1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Support for Lite-On LTR501 and similar ambient light and proximity sensors. 4 * 5 * Copyright 2014 Peter Meerwald <pmeerw@pmeerw.net> 6 * 7 * 7-bit I2C slave address 0x23 8 * 9 * TODO: IR LED characteristics 10 */ 11 12 #include <linux/module.h> 13 #include <linux/mod_devicetable.h> 14 #include <linux/i2c.h> 15 #include <linux/err.h> 16 #include <linux/delay.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 20 #include <linux/iio/iio.h> 21 #include <linux/iio/events.h> 22 #include <linux/iio/sysfs.h> 23 #include <linux/iio/trigger_consumer.h> 24 #include <linux/iio/buffer.h> 25 #include <linux/iio/triggered_buffer.h> 26 27 #define LTR501_ALS_CONTR 0x80 /* ALS operation mode, SW reset */ 28 #define LTR501_PS_CONTR 0x81 /* PS operation mode */ 29 #define LTR501_PS_MEAS_RATE 0x84 /* measurement rate*/ 30 #define LTR501_ALS_MEAS_RATE 0x85 /* ALS integ time, measurement rate*/ 31 #define LTR501_PART_ID 0x86 32 #define LTR501_MANUFAC_ID 0x87 33 #define LTR501_ALS_DATA1 0x88 /* 16-bit, little endian */ 34 #define LTR501_ALS_DATA1_UPPER 0x89 /* upper 8 bits of LTR501_ALS_DATA1 */ 35 #define LTR501_ALS_DATA0 0x8a /* 16-bit, little endian */ 36 #define LTR501_ALS_DATA0_UPPER 0x8b /* upper 8 bits of LTR501_ALS_DATA0 */ 37 #define LTR501_ALS_PS_STATUS 0x8c 38 #define LTR501_PS_DATA 0x8d /* 16-bit, little endian */ 39 #define LTR501_PS_DATA_UPPER 0x8e /* upper 8 bits of LTR501_PS_DATA */ 40 #define LTR501_INTR 0x8f /* output mode, polarity, mode */ 41 #define LTR501_PS_THRESH_UP 0x90 /* 11 bit, ps upper threshold */ 42 #define LTR501_PS_THRESH_LOW 0x92 /* 11 bit, ps lower threshold */ 43 #define LTR501_ALS_THRESH_UP 0x97 /* 16 bit, ALS upper threshold */ 44 #define LTR501_ALS_THRESH_LOW 0x99 /* 16 bit, ALS lower threshold */ 45 #define LTR501_INTR_PRST 0x9e /* ps thresh, als thresh */ 46 #define LTR501_MAX_REG 0x9f 47 48 #define LTR501_ALS_CONTR_SW_RESET BIT(2) 49 #define LTR501_CONTR_PS_GAIN_MASK (BIT(3) | BIT(2)) 50 #define LTR501_CONTR_PS_GAIN_SHIFT 2 51 #define LTR501_CONTR_ALS_GAIN_MASK BIT(3) 52 #define LTR501_CONTR_ACTIVE BIT(1) 53 54 #define LTR501_STATUS_ALS_INTR BIT(3) 55 #define LTR501_STATUS_ALS_RDY BIT(2) 56 #define LTR501_STATUS_PS_INTR BIT(1) 57 #define LTR501_STATUS_PS_RDY BIT(0) 58 59 #define LTR501_PS_DATA_MASK 0x7ff 60 #define LTR501_PS_THRESH_MASK 0x7ff 61 #define LTR501_ALS_THRESH_MASK 0xffff 62 63 #define LTR501_ALS_DEF_PERIOD 500000 64 #define LTR501_PS_DEF_PERIOD 100000 65 66 #define LTR501_LUX_CONV(vis_coeff, vis_data, ir_coeff, ir_data) \ 67 ((vis_coeff * vis_data) - (ir_coeff * ir_data)) 68 69 static const int int_time_mapping[] = {100000, 50000, 200000, 400000}; 70 71 static const struct reg_field reg_field_it = 72 REG_FIELD(LTR501_ALS_MEAS_RATE, 3, 4); 73 static const struct reg_field reg_field_als_intr = 74 REG_FIELD(LTR501_INTR, 1, 1); 75 static const struct reg_field reg_field_ps_intr = 76 REG_FIELD(LTR501_INTR, 0, 0); 77 static const struct reg_field reg_field_als_rate = 78 REG_FIELD(LTR501_ALS_MEAS_RATE, 0, 2); 79 static const struct reg_field reg_field_ps_rate = 80 REG_FIELD(LTR501_PS_MEAS_RATE, 0, 3); 81 static const struct reg_field reg_field_als_prst = 82 REG_FIELD(LTR501_INTR_PRST, 0, 3); 83 static const struct reg_field reg_field_ps_prst = 84 REG_FIELD(LTR501_INTR_PRST, 4, 7); 85 86 struct ltr501_samp_table { 87 int freq_val; /* repetition frequency in micro HZ*/ 88 int time_val; /* repetition rate in micro seconds */ 89 }; 90 91 #define LTR501_RESERVED_GAIN -1 92 93 enum { 94 ltr501 = 0, 95 ltr559, 96 ltr301, 97 ltr303, 98 }; 99 100 struct ltr501_gain { 101 int scale; 102 int uscale; 103 }; 104 105 static const struct ltr501_gain ltr501_als_gain_tbl[] = { 106 {1, 0}, 107 {0, 5000}, 108 }; 109 110 static const struct ltr501_gain ltr559_als_gain_tbl[] = { 111 {1, 0}, 112 {0, 500000}, 113 {0, 250000}, 114 {0, 125000}, 115 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 116 {LTR501_RESERVED_GAIN, LTR501_RESERVED_GAIN}, 117 {0, 20000}, 118 {0, 10000}, 119 }; 120 121 static const struct ltr501_gain ltr501_ps_gain_tbl[] = { 122 {1, 0}, 123 {0, 250000}, 124 {0, 125000}, 125 {0, 62500}, 126 }; 127 128 static const struct ltr501_gain ltr559_ps_gain_tbl[] = { 129 {0, 62500}, /* x16 gain */ 130 {0, 31250}, /* x32 gain */ 131 {0, 15625}, /* bits X1 are for x64 gain */ 132 {0, 15624}, 133 }; 134 135 struct ltr501_chip_info { 136 u8 partid; 137 const struct ltr501_gain *als_gain; 138 int als_gain_tbl_size; 139 const struct ltr501_gain *ps_gain; 140 int ps_gain_tbl_size; 141 u8 als_mode_active; 142 u8 als_gain_mask; 143 u8 als_gain_shift; 144 struct iio_chan_spec const *channels; 145 const int no_channels; 146 const struct iio_info *info; 147 const struct iio_info *info_no_irq; 148 }; 149 150 struct ltr501_data { 151 struct i2c_client *client; 152 struct mutex lock_als, lock_ps; 153 const struct ltr501_chip_info *chip_info; 154 u8 als_contr, ps_contr; 155 int als_period, ps_period; /* period in micro seconds */ 156 struct regmap *regmap; 157 struct regmap_field *reg_it; 158 struct regmap_field *reg_als_intr; 159 struct regmap_field *reg_ps_intr; 160 struct regmap_field *reg_als_rate; 161 struct regmap_field *reg_ps_rate; 162 struct regmap_field *reg_als_prst; 163 struct regmap_field *reg_ps_prst; 164 uint32_t near_level; 165 }; 166 167 static const struct ltr501_samp_table ltr501_als_samp_table[] = { 168 {20000000, 50000}, {10000000, 100000}, 169 {5000000, 200000}, {2000000, 500000}, 170 {1000000, 1000000}, {500000, 2000000}, 171 {500000, 2000000}, {500000, 2000000} 172 }; 173 174 static const struct ltr501_samp_table ltr501_ps_samp_table[] = { 175 {20000000, 50000}, {14285714, 70000}, 176 {10000000, 100000}, {5000000, 200000}, 177 {2000000, 500000}, {1000000, 1000000}, 178 {500000, 2000000}, {500000, 2000000}, 179 {500000, 2000000} 180 }; 181 182 static int ltr501_match_samp_freq(const struct ltr501_samp_table *tab, 183 int len, int val, int val2) 184 { 185 int i, freq; 186 187 freq = val * 1000000 + val2; 188 189 for (i = 0; i < len; i++) { 190 if (tab[i].freq_val == freq) 191 return i; 192 } 193 194 return -EINVAL; 195 } 196 197 static int ltr501_als_read_samp_freq(const struct ltr501_data *data, 198 int *val, int *val2) 199 { 200 int ret, i; 201 202 ret = regmap_field_read(data->reg_als_rate, &i); 203 if (ret < 0) 204 return ret; 205 206 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 207 return -EINVAL; 208 209 *val = ltr501_als_samp_table[i].freq_val / 1000000; 210 *val2 = ltr501_als_samp_table[i].freq_val % 1000000; 211 212 return IIO_VAL_INT_PLUS_MICRO; 213 } 214 215 static int ltr501_ps_read_samp_freq(const struct ltr501_data *data, 216 int *val, int *val2) 217 { 218 int ret, i; 219 220 ret = regmap_field_read(data->reg_ps_rate, &i); 221 if (ret < 0) 222 return ret; 223 224 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 225 return -EINVAL; 226 227 *val = ltr501_ps_samp_table[i].freq_val / 1000000; 228 *val2 = ltr501_ps_samp_table[i].freq_val % 1000000; 229 230 return IIO_VAL_INT_PLUS_MICRO; 231 } 232 233 static int ltr501_als_write_samp_freq(struct ltr501_data *data, 234 int val, int val2) 235 { 236 int i, ret; 237 238 i = ltr501_match_samp_freq(ltr501_als_samp_table, 239 ARRAY_SIZE(ltr501_als_samp_table), 240 val, val2); 241 242 if (i < 0) 243 return i; 244 245 mutex_lock(&data->lock_als); 246 ret = regmap_field_write(data->reg_als_rate, i); 247 mutex_unlock(&data->lock_als); 248 249 return ret; 250 } 251 252 static int ltr501_ps_write_samp_freq(struct ltr501_data *data, 253 int val, int val2) 254 { 255 int i, ret; 256 257 i = ltr501_match_samp_freq(ltr501_ps_samp_table, 258 ARRAY_SIZE(ltr501_ps_samp_table), 259 val, val2); 260 261 if (i < 0) 262 return i; 263 264 mutex_lock(&data->lock_ps); 265 ret = regmap_field_write(data->reg_ps_rate, i); 266 mutex_unlock(&data->lock_ps); 267 268 return ret; 269 } 270 271 static int ltr501_als_read_samp_period(const struct ltr501_data *data, int *val) 272 { 273 int ret, i; 274 275 ret = regmap_field_read(data->reg_als_rate, &i); 276 if (ret < 0) 277 return ret; 278 279 if (i < 0 || i >= ARRAY_SIZE(ltr501_als_samp_table)) 280 return -EINVAL; 281 282 *val = ltr501_als_samp_table[i].time_val; 283 284 return IIO_VAL_INT; 285 } 286 287 static int ltr501_ps_read_samp_period(const struct ltr501_data *data, int *val) 288 { 289 int ret, i; 290 291 ret = regmap_field_read(data->reg_ps_rate, &i); 292 if (ret < 0) 293 return ret; 294 295 if (i < 0 || i >= ARRAY_SIZE(ltr501_ps_samp_table)) 296 return -EINVAL; 297 298 *val = ltr501_ps_samp_table[i].time_val; 299 300 return IIO_VAL_INT; 301 } 302 303 /* IR and visible spectrum coeff's are given in data sheet */ 304 static unsigned long ltr501_calculate_lux(u16 vis_data, u16 ir_data) 305 { 306 unsigned long ratio, lux; 307 308 if (vis_data == 0) 309 return 0; 310 311 /* multiply numerator by 100 to avoid handling ratio < 1 */ 312 ratio = DIV_ROUND_UP(ir_data * 100, ir_data + vis_data); 313 314 if (ratio < 45) 315 lux = LTR501_LUX_CONV(1774, vis_data, -1105, ir_data); 316 else if (ratio >= 45 && ratio < 64) 317 lux = LTR501_LUX_CONV(3772, vis_data, 1336, ir_data); 318 else if (ratio >= 64 && ratio < 85) 319 lux = LTR501_LUX_CONV(1690, vis_data, 169, ir_data); 320 else 321 lux = 0; 322 323 return lux / 1000; 324 } 325 326 static int ltr501_drdy(const struct ltr501_data *data, u8 drdy_mask) 327 { 328 int tries = 100; 329 int ret, status; 330 331 while (tries--) { 332 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 333 if (ret < 0) 334 return ret; 335 if ((status & drdy_mask) == drdy_mask) 336 return 0; 337 msleep(25); 338 } 339 340 dev_err(&data->client->dev, "ltr501_drdy() failed, data not ready\n"); 341 return -EIO; 342 } 343 344 static int ltr501_set_it_time(struct ltr501_data *data, int it) 345 { 346 int ret, i, index = -1, status; 347 348 for (i = 0; i < ARRAY_SIZE(int_time_mapping); i++) { 349 if (int_time_mapping[i] == it) { 350 index = i; 351 break; 352 } 353 } 354 /* Make sure integ time index is valid */ 355 if (index < 0) 356 return -EINVAL; 357 358 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 359 if (ret < 0) 360 return ret; 361 362 if (status & LTR501_CONTR_ALS_GAIN_MASK) { 363 /* 364 * 200 ms and 400 ms integ time can only be 365 * used in dynamic range 1 366 */ 367 if (index > 1) 368 return -EINVAL; 369 } else 370 /* 50 ms integ time can only be used in dynamic range 2 */ 371 if (index == 1) 372 return -EINVAL; 373 374 return regmap_field_write(data->reg_it, index); 375 } 376 377 /* read int time in micro seconds */ 378 static int ltr501_read_it_time(const struct ltr501_data *data, 379 int *val, int *val2) 380 { 381 int ret, index; 382 383 ret = regmap_field_read(data->reg_it, &index); 384 if (ret < 0) 385 return ret; 386 387 /* Make sure integ time index is valid */ 388 if (index < 0 || index >= ARRAY_SIZE(int_time_mapping)) 389 return -EINVAL; 390 391 *val2 = int_time_mapping[index]; 392 *val = 0; 393 394 return IIO_VAL_INT_PLUS_MICRO; 395 } 396 397 static int ltr501_read_als(const struct ltr501_data *data, __le16 buf[2]) 398 { 399 int ret; 400 401 ret = ltr501_drdy(data, LTR501_STATUS_ALS_RDY); 402 if (ret < 0) 403 return ret; 404 /* always read both ALS channels in given order */ 405 return regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 