xref: /linux/drivers/iio/industrialio-core.c (revision dec1c62e91ba268ab2a6e339d4d7a59287d5eba1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Based on elements of hwmon and input subsystems.
7  */
8 
9 #define pr_fmt(fmt) "iio-core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/kdev_t.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/property.h>
20 #include <linux/sched.h>
21 #include <linux/wait.h>
22 #include <linux/cdev.h>
23 #include <linux/slab.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/debugfs.h>
26 #include <linux/mutex.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/iio-opaque.h>
29 #include "iio_core.h"
30 #include "iio_core_trigger.h"
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/buffer_impl.h>
35 
36 /* IDA to assign each registered device a unique id */
37 static DEFINE_IDA(iio_ida);
38 
39 static dev_t iio_devt;
40 
41 #define IIO_DEV_MAX 256
42 struct bus_type iio_bus_type = {
43 	.name = "iio",
44 };
45 EXPORT_SYMBOL(iio_bus_type);
46 
47 static struct dentry *iio_debugfs_dentry;
48 
49 static const char * const iio_direction[] = {
50 	[0] = "in",
51 	[1] = "out",
52 };
53 
54 static const char * const iio_chan_type_name_spec[] = {
55 	[IIO_VOLTAGE] = "voltage",
56 	[IIO_CURRENT] = "current",
57 	[IIO_POWER] = "power",
58 	[IIO_ACCEL] = "accel",
59 	[IIO_ANGL_VEL] = "anglvel",
60 	[IIO_MAGN] = "magn",
61 	[IIO_LIGHT] = "illuminance",
62 	[IIO_INTENSITY] = "intensity",
63 	[IIO_PROXIMITY] = "proximity",
64 	[IIO_TEMP] = "temp",
65 	[IIO_INCLI] = "incli",
66 	[IIO_ROT] = "rot",
67 	[IIO_ANGL] = "angl",
68 	[IIO_TIMESTAMP] = "timestamp",
69 	[IIO_CAPACITANCE] = "capacitance",
70 	[IIO_ALTVOLTAGE] = "altvoltage",
71 	[IIO_CCT] = "cct",
72 	[IIO_PRESSURE] = "pressure",
73 	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
74 	[IIO_ACTIVITY] = "activity",
75 	[IIO_STEPS] = "steps",
76 	[IIO_ENERGY] = "energy",
77 	[IIO_DISTANCE] = "distance",
78 	[IIO_VELOCITY] = "velocity",
79 	[IIO_CONCENTRATION] = "concentration",
80 	[IIO_RESISTANCE] = "resistance",
81 	[IIO_PH] = "ph",
82 	[IIO_UVINDEX] = "uvindex",
83 	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
84 	[IIO_COUNT] = "count",
85 	[IIO_INDEX] = "index",
86 	[IIO_GRAVITY]  = "gravity",
87 	[IIO_POSITIONRELATIVE]  = "positionrelative",
88 	[IIO_PHASE] = "phase",
89 	[IIO_MASSCONCENTRATION] = "massconcentration",
90 };
91 
92 static const char * const iio_modifier_names[] = {
93 	[IIO_MOD_X] = "x",
94 	[IIO_MOD_Y] = "y",
95 	[IIO_MOD_Z] = "z",
96 	[IIO_MOD_X_AND_Y] = "x&y",
97 	[IIO_MOD_X_AND_Z] = "x&z",
98 	[IIO_MOD_Y_AND_Z] = "y&z",
99 	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
100 	[IIO_MOD_X_OR_Y] = "x|y",
101 	[IIO_MOD_X_OR_Z] = "x|z",
102 	[IIO_MOD_Y_OR_Z] = "y|z",
103 	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
104 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
105 	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
106 	[IIO_MOD_LIGHT_BOTH] = "both",
107 	[IIO_MOD_LIGHT_IR] = "ir",
108 	[IIO_MOD_LIGHT_CLEAR] = "clear",
109 	[IIO_MOD_LIGHT_RED] = "red",
110 	[IIO_MOD_LIGHT_GREEN] = "green",
111 	[IIO_MOD_LIGHT_BLUE] = "blue",
112 	[IIO_MOD_LIGHT_UV] = "uv",
113 	[IIO_MOD_LIGHT_DUV] = "duv",
114 	[IIO_MOD_QUATERNION] = "quaternion",
115 	[IIO_MOD_TEMP_AMBIENT] = "ambient",
116 	[IIO_MOD_TEMP_OBJECT] = "object",
117 	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
118 	[IIO_MOD_NORTH_TRUE] = "from_north_true",
119 	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
120 	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
121 	[IIO_MOD_RUNNING] = "running",
122 	[IIO_MOD_JOGGING] = "jogging",
123 	[IIO_MOD_WALKING] = "walking",
124 	[IIO_MOD_STILL] = "still",
125 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
126 	[IIO_MOD_I] = "i",
127 	[IIO_MOD_Q] = "q",
128 	[IIO_MOD_CO2] = "co2",
129 	[IIO_MOD_VOC] = "voc",
130 	[IIO_MOD_PM1] = "pm1",
131 	[IIO_MOD_PM2P5] = "pm2p5",
132 	[IIO_MOD_PM4] = "pm4",
133 	[IIO_MOD_PM10] = "pm10",
134 	[IIO_MOD_ETHANOL] = "ethanol",
135 	[IIO_MOD_H2] = "h2",
136 	[IIO_MOD_O2] = "o2",
137 };
138 
139 /* relies on pairs of these shared then separate */
140 static const char * const iio_chan_info_postfix[] = {
141 	[IIO_CHAN_INFO_RAW] = "raw",
142 	[IIO_CHAN_INFO_PROCESSED] = "input",
143 	[IIO_CHAN_INFO_SCALE] = "scale",
144 	[IIO_CHAN_INFO_OFFSET] = "offset",
145 	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
146 	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
147 	[IIO_CHAN_INFO_PEAK] = "peak_raw",
148 	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
149 	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
150 	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
151 	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
152 	= "filter_low_pass_3db_frequency",
153 	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
154 	= "filter_high_pass_3db_frequency",
155 	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
156 	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
157 	[IIO_CHAN_INFO_PHASE] = "phase",
158 	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
159 	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
160 	[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
161 	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
162 	[IIO_CHAN_INFO_ENABLE] = "en",
163 	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
164 	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
165 	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
166 	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
167 	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
168 	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
169 	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
170 	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
171 };
172 /**
173  * iio_device_id() - query the unique ID for the device
174  * @indio_dev:		Device structure whose ID is being queried
175  *
176  * The IIO device ID is a unique index used for example for the naming
177  * of the character device /dev/iio\:device[ID]
178  */
179 int iio_device_id(struct iio_dev *indio_dev)
180 {
181 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
182 
183 	return iio_dev_opaque->id;
184 }
185 EXPORT_SYMBOL_GPL(iio_device_id);
186 
187 /**
188  * iio_buffer_enabled() - helper function to test if the buffer is enabled
189  * @indio_dev:		IIO device structure for device
190  */
191 bool iio_buffer_enabled(struct iio_dev *indio_dev)
192 {
193 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
194 
195 	return iio_dev_opaque->currentmode
196 		& (INDIO_BUFFER_TRIGGERED | INDIO_BUFFER_HARDWARE |
197 		   INDIO_BUFFER_SOFTWARE);
198 }
199 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
200 
201 /**
202  * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps
203  * @array: array of strings
204  * @n: number of strings in the array
205  * @str: string to match with
206  *
207  * Returns index of @str in the @array or -EINVAL, similar to match_string().
208  * Uses sysfs_streq instead of strcmp for matching.
209  *
210  * This routine will look for a string in an array of strings.
211  * The search will continue until the element is found or the n-th element
212  * is reached, regardless of any NULL elements in the array.
