xref: /linux/drivers/iio/industrialio-core.c (revision 0e8bf26c777a7da6e085ff1f0e31640a042dae5c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Based on elements of hwmon and input subsystems.
7  */
8 
9 #define pr_fmt(fmt) "iio-core: " fmt
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/kdev_t.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/fs.h>
18 #include <linux/poll.h>
19 #include <linux/property.h>
20 #include <linux/sched.h>
21 #include <linux/wait.h>
22 #include <linux/cdev.h>
23 #include <linux/slab.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/debugfs.h>
26 #include <linux/mutex.h>
27 #include <linux/iio/iio.h>
28 #include <linux/iio/iio-opaque.h>
29 #include "iio_core.h"
30 #include "iio_core_trigger.h"
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/events.h>
33 #include <linux/iio/buffer.h>
34 #include <linux/iio/buffer_impl.h>
35 
36 /* IDA to assign each registered device a unique id */
37 static DEFINE_IDA(iio_ida);
38 
39 static dev_t iio_devt;
40 
41 #define IIO_DEV_MAX 256
42 struct bus_type iio_bus_type = {
43 	.name = "iio",
44 };
45 EXPORT_SYMBOL(iio_bus_type);
46 
47 static struct dentry *iio_debugfs_dentry;
48 
49 static const char * const iio_direction[] = {
50 	[0] = "in",
51 	[1] = "out",
52 };
53 
54 static const char * const iio_chan_type_name_spec[] = {
55 	[IIO_VOLTAGE] = "voltage",
56 	[IIO_CURRENT] = "current",
57 	[IIO_POWER] = "power",
58 	[IIO_ACCEL] = "accel",
59 	[IIO_ANGL_VEL] = "anglvel",
60 	[IIO_MAGN] = "magn",
61 	[IIO_LIGHT] = "illuminance",
62 	[IIO_INTENSITY] = "intensity",
63 	[IIO_PROXIMITY] = "proximity",
64 	[IIO_TEMP] = "temp",
65 	[IIO_INCLI] = "incli",
66 	[IIO_ROT] = "rot",
67 	[IIO_ANGL] = "angl",
68 	[IIO_TIMESTAMP] = "timestamp",
69 	[IIO_CAPACITANCE] = "capacitance",
70 	[IIO_ALTVOLTAGE] = "altvoltage",
71 	[IIO_CCT] = "cct",
72 	[IIO_PRESSURE] = "pressure",
73 	[IIO_HUMIDITYRELATIVE] = "humidityrelative",
74 	[IIO_ACTIVITY] = "activity",
75 	[IIO_STEPS] = "steps",
76 	[IIO_ENERGY] = "energy",
77 	[IIO_DISTANCE] = "distance",
78 	[IIO_VELOCITY] = "velocity",
79 	[IIO_CONCENTRATION] = "concentration",
80 	[IIO_RESISTANCE] = "resistance",
81 	[IIO_PH] = "ph",
82 	[IIO_UVINDEX] = "uvindex",
83 	[IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
84 	[IIO_COUNT] = "count",
85 	[IIO_INDEX] = "index",
86 	[IIO_GRAVITY]  = "gravity",
87 	[IIO_POSITIONRELATIVE]  = "positionrelative",
88 	[IIO_PHASE] = "phase",
89 	[IIO_MASSCONCENTRATION] = "massconcentration",
90 };
91 
92 static const char * const iio_modifier_names[] = {
93 	[IIO_MOD_X] = "x",
94 	[IIO_MOD_Y] = "y",
95 	[IIO_MOD_Z] = "z",
96 	[IIO_MOD_X_AND_Y] = "x&y",
97 	[IIO_MOD_X_AND_Z] = "x&z",
98 	[IIO_MOD_Y_AND_Z] = "y&z",
99 	[IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
100 	[IIO_MOD_X_OR_Y] = "x|y",
101 	[IIO_MOD_X_OR_Z] = "x|z",
102 	[IIO_MOD_Y_OR_Z] = "y|z",
103 	[IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
104 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
105 	[IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
106 	[IIO_MOD_LIGHT_BOTH] = "both",
107 	[IIO_MOD_LIGHT_IR] = "ir",
108 	[IIO_MOD_LIGHT_CLEAR] = "clear",
109 	[IIO_MOD_LIGHT_RED] = "red",
110 	[IIO_MOD_LIGHT_GREEN] = "green",
111 	[IIO_MOD_LIGHT_BLUE] = "blue",
112 	[IIO_MOD_LIGHT_UV] = "uv",
113 	[IIO_MOD_LIGHT_DUV] = "duv",
114 	[IIO_MOD_QUATERNION] = "quaternion",
115 	[IIO_MOD_TEMP_AMBIENT] = "ambient",
116 	[IIO_MOD_TEMP_OBJECT] = "object",
117 	[IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
118 	[IIO_MOD_NORTH_TRUE] = "from_north_true",
119 	[IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
120 	[IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
121 	[IIO_MOD_RUNNING] = "running",
122 	[IIO_MOD_JOGGING] = "jogging",
123 	[IIO_MOD_WALKING] = "walking",
124 	[IIO_MOD_STILL] = "still",
125 	[IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
126 	[IIO_MOD_I] = "i",
127 	[IIO_MOD_Q] = "q",
128 	[IIO_MOD_CO2] = "co2",
129 	[IIO_MOD_VOC] = "voc",
130 	[IIO_MOD_PM1] = "pm1",
131 	[IIO_MOD_PM2P5] = "pm2p5",
132 	[IIO_MOD_PM4] = "pm4",
133 	[IIO_MOD_PM10] = "pm10",
134 	[IIO_MOD_ETHANOL] = "ethanol",
135 	[IIO_MOD_H2] = "h2",
136 	[IIO_MOD_O2] = "o2",
137 };
138 
139 /* relies on pairs of these shared then separate */
140 static const char * const iio_chan_info_postfix[] = {
141 	[IIO_CHAN_INFO_RAW] = "raw",
142 	[IIO_CHAN_INFO_PROCESSED] = "input",
143 	[IIO_CHAN_INFO_SCALE] = "scale",
144 	[IIO_CHAN_INFO_OFFSET] = "offset",
145 	[IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
146 	[IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
147 	[IIO_CHAN_INFO_PEAK] = "peak_raw",
148 	[IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
149 	[IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
150 	[IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
151 	[IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
152 	= "filter_low_pass_3db_frequency",
153 	[IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
154 	= "filter_high_pass_3db_frequency",
155 	[IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
156 	[IIO_CHAN_INFO_FREQUENCY] = "frequency",
157 	[IIO_CHAN_INFO_PHASE] = "phase",
158 	[IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
159 	[IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
160 	[IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
161 	[IIO_CHAN_INFO_INT_TIME] = "integration_time",
162 	[IIO_CHAN_INFO_ENABLE] = "en",
163 	[IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
164 	[IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
165 	[IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
166 	[IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
167 	[IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
168 	[IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
169 	[IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
170 	[IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
171 	[IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
172 };
173 /**
174  * iio_device_id() - query the unique ID for the device
175  * @indio_dev:		Device structure whose ID is being queried
176  *
177  * The IIO device ID is a unique index used for example for the naming
178  * of the character device /dev/iio\:device[ID]
179  */
180 int iio_device_id(struct iio_dev *indio_dev)
181 {
182 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
183 
184 	return iio_dev_opaque->id;
185 }
186 EXPORT_SYMBOL_GPL(iio_device_id);
187 
188 /**
189  * iio_buffer_enabled() - helper function to test if the buffer is enabled
190  * @indio_dev:		IIO device structure for device
191  */
192 bool iio_buffer_enabled(struct iio_dev *indio_dev)
193 {
194 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
195 
196 	return iio_dev_opaque->currentmode
197 		& (INDIO_BUFFER_TRIGGERED | INDIO_BUFFER_HARDWARE |
198 		   INDIO_BUFFER_SOFTWARE);
199 }
200 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
201 
202 /**
203  * iio_sysfs_match_string_with_gaps - matches given string in an array with gaps
204  * @array: array of strings
205  * @n: number of strings in the array
206  * @str: string to match with
207  *
208  * Returns index of @str in the @array or -EINVAL, similar to match_string().
