1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * adux1020.c - Support for Analog Devices ADUX1020 photometric sensor 4 * 5 * Copyright (C) 2019 Linaro Ltd. 6 * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org> 7 * 8 * TODO: Triggered buffer support 9 */ 10 11 #include <linux/bitfield.h> 12 #include <linux/delay.h> 13 #include <linux/err.h> 14 #include <linux/i2c.h> 15 #include <linux/init.h> 16 #include <linux/interrupt.h> 17 #include <linux/irq.h> 18 #include <linux/module.h> 19 #include <linux/mutex.h> 20 #include <linux/regmap.h> 21 22 #include <linux/iio/iio.h> 23 #include <linux/iio/sysfs.h> 24 #include <linux/iio/events.h> 25 26 #define ADUX1020_REGMAP_NAME "adux1020_regmap" 27 #define ADUX1020_DRV_NAME "adux1020" 28 29 /* System registers */ 30 #define ADUX1020_REG_CHIP_ID 0x08 31 #define ADUX1020_REG_SLAVE_ADDRESS 0x09 32 33 #define ADUX1020_REG_SW_RESET 0x0f 34 #define ADUX1020_REG_INT_ENABLE 0x1c 35 #define ADUX1020_REG_INT_POLARITY 0x1d 36 #define ADUX1020_REG_PROX_TH_ON1 0x2a 37 #define ADUX1020_REG_PROX_TH_OFF1 0x2b 38 #define ADUX1020_REG_PROX_TYPE 0x2f 39 #define ADUX1020_REG_TEST_MODES_3 0x32 40 #define ADUX1020_REG_FORCE_MODE 0x33 41 #define ADUX1020_REG_FREQUENCY 0x40 42 #define ADUX1020_REG_LED_CURRENT 0x41 43 #define ADUX1020_REG_OP_MODE 0x45 44 #define ADUX1020_REG_INT_MASK 0x48 45 #define ADUX1020_REG_INT_STATUS 0x49 46 #define ADUX1020_REG_DATA_BUFFER 0x60 47 48 /* Chip ID bits */ 49 #define ADUX1020_CHIP_ID_MASK GENMASK(11, 0) 50 #define ADUX1020_CHIP_ID 0x03fc 51 52 #define ADUX1020_SW_RESET BIT(1) 53 #define ADUX1020_FIFO_FLUSH BIT(15) 54 #define ADUX1020_OP_MODE_MASK GENMASK(3, 0) 55 #define ADUX1020_DATA_OUT_MODE_MASK GENMASK(7, 4) 56 #define ADUX1020_DATA_OUT_PROX_I FIELD_PREP(ADUX1020_DATA_OUT_MODE_MASK, 1) 57 58 #define ADUX1020_MODE_INT_MASK GENMASK(7, 0) 59 #define ADUX1020_INT_ENABLE 0x2094 60 #define ADUX1020_INT_DISABLE 0x2090 61 #define ADUX1020_PROX_INT_ENABLE 0x00f0 62 #define ADUX1020_PROX_ON1_INT BIT(0) 63 #define ADUX1020_PROX_OFF1_INT BIT(1) 64 #define ADUX1020_FIFO_INT_ENABLE 0x7f 65 #define ADUX1020_MODE_INT_DISABLE 0xff 66 #define ADUX1020_MODE_INT_STATUS_MASK GENMASK(7, 0) 67 #define ADUX1020_FIFO_STATUS_MASK GENMASK(15, 8) 68 #define ADUX1020_INT_CLEAR 0xff 69 #define ADUX1020_PROX_TYPE BIT(15) 70 71 #define ADUX1020_INT_PROX_ON1 BIT(0) 72 #define ADUX1020_INT_PROX_OFF1 BIT(1) 73 74 #define ADUX1020_FORCE_CLOCK_ON 0x0f4f 75 #define ADUX1020_FORCE_CLOCK_RESET 0x0040 76 #define ADUX1020_ACTIVE_4_STATE 0x0008 77 78 #define ADUX1020_PROX_FREQ_MASK GENMASK(7, 4) 79 #define ADUX1020_PROX_FREQ(x) FIELD_PREP(ADUX1020_PROX_FREQ_MASK, x) 80 81 #define ADUX1020_LED_CURRENT_MASK GENMASK(3, 0) 82 #define ADUX1020_LED_PIREF_EN BIT(12) 83 84 /* Operating modes */ 85 enum adux1020_op_modes { 86 ADUX1020_MODE_STANDBY, 87 ADUX1020_MODE_PROX_I, 88 ADUX1020_MODE_PROX_XY, 89 ADUX1020_MODE_GEST, 90 ADUX1020_MODE_SAMPLE, 91 ADUX1020_MODE_FORCE = 0x0e, 92 ADUX1020_MODE_IDLE = 0x0f, 93 }; 94 95 struct adux1020_data { 96 struct i2c_client *client; 97 struct