1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * IIO driver for Lite-On LTR390 ALS and UV sensor 4 * (7-bit I2C slave address 0x53) 5 * 6 * Based on the work of: 7 * Shreeya Patel and Shi Zhigang (LTRF216 Driver) 8 * 9 * Copyright (C) 2023 Anshul Dalal <anshulusr@gmail.com> 10 * 11 * Datasheet: 12 * https://optoelectronics.liteon.com/upload/download/DS86-2015-0004/LTR-390UV_Final_%20DS_V1%201.pdf 13 * 14 * TODO: 15 * - Support for configurable gain and resolution 16 * - Sensor suspend/resume support 17 * - Add support for reading the ALS 18 * - Interrupt support 19 */ 20 21 #include <linux/bitfield.h> 22 #include <linux/device.h> 23 #include <linux/i2c.h> 24 #include <linux/irq.h> 25 #include <linux/interrupt.h> 26 #include <linux/math.h> 27 #include <linux/module.h> 28 #include <linux/mutex.h> 29 #include <linux/regmap.h> 30 31 #include <linux/iio/iio.h> 32 #include <linux/iio/events.h> 33 34 #include <linux/unaligned.h> 35 36 #define LTR390_MAIN_CTRL 0x00 37 #define LTR390_ALS_UVS_MEAS_RATE 0x04 38 #define LTR390_ALS_UVS_GAIN 0x05 39 #define LTR390_PART_ID 0x06 40 #define LTR390_MAIN_STATUS 0x07 41 #define LTR390_ALS_DATA 0x0D 42 #define LTR390_UVS_DATA 0x10 43 #define LTR390_INT_CFG 0x19 44 #define LTR390_INT_PST 0x1A 45 #define LTR390_THRESH_UP 0x21 46 #define LTR390_THRESH_LOW 0x24 47 48 #define LTR390_PART_NUMBER_ID 0xb 49 #define LTR390_ALS_UVS_GAIN_MASK GENMASK(2, 0) 50 #define LTR390_ALS_UVS_MEAS_RATE_MASK GENMASK(2, 0) 51 #define LTR390_ALS_UVS_INT_TIME_MASK GENMASK(6, 4) 52 #define LTR390_ALS_UVS_INT_TIME(x) FIELD_PREP(LTR390_ALS_UVS_INT_TIME_MASK, (x)) 53 #define LTR390_INT_PST_MASK GENMASK(7, 4) 54 #define LTR390_INT_PST_VAL(x) FIELD_PREP(LTR390_INT_PST_MASK, (x)) 55 56 #define LTR390_SW_RESET BIT(4) 57 #define LTR390_UVS_MODE BIT(3) 58 #define LTR390_SENSOR_ENABLE BIT(1) 59 #define LTR390_LS_INT_EN BIT(2) 60 #define LTR390_LS_INT_SEL_UVS BIT(5) 61 62 #define LTR390_FRACTIONAL_PRECISION 100 63 64 /* 65 * At 20-bit resolution (integration time: 400ms) and 18x gain, 2300 counts of 66 * the sensor are equal to 1 UV Index [Datasheet Page#8]. 67 * 68 * For the default resolution of 18-bit (integration time: 100ms) and default 69 * gain of 3x, the counts/uvi are calculated as follows: 70 * 2300 / ((3/18) * (100/400)) = 95.83 71 */ 72 #define LTR390_COUNTS_PER_UVI 96 73 74 /* 75 * Window Factor is needed when the device is under Window glass with coated 76 * tinted ink. This is to compensate for the light loss due to the lower 77 * transmission rate of the window glass and helps * in calculating lux. 78 */ 79 #define LTR390_WINDOW_FACTOR 1 80 81 enum ltr390_mode { 82 LTR390_SET_ALS_MODE, 83 LTR390_SET_UVS_MODE, 84 }; 85 86 enum ltr390_meas_rate { 87 LTR390_GET_FREQ, 88 LTR390_GET_PERIOD, 89 }; 90 91 struct ltr390_data { 92 struct regmap *regmap; 93 struct i2c_client *client; 94 /* Protects device from simulataneous reads */ 95 struct