209  * Uses sysfs_streq instead of strcmp for matching.
210  *
211  * This routine will look for a string in an array of strings.
212  * The search will continue until the element is found or the n-th element
213  * is reached, regardless of any NULL elements in the array.
214  */
215 static int iio_sysfs_match_string_with_gaps(const char * const *array, size_t n,
216 					    const char *str)
217 {
218 	const char *item;
219 	int index;
220 
221 	for (index = 0; index < n; index++) {
222 		item = array[index];
223 		if (!item)
224 			continue;
225 		if (sysfs_streq(item, str))
226 			return index;
227 	}
228 
229 	return -EINVAL;
230 }
231 
232 #if defined(CONFIG_DEBUG_FS)
233 /*
234  * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
235  * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
236  */
237 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
238 {
239 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
240 
241 	return iio_dev_opaque->debugfs_dentry;
242 }
243 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
244 #endif
245 
246 /**
247  * iio_find_channel_from_si() - get channel from its scan index
248  * @indio_dev:		device
249  * @si:			scan index to match
250  */
251 const struct iio_chan_spec
252 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
253 {
254 	int i;
255 
256 	for (i = 0; i < indio_dev->num_channels; i++)
257 		if (indio_dev->channels[i].scan_index == si)
258 			return &indio_dev->channels[i];
259 	return NULL;
260 }
261 
262 /* This turns up an awful lot */
263 ssize_t iio_read_const_attr(struct device *dev,
264 			    struct device_attribute *attr,
265 			    char *buf)
266 {
267 	return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
268 }
269 EXPORT_SYMBOL(iio_read_const_attr);
270 
271 /**
272  * iio_device_set_clock() - Set current timestamping clock for the device
273  * @indio_dev: IIO device structure containing the device
274  * @clock_id: timestamping clock posix identifier to set.
275  */
276 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
277 {
278 	int ret;
279 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
280 	const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
281 
282 	ret = mutex_lock_interruptible(&indio_dev->mlock);
283 	if (ret)
284 		return ret;
285 	if ((ev_int && iio_event_enabled(ev_int)) ||
286 	    iio_buffer_enabled(indio_dev)) {
287 		mutex_unlock(&indio_dev->mlock);
288 		return -EBUSY;
289 	}
290 	iio_dev_opaque->clock_id = clock_id;
291 	mutex_unlock(&indio_dev->mlock);
292 
293 	return 0;
294 }
295 EXPORT_SYMBOL(iio_device_set_clock);
296 
297 /**
298  * iio_device_get_clock() - Retrieve current timestamping clock for the device
299  * @indio_dev: IIO device structure containing the device
300  */
301 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
302 {
303 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
304 
305 	return iio_dev_opaque->clock_id;
306 }
307 EXPORT_SYMBOL(iio_device_get_clock);
308 
309 /**
310  * iio_get_time_ns() - utility function to get a time stamp for events etc
311  * @indio_dev: device
312  */
313 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
314 {
315 	struct timespec64 tp;
316 
317 	switch (iio_device_get_clock(indio_dev)) {
318 	case CLOCK_REALTIME:
319 		return ktime_get_real_ns();
320 	case CLOCK_MONOTONIC:
321 		return ktime_get_ns();
322 	case CLOCK_MONOTONIC_RAW:
323 		return ktime_get_raw_ns();
324 	case CLOCK_REALTIME_COARSE:
325 		return ktime_to_ns(ktime_get_coarse_real());
326 	case CLOCK_MONOTONIC_COARSE:
327 		ktime_get_coarse_ts64(&tp);
328 		return timespec64_to_ns(&tp);
329 	case CLOCK_BOOTTIME:
330 		return ktime_get_boottime_ns();
331 	case CLOCK_TAI:
332 		return ktime_get_clocktai_ns();
333 	default:
334 		BUG();
335 	}
336 }
337 EXPORT_SYMBOL(iio_get_time_ns);
338 
339 static int __init iio_init(void)
340 {
341 	int ret;
342 
343 	/* Register sysfs bus */
344 	ret  = bus_register(&iio_bus_type);
345 	if (ret < 0) {
346 		pr_err("could not register bus type\n");
347 		goto error_nothing;
348 	}
349 
350 	ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
351 	if (ret < 0) {
352 		pr_err("failed to allocate char dev region\n");
353 		goto error_unregister_bus_type;
354 	}
355 
356 	iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
357 
358 	return 0;
359 
360 error_unregister_bus_type:
361 	bus_unregister(&iio_bus_type);
362 error_nothing:
363 	return ret;
364 }
365 
366 static void __exit iio_exit(void)
367 {
368 	if (iio_devt)
369 		unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
370 	bus_unregister(&iio_bus_type);
371 	debugfs_remove(iio_debugfs_dentry);
372 }
373 
374 #if defined(CONFIG_DEBUG_FS)
375 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
376 			      size_t count, loff_t *ppos)
377 {
378 	struct iio_dev *indio_dev = file->private_data;
379 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
380 	unsigned int val = 0;
381 	int ret;
382 
383 	if (*ppos > 0)
384 		return simple_read_from_buffer(userbuf, count, ppos,
385 					       iio_dev_opaque->read_buf,
386 					       iio_dev_opaque->read_buf_len);
387 
388 	ret = indio_dev->info->debugfs_reg_access(indio_dev,
389 						  iio_dev_opaque->cached_reg_addr,
390 						  0, &val);
391 	if (ret) {
392 		dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
393 		return ret;
394 	}
395 
396 	iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
397 					      sizeof(iio_dev_opaque->read_buf),
398 					      "0x%X\n", val);
399 
400 	return simple_read_from_buffer(userbuf, count, ppos,
401 				       iio_dev_opaque->read_buf,
402 				       iio_dev_opaque->read_buf_len);
403 }
404 
405 static ssize_t iio_debugfs_write_reg(struct file *file,
406 		     const char __user *userbuf, size_t count, loff_t *ppos)
407 {
408 	struct iio_dev *indio_dev = file->private_data;
409 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
410 	unsigned int reg, val;
411 	char buf[80];
412 	int ret;
413 
414 	count = min_t(size_t, count, (sizeof(buf)-1));
415 	if (copy_from_user(buf, userbuf, count))
416 		return -EFAULT;
417 
418 	buf[count] = 0;
419 
420 	ret = sscanf(buf, "%i %i", &reg, &val);
421 
422 	switch (ret) {
423 	case 1:
424 		iio_dev_opaque->cached_reg_addr = reg;
425 		break;
426 	case 2:
427 		iio_dev_opaque->cached_reg_addr = reg;
428 		ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
429 							  val, NULL);
430 		if (ret) {
431 			dev_err(indio_dev->dev.parent, "%s: write failed\n",
432 				__func__);
433 			return ret;
434 		}
435 		break;
436 	default:
437 		return -EINVAL;
438 	}
439 
440 	return count;
441 }
442 
443 static const struct file_operations iio_debugfs_reg_fops = {
444 	.open = simple_open,
445 	.read = iio_debugfs_read_reg,
446 	.write = iio_debugfs_write_reg,
447 };
448 
449 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
450 {
451 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
452 
453 	debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
454 }
455 
456 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
457 {
458 	struct iio_dev_opaque *iio_dev_opaque;
459 
460 	if (indio_dev->info->debugfs_reg_access == NULL)
461 		return;
462 
463 	if (!iio_debugfs_dentry)
464 		return;
465 
466 	iio_dev_opaque = to_iio_dev_opaque(indio_dev);
467 
468 	iio_dev_opaque->debugfs_dentry =
469 		debugfs_create_dir(dev_name(&indio_dev->dev),