213  */
214 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n,
215 					    const char *str)
216 {
217 	const char *item;
218 	int index;
219 
220 	for (index = 0; index < n; index++) {
221 		item = array[index];
222 		if (!item)
223 			continue;
224 		if (sysfs_streq(item, str))
225 			return index;
226 	}
227 
228 	return -EINVAL;
229 }
230 
231 #if defined(CONFIG_DEBUG_FS)
232 /*
233  * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
234  * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
235  */
236 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
237 {
238 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
239 	return iio_dev_opaque->debugfs_dentry;
240 }
241 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
242 #endif
243 
244 /**
245  * iio_find_channel_from_si() - get channel from its scan index
246  * @indio_dev:		device
247  * @si:			scan index to match
248  */
249 const struct iio_chan_spec
250 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
251 {
252 	int i;
253 
254 	for (i = 0; i < indio_dev->num_channels; i++)
255 		if (indio_dev->channels[i].scan_index == si)
256 			return &indio_dev->channels[i];
257 	return NULL;
258 }
259 
260 /* This turns up an awful lot */
261 ssize_t iio_read_const_attr(struct device *dev,
262 			    struct device_attribute *attr,
263 			    char *buf)
264 {
265 	return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
266 }
267 EXPORT_SYMBOL(iio_read_const_attr);
268 
269 /**
270  * iio_device_set_clock() - Set current timestamping clock for the device
271  * @indio_dev: IIO device structure containing the device
272  * @clock_id: timestamping clock posix identifier to set.
273  */
274 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
275 {
276 	int ret;
277 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
278 	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
279 
280 	ret = mutex_lock_interruptible(&indio_dev->mlock);
281 	if (ret)
282 		return ret;
283 	if ((ev_int && iio_event_enabled(ev_int)) ||
284 	    iio_buffer_enabled(indio_dev)) {
285 		mutex_unlock(&indio_dev->mlock);
286 		return -EBUSY;
287 	}
288 	iio_dev_opaque->clock_id = clock_id;
289 	mutex_unlock(&indio_dev->mlock);
290 
291 	return 0;
292 }
293 EXPORT_SYMBOL(iio_device_set_clock);
294 
295 /**
296  * iio_device_get_clock() - Retrieve current timestamping clock for the device
297  * @indio_dev: IIO device structure containing the device
298  */
299 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
300 {
301 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
302 
303 	return iio_dev_opaque->clock_id;
304 }
305 EXPORT_SYMBOL(iio_device_get_clock);
306 
307 /**
308  * iio_get_time_ns() - utility function to get a time stamp for events etc
309  * @indio_dev: device
310  */
311 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
312 {
313 	struct timespec64 tp;
314 
315 	switch (iio_device_get_clock(indio_dev)) {
316 	case CLOCK_REALTIME:
317 		return ktime_get_real_ns();
318 	case CLOCK_MONOTONIC:
319 		return ktime_get_ns();
320 	case CLOCK_MONOTONIC_RAW:
321 		return ktime_get_raw_ns();
322 	case CLOCK_REALTIME_COARSE:
323 		return ktime_to_ns(ktime_get_coarse_real());
324 	case CLOCK_MONOTONIC_COARSE:
325 		ktime_get_coarse_ts64(&tp);
326 		return timespec64_to_ns(&tp);
327 	case CLOCK_BOOTTIME:
328 		return ktime_get_boottime_ns();
329 	case CLOCK_TAI:
330 		return ktime_get_clocktai_ns();
331 	default:
332 		BUG();
333 	}
334 }
335 EXPORT_SYMBOL(iio_get_time_ns);
336 
337 /**
338  * iio_get_time_res() - utility function to get time stamp clock resolution in
339  *                      nano seconds.
340  * @indio_dev: device
341  */
342 unsigned int iio_get_time_res(const struct iio_dev *indio_dev)
343 {
344 	switch (iio_device_get_clock(indio_dev)) {
345 	case CLOCK_REALTIME:
346 	case CLOCK_MONOTONIC:
347 	case CLOCK_MONOTONIC_RAW:
348 	case CLOCK_BOOTTIME:
349 	case CLOCK_TAI:
350 		return hrtimer_resolution;
351 	case CLOCK_REALTIME_COARSE:
352 	case CLOCK_MONOTONIC_COARSE:
353 		return LOW_RES_NSEC;
354 	default:
355 		BUG();
356 	}
357 }
358 EXPORT_SYMBOL(iio_get_time_res);
359 
360 static int __init iio_init(void)
361 {
362 	int ret;
363 
364 	/* Register sysfs bus */
365 	ret  = bus_register(&iio_bus_type);
366 	if (ret < 0) {
367 		pr_err("could not register bus type\n");
368 		goto error_nothing;
369 	}
370 
371 	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
372 	if (ret < 0) {
373 		pr_err("failed to allocate char dev region\n");
374 		goto error_unregister_bus_type;
375 	}
376 
377 	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
378 
379 	return 0;
380 
381 error_unregister_bus_type:
382 	bus_unregister(&iio_bus_type);
383 error_nothing:
384 	return ret;
385 }
386 
387 static void __exit iio_exit(void)
388 {
389 	if (iio_devt)
390 		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
391 	bus_unregister(&iio_bus_type);
392 	debugfs_remove(iio_debugfs_dentry);
393 }
394 
395 #if defined(CONFIG_DEBUG_FS)
396 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
397 			      size_t count, loff_t *ppos)
398 {
399 	struct iio_dev *indio_dev = file->private_data;
400 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
401 	unsigned val = 0;
402 	int ret;
403 
404 	if (*ppos > 0)
405 		return simple_read_from_buffer(userbuf, count, ppos,
406 					       iio_dev_opaque->read_buf,
407 					       iio_dev_opaque->read_buf_len);
408 
409 	ret = indio_dev->info->debugfs_reg_access(indio_dev,
410 						  iio_dev_opaque->cached_reg_addr,
411 						  0, &val);
412 	if (ret) {
413 		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
414 		return ret;
415 	}
416 
417 	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
418 					      sizeof(iio_dev_opaque->read_buf),
419 					      "0x%X\n", val);
420 
421 	return simple_read_from_buffer(userbuf, count, ppos,
422 				       iio_dev_opaque->read_buf,
423 				       iio_dev_opaque->read_buf_len);
424 }
425 
426 static ssize_t iio_debugfs_write_reg(struct file *file,
427 		     const char __user *userbuf, size_t count, loff_t *ppos)
428 {
429 	struct iio_dev *indio_dev = file->private_data;
430 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
431 	unsigned reg, val;
432 	char buf[80];
433 	int ret;
434 
435 	count = min_t(size_t, count, (sizeof(buf)-1));
436 	if (copy_from_user(buf, userbuf, count))
437 		return -EFAULT;
438 
439 	buf[count] = 0;
440 
441 	ret = sscanf(buf, "%i %i", &reg, &val);
442 
443 	switch (ret) {
444 	case 1:
445 		iio_dev_opaque->cached_reg_addr = reg;
446 		break;
447 	case 2:
448 		iio_dev_opaque->cached_reg_addr = reg;
449 		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
450 							  val, NULL);
451 		if (ret) {
452 			dev_err(indio_dev->dev.parent, "%s: write failed\n",
453 				__func__);
454 			return ret;
455 		}
456 		break;
457 	default:
458 		return -EINVAL;
459 	}
460 
461 	return count;
462 }
463 
464 static const struct file_operations iio_debugfs_reg_fops = {
465 	.open = simple_open,
466 	.read = iio_debugfs_read_reg,
467 	.write = iio_debugfs_write_reg,
468 };
469 
470 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
471 {
472 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
473 	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
474 }
475 
476 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
477 {
478 	struct iio_dev_opaque *iio_dev_opaque;
479 
480 	if (indio_dev->info->debugfs_reg_access == NULL)
481 		return;
482 
483 	if (!iio_debugfs_dentry)
484 		return;
485 
486 	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
487 
488 	iio_dev_opaque->debugfs_dentry =
489 		debugfs_create_dir(dev_name(&indio_dev->dev),
490 				   iio_debugfs_dentry);
491 