406 buf, 2 * sizeof(__le16)); 407 } 408 409 static int ltr501_read_ps(const struct ltr501_data *data) 410 { 411 __le16 status; 412 int ret; 413 414 ret = ltr501_drdy(data, LTR501_STATUS_PS_RDY); 415 if (ret < 0) 416 return ret; 417 418 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 419 &status, sizeof(status)); 420 if (ret < 0) 421 return ret; 422 423 return le16_to_cpu(status); 424 } 425 426 static int ltr501_read_intr_prst(const struct ltr501_data *data, 427 enum iio_chan_type type, 428 int *val2) 429 { 430 int ret, samp_period, prst; 431 432 switch (type) { 433 case IIO_INTENSITY: 434 ret = regmap_field_read(data->reg_als_prst, &prst); 435 if (ret < 0) 436 return ret; 437 438 ret = ltr501_als_read_samp_period(data, &samp_period); 439 440 if (ret < 0) 441 return ret; 442 *val2 = samp_period * prst; 443 return IIO_VAL_INT_PLUS_MICRO; 444 case IIO_PROXIMITY: 445 ret = regmap_field_read(data->reg_ps_prst, &prst); 446 if (ret < 0) 447 return ret; 448 449 ret = ltr501_ps_read_samp_period(data, &samp_period); 450 451 if (ret < 0) 452 return ret; 453 454 *val2 = samp_period * prst; 455 return IIO_VAL_INT_PLUS_MICRO; 456 default: 457 return -EINVAL; 458 } 459 460 return -EINVAL; 461 } 462 463 static int ltr501_write_intr_prst(struct ltr501_data *data, 464 enum iio_chan_type type, 465 int val, int val2) 466 { 467 int ret, samp_period, new_val; 468 unsigned long period; 469 470 if (val < 0 || val2 < 0) 471 return -EINVAL; 472 473 /* period in microseconds */ 474 period = ((val * 1000000) + val2); 475 476 switch (type) { 477 case IIO_INTENSITY: 478 ret = ltr501_als_read_samp_period(data, &samp_period); 479 if (ret < 0) 480 return ret; 481 482 /* period should be atleast equal to sampling period */ 483 if (period < samp_period) 484 return -EINVAL; 485 486 new_val = DIV_ROUND_UP(period, samp_period); 487 if (new_val < 0 || new_val > 0x0f) 488 return -EINVAL; 489 490 mutex_lock(&data->lock_als); 491 ret = regmap_field_write(data->reg_als_prst, new_val); 492 mutex_unlock(&data->lock_als); 493 if (ret >= 0) 494 data->als_period = period; 495 496 return ret; 497 case IIO_PROXIMITY: 498 ret = ltr501_ps_read_samp_period(data, &samp_period); 499 if (ret < 0) 500 return ret; 501 502 /* period should be atleast equal to rate */ 503 if (period < samp_period) 504 return -EINVAL; 505 506 new_val = DIV_ROUND_UP(period, samp_period); 507 if (new_val < 0 || new_val > 0x0f) 508 return -EINVAL; 509 510 mutex_lock(&data->lock_ps); 511 ret = regmap_field_write(data->reg_ps_prst, new_val); 512 mutex_unlock(&data->lock_ps); 513 if (ret >= 0) 514 data->ps_period = period; 515 516 return ret; 517 default: 518 return -EINVAL; 519 } 520 521 return -EINVAL; 522 } 523 524 static ssize_t ltr501_read_near_level(struct iio_dev *indio_dev, 525 uintptr_t priv, 526 const struct iio_chan_spec *chan, 527 char *buf) 528 { 529 struct ltr501_data *data = iio_priv(indio_dev); 530 531 return sprintf(buf, "%u\n", data->near_level); 532 } 533 534 static const struct iio_chan_spec_ext_info ltr501_ext_info[] = { 535 { 536 .name = "nearlevel", 537 .shared = IIO_SEPARATE, 538 .read = ltr501_read_near_level, 539 }, 540 { } 541 }; 542 543 static const struct iio_event_spec ltr501_als_event_spec[] = { 544 { 545 .type = IIO_EV_TYPE_THRESH, 546 .dir = IIO_EV_DIR_RISING, 547 .mask_separate = BIT(IIO_EV_INFO_VALUE), 548 }, { 549 .type = IIO_EV_TYPE_THRESH, 550 .dir = IIO_EV_DIR_FALLING, 551 .mask_separate = BIT(IIO_EV_INFO_VALUE), 552 }, { 553 .type = IIO_EV_TYPE_THRESH, 554 .dir = IIO_EV_DIR_EITHER, 555 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 556 BIT(IIO_EV_INFO_PERIOD), 557 }, 558 559 }; 560 561 static const struct iio_event_spec ltr501_pxs_event_spec[] = { 562 { 563 .type = IIO_EV_TYPE_THRESH, 564 .dir = IIO_EV_DIR_RISING, 565 .mask_separate = BIT(IIO_EV_INFO_VALUE), 566 }, { 567 .type = IIO_EV_TYPE_THRESH, 568 .dir = IIO_EV_DIR_FALLING, 569 .mask_separate = BIT(IIO_EV_INFO_VALUE), 570 }, { 571 .type = IIO_EV_TYPE_THRESH, 572 .dir = IIO_EV_DIR_EITHER, 573 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 574 BIT(IIO_EV_INFO_PERIOD), 575 }, 576 }; 577 578 #define LTR501_INTENSITY_CHANNEL(_idx, _addr, _mod, _shared, \ 579 _evspec, _evsize) { \ 580 .type = IIO_INTENSITY, \ 581 .modified = 1, \ 582 .address = (_addr), \ 583 .channel2 = (_mod), \ 584 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 585 .info_mask_shared_by_type = (_shared), \ 586 .scan_index = (_idx), \ 587 .scan_type = { \ 588 .sign = 'u', \ 589 .realbits = 16, \ 590 .storagebits = 16, \ 591 .endianness = IIO_CPU, \ 592 }, \ 593 .event_spec = _evspec,\ 594 .num_event_specs = _evsize,\ 595 } 596 597 #define LTR501_LIGHT_CHANNEL() { \ 598 .type = IIO_LIGHT, \ 599 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \ 600 .scan_index = -1, \ 601 } 602 603 static const struct iio_chan_spec ltr501_channels[] = { 604 LTR501_LIGHT_CHANNEL(), 605 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 606 ltr501_als_event_spec, 607 ARRAY_SIZE(ltr501_als_event_spec)), 608 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 609 BIT(IIO_CHAN_INFO_SCALE) | 610 BIT(IIO_CHAN_INFO_INT_TIME) | 611 BIT(IIO_CHAN_INFO_SAMP_FREQ), 612 NULL, 0), 613 { 614 .type = IIO_PROXIMITY, 615 .address = LTR501_PS_DATA, 616 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 617 BIT(IIO_CHAN_INFO_SCALE), 618 .scan_index = 2, 619 .scan_type = { 620 .sign = 'u', 621 .realbits = 11, 622 .storagebits = 16, 623 .endianness = IIO_CPU, 624 }, 625 .event_spec = ltr501_pxs_event_spec, 626 .num_event_specs = ARRAY_SIZE(ltr501_pxs_event_spec), 627 .ext_info = ltr501_ext_info, 628 }, 629 IIO_CHAN_SOFT_TIMESTAMP(3), 630 }; 631 632 