470 				   iio_debugfs_dentry);
471 
472 	debugfs_create_file("direct_reg_access", 0644,
473 			    iio_dev_opaque->debugfs_dentry, indio_dev,
474 			    &iio_debugfs_reg_fops);
475 }
476 #else
477 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
478 {
479 }
480 
481 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
482 {
483 }
484 #endif /* CONFIG_DEBUG_FS */
485 
486 static ssize_t iio_read_channel_ext_info(struct device *dev,
487 				     struct device_attribute *attr,
488 				     char *buf)
489 {
490 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
491 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
492 	const struct iio_chan_spec_ext_info *ext_info;
493 
494 	ext_info = &this_attr->c->ext_info[this_attr->address];
495 
496 	return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
497 }
498 
499 static ssize_t iio_write_channel_ext_info(struct device *dev,
500 				     struct device_attribute *attr,
501 				     const char *buf,
502 					 size_t len)
503 {
504 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
505 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
506 	const struct iio_chan_spec_ext_info *ext_info;
507 
508 	ext_info = &this_attr->c->ext_info[this_attr->address];
509 
510 	return ext_info->write(indio_dev, ext_info->private,
511 			       this_attr->c, buf, len);
512 }
513 
514 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
515 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
516 {
517 	const struct iio_enum *e = (const struct iio_enum *)priv;
518 	unsigned int i;
519 	size_t len = 0;
520 
521 	if (!e->num_items)
522 		return 0;
523 
524 	for (i = 0; i < e->num_items; ++i) {
525 		if (!e->items[i])
526 			continue;
527 		len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
528 	}
529 
530 	/* replace last space with a newline */
531 	buf[len - 1] = '\n';
532 
533 	return len;
534 }
535 EXPORT_SYMBOL_GPL(iio_enum_available_read);
536 
537 ssize_t iio_enum_read(struct iio_dev *indio_dev,
538 	uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
539 {
540 	const struct iio_enum *e = (const struct iio_enum *)priv;
541 	int i;
542 
543 	if (!e->get)
544 		return -EINVAL;
545 
546 	i = e->get(indio_dev, chan);
547 	if (i < 0)
548 		return i;
549 	else if (i >= e->num_items || !e->items[i])
550 		return -EINVAL;
551 
552 	return sysfs_emit(buf, "%s\n", e->items[i]);
553 }
554 EXPORT_SYMBOL_GPL(iio_enum_read);
555 
556 ssize_t iio_enum_write(struct iio_dev *indio_dev,
557 	uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
558 	size_t len)
559 {
560 	const struct iio_enum *e = (const struct iio_enum *)priv;
561 	int ret;
562 
563 	if (!e->set)
564 		return -EINVAL;
565 
566 	ret = iio_sysfs_match_string_with_gaps(e->items, e->num_items, buf);
567 	if (ret < 0)
568 		return ret;
569 
570 	ret = e->set(indio_dev, chan, ret);
571 	return ret ? ret : len;
572 }
573 EXPORT_SYMBOL_GPL(iio_enum_write);
574 
575 static const struct iio_mount_matrix iio_mount_idmatrix = {
576 	.rotation = {
577 		"1", "0", "0",
578 		"0", "1", "0",
579 		"0", "0", "1"
580 	}
581 };
582 
583 static int iio_setup_mount_idmatrix(const struct device *dev,
584 				    struct iio_mount_matrix *matrix)
585 {
586 	*matrix = iio_mount_idmatrix;
587 	dev_info(dev, "mounting matrix not found: using identity...\n");
588 	return 0;
589 }
590 
591 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
592 			      const struct iio_chan_spec *chan, char *buf)
593 {
594 	const struct iio_mount_matrix *mtx = ((iio_get_mount_matrix_t *)
595 					      priv)(indio_dev, chan);
596 
597 	if (IS_ERR(mtx))
598 		return PTR_ERR(mtx);
599 
600 	if (!mtx)
601 		mtx = &iio_mount_idmatrix;
602 
603 	return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
604 			  mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
605 			  mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
606 			  mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
607 }
608 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
609 
610 /**
611  * iio_read_mount_matrix() - retrieve iio device mounting matrix from
612  *                           device "mount-matrix" property
613  * @dev:	device the mounting matrix property is assigned to
614  * @matrix:	where to store retrieved matrix
615  *
616  * If device is assigned no mounting matrix property, a default 3x3 identity
617  * matrix will be filled in.
618  *
619  * Return: 0 if success, or a negative error code on failure.
620  */
621 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
622 {
623 	size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
624 	int err;
625 
626 	err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
627 	if (err == len)
628 		return 0;
629 
630 	if (err >= 0)
631 		/* Invalid number of matrix entries. */
632 		return -EINVAL;
633 
634 	if (err != -EINVAL)
635 		/* Invalid matrix declaration format. */
636 		return err;
637 
638 	/* Matrix was not declared at all: fallback to identity. */
639 	return iio_setup_mount_idmatrix(dev, matrix);
640 }
641 EXPORT_SYMBOL(iio_read_mount_matrix);
642 
643 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
644 				  int size, const int *vals)
645 {
646 	int tmp0, tmp1;
647 	s64 tmp2;
648 	bool scale_db = false;
649 
650 	switch (type) {
651 	case IIO_VAL_INT:
652 		return sysfs_emit_at(buf, offset, "%d", vals[0]);
653 	case IIO_VAL_INT_PLUS_MICRO_DB:
654 		scale_db = true;
655 		fallthrough;
656 	case IIO_VAL_INT_PLUS_MICRO:
657 		if (vals[1] < 0)
658 			return sysfs_emit_at(buf, offset, "-%d.%06u%s",
659 					     abs(vals[0]), -vals[1],
660 					     scale_db ? " dB" : "");
661 		else
662 			return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
663 					     vals[1], scale_db ? " dB" : "");
664 	case IIO_VAL_INT_PLUS_NANO:
665 		if (vals[1] < 0)
666 			return sysfs_emit_at(buf, offset, "-%d.%09u",
667 					     abs(vals[0]), -vals[1]);
668 		else
669 			return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
670 					     vals[1]);
671 	case IIO_VAL_FRACTIONAL:
672 		tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
673 		tmp1 = vals[1];
674 		tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
675 		if ((tmp2 < 0) && (tmp0 == 0))
676 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
677 		else
678 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
679 					     abs(tmp1));
680 	case IIO_VAL_FRACTIONAL_LOG2:
681 		tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
682 		tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
683 		if (tmp0 == 0 && tmp2 < 0)
684 			return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
685 		else
686 			return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
687 					     abs(tmp1));
688 	case IIO_VAL_INT_MULTIPLE:
689 	{
690 		int i;
691 		int l = 0;
692 
693 		for (i = 0; i < size; ++i)
694 			l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
695 		return l;
696 	}
697 	case IIO_VAL_CHAR:
698 		return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
699 	case IIO_VAL_INT_64:
700 		tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
701 		return sysfs_emit_at(buf, offset, "%lld", tmp2);
702 	default:
703 		return 0;
704 	}
705 }
706 
707 /**
708  * iio_format_value() - Formats a IIO value into its string representation
709  * @buf:	The buffer to which the formatted value gets written
710  *		which is assumed to be big enough (i.e. PAGE_SIZE).