492 	debugfs_create_file("direct_reg_access", 0644,
493 			    iio_dev_opaque->debugfs_dentry, indio_dev,
494 			    &iio_debugfs_reg_fops);
495 }
496 #else
497 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
498 {
499 }
500 
501 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
502 {
503 }
504 #endif /* CONFIG_DEBUG_FS */
505 
506 static ssize_t iio_read_channel_ext_info(struct device *dev,
507 				     struct device_attribute *attr,
508 				     char *buf)
509 {
510 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
511 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
512 	const struct iio_chan_spec_ext_info *ext_info;
513 
514 	ext_info = &this_attr->c->ext_info[this_attr->address];
515 
516 	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
517 }
518 
519 static ssize_t iio_write_channel_ext_info(struct device *dev,
520 				     struct device_attribute *attr,
521 				     const char *buf,
522 					 size_t len)
523 {
524 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
525 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
526 	const struct iio_chan_spec_ext_info *ext_info;
527 
528 	ext_info = &this_attr->c->ext_info[this_attr->address];
529 
530 	return ext_info->write(indio_dev, ext_info->private,
531 			       this_attr->c, buf, len);
532 }
533 
534 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
535 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
536 {
537 	const struct iio_enum *e = (const struct iio_enum *)priv;
538 	unsigned int i;
539 	size_t len = 0;
540 
541 	if (!e->num_items)
542 		return 0;
543 
544 	for (i = 0; i < e->num_items; ++i) {
545 		if (!e->items[i])
546 			continue;
547 		len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
548 	}
549 
550 	/* replace last space with a newline */
551 	buf[len - 1] = '\n';
552 
553 	return len;
554 }
555 EXPORT_SYMBOL_GPL(iio_enum_available_read);
556 
557 ssize_t iio_enum_read(struct iio_dev *indio_dev,
558 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
559 {
560 	const struct iio_enum *e = (const struct iio_enum *)priv;
561 	int i;
562 
563 	if (!e->get)
564 		return -EINVAL;
565 
566 	i = e->get(indio_dev, chan);
567 	if (i < 0)
568 		return i;
569 	else if (i >= e->num_items || !e->items[i])
570 		return -EINVAL;
571 
572 	return sysfs_emit(buf, "%s\n", e->items[i]);
573 }
574 EXPORT_SYMBOL_GPL(iio_enum_read);
575 
576 ssize_t iio_enum_write(struct iio_dev *indio_dev,
577 	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
578 	size_t len)
579 {
580 	const struct iio_enum *e = (const struct iio_enum *)priv;
581 	int ret;
582 
583 	if (!e->set)
584 		return -EINVAL;
585 
586 	ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf);
587 	if (ret < 0)
588 		return ret;
589 
590 	ret = e->set(indio_dev, chan, ret);
591 	return ret ? ret : len;
592 }
593 EXPORT_SYMBOL_GPL(iio_enum_write);
594 
595 static const struct iio_mount_matrix iio_mount_idmatrix = {
596 	.rotation = {
597 		"1", "0", "0",
598 		"0", "1", "0",
599 		"0", "0", "1"
600 	}
601 };
602 
603 static int iio_setup_mount_idmatrix(const struct device *dev,
604 				    struct iio_mount_matrix *matrix)
605 {
606 	*matrix = iio_mount_idmatrix;
607 	dev_info(dev, "mounting matrix not found: using identity...\n");
608 	return 0;
609 }
610 
611 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
612 			      const struct iio_chan_spec *chan, char *buf)
613 {
614 	const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *)
615 					      priv)(indio_dev, chan);
616 
617 	if (IS_ERR(mtx))
618 		return PTR_ERR(mtx);
619 
620 	if (!mtx)
621 		mtx = &iio_mount_idmatrix;
622 
623 	return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
624 			  mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
625 			  mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
626 			  mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
627 }
628 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
629 
630 /**
631  * iio_read_mount_matrix() - retrieve iio device mounting matrix from
632  *                           device "mount-matrix" property
633  * @dev:	device the mounting matrix property is assigned to
634  * @matrix:	where to store retrieved matrix
635  *
636  * If device is assigned no mounting matrix property, a default 3x3 identity
637  * matrix will be filled in.
638  *
639  * Return: 0 if success, or a negative error code on failure.
640  */
641 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
642 {
643 	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
644 	int err;
645 
646 	err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
647 	if (err == len)
648 		return 0;
649 
650 	if (err >= 0)
651 		/* Invalid number of matrix entries. */
652 		return -EINVAL;
653 
654 	if (err != -EINVAL)
655 		/* Invalid matrix declaration format. */
656 		return err;
657 
658 	/* Matrix was not declared at all: fallback to identity. */
659 	return iio_setup_mount_idmatrix(dev, matrix);
660 }
661 EXPORT_SYMBOL(iio_read_mount_matrix);
662 
663 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
664 				  int size, const int *vals)
665 {
666 	int tmp0, tmp1;
667 	s64 tmp2;
668 	bool scale_db = false;
669 
670 	switch (type) {
671 	case IIO_VAL_INT:
672 		return sysfs_emit_at(buf, offset, "%d", vals[0]);
673 	case IIO_VAL_INT_PLUS_MICRO_DB:
674 		scale_db = true;
675 		fallthrough;
676 	case IIO_VAL_INT_PLUS_MICRO:
677 		if (vals[1] < 0)
678 			return sysfs_emit_at(buf, offset, "-%d.%06u%s",
679 					     abs(vals[0]), -vals[1],
680 					     scale_db ? " dB" : "");
681 		else
682 			return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
683 					     vals[1], scale_db ? " dB" : "");
684 	case IIO_VAL_INT_PLUS_NANO:
685 		if (vals[1] < 0)
686 			return sysfs_emit_at(buf, offset, "-%d.%09u",
687 					     abs(vals[0]), -vals[1]);
688 		else
689 			return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
690 					     vals[1]);
691 	case IIO_VAL_FRACTIONAL:
692 		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
693 		tmp1 = vals[1];
694 		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
695 		if ((tmp2 < 0) && (tmp0 == 0))
696 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
697 		else
698 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
699 					     abs(tmp1));
700 	case IIO_VAL_FRACTIONAL_LOG2:
701 		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
702 		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
703 		if (tmp0 == 0 && tmp2 < 0)
704 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
705 		else
706 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
707 					     abs(tmp1));
708 	case IIO_VAL_INT_MULTIPLE:
709 	{
710 		int i;
711 		int l = 0;
712 
713 		for (i = 0; i < size; ++i)
714 			l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
715 		return l;
716 	}
717 	case IIO_VAL_CHAR:
718 		return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
719 	case IIO_VAL_INT_64:
720 		tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
721 		return sysfs_emit_at(buf, offset, "%lld", tmp2);
722 	default:
723 		return 0;
724 	}
725 }
726 
727 /**
728  * iio_format_value() - Formats a IIO value into its string representation
729  * @buf:	The buffer to which the formatted value gets written
730  *		which is assumed to be big enough (i.e. PAGE_SIZE).
731  * @type:	One of the IIO_VAL_* constants. This decides how the val
732  *		and val2 parameters are formatted.
733  * @size:	Number of IIO value entries contained in vals
734  * @vals:	Pointer to the values, exact meaning depends on the
735  *		type parameter.
736  *
737  * Return: 0 by default, a negative number on failure or the
738  *	   total number of characters written for a type that belongs
739  *	   to the IIO_VAL_* constant.