iio_dev *indio_dev; 98 struct mutex lock; 99 struct regmap *regmap; 100 }; 101 102 struct adux1020_mode_data { 103 u8 bytes; 104 u8 buf_len; 105 u16 int_en; 106 }; 107 108 static const struct adux1020_mode_data adux1020_modes[] = { 109 [ADUX1020_MODE_PROX_I] = { 110 .bytes = 2, 111 .buf_len = 1, 112 .int_en = ADUX1020_PROX_INT_ENABLE, 113 }, 114 }; 115 116 static const struct regmap_config adux1020_regmap_config = { 117 .name = ADUX1020_REGMAP_NAME, 118 .reg_bits = 8, 119 .val_bits = 16, 120 .max_register = 0x6F, 121 .cache_type = REGCACHE_NONE, 122 }; 123 124 static const struct reg_sequence adux1020_def_conf[] = { 125 { 0x000c, 0x000f }, 126 { 0x0010, 0x1010 }, 127 { 0x0011, 0x004c }, 128 { 0x0012, 0x5f0c }, 129 { 0x0013, 0xada5 }, 130 { 0x0014, 0x0080 }, 131 { 0x0015, 0x0000 }, 132 { 0x0016, 0x0600 }, 133 { 0x0017, 0x0000 }, 134 { 0x0018, 0x2693 }, 135 { 0x0019, 0x0004 }, 136 { 0x001a, 0x4280 }, 137 { 0x001b, 0x0060 }, 138 { 0x001c, 0x2094 }, 139 { 0x001d, 0x0020 }, 140 { 0x001e, 0x0001 }, 141 { 0x001f, 0x0100 }, 142 { 0x0020, 0x0320 }, 143 { 0x0021, 0x0A13 }, 144 { 0x0022, 0x0320 }, 145 { 0x0023, 0x0113 }, 146 { 0x0024, 0x0000 }, 147 { 0x0025, 0x2412 }, 148 { 0x0026, 0x2412 }, 149 { 0x0027, 0x0022 }, 150 { 0x0028, 0x0000 }, 151 { 0x0029, 0x0300 }, 152 { 0x002a, 0x0700 }, 153 { 0x002b, 0x0600 }, 154 { 0x002c, 0x6000 }, 155 { 0x002d, 0x4000 }, 156 { 0x002e, 0x0000 }, 157 { 0x002f, 0x0000 }, 158 { 0x0030, 0x0000 }, 159 { 0x0031, 0x0000 }, 160 { 0x0032, 0x0040 }, 161 { 0x0033, 0x0008 }, 162 { 0x0034, 0xE400 }, 163 { 0x0038, 0x8080 }, 164 { 0x0039, 0x8080 }, 165 { 0x003a, 0x2000 }, 166 { 0x003b, 0x1f00 }, 167 { 0x003c, 0x2000 }, 168 { 0x003d, 0x2000 }, 169 { 0x003e, 0x0000 }, 170 { 0x0040, 0x8069 }, 171 { 0x0041, 0x1f2f }, 172 { 0x0042, 0x4000 }, 173 { 0x0043, 0x0000 }, 174 { 0x0044, 0x0008 }, 175 { 0x0046, 0x0000 }, 176 { 0x0048, 0x00ef }, 177 { 0x0049, 0x0000 }, 178 { 0x0045, 0x0000 }, 179 }; 180 181 static const int adux1020_rates[][2] = { 182 { 0, 100000 }, 183 { 0, 200000 }, 184 { 0, 500000 }, 185 { 1, 0 }, 186 { 2, 0 }, 187 { 5, 0 }, 188 { 10, 0 }, 189 { 20, 0 }, 190 { 50, 0 }, 191 { 100, 0 }, 192 { 190, 0 }, 193 { 450, 0 }, 194 { 820, 0 }, 195 { 1400, 0 }, 196 }; 197 198 static const int adux1020_led_currents[][2] = { 199 { 0, 25000 }, 200 { 0, 40000 }, 201 { 0, 55000 }, 202 { 0, 70000 }, 203 { 0, 85000 }, 204 { 0, 100000 }, 205 { 0, 115000 }, 206 { 0, 130000 }, 207 { 0, 145000 }, 208 { 0, 160000 }, 209 { 0, 175000 }, 210 { 0, 190000 }, 211 { 0, 205000 }, 212 { 0, 220000 }, 213 { 0, 235000 }, 214 { 0, 250000 }, 215 }; 216 217 static int adux1020_flush_fifo(struct adux1020_data *data) 218 { 219 int ret; 220 221 /* Force Idle mode */ 222 ret = regmap_write(data->regmap, ADUX1020_REG_FORCE_MODE, 223 ADUX1020_ACTIVE_4_STATE); 224 if (ret < 0) 225 return ret; 226 227 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, 228 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_FORCE); 229 if (ret < 0) 230 return ret; 231 232 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, 233 