mutex lock; 96 enum ltr390_mode mode; 97 int gain; 98 int int_time_us; 99 }; 100 101 static const struct regmap_config ltr390_regmap_config = { 102 .name = "ltr390", 103 .reg_bits = 8, 104 .reg_stride = 1, 105 .val_bits = 8, 106 }; 107 108 /* Sampling frequency is in mili Hz and mili Seconds */ 109 static const int ltr390_samp_freq_table[][2] = { 110 [0] = { 40000, 25 }, 111 [1] = { 20000, 50 }, 112 [2] = { 10000, 100 }, 113 [3] = { 5000, 200 }, 114 [4] = { 2000, 500 }, 115 [5] = { 1000, 1000 }, 116 [6] = { 500, 2000 }, 117 [7] = { 500, 2000 }, 118 }; 119 120 static int ltr390_register_read(struct ltr390_data *data, u8 register_address) 121 { 122 struct device *dev = &data->client->dev; 123 int ret; 124 u8 recieve_buffer[3]; 125 126 ret = regmap_bulk_read(data->regmap, register_address, recieve_buffer, 127 sizeof(recieve_buffer)); 128 if (ret) { 129 dev_err(dev, "failed to read measurement data"); 130 return ret; 131 } 132 133 return get_unaligned_le24(recieve_buffer); 134 } 135 136 static int ltr390_set_mode(struct ltr390_data *data, enum ltr390_mode mode) 137 { 138 int ret; 139 140 if (data->mode == mode) 141 return 0; 142 143 switch (mode) { 144 case LTR390_SET_ALS_MODE: 145 ret = regmap_clear_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_UVS_MODE); 146 break; 147 148 case LTR390_SET_UVS_MODE: 149 ret = regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_UVS_MODE); 150 break; 151 } 152 153 if (ret) 154 return ret; 155 156 data->mode = mode; 157 return 0; 158 } 159 160 static int ltr390_counts_per_uvi(struct ltr390_data *data) 161 { 162 const int orig_gain = 18; 163 const int orig_int_time = 400; 164 165 return DIV_ROUND_CLOSEST(23 * data->gain * data->int_time_us, 10 * orig_gain * orig_int_time); 166 } 167 168 static int ltr390_get_samp_freq_or_period(struct ltr390_data *data, 169 enum ltr390_meas_rate option) 170 { 171 int ret, value; 172 173 ret = regmap_read(data->regmap, LTR390_ALS_UVS_MEAS_RATE, &value); 174 if (ret < 0) 175 return ret; 176 value = FIELD_GET(LTR390_ALS_UVS_MEAS_RATE_MASK, value); 177 178 return ltr390_samp_freq_table[value][option]; 179 } 180 181 static int ltr390_read_raw(struct iio_dev *iio_device, 182 struct iio_chan_spec const *chan, int *val, 183 int *val2, long mask) 184 { 185 int ret; 186 struct ltr390_data *data = iio_priv(iio_device); 187 188 guard(mutex)(&data->lock); 189 switch (mask) { 190 case IIO_CHAN_INFO_RAW: 191 switch (chan->type) { 192 case IIO_UVINDEX: 193 ret = ltr390_set_mode(data, LTR390_SET_UVS_MODE); 194 if (ret < 0) 195 return ret; 196 197 ret = ltr390_register_read(data, LTR390_UVS_DATA); 198 if (ret < 0) 199 return ret; 200 break; 201 202 case IIO_LIGHT: 203 ret = ltr390_set_mode(data, LTR390_SET_ALS_MODE); 204 if (ret < 0) 205 return ret; 206 207 ret = ltr390_register_read(data, LTR390_ALS_DATA); 208 if (ret < 0) 209 return ret; 210 break; 211 212 default: 213 return -EINVAL; 214 } 