740  */
741 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
742 {
743 	ssize_t len;
744 
745 	len = __iio_format_value(buf, 0, type, size, vals);
746 	if (len >= PAGE_SIZE - 1)
747 		return -EFBIG;
748 
749 	return len + sysfs_emit_at(buf, len, "\n");
750 }
751 EXPORT_SYMBOL_GPL(iio_format_value);
752 
753 static ssize_t iio_read_channel_label(struct device *dev,
754 				      struct device_attribute *attr,
755 				      char *buf)
756 {
757 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
758 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
759 
760 	if (indio_dev->info->read_label)
761 		return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
762 
763 	if (this_attr->c->extend_name)
764 		return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
765 
766 	return -EINVAL;
767 }
768 
769 static ssize_t iio_read_channel_info(struct device *dev,
770 				     struct device_attribute *attr,
771 				     char *buf)
772 {
773 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
774 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
775 	int vals[INDIO_MAX_RAW_ELEMENTS];
776 	int ret;
777 	int val_len = 2;
778 
779 	if (indio_dev->info->read_raw_multi)
780 		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
781 							INDIO_MAX_RAW_ELEMENTS,
782 							vals, &val_len,
783 							this_attr->address);
784 	else
785 		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
786 				    &vals[0], &vals[1], this_attr->address);
787 
788 	if (ret < 0)
789 		return ret;
790 
791 	return iio_format_value(buf, ret, val_len, vals);
792 }
793 
794 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
795 			       const char *prefix, const char *suffix)
796 {
797 	ssize_t len;
798 	int stride;
799 	int i;
800 
801 	switch (type) {
802 	case IIO_VAL_INT:
803 		stride = 1;
804 		break;
805 	default:
806 		stride = 2;
807 		break;
808 	}
809 
810 	len = sysfs_emit(buf, prefix);
811 
812 	for (i = 0; i <= length - stride; i += stride) {
813 		if (i != 0) {
814 			len += sysfs_emit_at(buf, len, " ");
815 			if (len >= PAGE_SIZE)
816 				return -EFBIG;
817 		}
818 
819 		len += __iio_format_value(buf, len, type, stride, &vals[i]);
820 		if (len >= PAGE_SIZE)
821 			return -EFBIG;
822 	}
823 
824 	len += sysfs_emit_at(buf, len, "%s\n", suffix);
825 
826 	return len;
827 }
828 
829 static ssize_t iio_format_avail_list(char *buf, const int *vals,
830 				     int type, int length)
831 {
832 
833 	return iio_format_list(buf, vals, type, length, "", "");
834 }
835 
836 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
837 {
838 	return iio_format_list(buf, vals, type, 3, "[", "]");
839 }
840 
841 static ssize_t iio_read_channel_info_avail(struct device *dev,
842 					   struct device_attribute *attr,
843 					   char *buf)
844 {
845 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
846 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
847 	const int *vals;
848 	int ret;
849 	int length;
850 	int type;
851 
852 	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
853 					  &vals, &type, &length,
854 					  this_attr->address);
855 
856 	if (ret < 0)
857 		return ret;
858 	switch (ret) {
859 	case IIO_AVAIL_LIST:
860 		return iio_format_avail_list(buf, vals, type, length);
861 	case IIO_AVAIL_RANGE:
862 		return iio_format_avail_range(buf, vals, type);
863 	default:
864 		return -EINVAL;
865 	}
866 }
867 
868 /**
869  * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
870  * @str: The string to parse
871  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
872  * @integer: The integer part of the number
873  * @fract: The fractional part of the number
874  * @scale_db: True if this should parse as dB
875  *
876  * Returns 0 on success, or a negative error code if the string could not be
877  * parsed.
878  */
879 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
880 				 int *integer, int *fract, bool scale_db)
881 {
882 	int i = 0, f = 0;
883 	bool integer_part = true, negative = false;
884 
885 	if (fract_mult == 0) {
886 		*fract = 0;
887 
888 		return kstrtoint(str, 0, integer);
889 	}
890 
891 	if (str[0] == '-') {
892 		negative = true;
893 		str++;
894 	} else if (str[0] == '+') {
895 		str++;
896 	}
897 
898 	while (*str) {
899 		if ('0' <= *str && *str <= '9') {
900 			if (integer_part) {
901 				i = i * 10 + *str - '0';
902 			} else {
903 				f += fract_mult * (*str - '0');
904 				fract_mult /= 10;
905 			}
906 		} else if (*str == '\n') {
907 			if (*(str + 1) == '\0')
908 				break;
909 			return -EINVAL;
910 		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
911 			/* Ignore the dB suffix */
912 			str += sizeof(" dB") - 1;
913 			continue;
914 		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
915 			/* Ignore the dB suffix */
916 			str += sizeof("dB") - 1;
917 			continue;
918 		} else if (*str == '.' && integer_part) {
919 			integer_part = false;
920 		} else {
921 			return -EINVAL;
922 		}
923 		str++;
924 	}
925 
926 	if (negative) {
927 		if (i)
928 			i = -i;
929 		else
930 			f = -f;
931 	}
932 
933 	*integer = i;
934 	*fract = f;
935 
936 	return 0;
937 }
938 
939 /**
940  * iio_str_to_fixpoint() - Parse a fixed-point number from a string
941  * @str: The string to parse
942  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
943  * @integer: The integer part of the number
944  * @fract: The fractional part of the number
945  *
946  * Returns 0 on success, or a negative error code if the string could not be
947  * parsed.
948  */
949 int iio_str_to_fixpoint(const char *str, int fract_mult,
950 			int *integer, int *fract)
951 {
952 	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
953 }
954 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
955 
956 static ssize_t iio_write_channel_info(struct device *dev,
957 				      struct device_attribute *attr,
958 				      const char *buf,
959 				      size_t len)
960 {
961 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
962 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
963 	int ret, fract_mult = 100000;
964 	int integer, fract = 0;
965 	bool is_char = false;
966 	bool scale_db = false;
967 
968 	/* Assumes decimal - precision based on number of digits */
969 	if (!indio_dev->info->write_raw)
970 		return -EINVAL;
971 
972 	if (indio_dev->info->write_raw_get_fmt)
973 		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
974 			this_attr->c, this_attr->address)) {
975 		case IIO_VAL_INT:
976 			fract_mult = 0;
977 			break;
978 		case IIO_VAL_INT_PLUS_MICRO_DB:
979 			scale_db = true;
980 			fallthrough;
981 		case IIO_VAL_INT_PLUS_MICRO:
982 			fract_mult = 100000;
983 			break;
984 		case IIO_VAL_INT_PLUS_NANO:
985 			fract_mult = 100000000;
986 			break;
987 		case IIO_VAL_CHAR:
988 			is_char = true;
989 			break;
990 		default:
991 			return -EINVAL;
992 		}
993 
994 	if (is_char) {
995 		char ch;
996 
997 		if (sscanf(buf, "%c", &ch) != 1)
998 			return -EINVAL;
999 		integer = ch;
1000 	} else {
1001 		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
1002 					    scale_db);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1008 					 integer, fract, this_attr->address);
1009 	if (ret)
1010 		return ret;
1011 
1012 	return len;
1013 }
1014 
1015 static
1016 int __iio_device_attr_init(struct device_attribute *dev_attr,
1017 			   const char *postfix,
1018 			   struct iio_chan_spec const *chan,
1019 			   ssize_t (*readfunc)(struct device *dev,
1020 					       struct device_attribute *attr,
1021 					       char *buf),
1022 			   ssize_t (*writefunc)(struct device *dev,
1023 						struct device_attribute *attr,
1024 						const char *buf,
1025 						size_t len),
1026 			   enum iio_shared_by shared_by)
1027 {
1028 	int ret = 0;
1029 	char *name = NULL;
1030 	char *full_postfix;
1031 	sysfs_attr_init(&dev_attr->attr);
1032 
1033 	/* Build up postfix of <extend_name>_<modifier>_postfix */
1034 	if (chan->modified && (shared_by == IIO_SEPARATE)) {
1035 		if (chan->extend_name)
1036 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1037 						 iio_modifier_names[chan
1038 								    ->channel2],
1039 						 chan->extend_name,
1040 						 postfix);
1041 		else
1042 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1043 						 iio_modifier_names[chan
1044 								    ->channel2],
1045 						 postfix);
1046 	} else {
1047 		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1048 			full_postfix = kstrdup(postfix, GFP_KERNEL);
1049 		else
1050 			full_postfix = kasprintf(GFP_KERNEL,
1051 						 "%s_%s",
1052 						 chan->extend_name,
1053 						 postfix);
1054 	}
1055 	if (full_postfix == NULL)
1056 		return -ENOMEM;
1057 
1058 	if (chan->differential) { /* Differential can not have modifier */
1059 		switch (shared_by) {
1060 		case IIO_SHARED_BY_ALL:
1061 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1062 			break;
1063 		case IIO_SHARED_BY_DIR:
1064 			name = kasprintf(GFP_KERNEL, "%s_%s",
1065 						iio_direction[chan->output],
1066 						full_postfix);
1067 			break;