ADUX1020_OP_MODE_MASK, ADUX1020_MODE_IDLE); 234 if (ret < 0) 235 return ret; 236 237 /* Flush FIFO */ 238 ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, 239 ADUX1020_FORCE_CLOCK_ON); 240 if (ret < 0) 241 return ret; 242 243 ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS, 244 ADUX1020_FIFO_FLUSH); 245 if (ret < 0) 246 return ret; 247 248 return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, 249 ADUX1020_FORCE_CLOCK_RESET); 250 } 251 252 static int adux1020_read_fifo(struct adux1020_data *data, u16 *buf, u8 buf_len) 253 { 254 unsigned int regval; 255 int i, ret; 256 257 /* Enable 32MHz clock */ 258 ret = regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, 259 ADUX1020_FORCE_CLOCK_ON); 260 if (ret < 0) 261 return ret; 262 263 for (i = 0; i < buf_len; i++) { 264 ret = regmap_read(data->regmap, ADUX1020_REG_DATA_BUFFER, 265 ®val); 266 if (ret < 0) 267 return ret; 268 269 buf[i] = regval; 270 } 271 272 /* Set 32MHz clock to be controlled by internal state machine */ 273 return regmap_write(data->regmap, ADUX1020_REG_TEST_MODES_3, 274 ADUX1020_FORCE_CLOCK_RESET); 275 } 276 277 static int adux1020_set_mode(struct adux1020_data *data, 278 enum adux1020_op_modes mode) 279 { 280 int ret; 281 282 /* Switch to standby mode before changing the mode */ 283 ret = regmap_write(data->regmap, ADUX1020_REG_OP_MODE, 284 ADUX1020_MODE_STANDBY); 285 if (ret < 0) 286 return ret; 287 288 /* Set data out and switch to the desired mode */ 289 switch (mode) { 290 case ADUX1020_MODE_PROX_I: 291 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, 292 ADUX1020_DATA_OUT_MODE_MASK, 293 ADUX1020_DATA_OUT_PROX_I); 294 if (ret < 0) 295 return ret; 296 297 ret = regmap_update_bits(data->regmap, ADUX1020_REG_OP_MODE, 298 ADUX1020_OP_MODE_MASK, 299 ADUX1020_MODE_PROX_I); 300 if (ret < 0) 301 return ret; 302 break; 303 default: 304 return -EINVAL; 305 } 306 307 return 0; 308 } 309 310 static int adux1020_measure(struct adux1020_data *data, 311 enum adux1020_op_modes mode, 312 u16 *val) 313 { 314 unsigned int status; 315 int ret, tries = 50; 316 317 /* Disable INT pin as polling is going to be used */ 318 ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE, 319 ADUX1020_INT_DISABLE); 320 if (ret < 0) 321 return ret; 322 323 /* Enable mode interrupt */ 324 ret = regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK, 325 ADUX1020_MODE_INT_MASK, 326 adux1020_modes[mode].int_en); 327 if (ret < 0) 328 return ret; 329 330 while (tries--) { 331 ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, 332 &status); 333 if (ret < 0) 334 return ret; 335 336 status &= ADUX1020_FIFO_STATUS_MASK; 337 if (status >= adux1020_modes[mode].bytes) 338 break; 339 msleep(20); 340 } 341 342 if (tries < 0) 343 return -EIO; 344 345 ret = adux1020_read_fifo(data, val, adux1020_modes[mode].buf_len); 346 if (ret < 0) 347 return ret; 348 349 /* Clear mode interrupt */ 350 ret = regmap_write(data->regmap, ADUX1020_REG_INT_STATUS, 351 (~adux1020_modes[mode].int_en)); 352 if (ret < 0) 353 return ret; 354 355 /* Disable mode interrupts */ 356 