static const struct iio_chan_spec ltr301_channels[] = { 633 LTR501_LIGHT_CHANNEL(), 634 LTR501_INTENSITY_CHANNEL(0, LTR501_ALS_DATA0, IIO_MOD_LIGHT_BOTH, 0, 635 ltr501_als_event_spec, 636 ARRAY_SIZE(ltr501_als_event_spec)), 637 LTR501_INTENSITY_CHANNEL(1, LTR501_ALS_DATA1, IIO_MOD_LIGHT_IR, 638 BIT(IIO_CHAN_INFO_SCALE) | 639 BIT(IIO_CHAN_INFO_INT_TIME) | 640 BIT(IIO_CHAN_INFO_SAMP_FREQ), 641 NULL, 0), 642 IIO_CHAN_SOFT_TIMESTAMP(2), 643 }; 644 645 static int ltr501_read_info_raw(struct ltr501_data *data, 646 struct iio_chan_spec const *chan, 647 int *val) 648 { 649 __le16 buf[2]; 650 int ret; 651 652 switch (chan->type) { 653 case IIO_INTENSITY: 654 mutex_lock(&data->lock_als); 655 ret = ltr501_read_als(data, buf); 656 mutex_unlock(&data->lock_als); 657 if (ret < 0) 658 return ret; 659 *val = le16_to_cpu(chan->address == LTR501_ALS_DATA1 ? 660 buf[0] : buf[1]); 661 return IIO_VAL_INT; 662 case IIO_PROXIMITY: 663 mutex_lock(&data->lock_ps); 664 ret = ltr501_read_ps(data); 665 mutex_unlock(&data->lock_ps); 666 if (ret < 0) 667 return ret; 668 *val = ret & LTR501_PS_DATA_MASK; 669 return IIO_VAL_INT; 670 default: 671 return -EINVAL; 672 } 673 } 674 675 static int ltr501_read_raw(struct iio_dev *indio_dev, 676 struct iio_chan_spec const *chan, 677 int *val, int *val2, long mask) 678 { 679 struct ltr501_data *data = iio_priv(indio_dev); 680 __le16 buf[2]; 681 int ret, i; 682 683 switch (mask) { 684 case IIO_CHAN_INFO_PROCESSED: 685 switch (chan->type) { 686 case IIO_LIGHT: 687 if (!iio_device_claim_direct(indio_dev)) 688 return -EBUSY; 689 690 mutex_lock(&data->lock_als); 691 ret = ltr501_read_als(data, buf); 692 mutex_unlock(&data->lock_als); 693 iio_device_release_direct(indio_dev); 694 if (ret < 0) 695 return ret; 696 *val = ltr501_calculate_lux(le16_to_cpu(buf[1]), 697 le16_to_cpu(buf[0])); 698 return IIO_VAL_INT; 699 default: 700 return -EINVAL; 701 } 702 case IIO_CHAN_INFO_RAW: 703 if (!iio_device_claim_direct(indio_dev)) 704 return -EBUSY; 705 706 ret = ltr501_read_info_raw(data, chan, val); 707 708 iio_device_release_direct(indio_dev); 709 return ret; 710 711 case IIO_CHAN_INFO_SCALE: 712 switch (chan->type) { 713 case IIO_INTENSITY: 714 i = (data->als_contr & data->chip_info->als_gain_mask) 715 >> data->chip_info->als_gain_shift; 716 *val = data->chip_info->als_gain[i].scale; 717 *val2 = data->chip_info->als_gain[i].uscale; 718 return IIO_VAL_INT_PLUS_MICRO; 719 case IIO_PROXIMITY: 720 i = (data->ps_contr & LTR501_CONTR_PS_GAIN_MASK) >> 721 LTR501_CONTR_PS_GAIN_SHIFT; 722 *val = data->chip_info->ps_gain[i].scale; 723 *val2 = data->chip_info->ps_gain[i].uscale; 724 return IIO_VAL_INT_PLUS_MICRO; 725 default: 726 return -EINVAL; 727 } 728 case IIO_CHAN_INFO_INT_TIME: 729 switch (chan->type) { 730 case IIO_INTENSITY: 731 return ltr501_read_it_time(data, val, val2); 732 default: 733 return -EINVAL; 734 } 735 case IIO_CHAN_INFO_SAMP_FREQ: 736 switch (chan->type) { 737 case IIO_INTENSITY: 738 return ltr501_als_read_samp_freq(data, val, val2); 739 case IIO_PROXIMITY: 740 return ltr501_ps_read_samp_freq(data, val, val2); 741 default: 742 return -EINVAL; 743 } 744 } 745 return -EINVAL; 746 } 747 748 static int ltr501_get_gain_index(const struct ltr501_gain *gain, int size, 749 int val, int val2) 750 { 751 int i; 752 753 for (i = 0; i < size; i++) 754 if (val == gain[i].scale && val2 == gain[i].uscale) 755 return i; 756 757 return -1; 758 } 759 760 static int __ltr501_write_raw(struct iio_dev *indio_dev, 761 struct iio_chan_spec const *chan, 762 int val, int val2, long mask) 763 { 764 struct ltr501_data *data = iio_priv(indio_dev); 765 int i, ret, freq_val, freq_val2; 766 const struct ltr501_chip_info *info = data->chip_info; 767 768 switch (mask) { 769 case IIO_CHAN_INFO_SCALE: 770 switch (chan->type) { 771 case IIO_INTENSITY: 772 i = ltr501_get_gain_index(info->als_gain, 773 info->als_gain_tbl_size, 774 val, val2); 775 if (i < 0) 776 return -EINVAL; 777 778 data->als_contr &= ~info->als_gain_mask; 779 data->als_contr |= i << info->als_gain_shift; 780 781 return regmap_write(data->regmap, LTR501_ALS_CONTR, 782 data->als_contr); 783 case IIO_PROXIMITY: 784 i = ltr501_get_gain_index(info->ps_gain, 785 info->ps_gain_tbl_size, 786 val, val2); 787 if (i < 0) 788 return -EINVAL; 789 790 data->ps_contr &= ~LTR501_CONTR_PS_GAIN_MASK; 791 data->ps_contr |= i << LTR501_CONTR_PS_GAIN_SHIFT; 792 793 return regmap_write(data->regmap, LTR501_PS_CONTR, 794 data->ps_contr); 795 default: 796 return -EINVAL; 797 } 798 799 case IIO_CHAN_INFO_INT_TIME: 800 switch (chan->type) { 801 case IIO_INTENSITY: 802 if (val != 0) 803 return -EINVAL; 804 805 mutex_lock(&data->lock_als); 806 ret = ltr501_set_it_time(data, val2); 807 mutex_unlock(&data->lock_als); 808 return ret; 809 default: 810 return -EINVAL; 811 } 812 813 case IIO_CHAN_INFO_SAMP_FREQ: 814 switch (chan->type) { 815 case IIO_INTENSITY: 816 ret = ltr501_als_read_samp_freq(data, &freq_val, 817 &freq_val2); 818 if (ret < 0) 819 return ret; 820 821 ret = ltr501_als_write_samp_freq(data, val, val2); 822 if (ret < 0) 823 return ret; 824 825 /* update persistence count when changing frequency */ 826 ret = ltr501_write_intr_prst(data, chan->type, 827 0, data->als_period); 828 829 if (ret < 0) 830 /* Do not ovewrite error */ 831 ltr501_als_write_samp_freq(data, freq_val, 832 freq_val2); 833 return ret; 834 case IIO_PROXIMITY: 835 ret = ltr501_ps_read_samp_freq(data, &freq_val, 836 &freq_val2); 837 if (ret < 0) 838 return ret; 839 840 ret = ltr501_ps_write_samp_freq(data, val, val2); 841 if (ret < 0) 842 return ret; 843 844 /* update persistence count when changing frequency */ 845 ret = ltr501_write_intr_prst(data, chan->type, 846 0, data->ps_period); 847 848 if (ret < 0) 849 /* Do not overwrite error */ 850 ltr501_ps_write_samp_freq(data, freq_val, 851 freq_val2); 852 return ret; 853 default: 854 return -EINVAL; 855 } 856 default: 857 return -EINVAL; 858 } 859 } 860 861 static int ltr501_write_raw(struct iio_dev *indio_dev, 862 struct iio_chan_spec const *chan, 863 int val, int val2, long mask) 864 { 865 int ret; 866 867 if (!iio_device_claim_direct(indio_dev)) 868 return -EBUSY; 869 870 ret = __ltr501_write_raw(indio_dev, chan, val, val2, mask); 871 872 iio_device_release_direct(indio_dev); 873 874 return ret; 875 } 876 877 static int ltr501_read_thresh(const struct iio_dev *indio_dev, 878 const struct iio_chan_spec *chan, 879 enum iio_event_type type, 880 enum iio_event_direction dir, 881 enum iio_event_info info, 882 int *val, int *val2) 883 { 884 const struct ltr501_data *data = iio_priv(indio_dev); 885 int ret, thresh_data; 886 887 switch (chan->type) { 888 case IIO_INTENSITY: 889 switch (dir) { 890 case IIO_EV_DIR_RISING: 891 ret = regmap_bulk_read(data->regmap, 892 LTR501_ALS_THRESH_UP, 893 &thresh_data, 2); 894 if (ret < 0) 895 return ret; 896 *val = thresh_data & LTR501_ALS_THRESH_MASK; 897 return IIO_VAL_INT; 898 case IIO_EV_DIR_FALLING: 899 ret = regmap_bulk_read(data->regmap, 900 LTR501_ALS_THRESH_LOW, 901 &thresh_data, 2); 902 if (ret < 0) 903 return ret; 904 *val = thresh_data & LTR501_ALS_THRESH_MASK; 905 return IIO_VAL_INT; 906 default: 907 return -EINVAL; 908 } 909 case IIO_PROXIMITY: 910 switch (dir) { 911 case IIO_EV_DIR_RISING: 912 ret = regmap_bulk_read(data->regmap, 913 LTR501_PS_THRESH_UP, 914 &thresh_data, 2); 915 if (ret < 0) 916 return ret; 917 *val = thresh_data & LTR501_PS_THRESH_MASK; 918 return IIO_VAL_INT; 919 case IIO_EV_DIR_FALLING: 920 ret = regmap_bulk_read(data->regmap, 921 LTR501_PS_THRESH_LOW, 922 &thresh_data, 2); 923 if (ret < 0) 924 return ret; 925 *val = thresh_data & LTR501_PS_THRESH_MASK; 926 return IIO_VAL_INT; 927 default: 928 return -EINVAL; 929 } 930 default: 931 return -EINVAL; 932 } 933 934 return -EINVAL; 935 } 936 937 static int ltr501_write_thresh(struct iio_dev *indio_dev, 938 const struct iio_chan_spec *chan, 939 enum iio_event_type type, 940 enum iio_event_direction dir, 941 enum iio_event_info info, 942 int val, int val2) 943 { 944 struct ltr501_data *data = iio_priv(indio_dev); 945 int ret; 946 947 if (val < 0) 948 return -EINVAL; 949 950 switch (chan->type) { 951 case IIO_INTENSITY: 952 if (val > LTR501_ALS_THRESH_MASK) 953 return -EINVAL; 954 switch (dir) { 955 case IIO_EV_DIR_RISING: 956 mutex_lock(&data->lock_als); 957 ret = regmap_bulk_write(data->regmap, 958 LTR501_ALS_THRESH_UP, 959 &val, 2); 960 mutex_unlock(&data->lock_als); 961 return ret; 962 case IIO_EV_DIR_FALLING: 963 mutex_lock(&data->lock_als); 964 ret = regmap_bulk_write(data->regmap, 965 LTR501_ALS_THRESH_LOW, 966 &val, 2); 967 mutex_unlock(&data->lock_als); 968 return ret; 969 default: 970 return -EINVAL; 971 } 972 case IIO_PROXIMITY: 973 if (val > LTR501_PS_THRESH_MASK) 974 return -EINVAL; 975 switch (dir) { 976 case IIO_EV_DIR_RISING: 977 mutex_lock(&data->lock_ps); 978 ret = regmap_bulk_write(data->regmap, 979 LTR501_PS_THRESH_UP, 980 &val, 2); 981 mutex_unlock(&data->lock_ps); 982 return ret; 983 case IIO_EV_DIR_FALLING: 984 mutex_lock(&data->lock_ps); 985 ret = regmap_bulk_write(data->regmap, 986 LTR501_PS_THRESH_LOW, 987 &val, 2); 988 mutex_unlock(&data->lock_ps); 989 return ret; 990 default: 991 return -EINVAL; 992 } 993 default: 994 return -EINVAL; 995 } 996 997 return -EINVAL; 998 } 999 1000 static int ltr501_read_event(struct iio_dev *indio_dev, 1001 const struct iio_chan_spec *chan, 1002 enum iio_event_type type, 1003 enum iio_event_direction dir, 1004 enum iio_event_info info, 1005 int *val, int *val2) 1006 { 1007 int ret; 1008 1009 switch (info) { 1010 case IIO_EV_INFO_VALUE: 1011 return ltr501_read_thresh(indio_dev, chan, type, dir, 1012 info, val, val2); 1013 case IIO_EV_INFO_PERIOD: 1014 ret = ltr501_read_intr_prst(iio_priv(indio_dev), 1015 chan->type, val2); 1016 *val = *val2 / 1000000; 1017 *val2 = *val2 % 1000000; 1018 return ret; 1019 default: 1020 return -EINVAL; 1021 } 1022 1023 return -EINVAL; 1024 } 1025 1026 static int ltr501_write_event(struct iio_dev *indio_dev, 1027 const struct iio_chan_spec *chan, 1028 enum iio_event_type type, 1029 enum iio_event_direction dir, 1030 enum iio_event_info info, 1031 int val, int val2) 1032 { 1033 switch (info) { 1034 case IIO_EV_INFO_VALUE: 1035 if (val2 != 0) 1036 return -EINVAL; 1037 return ltr501_write_thresh(indio_dev, chan, type, dir, 1038 info, val, val2); 1039 case IIO_EV_INFO_PERIOD: 1040 return ltr501_write_intr_prst(iio_priv(indio_dev), chan->type, 1041 val, val2); 1042 default: 1043 return -EINVAL; 1044 } 1045 1046 return -EINVAL; 1047 } 1048 1049 static int ltr501_read_event_config(struct iio_dev *indio_dev, 1050 const struct iio_chan_spec *chan, 1051 enum iio_event_type type, 1052 enum iio_event_direction dir) 1053 { 1054 struct ltr501_data *data = iio_priv(indio_dev); 1055 int ret, status; 1056 1057 switch (chan->type) { 1058 case IIO_INTENSITY: 1059 ret = regmap_field_read(data->reg_als_intr, &status); 1060 if (ret < 0) 1061 return ret; 1062 return status; 1063 case IIO_PROXIMITY: 1064 ret = regmap_field_read(data->reg_ps_intr, &status); 1065 if (ret < 0) 1066 return ret; 1067 return status; 1068 default: 1069 return -EINVAL; 1070 } 1071 1072 return -EINVAL; 1073 } 1074 1075 static int ltr501_write_event_config(struct iio_dev *indio_dev, 1076 const struct iio_chan_spec *chan, 1077 enum iio_event_type type, 1078 enum