1068 		case IIO_SHARED_BY_TYPE:
1069 			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1070 					    iio_direction[chan->output],
1071 					    iio_chan_type_name_spec[chan->type],
1072 					    iio_chan_type_name_spec[chan->type],
1073 					    full_postfix);
1074 			break;
1075 		case IIO_SEPARATE:
1076 			if (!chan->indexed) {
1077 				WARN(1, "Differential channels must be indexed\n");
1078 				ret = -EINVAL;
1079 				goto error_free_full_postfix;
1080 			}
1081 			name = kasprintf(GFP_KERNEL,
1082 					    "%s_%s%d-%s%d_%s",
1083 					    iio_direction[chan->output],
1084 					    iio_chan_type_name_spec[chan->type],
1085 					    chan->channel,
1086 					    iio_chan_type_name_spec[chan->type],
1087 					    chan->channel2,
1088 					    full_postfix);
1089 			break;
1090 		}
1091 	} else { /* Single ended */
1092 		switch (shared_by) {
1093 		case IIO_SHARED_BY_ALL:
1094 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1095 			break;
1096 		case IIO_SHARED_BY_DIR:
1097 			name = kasprintf(GFP_KERNEL, "%s_%s",
1098 						iio_direction[chan->output],
1099 						full_postfix);
1100 			break;
1101 		case IIO_SHARED_BY_TYPE:
1102 			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1103 					    iio_direction[chan->output],
1104 					    iio_chan_type_name_spec[chan->type],
1105 					    full_postfix);
1106 			break;
1107 
1108 		case IIO_SEPARATE:
1109 			if (chan->indexed)
1110 				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1111 						    iio_direction[chan->output],
1112 						    iio_chan_type_name_spec[chan->type],
1113 						    chan->channel,
1114 						    full_postfix);
1115 			else
1116 				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1117 						    iio_direction[chan->output],
1118 						    iio_chan_type_name_spec[chan->type],
1119 						    full_postfix);
1120 			break;
1121 		}
1122 	}
1123 	if (name == NULL) {
1124 		ret = -ENOMEM;
1125 		goto error_free_full_postfix;
1126 	}
1127 	dev_attr->attr.name = name;
1128 
1129 	if (readfunc) {
1130 		dev_attr->attr.mode |= S_IRUGO;
1131 		dev_attr->show = readfunc;
1132 	}
1133 
1134 	if (writefunc) {
1135 		dev_attr->attr.mode |= S_IWUSR;
1136 		dev_attr->store = writefunc;
1137 	}
1138 
1139 error_free_full_postfix:
1140 	kfree(full_postfix);
1141 
1142 	return ret;
1143 }
1144 
1145 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1146 {
1147 	kfree(dev_attr->attr.name);
1148 }
1149 
1150 int __iio_add_chan_devattr(const char *postfix,
1151 			   struct iio_chan_spec const *chan,
1152 			   ssize_t (*readfunc)(struct device *dev,
1153 					       struct device_attribute *attr,
1154 					       char *buf),
1155 			   ssize_t (*writefunc)(struct device *dev,
1156 						struct device_attribute *attr,
1157 						const char *buf,
1158 						size_t len),
1159 			   u64 mask,
1160 			   enum iio_shared_by shared_by,
1161 			   struct device *dev,
1162 			   struct iio_buffer *buffer,
1163 			   struct list_head *attr_list)
1164 {
1165 	int ret;
1166 	struct iio_dev_attr *iio_attr, *t;
1167 
1168 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1169 	if (iio_attr == NULL)
1170 		return -ENOMEM;
1171 	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1172 				     postfix, chan,
1173 				     readfunc, writefunc, shared_by);
1174 	if (ret)
1175 		goto error_iio_dev_attr_free;
1176 	iio_attr->c = chan;
1177 	iio_attr->address = mask;
1178 	iio_attr->buffer = buffer;
1179 	list_for_each_entry(t, attr_list, l)
1180 		if (strcmp(t->dev_attr.attr.name,
1181 			   iio_attr->dev_attr.attr.name) == 0) {
1182 			if (shared_by == IIO_SEPARATE)
1183 				dev_err(dev, "tried to double register : %s\n",
1184 					t->dev_attr.attr.name);
1185 			ret = -EBUSY;
1186 			goto error_device_attr_deinit;
1187 		}
1188 	list_add(&iio_attr->l, attr_list);
1189 
1190 	return 0;
1191 
1192 error_device_attr_deinit:
1193 	__iio_device_attr_deinit(&iio_attr->dev_attr);
1194 error_iio_dev_attr_free:
1195 	kfree(iio_attr);
1196 	return ret;
1197 }
1198 
1199 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1200 					 struct iio_chan_spec const *chan)
1201 {
1202 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1203 	int ret;
1204 
1205 	if (!indio_dev->info->read_label && !chan->extend_name)
1206 		return 0;
1207 
1208 	ret = __iio_add_chan_devattr("label",
1209 				     chan,
1210 				     &iio_read_channel_label,
1211 				     NULL,
1212 				     0,
1213 				     IIO_SEPARATE,
1214 				     &indio_dev->dev,
1215 				     NULL,
1216 				     &iio_dev_opaque->channel_attr_list);
1217 	if (ret < 0)
1218 		return ret;
1219 
1220 	return 1;
1221 }
1222 
1223 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1224 					 struct iio_chan_spec const *chan,
1225 					 enum iio_shared_by shared_by,
1226 					 const long *infomask)
1227 {
1228 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1229 	int i, ret, attrcount = 0;
1230 
1231 	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1232 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1233 			return -EINVAL;
1234 		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1235 					     chan,
1236 					     &iio_read_channel_info,
1237 					     &iio_write_channel_info,
1238 					     i,
1239 					     shared_by,
1240 					     &indio_dev->dev,
1241 					     NULL,
1242 					     &iio_dev_opaque->channel_attr_list);
1243 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1244 			continue;
1245 		else if (ret < 0)
1246 			return ret;
1247 		attrcount++;
1248 	}
1249 
1250 	return attrcount;
1251 }
1252 
1253 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1254 					       struct iio_chan_spec const *chan,
1255 					       enum iio_shared_by shared_by,
1256 					       const long *infomask)
1257 {
1258 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1259 	int i, ret, attrcount = 0;
1260 	char *avail_postfix;
1261 
1262 	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1263 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1264 			return -EINVAL;
1265 		avail_postfix = kasprintf(GFP_KERNEL,
1266 					  "%s_available",
1267 					  iio_chan_info_postfix[i]);
1268 		if (!avail_postfix)
1269 			return -ENOMEM;
1270 
1271 		ret = __iio_add_chan_devattr(avail_postfix,
1272 					     chan,
1273 					     &iio_read_channel_info_avail,
1274 					     NULL,
1275 					     i,
1276 					     shared_by,
1277 					     &indio_dev->dev,
1278 					     NULL,
1279 					     &iio_dev_opaque->channel_attr_list);
1280 		kfree(avail_postfix);
1281 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1282 			continue;
1283 		else if (ret < 0)
1284 			return ret;
1285 		attrcount++;
1286 	}
1287 
1288 	return attrcount;
1289 }
1290 
1291 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1292 					struct iio_chan_spec const *chan)
1293 {
1294 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1295 	int ret, attrcount = 0;
1296 	const struct iio_chan_spec_ext_info *ext_info;
1297 
1298 	if (chan->channel < 0)
1299 		return 0;
1300 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1301 					    IIO_SEPARATE,
1302 					    &chan->info_mask_separate);
1303 	if (ret < 0)
1304 		return ret;
1305 	attrcount += ret;
1306 
1307 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1308 						  IIO_SEPARATE,
1309 						  &chan->
1310 						  info_mask_separate_available);
1311 	if (ret < 0)
1312 		return ret;
1313 	attrcount += ret;
1314 
1315 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1316 					    IIO_SHARED_BY_TYPE,
1317 					    &chan->info_mask_shared_by_type);
1318 	if (ret < 0)
1319 		return ret;
1320 	attrcount += ret;
1321 
1322 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1323 						  IIO_SHARED_BY_TYPE,
1324 						  &chan->
1325 						  info_mask_shared_by_type_available);
1326 	if (ret < 0)
1327 		return ret;
1328 	attrcount += ret;
1329 
1330 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1331 					    IIO_SHARED_BY_DIR,
1332 					    &chan->info_mask_shared_by_dir);
1333 	if (ret < 0)
1334 		return ret;
1335 	attrcount += ret;
1336 
1337 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1338 						  IIO_SHARED_BY_DIR,
1339 						  &chan->info_mask_shared_by_dir_available);
1340 	if (ret < 0)
1341 		return ret;
1342 	attrcount += ret;
1343 
1344 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1345 					    IIO_SHARED_BY_ALL,
1346 					    &chan->info_mask_shared_by_all);
1347 	if (ret < 0)
1348 		return ret;
1349 	attrcount += ret;
1350 
1351 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1352 						  IIO_SHARED_BY_ALL,
1353 						  &chan->info_mask_shared_by_all_available);
1354 	if (ret < 0)
1355 		return ret;
1356 	attrcount += ret;
1357 
1358 	ret = iio_device_add_channel_label(indio_dev, chan);
1359 	if (ret < 0)
1360 		return ret;
1361 	attrcount += ret;
1362 
1363 	if (chan->ext_info) {
1364 		unsigned int i = 0;
1365 		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1366 			ret = __iio_add_chan_devattr(ext_info->name,
1367 					chan,
1368 					ext_info->read ?