return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK, 357 ADUX1020_MODE_INT_MASK, 358 ADUX1020_MODE_INT_DISABLE); 359 } 360 361 static int adux1020_read_raw(struct iio_dev *indio_dev, 362 struct iio_chan_spec const *chan, 363 int *val, int *val2, long mask) 364 { 365 struct adux1020_data *data = iio_priv(indio_dev); 366 u16 buf[3]; 367 int ret = -EINVAL; 368 unsigned int regval; 369 370 mutex_lock(&data->lock); 371 372 switch (mask) { 373 case IIO_CHAN_INFO_RAW: 374 switch (chan->type) { 375 case IIO_PROXIMITY: 376 ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I); 377 if (ret < 0) 378 goto fail; 379 380 ret = adux1020_measure(data, ADUX1020_MODE_PROX_I, buf); 381 if (ret < 0) 382 goto fail; 383 384 *val = buf[0]; 385 ret = IIO_VAL_INT; 386 break; 387 default: 388 break; 389 } 390 break; 391 case IIO_CHAN_INFO_PROCESSED: 392 switch (chan->type) { 393 case IIO_CURRENT: 394 ret = regmap_read(data->regmap, 395 ADUX1020_REG_LED_CURRENT, ®val); 396 if (ret < 0) 397 goto fail; 398 399 regval = regval & ADUX1020_LED_CURRENT_MASK; 400 401 *val = adux1020_led_currents[regval][0]; 402 *val2 = adux1020_led_currents[regval][1]; 403 404 ret = IIO_VAL_INT_PLUS_MICRO; 405 break; 406 default: 407 break; 408 } 409 break; 410 case IIO_CHAN_INFO_SAMP_FREQ: 411 switch (chan->type) { 412 case IIO_PROXIMITY: 413 ret = regmap_read(data->regmap, ADUX1020_REG_FREQUENCY, 414 ®val); 415 if (ret < 0) 416 goto fail; 417 418 regval = FIELD_GET(ADUX1020_PROX_FREQ_MASK, regval); 419 420 *val = adux1020_rates[regval][0]; 421 *val2 = adux1020_rates[regval][1]; 422 423 ret = IIO_VAL_INT_PLUS_MICRO; 424 break; 425 default: 426 break; 427 } 428 break; 429 default: 430 break; 431 } 432 433 fail: 434 mutex_unlock(&data->lock); 435 436 return ret; 437 }; 438 439 static inline int adux1020_find_index(const int array[][2], int count, int val, 440 int val2) 441 { 442 int i; 443 444 for (i = 0; i < count; i++) 445 if (val == array[i][0] && val2 == array[i][1]) 446 return i; 447 448 return -EINVAL; 449 } 450 451 static int adux1020_write_raw(struct iio_dev *indio_dev, 452 struct iio_chan_spec const *chan, 453 int val, int val2, long mask) 454 { 455 struct adux1020_data *data = iio_priv(indio_dev); 456 int i, ret = -EINVAL; 457 458 mutex_lock(&data->lock); 459 460 switch (mask) { 461 case IIO_CHAN_INFO_SAMP_FREQ: 462 if (chan->type == IIO_PROXIMITY) { 463 i = adux1020_find_index(adux1020_rates, 464 ARRAY_SIZE(adux1020_rates), 465 val, val2); 466 if (i < 0) { 467 ret = i; 468 goto fail; 469 } 470 471 ret = regmap_update_bits(data->regmap, 472 ADUX1020_REG_FREQUENCY, 473 ADUX1020_PROX_FREQ_MASK, 474 ADUX1020_PROX_FREQ(i)); 475 } 476 break; 477 case IIO_CHAN_INFO_PROCESSED: 478 if (chan->type == IIO_CURRENT) { 479 i = adux1020_find_index(adux1020_led_currents, 480 ARRAY_SIZE(adux1020_led_currents), 481 val, val2); 482 if (i < 0) { 483 ret = i; 484 goto fail; 485 } 486 487 ret = regmap_update_bits(data->regmap, 488 ADUX1020_REG_LED_CURRENT, 489 ADUX1020_LED_CURRENT_MASK, i); 490 } 491 break; 492 default: 493 break; 494 } 495 496 