215 *val = ret; 216 return IIO_VAL_INT; 217 case IIO_CHAN_INFO_SCALE: 218 switch (chan->type) { 219 case IIO_UVINDEX: 220 *val = LTR390_WINDOW_FACTOR * LTR390_FRACTIONAL_PRECISION; 221 *val2 = ltr390_counts_per_uvi(data); 222 return IIO_VAL_FRACTIONAL; 223 224 case IIO_LIGHT: 225 *val = LTR390_WINDOW_FACTOR * 6 * 100; 226 *val2 = data->gain * data->int_time_us; 227 return IIO_VAL_FRACTIONAL; 228 229 default: 230 return -EINVAL; 231 } 232 233 case IIO_CHAN_INFO_INT_TIME: 234 *val = data->int_time_us; 235 return IIO_VAL_INT; 236 237 case IIO_CHAN_INFO_SAMP_FREQ: 238 *val = ltr390_get_samp_freq_or_period(data, LTR390_GET_FREQ); 239 return IIO_VAL_INT; 240 241 default: 242 return -EINVAL; 243 } 244 } 245 246 /* integration time in us */ 247 static const int ltr390_int_time_map_us[] = { 400000, 200000, 100000, 50000, 25000, 12500 }; 248 static const int ltr390_gain_map[] = { 1, 3, 6, 9, 18 }; 249 static const int ltr390_freq_map[] = { 40000, 20000, 10000, 5000, 2000, 1000, 500, 500 }; 250 251 static const struct iio_event_spec ltr390_event_spec[] = { 252 { 253 .type = IIO_EV_TYPE_THRESH, 254 .dir = IIO_EV_DIR_RISING, 255 .mask_separate = BIT(IIO_EV_INFO_VALUE), 256 }, { 257 .type = IIO_EV_TYPE_THRESH, 258 .dir = IIO_EV_DIR_FALLING, 259 .mask_separate = BIT(IIO_EV_INFO_VALUE), 260 }, { 261 .type = IIO_EV_TYPE_THRESH, 262 .dir = IIO_EV_DIR_EITHER, 263 .mask_separate = BIT(IIO_EV_INFO_ENABLE) | 264 BIT(IIO_EV_INFO_PERIOD), 265 } 266 }; 267 268 static const struct iio_chan_spec ltr390_channels[] = { 269 /* UV sensor */ 270 { 271 .type = IIO_UVINDEX, 272 .scan_index = 0, 273 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 274 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SAMP_FREQ), 275 .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) | 276 BIT(IIO_CHAN_INFO_SCALE) | 277 BIT(IIO_CHAN_INFO_SAMP_FREQ), 278 .event_spec = ltr390_event_spec, 279 .num_event_specs = ARRAY_SIZE(ltr390_event_spec), 280 }, 281 /* ALS sensor */ 282 { 283 .type = IIO_LIGHT, 284 .scan_index = 1, 285 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), 286 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME) | BIT(IIO_CHAN_INFO_SAMP_FREQ), 287 .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_INT_TIME) | 288 BIT(IIO_CHAN_INFO_SCALE) | 289 BIT(IIO_CHAN_INFO_SAMP_FREQ), 290 .event_spec = ltr390_event_spec, 291 .num_event_specs = ARRAY_SIZE(ltr390_event_spec), 292 }, 293 }; 294 295 static int ltr390_set_gain(struct ltr390_data *data, int val) 296 { 297 int ret, idx; 298 299 for (idx = 0; idx < ARRAY_SIZE(ltr390_gain_map); idx++) { 300 if (ltr390_gain_map[idx] != val) 301 continue; 302 303 guard(mutex)(&data->lock); 304 ret = regmap_update_bits(data->regmap, 305 LTR390_ALS_UVS_GAIN, 306 LTR390_ALS_UVS_GAIN_MASK, idx); 307 if (ret) 308 return ret; 309 310 data->gain = ltr390_gain_map[idx]; 311 return 0; 312 } 313 314 return -EINVAL; 315 } 316 317 static int