iio_event_direction dir, bool state) 1079 { 1080 struct ltr501_data *data = iio_priv(indio_dev); 1081 int ret; 1082 1083 switch (chan->type) { 1084 case IIO_INTENSITY: 1085 mutex_lock(&data->lock_als); 1086 ret = regmap_field_write(data->reg_als_intr, state); 1087 mutex_unlock(&data->lock_als); 1088 return ret; 1089 case IIO_PROXIMITY: 1090 mutex_lock(&data->lock_ps); 1091 ret = regmap_field_write(data->reg_ps_intr, state); 1092 mutex_unlock(&data->lock_ps); 1093 return ret; 1094 default: 1095 return -EINVAL; 1096 } 1097 1098 return -EINVAL; 1099 } 1100 1101 static ssize_t ltr501_show_proximity_scale_avail(struct device *dev, 1102 struct device_attribute *attr, 1103 char *buf) 1104 { 1105 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1106 const struct ltr501_chip_info *info = data->chip_info; 1107 ssize_t len = 0; 1108 int i; 1109 1110 for (i = 0; i < info->ps_gain_tbl_size; i++) { 1111 if (info->ps_gain[i].scale == LTR501_RESERVED_GAIN) 1112 continue; 1113 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1114 info->ps_gain[i].scale, 1115 info->ps_gain[i].uscale); 1116 } 1117 1118 buf[len - 1] = '\n'; 1119 1120 return len; 1121 } 1122 1123 static ssize_t ltr501_show_intensity_scale_avail(struct device *dev, 1124 struct device_attribute *attr, 1125 char *buf) 1126 { 1127 struct ltr501_data *data = iio_priv(dev_to_iio_dev(dev)); 1128 const struct ltr501_chip_info *info = data->chip_info; 1129 ssize_t len = 0; 1130 int i; 1131 1132 for (i = 0; i < info->als_gain_tbl_size; i++) { 1133 if (info->als_gain[i].scale == LTR501_RESERVED_GAIN) 1134 continue; 1135 len += scnprintf(buf + len, PAGE_SIZE - len, "%d.%06d ", 1136 info->als_gain[i].scale, 1137 info->als_gain[i].uscale); 1138 } 1139 1140 buf[len - 1] = '\n'; 1141 1142 return len; 1143 } 1144 1145 static IIO_CONST_ATTR_INT_TIME_AVAIL("0.05 0.1 0.2 0.4"); 1146 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("20 10 5 2 1 0.5"); 1147 1148 static IIO_DEVICE_ATTR(in_proximity_scale_available, S_IRUGO, 1149 ltr501_show_proximity_scale_avail, NULL, 0); 1150 static IIO_DEVICE_ATTR(in_intensity_scale_available, S_IRUGO, 1151 ltr501_show_intensity_scale_avail, NULL, 0); 1152 1153 static struct attribute *ltr501_attributes[] = { 1154 &iio_dev_attr_in_proximity_scale_available.dev_attr.attr, 1155 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1156 &iio_const_attr_integration_time_available.dev_attr.attr, 1157 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1158 NULL 1159 }; 1160 1161 static struct attribute *ltr301_attributes[] = { 1162 &iio_dev_attr_in_intensity_scale_available.dev_attr.attr, 1163 &iio_const_attr_integration_time_available.dev_attr.attr, 1164 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 1165 NULL 1166 }; 1167 1168 static const struct attribute_group ltr501_attribute_group = { 1169 .attrs = ltr501_attributes, 1170 }; 1171 1172 static const struct attribute_group ltr301_attribute_group = { 1173 .attrs = ltr301_attributes, 1174 }; 1175 1176 static const struct iio_info ltr501_info_no_irq = { 1177 .read_raw = ltr501_read_raw, 1178 .write_raw = ltr501_write_raw, 1179 .attrs = <r501_attribute_group, 1180 }; 1181 1182 static const struct iio_info ltr501_info = { 1183 .read_raw = ltr501_read_raw, 1184 .write_raw = ltr501_write_raw, 1185 .attrs = <r501_attribute_group, 1186 .read_event_value = <r501_read_event, 1187 .write_event_value = <r501_write_event, 1188 .read_event_config = <r501_read_event_config, 1189 .write_event_config = <r501_write_event_config, 1190 }; 1191 1192 static const struct iio_info ltr301_info_no_irq = { 1193 .read_raw = ltr501_read_raw, 1194 .write_raw = ltr501_write_raw, 1195 .attrs = <r301_attribute_group, 1196 }; 1197 1198 static const struct iio_info ltr301_info = { 1199 .read_raw = ltr501_read_raw, 1200 .write_raw = ltr501_write_raw, 1201 .attrs = <r301_attribute_group, 1202 .read_event_value = <r501_read_event, 1203 .write_event_value = <r501_write_event, 1204 .read_event_config = <r501_read_event_config, 1205 .write_event_config = <r501_write_event_config, 1206 }; 1207 1208 static const struct ltr501_chip_info ltr501_chip_info_tbl[] = { 1209 [ltr501] = { 1210 .partid = 0x08, 1211 .als_gain = ltr501_als_gain_tbl, 1212 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1213 .ps_gain = ltr501_ps_gain_tbl, 1214 .ps_gain_tbl_size = ARRAY_SIZE(ltr501_ps_gain_tbl), 1215 .als_mode_active = BIT(0) | BIT(1), 1216 .als_gain_mask = BIT(3), 1217 .als_gain_shift = 3, 1218 .info = <r501_info, 1219 .info_no_irq = <r501_info_no_irq, 1220 .channels = ltr501_channels, 1221 .no_channels = ARRAY_SIZE(ltr501_channels), 1222 }, 1223 [ltr559] = { 1224 .partid = 0x09, 1225 .als_gain = ltr559_als_gain_tbl, 1226 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1227 .ps_gain = ltr559_ps_gain_tbl, 1228 .ps_gain_tbl_size = ARRAY_SIZE(ltr559_ps_gain_tbl), 1229 .als_mode_active = BIT(0), 1230 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1231 .als_gain_shift = 2, 1232 .info = <r501_info, 1233 .info_no_irq = <r501_info_no_irq, 1234 .channels = ltr501_channels, 1235 .no_channels = ARRAY_SIZE(ltr501_channels), 1236 }, 1237 [ltr301] = { 1238 .partid = 0x08, 1239 .als_gain = ltr501_als_gain_tbl, 1240 .als_gain_tbl_size = ARRAY_SIZE(ltr501_als_gain_tbl), 1241 .als_mode_active = BIT(0) | BIT(1), 1242 .als_gain_mask = BIT(3), 1243 .als_gain_shift = 3, 1244 .info = <r301_info, 1245 .info_no_irq = <r301_info_no_irq, 1246 .channels = ltr301_channels, 1247 .no_channels = ARRAY_SIZE(ltr301_channels), 1248 }, 1249 [ltr303] = { 1250 .partid = 0x0A, 1251 .als_gain = ltr559_als_gain_tbl, 1252 .als_gain_tbl_size = ARRAY_SIZE(ltr559_als_gain_tbl), 1253 .als_mode_active = BIT(0), 1254 .als_gain_mask = BIT(2) | BIT(3) | BIT(4), 1255 .als_gain_shift = 2, 1256 .info = <r301_info, 1257 .info_no_irq = <r301_info_no_irq, 1258 .channels = ltr301_channels, 1259 .no_channels = ARRAY_SIZE(ltr301_channels), 1260 }, 1261 }; 1262 1263 static int ltr501_write_contr(struct ltr501_data *data, u8 als_val, u8 ps_val) 1264 { 1265 int ret; 1266 1267 ret = regmap_write(data->regmap, LTR501_ALS_CONTR, als_val); 1268 if (ret < 0) 1269 return ret; 1270 1271 return regmap_write(data->regmap, LTR501_PS_CONTR, ps_val); 1272 } 1273 1274 static irqreturn_t ltr501_trigger_handler(int irq, void *p) 1275 { 1276 struct iio_poll_func *pf = p; 1277 struct iio_dev *indio_dev = pf->indio_dev; 1278 struct ltr501_data *data = iio_priv(indio_dev); 1279 struct { 1280 u16 channels[3]; 1281 aligned_s64 ts; 1282 } scan = { }; 1283 __le16 als_buf[2]; 1284 u8 mask = 0; 1285 int j = 0; 1286 int ret, psdata; 1287 1288 /* figure out which data needs to be ready */ 1289 if (test_bit(0, indio_dev->active_scan_mask) || 1290 test_bit(1, indio_dev->active_scan_mask)) 1291 mask |= LTR501_STATUS_ALS_RDY; 1292 if (test_bit(2, indio_dev->active_scan_mask)) 1293 mask |= LTR501_STATUS_PS_RDY; 1294 1295 ret = ltr501_drdy(data, mask); 1296 if (ret < 0) 1297 goto done; 1298 1299 if (mask & LTR501_STATUS_ALS_RDY) { 1300 ret = regmap_bulk_read(data->regmap, LTR501_ALS_DATA1, 1301 als_buf, sizeof(als_buf)); 1302 if (ret < 0) 1303 goto done; 1304 if (test_bit(0, indio_dev->active_scan_mask)) 1305 scan.channels[j++] = le16_to_cpu(als_buf[1]); 1306 if (test_bit(1, indio_dev->active_scan_mask)) 1307 scan.channels[j++] = le16_to_cpu(als_buf[0]); 1308 } 1309 1310 if (mask & LTR501_STATUS_PS_RDY) { 1311 ret = regmap_bulk_read(data->regmap, LTR501_PS_DATA, 1312 &psdata, 2); 1313 if (ret < 0) 1314 goto done; 1315 scan.channels[j++] = psdata & LTR501_PS_DATA_MASK; 1316 } 1317 1318 iio_push_to_buffers_with_timestamp(indio_dev, &scan, 1319 iio_get_time_ns(indio_dev)); 1320 1321 done: 1322 iio_trigger_notify_done(indio_dev->trig); 1323 1324 return IRQ_HANDLED; 1325 } 1326 1327 static irqreturn_t ltr501_interrupt_handler(int irq, void *private) 1328 { 1329 struct iio_dev *indio_dev = private; 1330 struct ltr501_data *data = iio_priv(indio_dev); 1331 int ret, status; 1332 1333 ret = regmap_read(data->regmap, LTR501_ALS_PS_STATUS, &status); 1334 if (ret < 0) { 1335 dev_err(&data->client->dev, 1336 "irq read int reg failed\n"); 1337 return IRQ_HANDLED; 1338 } 1339 1340 if (status & LTR501_STATUS_ALS_INTR) 1341 iio_push_event(indio_dev, 1342 IIO_UNMOD_EVENT_CODE(IIO_INTENSITY, 0, 1343 IIO_EV_TYPE_THRESH, 1344 IIO_EV_DIR_EITHER), 1345 iio_get_time_ns(indio_dev)); 1346 1347 if (status & LTR501_STATUS_PS_INTR) 1348 iio_push_event(indio_dev, 1349 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 1350 IIO_EV_TYPE_THRESH, 1351 IIO_EV_DIR_EITHER), 1352 iio_get_time_ns(indio_dev)); 1353 1354 return IRQ_HANDLED; 1355 } 1356 1357 static int ltr501_init(struct ltr501_data *data) 1358 { 1359 int ret, status; 1360 1361 ret = regmap_read(data->regmap, LTR501_ALS_CONTR, &status); 1362 if (ret < 0) 1363 return ret; 1364 1365 data->als_contr = status | data->chip_info->als_mode_active; 1366 1367 ret = regmap_read(data->regmap, LTR501_PS_CONTR, &status); 1368 if (ret < 0) 1369 return ret; 1370 1371 data->ps_contr = status | LTR501_CONTR_ACTIVE; 1372 1373 ret = ltr501_read_intr_prst(data, IIO_INTENSITY, &data->als_period); 1374 if (ret < 0) 1375 return ret; 1376 1377 ret = ltr501_read_intr_prst(data, IIO_PROXIMITY, &data->ps_period); 1378 if (ret < 0) 1379 return ret; 1380 1381 return ltr501_write_contr(data, data->als_contr, data->ps_contr); 1382 } 1383 1384 static bool ltr501_is_volatile_reg(struct device *dev, unsigned int reg) 1385 { 1386 switch (reg) { 1387 case LTR501_ALS_DATA1: 1388 case LTR501_ALS_DATA1_UPPER: 1389 case LTR501_ALS_DATA0: 1390 case LTR501_ALS_DATA0_UPPER: 1391 case LTR501_ALS_PS_STATUS: 1392 case LTR501_PS_DATA: 1393 case LTR501_PS_DATA_UPPER: 1394 return true; 1395 default: 1396 return false; 1397 } 1398 } 1399 1400 static const struct regmap_config ltr501_regmap_config = { 1401 .name = "ltr501_regmap", 1402 .reg_bits = 8, 1403 .val_bits = 8, 1404 .max_register = LTR501_MAX_REG, 1405 .cache_type = REGCACHE_MAPLE, 1406 .volatile_reg = ltr501_is_volatile_reg, 1407 }; 1408 1409 static int ltr501_powerdown(struct ltr501_data *data) 1410 { 1411 return ltr501_write_contr(data, data->als_contr & 1412 ~data->chip_info->als_mode_active, 1413 data->ps_contr & ~LTR501_CONTR_ACTIVE); 1414 } 1415 1416 static int ltr501_probe(struct i2c_client *client) 1417 { 1418 const struct i2c_device_id *id = i2c_client_get_device_id(client); 1419 static const char * const regulator_names[] = { "vdd", "vddio" }; 1420 struct ltr501_data *data; 1421 struct iio_dev *indio_dev; 1422 struct regmap *regmap; 1423 const void *ddata = NULL; 1424 int partid, chip_idx; 1425 const char *name; 1426 int ret; 1427 1428 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 1429 if (!indio_dev) 1430 return -ENOMEM; 1431 1432 regmap = devm_regmap_init_i2c(client, <r501_regmap_config); 1433 if (IS_ERR(regmap)) { 1434 dev_err(&client->dev, "Regmap initialization failed.\n"); 1435 return PTR_ERR(regmap); 1436 } 1437 1438 data = iio_priv(indio_dev); 1439 i2c_set_clientdata(client, indio_dev); 1440 data->client = client; 1441 data->regmap = regmap; 1442 mutex_init(&data->lock_als); 1443 mutex_init(&data->lock_ps); 1444 1445 ret = devm_regulator_bulk_get_enable(&client->dev, 1446 ARRAY_SIZE(regulator_names), 1447 regulator_names); 1448 if (ret) 1449 return dev_err_probe(&client->dev, ret, 1450 "Failed to get regulators\n"); 1451 1452 data->reg_it = devm_regmap_field_alloc(&client->dev, regmap, 1453 reg_field_it); 1454 if (IS_ERR(data->reg_it)) { 1455 dev_err(&client->dev, "Integ time reg field init failed.