711  * @type:	One of the IIO_VAL_* constants. This decides how the val
712  *		and val2 parameters are formatted.
713  * @size:	Number of IIO value entries contained in vals
714  * @vals:	Pointer to the values, exact meaning depends on the
715  *		type parameter.
716  *
717  * Return: 0 by default, a negative number on failure or the
718  *	   total number of characters written for a type that belongs
719  *	   to the IIO_VAL_* constant.
720  */
721 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
722 {
723 	ssize_t len;
724 
725 	len = __iio_format_value(buf, 0, type, size, vals);
726 	if (len >= PAGE_SIZE - 1)
727 		return -EFBIG;
728 
729 	return len + sysfs_emit_at(buf, len, "\n");
730 }
731 EXPORT_SYMBOL_GPL(iio_format_value);
732 
733 static ssize_t iio_read_channel_label(struct device *dev,
734 				      struct device_attribute *attr,
735 				      char *buf)
736 {
737 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
738 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
739 
740 	if (indio_dev->info->read_label)
741 		return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
742 
743 	if (this_attr->c->extend_name)
744 		return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
745 
746 	return -EINVAL;
747 }
748 
749 static ssize_t iio_read_channel_info(struct device *dev,
750 				     struct device_attribute *attr,
751 				     char *buf)
752 {
753 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
754 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
755 	int vals[INDIO_MAX_RAW_ELEMENTS];
756 	int ret;
757 	int val_len = 2;
758 
759 	if (indio_dev->info->read_raw_multi)
760 		ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
761 							INDIO_MAX_RAW_ELEMENTS,
762 							vals, &val_len,
763 							this_attr->address);
764 	else
765 		ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
766 				    &vals[0], &vals[1], this_attr->address);
767 
768 	if (ret < 0)
769 		return ret;
770 
771 	return iio_format_value(buf, ret, val_len, vals);
772 }
773 
774 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
775 			       const char *prefix, const char *suffix)
776 {
777 	ssize_t len;
778 	int stride;
779 	int i;
780 
781 	switch (type) {
782 	case IIO_VAL_INT:
783 		stride = 1;
784 		break;
785 	default:
786 		stride = 2;
787 		break;
788 	}
789 
790 	len = sysfs_emit(buf, prefix);
791 
792 	for (i = 0; i <= length - stride; i += stride) {
793 		if (i != 0) {
794 			len += sysfs_emit_at(buf, len, " ");
795 			if (len >= PAGE_SIZE)
796 				return -EFBIG;
797 		}
798 
799 		len += __iio_format_value(buf, len, type, stride, &vals[i]);
800 		if (len >= PAGE_SIZE)
801 			return -EFBIG;
802 	}
803 
804 	len += sysfs_emit_at(buf, len, "%s\n", suffix);
805 
806 	return len;
807 }
808 
809 static ssize_t iio_format_avail_list(char *buf, const int *vals,
810 				     int type, int length)
811 {
812 
813 	return iio_format_list(buf, vals, type, length, "", "");
814 }
815 
816 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
817 {
818 	int length;
819 
820 	/*
821 	 * length refers to the array size , not the number of elements.
822 	 * The purpose is to print the range [min , step ,max] so length should
823 	 * be 3 in case of int, and 6 for other types.
824 	 */
825 	switch (type) {
826 	case IIO_VAL_INT:
827 		length = 3;
828 		break;
829 	default:
830 		length = 6;
831 		break;
832 	}
833 
834 	return iio_format_list(buf, vals, type, length, "[", "]");
835 }
836 
837 static ssize_t iio_read_channel_info_avail(struct device *dev,
838 					   struct device_attribute *attr,
839 					   char *buf)
840 {
841 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
842 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
843 	const int *vals;
844 	int ret;
845 	int length;
846 	int type;
847 
848 	ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
849 					  &vals, &type, &length,
850 					  this_attr->address);
851 
852 	if (ret < 0)
853 		return ret;
854 	switch (ret) {
855 	case IIO_AVAIL_LIST:
856 		return iio_format_avail_list(buf, vals, type, length);
857 	case IIO_AVAIL_RANGE:
858 		return iio_format_avail_range(buf, vals, type);
859 	default:
860 		return -EINVAL;
861 	}
862 }
863 
864 /**
865  * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
866  * @str: The string to parse
867  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
868  * @integer: The integer part of the number
869  * @fract: The fractional part of the number
870  * @scale_db: True if this should parse as dB
871  *
872  * Returns 0 on success, or a negative error code if the string could not be
873  * parsed.
874  */
875 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
876 				 int *integer, int *fract, bool scale_db)
877 {
878 	int i = 0, f = 0;
879 	bool integer_part = true, negative = false;
880 
881 	if (fract_mult == 0) {
882 		*fract = 0;
883 
884 		return kstrtoint(str, 0, integer);
885 	}
886 
887 	if (str[0] == '-') {
888 		negative = true;
889 		str++;
890 	} else if (str[0] == '+') {
891 		str++;
892 	}
893 
894 	while (*str) {
895 		if ('0' <= *str && *str <= '9') {
896 			if (integer_part) {
897 				i = i * 10 + *str - '0';
898 			} else {
899 				f += fract_mult * (*str - '0');
900 				fract_mult /= 10;
901 			}
902 		} else if (*str == '\n') {
903 			if (*(str + 1) == '\0')
904 				break;
905 			return -EINVAL;
906 		} else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
907 			/* Ignore the dB suffix */
908 			str += sizeof(" dB") - 1;
909 			continue;
910 		} else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
911 			/* Ignore the dB suffix */
912 			str += sizeof("dB") - 1;
913 			continue;
914 		} else if (*str == '.' && integer_part) {
915 			integer_part = false;
916 		} else {
917 			return -EINVAL;
918 		}
919 		str++;
920 	}
921 
922 	if (negative) {
923 		if (i)
924 			i = -i;
925 		else
926 			f = -f;
927 	}
928 
929 	*integer = i;
930 	*fract = f;
931 
932 	return 0;
933 }
934 
935 /**
936  * iio_str_to_fixpoint() - Parse a fixed-point number from a string
937  * @str: The string to parse
938  * @fract_mult: Multiplier for the first decimal place, should be a power of 10
939  * @integer: The integer part of the number
940  * @fract: The fractional part of the number
941  *
942  * Returns 0 on success, or a negative error code if the string could not be
943  * parsed.