ltr390_set_int_time(struct ltr390_data *data, int val) 318 { 319 int ret, idx; 320 321 for (idx = 0; idx < ARRAY_SIZE(ltr390_int_time_map_us); idx++) { 322 if (ltr390_int_time_map_us[idx] != val) 323 continue; 324 325 guard(mutex)(&data->lock); 326 ret = regmap_update_bits(data->regmap, 327 LTR390_ALS_UVS_MEAS_RATE, 328 LTR390_ALS_UVS_INT_TIME_MASK, 329 LTR390_ALS_UVS_INT_TIME(idx)); 330 if (ret) 331 return ret; 332 333 data->int_time_us = ltr390_int_time_map_us[idx]; 334 return 0; 335 } 336 337 return -EINVAL; 338 } 339 340 static int ltr390_set_samp_freq(struct ltr390_data *data, int val) 341 { 342 int idx; 343 344 for (idx = 0; idx < ARRAY_SIZE(ltr390_samp_freq_table); idx++) { 345 if (ltr390_samp_freq_table[idx][0] != val) 346 continue; 347 348 guard(mutex)(&data->lock); 349 return regmap_update_bits(data->regmap, 350 LTR390_ALS_UVS_MEAS_RATE, 351 LTR390_ALS_UVS_MEAS_RATE_MASK, idx); 352 } 353 354 return -EINVAL; 355 } 356 357 static int ltr390_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, 358 const int **vals, int *type, int *length, long mask) 359 { 360 switch (mask) { 361 case IIO_CHAN_INFO_SCALE: 362 *length = ARRAY_SIZE(ltr390_gain_map); 363 *type = IIO_VAL_INT; 364 *vals = ltr390_gain_map; 365 return IIO_AVAIL_LIST; 366 case IIO_CHAN_INFO_INT_TIME: 367 *length = ARRAY_SIZE(ltr390_int_time_map_us); 368 *type = IIO_VAL_INT; 369 *vals = ltr390_int_time_map_us; 370 return IIO_AVAIL_LIST; 371 case IIO_CHAN_INFO_SAMP_FREQ: 372 *length = ARRAY_SIZE(ltr390_freq_map); 373 *type = IIO_VAL_INT; 374 *vals = ltr390_freq_map; 375 return IIO_AVAIL_LIST; 376 default: 377 return -EINVAL; 378 } 379 } 380 381 static int ltr390_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, 382 int val, int val2, long mask) 383 { 384 struct ltr390_data *data = iio_priv(indio_dev); 385 386 switch (mask) { 387 case IIO_CHAN_INFO_SCALE: 388 if (val2 != 0) 389 return -EINVAL; 390 391 return ltr390_set_gain(data, val); 392 393 case IIO_CHAN_INFO_INT_TIME: 394 if (val2 != 0) 395 return -EINVAL; 396 397 return ltr390_set_int_time(data, val); 398 399 case IIO_CHAN_INFO_SAMP_FREQ: 400 if (val2 != 0) 401 return -EINVAL; 402 403 return ltr390_set_samp_freq(data, val); 404 405 default: 406 return -EINVAL; 407 } 408 } 409 410 static int ltr390_read_intr_prst(struct ltr390_data *data, int *val) 411 { 412 int ret, prst, samp_period; 413 414 samp_period = ltr390_get_samp_freq_or_period(data, LTR390_GET_PERIOD); 415 ret = regmap_read(data->regmap, LTR390_INT_PST, &prst); 416 if (ret < 0) 417 return ret; 418 *val = prst * samp_period; 419 420 return IIO_VAL_INT; 421 } 422 423 static int ltr390_write_intr_prst(struct ltr390_data *data, int val) 424 { 425 int ret, samp_period, new_val; 426 427 samp_period = ltr390_get_samp_freq_or_period(data, LTR390_GET_PERIOD); 428 429 /* persist period should be greater than or equal to samp period */ 430 if (val < samp_period) 431 return -EINVAL; 432 433 new_val = DIV_ROUND_UP(val, samp_period); 434 if (new_val < 0 || new_val > 0x0f) 435 return -EINVAL; 436 437 guard(mutex)(&data->lock); 438 ret = regmap_update_bits(data->regmap, 439 LTR390_INT_PST, 440 LTR390_INT_PST_MASK, 441 LTR390_INT_PST_VAL(new_val)); 442 if (ret) 443 return ret; 444 445 return 0; 446 } 447 448 static int ltr390_read_threshold(struct iio_dev *indio_dev, 449 enum iio_event_direction dir, 450 int *val, int *val2) 451 { 452 struct ltr390_data *data = iio_priv(indio_dev); 453 int ret; 454 455 switch (dir) { 456 case IIO_EV_DIR_RISING: 457 ret = ltr390_register_read(data, LTR390_THRESH_UP); 458 if (ret < 0) 459 return ret; 460 *val = ret; 461 return IIO_VAL_INT; 462 463 case IIO_EV_DIR_FALLING: 464 ret = ltr390_register_read(data, LTR390_THRESH_LOW); 465 if (ret < 0) 466 return ret; 467 *val = ret; 468 return IIO_VAL_INT; 469 default: 470 return -EINVAL; 471 } 472 } 473 474 static int ltr390_write_threshold(struct iio_dev *indio_dev, 475 enum iio_event_direction dir, 476 int val, int val2) 477 { 478 struct ltr390_data *data = iio_priv(indio_dev); 479 480 guard(mutex)(&data->lock); 481 switch (dir) { 482 case IIO_EV_DIR_RISING: 483 return regmap_bulk_write(data->regmap, LTR390_THRESH_UP, &val, 3); 484 485 case IIO_EV_DIR_FALLING: 486 return regmap_bulk_write(data->regmap, LTR390_THRESH_LOW, &val, 3); 487 488 default: 489 return -EINVAL; 490 } 491 } 492 493 static int ltr390_read_event_value(struct iio_dev *indio_dev, 494 const struct iio_chan_spec *chan, 495 enum iio_event_type type, 496 enum iio_event_direction dir, 497 enum iio_event_info info, 498 int *val, int *val2) 499 { 500 switch (info) { 501 case IIO_EV_INFO_VALUE: 502 return ltr390_read_threshold(indio_dev, dir, val, val2); 503 504 case IIO_EV_INFO_PERIOD: 505 return ltr390_read_intr_prst(iio_priv(indio_dev), val); 506 507 default: 508 return -EINVAL; 509 } 510 } 511 512 static int ltr390_write_event_value(struct iio_dev *indio_dev, 513 const struct iio_chan_spec *chan, 514 enum iio_event_type type, 515 enum iio_event_direction dir, 516 enum iio_event_info info, 517 int val, int val2) 518 { 519 switch (info) { 520 case IIO_EV_INFO_VALUE: 521 if (val2 != 0) 522 return -EINVAL; 523 524 return ltr390_write_threshold(indio_dev, dir, val, val2); 525 526 case IIO_EV_INFO_PERIOD: 527 if (val2 != 0) 528 return -EINVAL; 529 530 return ltr390_write_intr_prst(iio_priv(indio_dev), val); 531 532 default: 533 return -EINVAL; 534 } 535 } 536 537 static int ltr390_read_event_config(struct iio_dev *indio_dev, 538 const struct iio_chan_spec *chan, 539 enum iio_event_type type, 540 enum iio_event_direction dir) 541 { 542 struct ltr390_data *data = iio_priv(indio_dev); 543 int ret, status; 544 545 ret = regmap_read(data->regmap, LTR390_INT_CFG, &status); 546 if (ret < 0) 547 return ret; 548 549 return FIELD_GET(LTR390_LS_INT_EN, status); 550 } 551 552 static int