fail: 497 mutex_unlock(&data->lock); 498 499 return ret; 500 } 501 502 static int adux1020_write_event_config(struct iio_dev *indio_dev, 503 const struct iio_chan_spec *chan, 504 enum iio_event_type type, 505 enum iio_event_direction dir, 506 bool state) 507 { 508 struct adux1020_data *data = iio_priv(indio_dev); 509 int ret, mask; 510 511 mutex_lock(&data->lock); 512 513 ret = regmap_write(data->regmap, ADUX1020_REG_INT_ENABLE, 514 ADUX1020_INT_ENABLE); 515 if (ret < 0) 516 goto fail; 517 518 ret = regmap_write(data->regmap, ADUX1020_REG_INT_POLARITY, 0); 519 if (ret < 0) 520 goto fail; 521 522 switch (chan->type) { 523 case IIO_PROXIMITY: 524 if (dir == IIO_EV_DIR_RISING) 525 mask = ADUX1020_PROX_ON1_INT; 526 else 527 mask = ADUX1020_PROX_OFF1_INT; 528 529 if (state) 530 ret = regmap_clear_bits(data->regmap, 531 ADUX1020_REG_INT_MASK, mask); 532 else 533 ret = regmap_set_bits(data->regmap, 534 ADUX1020_REG_INT_MASK, mask); 535 if (ret < 0) 536 goto fail; 537 538 /* 539 * Trigger proximity interrupt when the intensity is above 540 * or below threshold 541 */ 542 ret = regmap_set_bits(data->regmap, ADUX1020_REG_PROX_TYPE, 543 ADUX1020_PROX_TYPE); 544 if (ret < 0) 545 goto fail; 546 547 /* Set proximity mode */ 548 ret = adux1020_set_mode(data, ADUX1020_MODE_PROX_I); 549 break; 550 default: 551 ret = -EINVAL; 552 break; 553 } 554 555 fail: 556 mutex_unlock(&data->lock); 557 558 return ret; 559 } 560 561 static int adux1020_read_event_config(struct iio_dev *indio_dev, 562 const struct iio_chan_spec *chan, 563 enum iio_event_type type, 564 enum iio_event_direction dir) 565 { 566 struct adux1020_data *data = iio_priv(indio_dev); 567 int ret, mask; 568 unsigned int regval; 569 570 switch (chan->type) { 571 case IIO_PROXIMITY: 572 if (dir == IIO_EV_DIR_RISING) 573 mask = ADUX1020_PROX_ON1_INT; 574 else 575 mask = ADUX1020_PROX_OFF1_INT; 576 break; 577 default: 578 return -EINVAL; 579 } 580 581 ret = regmap_read(data->regmap, ADUX1020_REG_INT_MASK, ®val); 582 if (ret < 0) 583 return ret; 584 585 return !(regval & mask); 586 } 587 588 static int adux1020_read_thresh(struct iio_dev *indio_dev, 589 const struct iio_chan_spec *chan, 590 enum iio_event_type type, 591 enum iio_event_direction dir, 592 enum iio_event_info info, int *val, int *val2) 593 { 594 struct adux1020_data *data = iio_priv(indio_dev); 595 u8 reg; 596 int ret; 597 unsigned int regval; 598 599 switch (chan->type) { 600 case IIO_PROXIMITY: 601 if (dir == IIO_EV_DIR_RISING) 602 reg = ADUX1020_REG_PROX_TH_ON1; 603 else 604 reg = ADUX1020_REG_PROX_TH_OFF1; 605 break; 606 default: 607 return -EINVAL; 608 } 609 610 ret = regmap_read(data->regmap, reg, ®val); 611 if (ret < 0) 612 return ret; 613 614 *val = regval; 615 616 return IIO_VAL_INT; 617 } 618 619 static int adux1020_write_thresh(struct iio_dev *indio_dev, 620 const struct iio_chan_spec *chan, 621 enum iio_event_type type, 622 enum iio_event_direction dir, 623 enum iio_event_info info, int val, int val2) 624 { 625 struct adux1020_data *data = iio_priv(indio_dev); 626 u8 reg; 627 628 