944  */
945 int iio_str_to_fixpoint(const char *str, int fract_mult,
946 			int *integer, int *fract)
947 {
948 	return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
949 }
950 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
951 
952 static ssize_t iio_write_channel_info(struct device *dev,
953 				      struct device_attribute *attr,
954 				      const char *buf,
955 				      size_t len)
956 {
957 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
958 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
959 	int ret, fract_mult = 100000;
960 	int integer, fract = 0;
961 	bool is_char = false;
962 	bool scale_db = false;
963 
964 	/* Assumes decimal - precision based on number of digits */
965 	if (!indio_dev->info->write_raw)
966 		return -EINVAL;
967 
968 	if (indio_dev->info->write_raw_get_fmt)
969 		switch (indio_dev->info->write_raw_get_fmt(indio_dev,
970 			this_attr->c, this_attr->address)) {
971 		case IIO_VAL_INT:
972 			fract_mult = 0;
973 			break;
974 		case IIO_VAL_INT_PLUS_MICRO_DB:
975 			scale_db = true;
976 			fallthrough;
977 		case IIO_VAL_INT_PLUS_MICRO:
978 			fract_mult = 100000;
979 			break;
980 		case IIO_VAL_INT_PLUS_NANO:
981 			fract_mult = 100000000;
982 			break;
983 		case IIO_VAL_CHAR:
984 			is_char = true;
985 			break;
986 		default:
987 			return -EINVAL;
988 		}
989 
990 	if (is_char) {
991 		char ch;
992 
993 		if (sscanf(buf, "%c", &ch) != 1)
994 			return -EINVAL;
995 		integer = ch;
996 	} else {
997 		ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
998 					    scale_db);
999 		if (ret)
1000 			return ret;
1001 	}
1002 
1003 	ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
1004 					 integer, fract, this_attr->address);
1005 	if (ret)
1006 		return ret;
1007 
1008 	return len;
1009 }
1010 
1011 static
1012 int __iio_device_attr_init(struct device_attribute *dev_attr,
1013 			   const char *postfix,
1014 			   struct iio_chan_spec const *chan,
1015 			   ssize_t (*readfunc)(struct device *dev,
1016 					       struct device_attribute *attr,
1017 					       char *buf),
1018 			   ssize_t (*writefunc)(struct device *dev,
1019 						struct device_attribute *attr,
1020 						const char *buf,
1021 						size_t len),
1022 			   enum iio_shared_by shared_by)
1023 {
1024 	int ret = 0;
1025 	char *name = NULL;
1026 	char *full_postfix;
1027 
1028 	sysfs_attr_init(&dev_attr->attr);
1029 
1030 	/* Build up postfix of <extend_name>_<modifier>_postfix */
1031 	if (chan->modified && (shared_by == IIO_SEPARATE)) {
1032 		if (chan->extend_name)
1033 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1034 						 iio_modifier_names[chan
1035 								    ->channel2],
1036 						 chan->extend_name,
1037 						 postfix);
1038 		else
1039 			full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1040 						 iio_modifier_names[chan
1041 								    ->channel2],
1042 						 postfix);
1043 	} else {
1044 		if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1045 			full_postfix = kstrdup(postfix, GFP_KERNEL);
1046 		else
1047 			full_postfix = kasprintf(GFP_KERNEL,
1048 						 "%s_%s",
1049 						 chan->extend_name,
1050 						 postfix);
1051 	}
1052 	if (full_postfix == NULL)
1053 		return -ENOMEM;
1054 
1055 	if (chan->differential) { /* Differential can not have modifier */
1056 		switch (shared_by) {
1057 		case IIO_SHARED_BY_ALL:
1058 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1059 			break;
1060 		case IIO_SHARED_BY_DIR:
1061 			name = kasprintf(GFP_KERNEL, "%s_%s",
1062 						iio_direction[chan->output],
1063 						full_postfix);
1064 			break;
1065 		case IIO_SHARED_BY_TYPE:
1066 			name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1067 					    iio_direction[chan->output],
1068 					    iio_chan_type_name_spec[chan->type],
1069 					    iio_chan_type_name_spec[chan->type],
1070 					    full_postfix);
1071 			break;
1072 		case IIO_SEPARATE:
1073 			if (!chan->indexed) {
1074 				WARN(1, "Differential channels must be indexed\n");
1075 				ret = -EINVAL;
1076 				goto error_free_full_postfix;
1077 			}
1078 			name = kasprintf(GFP_KERNEL,
1079 					    "%s_%s%d-%s%d_%s",
1080 					    iio_direction[chan->output],
1081 					    iio_chan_type_name_spec[chan->type],
1082 					    chan->channel,
1083 					    iio_chan_type_name_spec[chan->type],
1084 					    chan->channel2,
1085 					    full_postfix);
1086 			break;
1087 		}
1088 	} else { /* Single ended */
1089 		switch (shared_by) {
1090 		case IIO_SHARED_BY_ALL:
1091 			name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1092 			break;
1093 		case IIO_SHARED_BY_DIR:
1094 			name = kasprintf(GFP_KERNEL, "%s_%s",
1095 						iio_direction[chan->output],
1096 						full_postfix);
1097 			break;
1098 		case IIO_SHARED_BY_TYPE:
1099 			name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1100 					    iio_direction[chan->output],
1101 					    iio_chan_type_name_spec[chan->type],
1102 					    full_postfix);
1103 			break;
1104 
1105 		case IIO_SEPARATE:
1106 			if (chan->indexed)
1107 				name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1108 						    iio_direction[chan->output],
1109 						    iio_chan_type_name_spec[chan->type],
1110 						    chan->channel,
1111 						    full_postfix);
1112 			else
1113 				name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1114 						    iio_direction[chan->output],
1115 						    iio_chan_type_name_spec[chan->type],
1116 						    full_postfix);
1117 			break;
1118 		}
1119 	}
1120 	if (name == NULL) {
1121 		ret = -ENOMEM;
1122 		goto error_free_full_postfix;
1123 	}
1124 	dev_attr->attr.name = name;
1125 
1126 	if (readfunc) {
1127 		dev_attr->attr.mode |= 0444;
1128 		dev_attr->show = readfunc;
1129 	}
1130 
1131 	if (writefunc) {
1132 		dev_attr->attr.mode |= 0200;
1133 		dev_attr->store = writefunc;
1134 	}
1135 
1136 error_free_full_postfix:
1137 	kfree(full_postfix);
1138 
1139 	return ret;
1140 }
1141 
1142 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1143 {
1144 	kfree(dev_attr->attr.name);
1145 }
1146 
1147 int __iio_add_chan_devattr(const char *postfix,
1148 			   struct iio_chan_spec const *chan,
1149 			   ssize_t (*readfunc)(struct device *dev,
1150 					       struct device_attribute *attr,
1151 					       char *buf),
1152 			   ssize_t (*writefunc)(struct device *dev,
1153 						struct device_attribute *attr,
1154 						const char *buf,
1155 						size_t len),
1156 			   u64 mask,
1157 			   enum iio_shared_by shared_by,
1158 			   struct device *dev,
1159 			   struct iio_buffer *buffer,
1160 			   struct list_head *attr_list)
1161 {
1162 	int ret;
1163 	struct iio_dev_attr *iio_attr, *t;
1164 