1369 					    &iio_read_channel_ext_info : NULL,
1370 					ext_info->write ?
1371 					    &iio_write_channel_ext_info : NULL,
1372 					i,
1373 					ext_info->shared,
1374 					&indio_dev->dev,
1375 					NULL,
1376 					&iio_dev_opaque->channel_attr_list);
1377 			i++;
1378 			if (ret == -EBUSY && ext_info->shared)
1379 				continue;
1380 
1381 			if (ret)
1382 				return ret;
1383 
1384 			attrcount++;
1385 		}
1386 	}
1387 
1388 	return attrcount;
1389 }
1390 
1391 /**
1392  * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1393  * @attr_list: List of IIO device attributes
1394  *
1395  * This function frees the memory allocated for each of the IIO device
1396  * attributes in the list.
1397  */
1398 void iio_free_chan_devattr_list(struct list_head *attr_list)
1399 {
1400 	struct iio_dev_attr *p, *n;
1401 
1402 	list_for_each_entry_safe(p, n, attr_list, l) {
1403 		kfree_const(p->dev_attr.attr.name);
1404 		list_del(&p->l);
1405 		kfree(p);
1406 	}
1407 }
1408 
1409 static ssize_t iio_show_dev_name(struct device *dev,
1410 				 struct device_attribute *attr,
1411 				 char *buf)
1412 {
1413 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1414 	return sysfs_emit(buf, "%s\n", indio_dev->name);
1415 }
1416 
1417 static DEVICE_ATTR(name, S_IRUGO, iio_show_dev_name, NULL);
1418 
1419 static ssize_t iio_show_dev_label(struct device *dev,
1420 				 struct device_attribute *attr,
1421 				 char *buf)
1422 {
1423 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1424 	return sysfs_emit(buf, "%s\n", indio_dev->label);
1425 }
1426 
1427 static DEVICE_ATTR(label, S_IRUGO, iio_show_dev_label, NULL);
1428 
1429 static ssize_t iio_show_timestamp_clock(struct device *dev,
1430 					struct device_attribute *attr,
1431 					char *buf)
1432 {
1433 	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1434 	const clockid_t clk = iio_device_get_clock(indio_dev);
1435 	const char *name;
1436 	ssize_t sz;
1437 
1438 	switch (clk) {
1439 	case CLOCK_REALTIME:
1440 		name = "realtime\n";
1441 		sz = sizeof("realtime\n");
1442 		break;
1443 	case CLOCK_MONOTONIC:
1444 		name = "monotonic\n";
1445 		sz = sizeof("monotonic\n");
1446 		break;
1447 	case CLOCK_MONOTONIC_RAW:
1448 		name = "monotonic_raw\n";
1449 		sz = sizeof("monotonic_raw\n");
1450 		break;
1451 	case CLOCK_REALTIME_COARSE:
1452 		name = "realtime_coarse\n";
1453 		sz = sizeof("realtime_coarse\n");
1454 		break;
1455 	case CLOCK_MONOTONIC_COARSE:
1456 		name = "monotonic_coarse\n";
1457 		sz = sizeof("monotonic_coarse\n");
1458 		break;
1459 	case CLOCK_BOOTTIME:
1460 		name = "boottime\n";
1461 		sz = sizeof("boottime\n");
1462 		break;
1463 	case CLOCK_TAI:
1464 		name = "tai\n";
1465 		sz = sizeof("tai\n");
1466 		break;
1467 	default:
1468 		BUG();
1469 	}
1470 
1471 	memcpy(buf, name, sz);
1472 	return sz;
1473 }
1474 
1475 static ssize_t iio_store_timestamp_clock(struct device *dev,
1476 					 struct device_attribute *attr,
1477 					 const char *buf, size_t len)
1478 {
1479 	clockid_t clk;
1480 	int ret;
1481 
1482 	if (sysfs_streq(buf, "realtime"))
1483 		clk = CLOCK_REALTIME;
1484 	else if (sysfs_streq(buf, "monotonic"))
1485 		clk = CLOCK_MONOTONIC;
1486 	else if (sysfs_streq(buf, "monotonic_raw"))
1487 		clk = CLOCK_MONOTONIC_RAW;
1488 	else if (sysfs_streq(buf, "realtime_coarse"))
1489 		clk = CLOCK_REALTIME_COARSE;
1490 	else if (sysfs_streq(buf, "monotonic_coarse"))
1491 		clk = CLOCK_MONOTONIC_COARSE;
1492 	else if (sysfs_streq(buf, "boottime"))
1493 		clk = CLOCK_BOOTTIME;
1494 	else if (sysfs_streq(buf, "tai"))
1495 		clk = CLOCK_TAI;
1496 	else
1497 		return -EINVAL;
1498 
1499 	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1500 	if (ret)
1501 		return ret;
1502 
1503 	return len;
1504 }
1505 
1506 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1507 				    const struct attribute_group *group)
1508 {
1509 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1510 	const struct attribute_group **new, **old = iio_dev_opaque->groups;
1511 	unsigned int cnt = iio_dev_opaque->groupcounter;
1512 
1513 	new = krealloc(old, sizeof(*new) * (cnt + 2), GFP_KERNEL);
1514 	if (!new)
1515 		return -ENOMEM;
1516 
1517 	new[iio_dev_opaque->groupcounter++] = group;
1518 	new[iio_dev_opaque->groupcounter] = NULL;
1519 
1520 	iio_dev_opaque->groups = new;
1521 
1522 	return 0;
1523 }
1524 
1525 static DEVICE_ATTR(current_timestamp_clock, S_IRUGO | S_IWUSR,
1526 		   iio_show_timestamp_clock, iio_store_timestamp_clock);
1527 
1528 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1529 {
1530 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1531 	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1532 	struct iio_dev_attr *p;
1533 	struct attribute **attr, *clk = NULL;
1534 
1535 	/* First count elements in any existing group */
1536 	if (indio_dev->info->attrs) {
1537 		attr = indio_dev->info->attrs->attrs;
1538 		while (*attr++ != NULL)
1539 			attrcount_orig++;
1540 	}
1541 	attrcount = attrcount_orig;
1542 	/*
1543 	 * New channel registration method - relies on the fact a group does
1544 	 * not need to be initialized if its name is NULL.