switch (chan->type) { 629 case IIO_PROXIMITY: 630 if (dir == IIO_EV_DIR_RISING) 631 reg = ADUX1020_REG_PROX_TH_ON1; 632 else 633 reg = ADUX1020_REG_PROX_TH_OFF1; 634 break; 635 default: 636 return -EINVAL; 637 } 638 639 /* Full scale threshold value is 0-65535 */ 640 if (val < 0 || val > 65535) 641 return -EINVAL; 642 643 return regmap_write(data->regmap, reg, val); 644 } 645 646 static const struct iio_event_spec adux1020_proximity_event[] = { 647 { 648 .type = IIO_EV_TYPE_THRESH, 649 .dir = IIO_EV_DIR_RISING, 650 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 651 BIT(IIO_EV_INFO_ENABLE), 652 }, 653 { 654 .type = IIO_EV_TYPE_THRESH, 655 .dir = IIO_EV_DIR_FALLING, 656 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 657 BIT(IIO_EV_INFO_ENABLE), 658 }, 659 }; 660 661 static const struct iio_chan_spec adux1020_channels[] = { 662 { 663 .type = IIO_PROXIMITY, 664 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 665 BIT(IIO_CHAN_INFO_SAMP_FREQ), 666 .event_spec = adux1020_proximity_event, 667 .num_event_specs = ARRAY_SIZE(adux1020_proximity_event), 668 }, 669 { 670 .type = IIO_CURRENT, 671 .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), 672 .extend_name = "led", 673 .output = 1, 674 }, 675 }; 676 677 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( 678 "0.1 0.2 0.5 1 2 5 10 20 50 100 190 450 820 1400"); 679 680 static struct attribute *adux1020_attributes[] = { 681 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 682 NULL 683 }; 684 685 static const struct attribute_group adux1020_attribute_group = { 686 .attrs = adux1020_attributes, 687 }; 688 689 static const struct iio_info adux1020_info = { 690 .attrs = &adux1020_attribute_group, 691 .read_raw = adux1020_read_raw, 692 .write_raw = adux1020_write_raw, 693 .read_event_config = adux1020_read_event_config, 694 .write_event_config = adux1020_write_event_config, 695 .read_event_value = adux1020_read_thresh, 696 .write_event_value = adux1020_write_thresh, 697 }; 698 699 static irqreturn_t adux1020_interrupt_handler(int irq, void *private) 700 { 701 struct iio_dev *indio_dev = private; 702 struct adux1020_data *data = iio_priv(indio_dev); 703 int ret, status; 704 705 ret = regmap_read(data->regmap, ADUX1020_REG_INT_STATUS, &status); 706 if (ret < 0) 707 return IRQ_HANDLED; 708 709 status &= ADUX1020_MODE_INT_STATUS_MASK; 710 711 if (status & ADUX1020_INT_PROX_ON1) { 712 iio_push_event(indio_dev, 713 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 714 IIO_EV_TYPE_THRESH, 715 IIO_EV_DIR_RISING), 716 iio_get_time_ns(indio_dev)); 717 } 718 719 if (status & ADUX1020_INT_PROX_OFF1) { 720 iio_push_event(indio_dev, 721 IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0, 722 IIO_EV_TYPE_THRESH, 723 IIO_EV_DIR_FALLING), 724 iio_get_time_ns(indio_dev)); 725 } 726 727 regmap_update_bits(data->regmap, ADUX1020_REG_INT_STATUS, 728 ADUX1020_MODE_INT_MASK, ADUX1020_INT_CLEAR); 729 730 return IRQ_HANDLED; 731 } 732 733 static int adux1020_chip_init(struct adux1020_data *data) 734 { 735 struct i2c_client *client = data->client; 