1165 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1166 	if (iio_attr == NULL)
1167 		return -ENOMEM;
1168 	ret = __iio_device_attr_init(&iio_attr->dev_attr,
1169 				     postfix, chan,
1170 				     readfunc, writefunc, shared_by);
1171 	if (ret)
1172 		goto error_iio_dev_attr_free;
1173 	iio_attr->c = chan;
1174 	iio_attr->address = mask;
1175 	iio_attr->buffer = buffer;
1176 	list_for_each_entry(t, attr_list, l)
1177 		if (strcmp(t->dev_attr.attr.name,
1178 			   iio_attr->dev_attr.attr.name) == 0) {
1179 			if (shared_by == IIO_SEPARATE)
1180 				dev_err(dev, "tried to double register : %s\n",
1181 					t->dev_attr.attr.name);
1182 			ret = -EBUSY;
1183 			goto error_device_attr_deinit;
1184 		}
1185 	list_add(&iio_attr->l, attr_list);
1186 
1187 	return 0;
1188 
1189 error_device_attr_deinit:
1190 	__iio_device_attr_deinit(&iio_attr->dev_attr);
1191 error_iio_dev_attr_free:
1192 	kfree(iio_attr);
1193 	return ret;
1194 }
1195 
1196 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1197 					 struct iio_chan_spec const *chan)
1198 {
1199 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1200 	int ret;
1201 
1202 	if (!indio_dev->info->read_label && !chan->extend_name)
1203 		return 0;
1204 
1205 	ret = __iio_add_chan_devattr("label",
1206 				     chan,
1207 				     &iio_read_channel_label,
1208 				     NULL,
1209 				     0,
1210 				     IIO_SEPARATE,
1211 				     &indio_dev->dev,
1212 				     NULL,
1213 				     &iio_dev_opaque->channel_attr_list);
1214 	if (ret < 0)
1215 		return ret;
1216 
1217 	return 1;
1218 }
1219 
1220 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1221 					 struct iio_chan_spec const *chan,
1222 					 enum iio_shared_by shared_by,
1223 					 const long *infomask)
1224 {
1225 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1226 	int i, ret, attrcount = 0;
1227 
1228 	for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1229 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1230 			return -EINVAL;
1231 		ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1232 					     chan,
1233 					     &iio_read_channel_info,
1234 					     &iio_write_channel_info,
1235 					     i,
1236 					     shared_by,
1237 					     &indio_dev->dev,
1238 					     NULL,
1239 					     &iio_dev_opaque->channel_attr_list);
1240 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1241 			continue;
1242 		else if (ret < 0)
1243 			return ret;
1244 		attrcount++;
1245 	}
1246 
1247 	return attrcount;
1248 }
1249 
1250 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1251 					       struct iio_chan_spec const *chan,
1252 					       enum iio_shared_by shared_by,
1253 					       const long *infomask)
1254 {
1255 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1256 	int i, ret, attrcount = 0;
1257 	char *avail_postfix;
1258 
1259 	for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1260 		if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1261 			return -EINVAL;
1262 		avail_postfix = kasprintf(GFP_KERNEL,
1263 					  "%s_available",
1264 					  iio_chan_info_postfix[i]);
1265 		if (!avail_postfix)
1266 			return -ENOMEM;
1267 
1268 		ret = __iio_add_chan_devattr(avail_postfix,
1269 					     chan,
1270 					     &iio_read_channel_info_avail,
1271 					     NULL,
1272 					     i,
1273 					     shared_by,
1274 					     &indio_dev->dev,
1275 					     NULL,
1276 					     &iio_dev_opaque->channel_attr_list);
1277 		kfree(avail_postfix);
1278 		if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1279 			continue;
1280 		else if (ret < 0)
1281 			return ret;
1282 		attrcount++;
1283 	}
1284 
1285 	return attrcount;
1286 }
1287 
1288 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1289 					struct iio_chan_spec const *chan)
1290 {
1291 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1292 	int ret, attrcount = 0;
1293 	const struct iio_chan_spec_ext_info *ext_info;
1294 
1295 	if (chan->channel < 0)
1296 		return 0;
1297 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1298 					    IIO_SEPARATE,
1299 					    &chan->info_mask_separate);
1300 	if (ret < 0)
1301 		return ret;
1302 	attrcount += ret;
1303 
1304 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1305 						  IIO_SEPARATE,
1306 						  &chan->info_mask_separate_available);
1307 	if (ret < 0)
1308 		return ret;
1309 	attrcount += ret;
1310 
1311 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1312 					    IIO_SHARED_BY_TYPE,
1313 					    &chan->info_mask_shared_by_type);
1314 	if (ret < 0)
1315 		return ret;
1316 	attrcount += ret;
1317 
1318 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1319 						  IIO_SHARED_BY_TYPE,
1320 						  &chan->info_mask_shared_by_type_available);
1321 	if (ret < 0)
1322 		return ret;
1323 	attrcount += ret;
1324 
1325 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1326 					    IIO_SHARED_BY_DIR,
1327 					    &chan->info_mask_shared_by_dir);
1328 	if (ret < 0)
1329 		return ret;
1330 	attrcount += ret;
1331 
1332 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1333 						  IIO_SHARED_BY_DIR,
1334 						  &chan->info_mask_shared_by_dir_available);
1335 	if (ret < 0)
1336 		return ret;
1337 	attrcount += ret;
1338 
1339 	ret = iio_device_add_info_mask_type(indio_dev, chan,
1340 					    IIO_SHARED_BY_ALL,
1341 					    &chan->info_mask_shared_by_all);
1342 	if (ret < 0)
1343 		return ret;
1344 	attrcount += ret;
1345 
1346 	ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1347 						  IIO_SHARED_BY_ALL,
1348 						  &chan->info_mask_shared_by_all_available);
1349 	if (ret < 0)
1350 		return ret;
1351 	attrcount += ret;
1352 
1353 	ret = iio_device_add_channel_label(indio_dev, chan);
1354 	if (ret < 0)
1355 		return ret;
1356 	attrcount += ret;
1357 
1358 	if (chan->ext_info) {
1359 		unsigned int i = 0;
1360 
1361 		for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1362 			ret = __iio_add_chan_devattr(ext_info->name,
1363 					chan,
1364 					ext_info->read ?
1365 					    &iio_read_channel_ext_info : NULL,
1366 					ext_info->write ?
1367 					    &iio_write_channel_ext_info : NULL,
1368 					i,
1369 					ext_info->shared,
1370 					&indio_dev->dev,
1371 					NULL,
1372 					&iio_dev_opaque->channel_attr_list);
1373 			i++;
1374 			if (ret == -EBUSY && ext_info->shared)
1375 				continue;
1376 
1377 			if (ret)
1378 				return ret;
1379 
1380 			attrcount++;
1381 		}
1382 	}
1383 
1384 	return attrcount;
1385 }
1386 
1387 /**
1388  * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1389  * @attr_list: List of IIO device attributes
1390  *
1391  * This function frees the memory allocated for each of the IIO device
1392  * attributes in the list.