\n"); 1456 return PTR_ERR(data->reg_it); 1457 } 1458 1459 data->reg_als_intr = devm_regmap_field_alloc(&client->dev, regmap, 1460 reg_field_als_intr); 1461 if (IS_ERR(data->reg_als_intr)) { 1462 dev_err(&client->dev, "ALS intr mode reg field init failed\n"); 1463 return PTR_ERR(data->reg_als_intr); 1464 } 1465 1466 data->reg_ps_intr = devm_regmap_field_alloc(&client->dev, regmap, 1467 reg_field_ps_intr); 1468 if (IS_ERR(data->reg_ps_intr)) { 1469 dev_err(&client->dev, "PS intr mode reg field init failed.\n"); 1470 return PTR_ERR(data->reg_ps_intr); 1471 } 1472 1473 data->reg_als_rate = devm_regmap_field_alloc(&client->dev, regmap, 1474 reg_field_als_rate); 1475 if (IS_ERR(data->reg_als_rate)) { 1476 dev_err(&client->dev, "ALS samp rate field init failed.\n"); 1477 return PTR_ERR(data->reg_als_rate); 1478 } 1479 1480 data->reg_ps_rate = devm_regmap_field_alloc(&client->dev, regmap, 1481 reg_field_ps_rate); 1482 if (IS_ERR(data->reg_ps_rate)) { 1483 dev_err(&client->dev, "PS samp rate field init failed.\n"); 1484 return PTR_ERR(data->reg_ps_rate); 1485 } 1486 1487 data->reg_als_prst = devm_regmap_field_alloc(&client->dev, regmap, 1488 reg_field_als_prst); 1489 if (IS_ERR(data->reg_als_prst)) { 1490 dev_err(&client->dev, "ALS prst reg field init failed\n"); 1491 return PTR_ERR(data->reg_als_prst); 1492 } 1493 1494 data->reg_ps_prst = devm_regmap_field_alloc(&client->dev, regmap, 1495 reg_field_ps_prst); 1496 if (IS_ERR(data->reg_ps_prst)) { 1497 dev_err(&client->dev, "PS prst reg field init failed.\n"); 1498 return PTR_ERR(data->reg_ps_prst); 1499 } 1500 1501 ret = regmap_read(data->regmap, LTR501_PART_ID, &partid); 1502 if (ret < 0) 1503 return ret; 1504 1505 if (id) { 1506 name = id->name; 1507 chip_idx = id->driver_data; 1508 } else { 1509 name = iio_get_acpi_device_name_and_data(&client->dev, &ddata); 1510 chip_idx = (intptr_t)ddata; 1511 } 1512 if (!name) 1513 return -ENODEV; 1514 1515 data->chip_info = <r501_chip_info_tbl[chip_idx]; 1516 1517 if ((partid >> 4) != data->chip_info->partid) 1518 return -ENODEV; 1519 1520 if (device_property_read_u32(&client->dev, "proximity-near-level", 1521 &data->near_level)) 1522 data->near_level = 0; 1523 1524 indio_dev->info = data->chip_info->info; 1525 indio_dev->channels = data->chip_info->channels; 1526 indio_dev->num_channels = data->chip_info->no_channels; 1527 indio_dev->name = name; 1528 indio_dev->modes = INDIO_DIRECT_MODE; 1529 1530 ret = ltr501_init(data); 1531 if (ret < 0) 1532 return ret; 1533 1534 if (client->irq > 0) { 1535 ret = devm_request_threaded_irq(&client->dev, client->irq, 1536 NULL, ltr501_interrupt_handler, 1537 IRQF_TRIGGER_FALLING | 1538 IRQF_ONESHOT, 1539 "ltr501_thresh_event", 1540 indio_dev); 1541 if (ret) { 1542 dev_err(&client->dev, "request irq (%d) failed\n", 1543 client->irq); 1544 return ret; 1545 } 1546 } else { 1547 indio_dev->info = data->chip_info->info_no_irq; 1548 } 1549 1550 ret = iio_triggered_buffer_setup(indio_dev, NULL, 1551 ltr501_trigger_handler, NULL); 1552 if (ret) 1553 goto powerdown_on_error; 1554 1555 ret = iio_device_register(indio_dev); 1556 if (ret) 1557 goto error_unreg_buffer; 1558 1559 return 0; 1560 1561 error_unreg_buffer: 1562 iio_triggered_buffer_cleanup(indio_dev); 1563 powerdown_on_error: 1564 ltr501_powerdown(data); 1565 return ret; 1566 } 1567 1568 static void ltr501_remove(struct i2c_client *client) 1569 { 1570 struct iio_dev *indio_dev = i2c_get_clientdata(client); 1571 1572 iio_device_unregister(indio_dev); 1573 iio_triggered_buffer_cleanup(indio_dev); 1574 ltr501_powerdown(iio_priv(indio_dev)); 1575 } 1576 1577 static int ltr501_suspend(struct device *dev) 1578 { 1579 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1580 to_i2c_client(dev))); 1581 return ltr501_powerdown(data); 1582 } 1583 1584 static int ltr501_resume(struct device *dev) 1585 { 1586 struct ltr501_data *data = iio_priv(i2c_get_clientdata( 1587 to_i2c_client(dev))); 1588 1589 return ltr501_write_contr(data, data->als_contr, 1590 data->ps_contr); 1591 } 1592 1593 static DEFINE_SIMPLE_DEV_PM_OPS(ltr501_pm_ops, ltr501_suspend, ltr501_resume); 1594 1595 static const struct acpi_device_id ltr_acpi_match[] = { 1596 { "LTER0301", ltr301 }, 1597 /* https://www.catalog.update.microsoft.com/Search.aspx?q=lter0303 */ 1598 { "LTER0303", ltr303 }, 1599 { } 1600 }; 1601 MODULE_DEVICE_TABLE(acpi, ltr_acpi_match); 1602 1603 static const struct i2c_device_id ltr501_id[] = { 1604 { "ltr501", ltr501 }, 1605 { "ltr559", ltr559 }, 1606 { "ltr301", ltr301 }, 1607 { "ltr303", ltr303 }, 1608 { } 1609 }; 1610 MODULE_DEVICE_TABLE(i2c, ltr501_id); 1611 1612 static const struct of_device_id ltr501_of_match[] = { 1613 { .compatible = "liteon,ltr501", }, 1614 { .compatible = "liteon,ltr559", }, 1615 { .compatible = "liteon,ltr301", }, 1616 { .compatible = "liteon,ltr303", }, 1617 { } 1618 }; 1619 MODULE_DEVICE_TABLE(of, ltr501_of_match); 1620 1621 static struct i2c_driver ltr501_driver = { 1622 .driver = { 1623 .name = "ltr501", 1624 .of_match_table = ltr501_of_match, 1625 .pm = pm_sleep_ptr(<r501_pm_ops), 1626 .acpi_match_table = ltr_acpi_match, 1627 }, 1628 .probe = ltr501_probe, 1629 .remove = ltr501_remove, 1630 .id_table = ltr501_id, 1631 }; 1632 1633 module_i2c_driver(ltr501_driver); 1634 1635 MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); 1636 MODULE_DESCRIPTION("Lite-On LTR501 ambient light and proximity sensor driver"); 1637 MODULE_LICENSE("GPL"); 1638