ltr390_write_event_config(struct iio_dev *indio_dev, 553 const struct iio_chan_spec *chan, 554 enum iio_event_type type, 555 enum iio_event_direction dir, 556 int state) 557 { 558 struct ltr390_data *data = iio_priv(indio_dev); 559 int ret; 560 561 if (state != 1 && state != 0) 562 return -EINVAL; 563 564 if (state == 0) 565 return regmap_clear_bits(data->regmap, LTR390_INT_CFG, LTR390_LS_INT_EN); 566 567 guard(mutex)(&data->lock); 568 ret = regmap_set_bits(data->regmap, LTR390_INT_CFG, LTR390_LS_INT_EN); 569 if (ret < 0) 570 return ret; 571 572 switch (chan->type) { 573 case IIO_LIGHT: 574 ret = ltr390_set_mode(data, LTR390_SET_ALS_MODE); 575 if (ret < 0) 576 return ret; 577 578 return regmap_clear_bits(data->regmap, LTR390_INT_CFG, LTR390_LS_INT_SEL_UVS); 579 580 case IIO_UVINDEX: 581 ret = ltr390_set_mode(data, LTR390_SET_UVS_MODE); 582 if (ret < 0) 583 return ret; 584 585 return regmap_set_bits(data->regmap, LTR390_INT_CFG, LTR390_LS_INT_SEL_UVS); 586 587 default: 588 return -EINVAL; 589 } 590 } 591 592 static const struct iio_info ltr390_info = { 593 .read_raw = ltr390_read_raw, 594 .write_raw = ltr390_write_raw, 595 .read_avail = ltr390_read_avail, 596 .read_event_value = ltr390_read_event_value, 597 .read_event_config = ltr390_read_event_config, 598 .write_event_value = ltr390_write_event_value, 599 .write_event_config = ltr390_write_event_config, 600 }; 601 602 static irqreturn_t ltr390_interrupt_handler(int irq, void *private) 603 { 604 struct iio_dev *indio_dev = private; 605 struct ltr390_data *data = iio_priv(indio_dev); 606 int ret, status; 607 608 /* Reading the status register to clear the interrupt flag, Datasheet pg: 17*/ 609 ret = regmap_read(data->regmap, LTR390_MAIN_STATUS, &status); 610 if (ret < 0) 611 return ret; 612 613 switch (data->mode) { 614 case LTR390_SET_ALS_MODE: 615 iio_push_event(indio_dev, 616 IIO_UNMOD_EVENT_CODE(IIO_LIGHT, 0, 617 IIO_EV_TYPE_THRESH, 618 IIO_EV_DIR_EITHER), 619 iio_get_time_ns(indio_dev)); 620 break; 621 622 case LTR390_SET_UVS_MODE: 623 iio_push_event(indio_dev, 624 IIO_UNMOD_EVENT_CODE(IIO_UVINDEX, 0, 625 IIO_EV_TYPE_THRESH, 626 IIO_EV_DIR_EITHER), 627 iio_get_time_ns(indio_dev)); 628 break; 629 } 630 631 return IRQ_HANDLED; 632 } 633 634 static int ltr390_probe(struct i2c_client *client) 635 { 636 struct ltr390_data *data; 637 struct iio_dev *indio_dev; 638 struct device *dev; 639 int ret, part_number; 640 641 dev = &client->dev; 642 indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); 643 if (!indio_dev) 644 return -ENOMEM; 645 646 data = iio_priv(indio_dev); 647 648 data->regmap = devm_regmap_init_i2c(client, <r390_regmap_config); 649 if (IS_ERR(data->regmap)) 650 return dev_err_probe(dev, PTR_ERR(data->regmap), 651 "regmap initialization failed\n"); 652 653 data->client = client; 654 /* default value of integration time from pg: 15 of the datasheet */ 655 data->int_time_us = 100000; 656 /* default