 	indio_dev->modes = INDIO_DIRECT_MODE;
1491 
1492 	ret = ltr501_init(data);
1493 	if (ret < 0)
1494 		return ret;
1495 
1496 	if (client->irq > 0) {
1497 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1498 						NULL, ltr501_interrupt_handler,
1499 						IRQF_TRIGGER_FALLING |
1500 						IRQF_ONESHOT,
1501 						"ltr501_thresh_event",
1502 						indio_dev);
1503 		if (ret) {
1504 			dev_err(&client->dev, "request irq (%d) failed\n",
1505 				client->irq);
1506 			return ret;
1507 		}
1508 	} else {
1509 		indio_dev->info = data->chip_info->info_no_irq;
1510 	}
1511 
1512 	ret = iio_triggered_buffer_setup(indio_dev, NULL,
1513 					 ltr501_trigger_handler, NULL);
1514 	if (ret)
1515 		goto powerdown_on_error;
1516 
1517 	ret = iio_device_register(indio_dev);
1518 	if (ret)
1519 		goto error_unreg_buffer;
1520 
1521 	return 0;
1522 
1523 error_unreg_buffer:
1524 	iio_triggered_buffer_cleanup(indio_dev);
1525 powerdown_on_error:
1526 	ltr501_powerdown(data);
1527 	return ret;
1528 }
1529 
1530 static int ltr501_remove(struct i2c_client *client)
1531 {
1532 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1533 
1534 	iio_device_unregister(indio_dev);
1535 	iio_triggered_buffer_cleanup(indio_dev);
1536 	ltr501_powerdown(iio_priv(indio_dev));
1537 
1538 	return 0;
1539 }
1540 
1541 #ifdef CONFIG_PM_SLEEP
1542 static int ltr501_suspend(struct device *dev)
1543 {
1544 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1545 					    to_i2c_client(dev)));
1546 	return ltr501_powerdown(data);
1547 }
1548 
1549 static int ltr501_resume(struct device *dev)
1550 {
1551 	struct ltr501_data *data = iio_priv(i2c_get_clientdata(
1552 					    to_i2c_client(dev)));
1553 
1554 	return ltr501_write_contr(data, data->als_contr,
1555 		data->ps_contr);
1556 }
1557 #endif
1558 
1559 static SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume);
1560 
1561 static const struct acpi_device_id ltr_acpi_match[] = {
1562 	{"LTER0501", ltr501},
1563 	{"LTER0559", ltr559},
1564 	{"LTER0301", ltr301},
1565 	{ },
1566 };
1567 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match);
1568 
1569 static const struct i2c_device_id ltr501_id[] = {
1570 	{ "ltr501", ltr501},
1571 	{ "ltr559", ltr559},
1572 	{ "ltr301", ltr301},
1573 	{ }
1574 };
1575 MODULE_DEVICE_TABLE(i2c, ltr501_id);
1576 
1577 static struct i2c_driver ltr501_driver = {
1578 	.driver = {
1579 		.name   = LTR501_DRV_NAME,
1580 		.pm	= &ltr501_pm_ops,
1581 		.acpi_match_table = ACPI_PTR(ltr_acpi_match),
1582 	},
1583 	.probe  = ltr501_probe,
1584 	.remove	= ltr501_remove,
1585 	.id_table = ltr501_id,
1586 };
1587 
1588 module_i2c_driver(ltr501_driver);
1589 
1590 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>");
1591 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver");
1592 MODULE_LICENSE("GPL");
1593