736 int ret; 737 unsigned int val; 738 739 ret = regmap_read(data->regmap, ADUX1020_REG_CHIP_ID, &val); 740 if (ret < 0) 741 return ret; 742 743 if ((val & ADUX1020_CHIP_ID_MASK) != ADUX1020_CHIP_ID) { 744 dev_err(&client->dev, "invalid chip id 0x%04x\n", val); 745 return -ENODEV; 746 } 747 748 dev_dbg(&client->dev, "Detected ADUX1020 with chip id: 0x%04x\n", val); 749 750 ret = regmap_set_bits(data->regmap, ADUX1020_REG_SW_RESET, 751 ADUX1020_SW_RESET); 752 if (ret < 0) 753 return ret; 754 755 /* Load default configuration */ 756 ret = regmap_multi_reg_write(data->regmap, adux1020_def_conf, 757 ARRAY_SIZE(adux1020_def_conf)); 758 if (ret < 0) 759 return ret; 760 761 ret = adux1020_flush_fifo(data); 762 if (ret < 0) 763 return ret; 764 765 /* Use LED_IREF for proximity mode */ 766 ret = regmap_clear_bits(data->regmap, ADUX1020_REG_LED_CURRENT, 767 ADUX1020_LED_PIREF_EN); 768 if (ret < 0) 769 return ret; 770 771 /* Mask all interrupts */ 772 return regmap_update_bits(data->regmap, ADUX1020_REG_INT_MASK, 773 ADUX1020_MODE_INT_MASK, ADUX1020_MODE_INT_DISABLE); 774 } 775 776 static int adux1020_probe(struct i2c_client *client) 777 { 778 struct adux1020_data *data; 779 struct iio_dev *indio_dev; 780 int ret; 781 782 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 783 if (!indio_dev) 784 return -ENOMEM; 785 786 indio_dev->info = &adux1020_info; 787 indio_dev->name = ADUX1020_DRV_NAME; 788 indio_dev->channels = adux1020_channels; 789 indio_dev->num_channels = ARRAY_SIZE(adux1020_channels); 790 indio_dev->modes = INDIO_DIRECT_MODE; 791 792 data = iio_priv(indio_dev); 793 794 data->regmap = devm_regmap_init_i2c(client, &adux1020_regmap_config); 795 if (IS_ERR(data->regmap)) { 796 dev_err(&client->dev, "regmap initialization failed.\n"); 797 return PTR_ERR(data->regmap); 798 } 799 800 data->client = client; 801 data->indio_dev = indio_dev; 802 mutex_init(&data->lock); 803 804 ret = adux1020_chip_init(data); 805 if (ret) 806 return ret; 807 808 if (client->irq) { 809 ret = devm_request_threaded_irq(&client->dev, client->irq, 810 NULL, adux1020_interrupt_handler, 811 IRQF_TRIGGER_HIGH | IRQF_ONESHOT, 812 ADUX1020_DRV_NAME, indio_dev); 813 if (ret) { 814 dev_err(&client->dev, "irq request error %d\n", -ret); 815 return ret; 816 } 817 } 818 819 return devm_iio_device_register(&client->dev, indio_dev); 820 } 821 822 static const struct i2c_device_id adux1020_id[] = { 823 { "adux1020" }, 824 {} 825 }; 826 MODULE_DEVICE_TABLE(i2c, adux1020_id); 827 828 static const struct of_device_id adux1020_of_match[] = { 829 { .compatible = "adi,adux1020" }, 830 { } 831 }; 832 MODULE_DEVICE_TABLE(of, adux1020_of_match); 833 834 static struct i2c_driver adux1020_driver = { 835 .driver = { 836 .name = ADUX1020_DRV_NAME, 837 .of_match_table = adux1020_of_match, 838 }, 839 .probe = adux1020_probe, 840 .id_table = adux1020_id, 841 }; 842 module_i2c_driver(adux1020_driver); 843 844 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>"); 845 MODULE_DESCRIPTION("ADUX1020 photometric sensor"); 846 MODULE_LICENSE("GPL"); 847