1393  */
1394 void iio_free_chan_devattr_list(struct list_head *attr_list)
1395 {
1396 	struct iio_dev_attr *p, *n;
1397 
1398 	list_for_each_entry_safe(p, n, attr_list, l) {
1399 		kfree_const(p->dev_attr.attr.name);
1400 		list_del(&p->l);
1401 		kfree(p);
1402 	}
1403 }
1404 
1405 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1406 			 char *buf)
1407 {
1408 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1409 
1410 	return sysfs_emit(buf, "%s\n", indio_dev->name);
1411 }
1412 
1413 static DEVICE_ATTR_RO(name);
1414 
1415 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1416 			  char *buf)
1417 {
1418 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1419 
1420 	return sysfs_emit(buf, "%s\n", indio_dev->label);
1421 }
1422 
1423 static DEVICE_ATTR_RO(label);
1424 
1425 static ssize_t current_timestamp_clock_show(struct device *dev,
1426 					    struct device_attribute *attr,
1427 					    char *buf)
1428 {
1429 	const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1430 	const clockid_t clk = iio_device_get_clock(indio_dev);
1431 	const char *name;
1432 	ssize_t sz;
1433 
1434 	switch (clk) {
1435 	case CLOCK_REALTIME:
1436 		name = "realtime\n";
1437 		sz = sizeof("realtime\n");
1438 		break;
1439 	case CLOCK_MONOTONIC:
1440 		name = "monotonic\n";
1441 		sz = sizeof("monotonic\n");
1442 		break;
1443 	case CLOCK_MONOTONIC_RAW:
1444 		name = "monotonic_raw\n";
1445 		sz = sizeof("monotonic_raw\n");
1446 		break;
1447 	case CLOCK_REALTIME_COARSE:
1448 		name = "realtime_coarse\n";
1449 		sz = sizeof("realtime_coarse\n");
1450 		break;
1451 	case CLOCK_MONOTONIC_COARSE:
1452 		name = "monotonic_coarse\n";
1453 		sz = sizeof("monotonic_coarse\n");
1454 		break;
1455 	case CLOCK_BOOTTIME:
1456 		name = "boottime\n";
1457 		sz = sizeof("boottime\n");
1458 		break;
1459 	case CLOCK_TAI:
1460 		name = "tai\n";
1461 		sz = sizeof("tai\n");
1462 		break;
1463 	default:
1464 		BUG();
1465 	}
1466 
1467 	memcpy(buf, name, sz);
1468 	return sz;
1469 }
1470 
1471 static ssize_t current_timestamp_clock_store(struct device *dev,
1472 					     struct device_attribute *attr,
1473 					     const char *buf, size_t len)
1474 {
1475 	clockid_t clk;
1476 	int ret;
1477 
1478 	if (sysfs_streq(buf, "realtime"))
1479 		clk = CLOCK_REALTIME;
1480 	else if (sysfs_streq(buf, "monotonic"))
1481 		clk = CLOCK_MONOTONIC;
1482 	else if (sysfs_streq(buf, "monotonic_raw"))
1483 		clk = CLOCK_MONOTONIC_RAW;
1484 	else if (sysfs_streq(buf, "realtime_coarse"))
1485 		clk = CLOCK_REALTIME_COARSE;
1486 	else if (sysfs_streq(buf, "monotonic_coarse"))
1487 		clk = CLOCK_MONOTONIC_COARSE;
1488 	else if (sysfs_streq(buf, "boottime"))
1489 		clk = CLOCK_BOOTTIME;
1490 	else if (sysfs_streq(buf, "tai"))
1491 		clk = CLOCK_TAI;
1492 	else
1493 		return -EINVAL;
1494 
1495 	ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1496 	if (ret)
1497 		return ret;
1498 
1499 	return len;
1500 }
1501 
1502 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1503 				    const struct attribute_group *group)
1504 {
1505 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1506 	const struct attribute_group **new, **old = iio_dev_opaque->groups;
1507 	unsigned int cnt = iio_dev_opaque->groupcounter;
1508 
1509 	new = krealloc(old, sizeof(*new) * (cnt + 2), GFP_KERNEL);
1510 	if (!new)
1511 		return -ENOMEM;
1512 
1513 	new[iio_dev_opaque->groupcounter++] = group;
1514 	new[iio_dev_opaque->groupcounter] = NULL;
1515 
1516 	iio_dev_opaque->groups = new;
1517 
1518 	return 0;
1519 }
1520 
1521 static DEVICE_ATTR_RW(current_timestamp_clock);
1522 
1523 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1524 {
1525 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1526 	int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1527 	struct iio_dev_attr *p;
1528 	struct attribute **attr, *clk = NULL;
1529 
1530 	/* First count elements in any existing group */
1531 	if (indio_dev->info->attrs) {
1532 		attr = indio_dev->info->attrs->attrs;
1533 		while (*attr++ != NULL)
1534 			attrcount_orig++;
1535 	}
1536 	attrcount = attrcount_orig;
1537 	/*
1538 	 * New channel registration method - relies on the fact a group does
1539 	 * not need to be initialized if its name is NULL.
1540 	 */
1541 	if (indio_dev->channels)
1542 		for (i = 0; i < indio_dev->num_channels; i++) {
1543 			const struct iio_chan_spec *chan =
1544 				&indio_dev->channels[i];
1545 
1546 			if (chan->type == IIO_TIMESTAMP)
1547 				clk = &dev_attr_current_timestamp_clock.attr;
1548 
1549 			ret = iio_device_add_channel_sysfs(indio_dev, chan);
1550 			if (ret < 0)
1551 				goto error_clear_attrs;
1552 			attrcount += ret;
1553 		}
1554 
1555 	if (iio_dev_opaque->event_interface)
1556 		clk = &dev_attr_current_timestamp_clock.attr;
1557 
1558 	if (indio_dev->name)
1559 		attrcount++;
1560 	if (indio_dev->label)
1561 		attrcount++;
1562 	if (clk)
1563 		attrcount++;
1564 
1565 	iio_dev_opaque->chan_attr_group.attrs =
1566 		kcalloc(attrcount + 1,
1567 			sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1568 			GFP_KERNEL);
1569 	if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1570 		ret = -ENOMEM;
1571 		goto error_clear_attrs;
1572 	}
1573 	/* Copy across original attributes */
1574 	if (indio_dev->info->attrs) {
1575 		memcpy(iio_dev_opaque->chan_attr_group.attrs,
1576 		       indio_dev->info->attrs->attrs,
1577 		       sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1578 		       *attrcount_orig);
1579 		iio_dev_opaque->chan_attr_group.is_visible =
1580 			indio_dev->info->attrs->is_visible;
1581 	}
1582 	attrn = attrcount_orig;
1583 	/* Add all elements from the list. */
1584 	list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1585 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1586 	if (indio_dev->name)
1587 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1588 	if (indio_dev->label)
1589 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1590 	if (clk)
1591 		iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1592 
1593 	ret = iio_device_register_sysfs_group(indio_dev,
1594 					      &iio_dev_opaque->chan_attr_group);
1595 	if (ret)
1596 		goto error_clear_attrs;
1597 
1598 	return 0;
1599 
1600 error_clear_attrs:
1601 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1602 
1603 	return ret;
1604 }
1605 
1606 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1607 {
1608 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1609 
1610 	iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1611 	kfree(iio_dev_opaque->chan_attr_group.attrs);
1612 	iio_dev_opaque->chan_attr_group.attrs = NULL;
1613 	kfree(iio_dev_opaque->groups);
1614 	iio_dev_opaque->groups = NULL;
1615 }
1616 
1617 static void iio_dev_release(struct device *device)
1618 {
1619 	struct iio_dev *indio_dev = dev_to_iio_dev(device);
1620 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1621 
1622 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1623 		iio_device_unregister_trigger_consumer(indio_dev);
1624 	iio_device_unregister_eventset(indio_dev);
1625 	iio_device_unregister_sysfs(indio_dev);
1626 
1627 	iio_device_detach_buffers(indio_dev);
1628 
1629 	lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1630 
1631 	ida_free(&iio_ida, iio_dev_opaque->id);
1632 	kfree(iio_dev_opaque);
1633 }
1634 
1635 const struct device_type iio_device_type = {
1636 	.name = "iio_device",
1637 	.release = iio_dev_release,
1638 };
1639 
1640 /**
1641  * iio_device_alloc() - allocate an iio_dev from a driver
1642  * @parent:		Parent device.
1643  * @sizeof_priv:	Space to allocate for private structure.