1545 	 */
1546 	if (indio_dev->channels)
1547 		for (i = 0; i < indio_dev->num_channels; i++) {
1548 			const struct iio_chan_spec *chan =
1549 				&indio_dev->channels[i];
1550 
1551 			if (chan->type == IIO_TIMESTAMP)
1552 				clk = &dev_attr_current_timestamp_clock.attr;
1553 
1554 			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1555 			if (ret < 0)
1556 				goto error_clear_attrs;
1557 			attrcount += ret;
1558 		}
1559 
1560 	if (iio_dev_opaque->event_interface)
1561 		clk = &dev_attr_current_timestamp_clock.attr;
1562 
1563 	if (indio_dev->name)
1564 		attrcount++;
1565 	if (indio_dev->label)
1566 		attrcount++;
1567 	if (clk)
1568 		attrcount++;
1569 
1570 	iio_dev_opaque->chan_attr_group.attrs =
1571 		kcalloc(attrcount + 1,
1572 			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1573 			GFP_KERNEL);
1574 	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1575 		ret = -ENOMEM;
1576 		goto error_clear_attrs;
1577 	}
1578 	/* Copy across original attributes */
1579 	if (indio_dev->info->attrs) {
1580 		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1581 		       indio_dev->info->attrs->attrs,
1582 		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1583 		       *attrcount_orig);
1584 		iio_dev_opaque->chan_attr_group.is_visible =
1585 			indio_dev->info->attrs->is_visible;
1586 	}
1587 	attrn = attrcount_orig;
1588 	/* Add all elements from the list. */
1589 	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1590 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1591 	if (indio_dev->name)
1592 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1593 	if (indio_dev->label)
1594 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1595 	if (clk)
1596 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1597 
1598 	ret = iio_device_register_sysfs_group(indio_dev,
1599 					      &iio_dev_opaque->chan_attr_group);
1600 	if (ret)
1601 		goto error_clear_attrs;
1602 
1603 	return 0;
1604 
1605 error_clear_attrs:
1606 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1607 
1608 	return ret;
1609 }
1610 
1611 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1612 {
1613 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1614 
1615 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1616 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1617 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1618 	kfree(iio_dev_opaque->groups);
1619 	iio_dev_opaque->groups = NULL;
1620 }
1621 
1622 static void iio_dev_release(struct device *device)
1623 {
1624 	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1625 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1626 
1627 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1628 		iio_device_unregister_trigger_consumer(indio_dev);
1629 	iio_device_unregister_eventset(indio_dev);
1630 	iio_device_unregister_sysfs(indio_dev);
1631 
1632 	iio_device_detach_buffers(indio_dev);
1633 
1634 	ida_simple_remove(&iio_ida, iio_dev_opaque->id);
1635 	kfree(iio_dev_opaque);
1636 }
1637 
1638 const struct device_type iio_device_type = {
1639 	.name = "iio_device",
1640 	.release = iio_dev_release,
1641 };
1642 
1643 /**
1644  * iio_device_alloc() - allocate an iio_dev from a driver
1645  * @parent:		Parent device.
1646  * @sizeof_priv:	Space to allocate for private structure.
1647  **/
1648 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1649 {
1650 	struct iio_dev_opaque *iio_dev_opaque;
1651 	struct iio_dev *indio_dev;
1652 	size_t alloc_size;
1653 
1654 	alloc_size = sizeof(struct iio_dev_opaque);
1655 	if (sizeof_priv) {
1656 		alloc_size = ALIGN(alloc_size, IIO_ALIGN);
1657 		alloc_size += sizeof_priv;
1658 	}
1659 
1660 	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1661 	if (!iio_dev_opaque)
1662 		return NULL;
1663 
1664 	indio_dev = &iio_dev_opaque->indio_dev;
1665 	indio_dev->priv = (char *)iio_dev_opaque +
1666 		ALIGN(sizeof(struct iio_dev_opaque), IIO_ALIGN);
1667 
1668 	indio_dev->dev.parent = parent;
1669 	indio_dev->dev.type = &iio_device_type;
1670 	indio_dev->dev.bus = &iio_bus_type;
1671 	device_initialize(&indio_dev->dev);
1672 	mutex_init(&indio_dev->mlock);
1673 	mutex_init(&iio_dev_opaque->info_exist_lock);
1674 	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1675 
1676 	iio_dev_opaque->id = ida_simple_get(&iio_ida, 0, 0, GFP_KERNEL);
1677 	if (iio_dev_opaque->id < 0) {
1678 		/* cannot use a dev_err as the name isn't available */
1679 		pr_err("failed to get device id\n");
1680 		kfree(iio_dev_opaque);
1681 		return NULL;
1682 	}
1683 
1684 	if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1685 		ida_simple_remove(&iio_ida, iio_dev_opaque->id);
1686 		kfree(iio_dev_opaque);
1687 		return NULL;
1688 	}
1689 
1690 	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1691 	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1692 
1693 	return indio_dev;
1694 }
1695 EXPORT_SYMBOL(iio_device_alloc);
1696 
1697 /**
1698  * iio_device_free() - free an iio_dev from a driver
1699  * @dev:		the iio_dev associated with the device
1700  **/
1701 void iio_device_free(struct iio_dev *dev)
1702 {
1703 	if (dev)
1704 		put_device(&dev->dev);
1705 }
1706 EXPORT_SYMBOL(iio_device_free);
1707 
1708 static void devm_iio_device_release(void *iio_dev)
1709 {
1710 	iio_device_free(iio_dev);
1711 }
1712 
1713 /**
1714  * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1715  * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1716  * @sizeof_priv:	Space to allocate for private structure.
1717  *
1718  * Managed iio_device_alloc. iio_dev allocated with this function is
1719  * automatically freed on driver detach.
1720  *
1721  * RETURNS:
1722  * Pointer to allocated iio_dev on success, NULL on failure.
1723  */
1724 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1725 {
1726 	struct iio_dev *iio_dev;
1727 	int ret;
1728 
1729 	iio_dev = iio_device_alloc(parent, sizeof_priv);
1730 	if (!iio_dev)
1731 		return NULL;
1732 
1733 	ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1734 				       iio_dev);
1735 	if (ret)
1736 		return NULL;
1737 
1738 	return iio_dev;
1739 }
1740 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1741 
1742 /**
1743  * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1744  * @inode:	Inode structure for identifying the device in the file system
1745  * @filp:	File structure for iio device used to keep and later access
1746  *		private data
1747  *
1748  * Return: 0 on success or -EBUSY if the device is already opened
1749  **/
1750 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1751 {
1752 	struct iio_dev_opaque *iio_dev_opaque =
1753 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1754 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1755 	struct iio_dev_buffer_pair *ib;
1756 
1757 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1758 		return -EBUSY;
1759 
1760 	iio_device_get(indio_dev);
1761 
1762 	ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1763 	if (!ib) {
1764 		iio_device_put(indio_dev);
1765 		clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1766 		return -ENOMEM;
1767 	}
1768 
1769 	ib->indio_dev = indio_dev;
1770 	ib->buffer = indio_dev->buffer;
1771 
1772 	filp->private_data = ib;
1773 
1774 	return 0;
1775 }
1776 
1777 /**
1778  * iio_chrdev_release() - chrdev file close buffer access and ioctls
1779  * @inode:	Inode structure pointer for the char device
1780  * @filp:	File structure pointer for the char device
1781  *
1782  * Return: 0 for successful release
1783  */
1784 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1785 {
1786 	struct iio_dev_buffer_pair *ib = filp->private_data;
1787 	struct iio_dev_opaque *iio_dev_opaque =
1788 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1789 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1790 	kfree(ib);
1791 	clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1792 	iio_device_put(indio_dev);
1793 
1794 	return 0;
1795 }
1796 
1797 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1798 				       struct iio_ioctl_handler *h)
1799 {
1800 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1801 
1802 	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1803 }
1804 
1805 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1806 {
1807 	list_del(&h->entry);
1808 }
1809 
1810 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1811 {
1812 	struct iio_dev_buffer_pair *ib = filp->private_data;
1813 	struct iio_dev *indio_dev = ib->indio_dev;
1814 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1815 	struct iio_ioctl_handler *h;
1816 	int ret = -ENODEV;
1817 
1818 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1819 
1820 	/**
1821 	 * The NULL check here is required to prevent crashing when a device
1822 	 * is being removed while userspace would still have open file handles
1823 	 * to try to access this device.