value of gain from pg: 16 of the datasheet */ 657 data->gain = 3; 658 /* default mode for ltr390 is ALS mode */ 659 data->mode = LTR390_SET_ALS_MODE; 660 661 mutex_init(&data->lock); 662 663 indio_dev->info = <r390_info; 664 indio_dev->channels = ltr390_channels; 665 indio_dev->num_channels = ARRAY_SIZE(ltr390_channels); 666 indio_dev->name = "ltr390"; 667 668 ret = regmap_read(data->regmap, LTR390_PART_ID, &part_number); 669 if (ret) 670 return dev_err_probe(dev, ret, 671 "failed to get sensor's part id\n"); 672 /* Lower 4 bits of `part_number` change with hardware revisions */ 673 if (part_number >> 4 != LTR390_PART_NUMBER_ID) 674 dev_info(dev, "received invalid product id: 0x%x", part_number); 675 dev_dbg(dev, "LTR390, product id: 0x%x\n", part_number); 676 677 /* reset sensor, chip fails to respond to this, so ignore any errors */ 678 regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_SW_RESET); 679 680 /* Wait for the registers to reset before proceeding */ 681 usleep_range(1000, 2000); 682 683 ret = regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, LTR390_SENSOR_ENABLE); 684 if (ret) 685 return dev_err_probe(dev, ret, "failed to enable the sensor\n"); 686 687 if (client->irq) { 688 ret = devm_request_threaded_irq(dev, client->irq, 689 NULL, ltr390_interrupt_handler, 690 IRQF_ONESHOT, 691 "ltr390_thresh_event", 692 indio_dev); 693 if (ret) 694 return dev_err_probe(dev, ret, 695 "request irq (%d) failed\n", client->irq); 696 } 697 698 return devm_iio_device_register(dev, indio_dev); 699 } 700 701 static int ltr390_suspend(struct device *dev) 702 { 703 struct iio_dev *indio_dev = dev_get_drvdata(dev); 704 struct ltr390_data *data = iio_priv(indio_dev); 705 706 return regmap_clear_bits(data->regmap, LTR390_MAIN_CTRL, 707 LTR390_SENSOR_ENABLE); 708 } 709 710 static int ltr390_resume(struct device *dev) 711 { 712 struct iio_dev *indio_dev = dev_get_drvdata(dev); 713 struct ltr390_data *data = iio_priv(indio_dev); 714 715 return regmap_set_bits(data->regmap, LTR390_MAIN_CTRL, 716 LTR390_SENSOR_ENABLE); 717 } 718 719 static DEFINE_SIMPLE_DEV_PM_OPS(ltr390_pm_ops, ltr390_suspend, ltr390_resume); 720 721 static const struct i2c_device_id ltr390_id[] = { 722 { "ltr390" }, 723 { /* Sentinel */ } 724 }; 725 MODULE_DEVICE_TABLE(i2c, ltr390_id); 726 727 static const struct of_device_id ltr390_of_table[] = { 728 { .compatible = "liteon,ltr390" }, 729 { /* Sentinel */ } 730 }; 731 MODULE_DEVICE_TABLE(of, ltr390_of_table); 732 733 static struct i2c_driver ltr390_driver = { 734 .driver = { 735 .name = "ltr390", 736 .of_match_table = ltr390_of_table, 737 .pm = pm_sleep_ptr(<r390_pm_ops), 738 }, 739 .probe = ltr390_probe, 740 .id_table = ltr390_id, 741 }; 742 module_i2c_driver(ltr390_driver); 743 744 MODULE_AUTHOR("Anshul Dalal <anshulusr@gmail.com>"); 745 MODULE_DESCRIPTION("Lite-On LTR390 ALS and UV sensor Driver"); 746 MODULE_LICENSE("GPL"); 747