1824 	 */
1825 	if (!indio_dev->info)
1826 		goto out_unlock;
1827 
1828 	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1829 		ret = h->ioctl(indio_dev, filp, cmd, arg);
1830 		if (ret != IIO_IOCTL_UNHANDLED)
1831 			break;
1832 	}
1833 
1834 	if (ret == IIO_IOCTL_UNHANDLED)
1835 		ret = -ENODEV;
1836 
1837 out_unlock:
1838 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1839 
1840 	return ret;
1841 }
1842 
1843 static const struct file_operations iio_buffer_fileops = {
1844 	.owner = THIS_MODULE,
1845 	.llseek = noop_llseek,
1846 	.read = iio_buffer_read_outer_addr,
1847 	.write = iio_buffer_write_outer_addr,
1848 	.poll = iio_buffer_poll_addr,
1849 	.unlocked_ioctl = iio_ioctl,
1850 	.compat_ioctl = compat_ptr_ioctl,
1851 	.open = iio_chrdev_open,
1852 	.release = iio_chrdev_release,
1853 };
1854 
1855 static const struct file_operations iio_event_fileops = {
1856 	.owner = THIS_MODULE,
1857 	.llseek = noop_llseek,
1858 	.unlocked_ioctl = iio_ioctl,
1859 	.compat_ioctl = compat_ptr_ioctl,
1860 	.open = iio_chrdev_open,
1861 	.release = iio_chrdev_release,
1862 };
1863 
1864 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1865 {
1866 	int i, j;
1867 	const struct iio_chan_spec *channels = indio_dev->channels;
1868 
1869 	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1870 		return 0;
1871 
1872 	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1873 		if (channels[i].scan_index < 0)
1874 			continue;
1875 		for (j = i + 1; j < indio_dev->num_channels; j++)
1876 			if (channels[i].scan_index == channels[j].scan_index) {
1877 				dev_err(&indio_dev->dev,
1878 					"Duplicate scan index %d\n",
1879 					channels[i].scan_index);
1880 				return -EINVAL;
1881 			}
1882 	}
1883 
1884 	return 0;
1885 }
1886 
1887 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1888 {
1889 	unsigned int i;
1890 
1891 	if (!indio_dev->info->read_label)
1892 		return 0;
1893 
1894 	for (i = 0; i < indio_dev->num_channels; i++) {
1895 		if (indio_dev->channels[i].extend_name) {
1896 			dev_err(&indio_dev->dev,
1897 				"Cannot use labels and extend_name at the same time\n");
1898 			return -EINVAL;
1899 		}
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1906 
1907 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1908 {
1909 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1910 	struct fwnode_handle *fwnode;
1911 	int ret;
1912 
1913 	if (!indio_dev->info)
1914 		return -EINVAL;
1915 
1916 	iio_dev_opaque->driver_module = this_mod;
1917 
1918 	/* If the calling driver did not initialize firmware node, do it here */
1919 	if (dev_fwnode(&indio_dev->dev))
1920 		fwnode = dev_fwnode(&indio_dev->dev);
1921 	else
1922 		fwnode = dev_fwnode(indio_dev->dev.parent);
1923 	device_set_node(&indio_dev->dev, fwnode);
1924 
1925 	fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1926 
1927 	ret = iio_check_unique_scan_index(indio_dev);
1928 	if (ret < 0)
1929 		return ret;
1930 
1931 	ret = iio_check_extended_name(indio_dev);
1932 	if (ret < 0)
1933 		return ret;
1934 
1935 	iio_device_register_debugfs(indio_dev);
1936 
1937 	ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1938 	if (ret) {
1939 		dev_err(indio_dev->dev.parent,
1940 			"Failed to create buffer sysfs interfaces\n");
1941 		goto error_unreg_debugfs;
1942 	}
1943 
1944 	ret = iio_device_register_sysfs(indio_dev);
1945 	if (ret) {
1946 		dev_err(indio_dev->dev.parent,
1947 			"Failed to register sysfs interfaces\n");
1948 		goto error_buffer_free_sysfs;
1949 	}
1950 	ret = iio_device_register_eventset(indio_dev);
1951 	if (ret) {
1952 		dev_err(indio_dev->dev.parent,
1953 			"Failed to register event set\n");
1954 		goto error_free_sysfs;
1955 	}
1956 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1957 		iio_device_register_trigger_consumer(indio_dev);
1958 
1959 	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1960 		indio_dev->setup_ops == NULL)
1961 		indio_dev->setup_ops = &noop_ring_setup_ops;
1962 
1963 	if (iio_dev_opaque->attached_buffers_cnt)
1964 		cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1965 	else if (iio_dev_opaque->event_interface)
1966 		cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1967 
1968 	if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1969 		indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1970 		iio_dev_opaque->chrdev.owner = this_mod;
1971 	}
1972 
1973 	/* assign device groups now; they should be all registered now */
1974 	indio_dev->dev.groups = iio_dev_opaque->groups;
1975 
1976 	ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1977 	if (ret < 0)
1978 		goto error_unreg_eventset;
1979 
1980 	return 0;
1981 
1982 error_unreg_eventset:
1983 	iio_device_unregister_eventset(indio_dev);
1984 error_free_sysfs:
1985 	iio_device_unregister_sysfs(indio_dev);
1986 error_buffer_free_sysfs:
1987 	iio_buffers_free_sysfs_and_mask(indio_dev);
1988 error_unreg_debugfs:
1989 	iio_device_unregister_debugfs(indio_dev);
1990 	return ret;
1991 }
1992 EXPORT_SYMBOL(__iio_device_register);
1993 
1994 /**
1995  * iio_device_unregister() - unregister a device from the IIO subsystem
1996  * @indio_dev:		Device structure representing the device.
1997  **/
1998 void iio_device_unregister(struct iio_dev *indio_dev)
1999 {
2000 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2001 
2002 	cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2003 
2004 	mutex_lock(&iio_dev_opaque->info_exist_lock);
2005 
2006 	iio_device_unregister_debugfs(indio_dev);
2007 
2008 	iio_disable_all_buffers(indio_dev);
2009 
2010 	indio_dev->info = NULL;
2011 
2012 	iio_device_wakeup_eventset(indio_dev);
2013 	iio_buffer_wakeup_poll(indio_dev);
2014 
2015 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
2016 
2017 	iio_buffers_free_sysfs_and_mask(indio_dev);
2018 }
2019 EXPORT_SYMBOL(iio_device_unregister);
2020 
2021 static void devm_iio_device_unreg(void *indio_dev)
2022 {
2023 	iio_device_unregister(indio_dev);
2024 }
2025 
2026 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2027 			       struct module *this_mod)
2028 {
2029 	int ret;
2030 
2031 	ret = __iio_device_register(indio_dev, this_mod);
2032 	if (ret)
2033 		return ret;
2034 
2035 	return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2036 }
2037 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2038 
2039 /**
2040  * iio_device_claim_direct_mode - Keep device in direct mode
2041  * @indio_dev:	the iio_dev associated with the device
2042  *
2043  * If the device is in direct mode it is guaranteed to stay
2044  * that way until iio_device_release_direct_mode() is called.
2045  *
2046  * Use with iio_device_release_direct_mode()
2047  *
2048  * Returns: 0 on success, -EBUSY on failure
2049  */
2050 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2051 {
2052 	mutex_lock(&indio_dev->mlock);
2053 
2054 	if (iio_buffer_enabled(indio_dev)) {
2055 		mutex_unlock(&indio_dev->mlock);
2056 		return -EBUSY;
2057 	}
2058 	return 0;
2059 }
2060 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2061 
2062 /**
2063  * iio_device_release_direct_mode - releases claim on direct mode
2064  * @indio_dev:	the iio_dev associated with the device
2065  *
2066  * Release the claim. Device is no longer guaranteed to stay
2067  * in direct mode.
2068  *
2069  * Use with iio_device_claim_direct_mode()
2070  */
2071 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2072 {
2073 	mutex_unlock(&indio_dev->mlock);
2074 }
2075 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2076 
2077 /**
2078  * iio_device_get_current_mode() - helper function providing read-only access to
2079  *				   the opaque @currentmode variable
2080  * @indio_dev:			   IIO device structure for device
2081  */
2082 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2083 {
2084 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2085 
2086 	return iio_dev_opaque->currentmode;
2087 }
2088 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2089 
2090 subsys_initcall(iio_init);
2091 module_exit(iio_exit);
2092 
2093 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2094 MODULE_DESCRIPTION("Industrial I/O core");
2095 MODULE_LICENSE("GPL");
2096