1644  **/
1645 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1646 {
1647 	struct iio_dev_opaque *iio_dev_opaque;
1648 	struct iio_dev *indio_dev;
1649 	size_t alloc_size;
1650 
1651 	alloc_size = sizeof(struct iio_dev_opaque);
1652 	if (sizeof_priv) {
1653 		alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
1654 		alloc_size += sizeof_priv;
1655 	}
1656 
1657 	iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1658 	if (!iio_dev_opaque)
1659 		return NULL;
1660 
1661 	indio_dev = &iio_dev_opaque->indio_dev;
1662 	indio_dev->priv = (char *)iio_dev_opaque +
1663 		ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN);
1664 
1665 	indio_dev->dev.parent = parent;
1666 	indio_dev->dev.type = &iio_device_type;
1667 	indio_dev->dev.bus = &iio_bus_type;
1668 	device_initialize(&indio_dev->dev);
1669 	mutex_init(&indio_dev->mlock);
1670 	mutex_init(&iio_dev_opaque->info_exist_lock);
1671 	INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1672 
1673 	iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1674 	if (iio_dev_opaque->id < 0) {
1675 		/* cannot use a dev_err as the name isn't available */
1676 		pr_err("failed to get device id\n");
1677 		kfree(iio_dev_opaque);
1678 		return NULL;
1679 	}
1680 
1681 	if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1682 		ida_free(&iio_ida, iio_dev_opaque->id);
1683 		kfree(iio_dev_opaque);
1684 		return NULL;
1685 	}
1686 
1687 	INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1688 	INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1689 
1690 	lockdep_register_key(&iio_dev_opaque->mlock_key);
1691 	lockdep_set_class(&indio_dev->mlock, &iio_dev_opaque->mlock_key);
1692 
1693 	return indio_dev;
1694 }
1695 EXPORT_SYMBOL(iio_device_alloc);
1696 
1697 /**
1698  * iio_device_free() - free an iio_dev from a driver
1699  * @dev:		the iio_dev associated with the device
1700  **/
1701 void iio_device_free(struct iio_dev *dev)
1702 {
1703 	if (dev)
1704 		put_device(&dev->dev);
1705 }
1706 EXPORT_SYMBOL(iio_device_free);
1707 
1708 static void devm_iio_device_release(void *iio_dev)
1709 {
1710 	iio_device_free(iio_dev);
1711 }
1712 
1713 /**
1714  * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1715  * @parent:		Device to allocate iio_dev for, and parent for this IIO device
1716  * @sizeof_priv:	Space to allocate for private structure.
1717  *
1718  * Managed iio_device_alloc. iio_dev allocated with this function is
1719  * automatically freed on driver detach.
1720  *
1721  * RETURNS:
1722  * Pointer to allocated iio_dev on success, NULL on failure.
1723  */
1724 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1725 {
1726 	struct iio_dev *iio_dev;
1727 	int ret;
1728 
1729 	iio_dev = iio_device_alloc(parent, sizeof_priv);
1730 	if (!iio_dev)
1731 		return NULL;
1732 
1733 	ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1734 				       iio_dev);
1735 	if (ret)
1736 		return NULL;
1737 
1738 	return iio_dev;
1739 }
1740 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1741 
1742 /**
1743  * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1744  * @inode:	Inode structure for identifying the device in the file system
1745  * @filp:	File structure for iio device used to keep and later access
1746  *		private data
1747  *
1748  * Return: 0 on success or -EBUSY if the device is already opened
1749  **/
1750 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1751 {
1752 	struct iio_dev_opaque *iio_dev_opaque =
1753 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1754 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1755 	struct iio_dev_buffer_pair *ib;
1756 
1757 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1758 		return -EBUSY;
1759 
1760 	iio_device_get(indio_dev);
1761 
1762 	ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1763 	if (!ib) {
1764 		iio_device_put(indio_dev);
1765 		clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1766 		return -ENOMEM;
1767 	}
1768 
1769 	ib->indio_dev = indio_dev;
1770 	ib->buffer = indio_dev->buffer;
1771 
1772 	filp->private_data = ib;
1773 
1774 	return 0;
1775 }
1776 
1777 /**
1778  * iio_chrdev_release() - chrdev file close buffer access and ioctls
1779  * @inode:	Inode structure pointer for the char device
1780  * @filp:	File structure pointer for the char device
1781  *
1782  * Return: 0 for successful release
1783  */
1784 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1785 {
1786 	struct iio_dev_buffer_pair *ib = filp->private_data;
1787 	struct iio_dev_opaque *iio_dev_opaque =
1788 		container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1789 	struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1790 
1791 	kfree(ib);
1792 	clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1793 	iio_device_put(indio_dev);
1794 
1795 	return 0;
1796 }
1797 
1798 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1799 				       struct iio_ioctl_handler *h)
1800 {
1801 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1802 
1803 	list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1804 }
1805 
1806 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1807 {
1808 	list_del(&h->entry);
1809 }
1810 
1811 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1812 {
1813 	struct iio_dev_buffer_pair *ib = filp->private_data;
1814 	struct iio_dev *indio_dev = ib->indio_dev;
1815 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1816 	struct iio_ioctl_handler *h;
1817 	int ret = -ENODEV;
1818 
1819 	mutex_lock(&iio_dev_opaque->info_exist_lock);
1820 
1821 	/**
1822 	 * The NULL check here is required to prevent crashing when a device
1823 	 * is being removed while userspace would still have open file handles
1824 	 * to try to access this device.
1825 	 */
1826 	if (!indio_dev->info)
1827 		goto out_unlock;
1828 
1829 	list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1830 		ret = h->ioctl(indio_dev, filp, cmd, arg);
1831 		if (ret != IIO_IOCTL_UNHANDLED)
1832 			break;
1833 	}
1834 
1835 	if (ret == IIO_IOCTL_UNHANDLED)
1836 		ret = -ENODEV;
1837 
1838 out_unlock:
1839 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
1840 
1841 	return ret;
1842 }
1843 
1844 static const struct file_operations iio_buffer_fileops = {
1845 	.owner = THIS_MODULE,
1846 	.llseek = noop_llseek,
1847 	.read = iio_buffer_read_outer_addr,
1848 	.write = iio_buffer_write_outer_addr,
1849 	.poll = iio_buffer_poll_addr,
1850 	.unlocked_ioctl = iio_ioctl,
1851 	.compat_ioctl = compat_ptr_ioctl,
1852 	.open = iio_chrdev_open,
1853 	.release = iio_chrdev_release,
1854 };
1855 
1856 static const struct file_operations iio_event_fileops = {
1857 	.owner = THIS_MODULE,
1858 	.llseek = noop_llseek,
1859 	.unlocked_ioctl = iio_ioctl,
1860 	.compat_ioctl = compat_ptr_ioctl,
1861 	.open = iio_chrdev_open,
1862 	.release = iio_chrdev_release,
1863 };
1864 
1865 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1866 {
1867 	int i, j;
1868 	const struct iio_chan_spec *channels = indio_dev->channels;
1869 
1870 	if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1871 		return 0;
1872 
1873 	for (i = 0; i < indio_dev->num_channels - 1; i++) {
1874 		if (channels[i].scan_index < 0)
1875 			continue;
1876 		for (j = i + 1; j < indio_dev->num_channels; j++)
1877 			if (channels[i].scan_index == channels[j].scan_index) {
1878 				dev_err(&indio_dev->dev,
1879 					"Duplicate scan index %d\n",
1880 					channels[i].scan_index);
1881 				return -EINVAL;
1882 			}
1883 	}
1884 
1885 	return 0;
1886 }
1887 
1888 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1889 {
1890 	unsigned int i;
1891 
1892 	if (!indio_dev->info->read_label)
1893 		return 0;
1894 
1895 	for (i = 0; i < indio_dev->num_channels; i++) {
1896 		if (indio_dev->channels[i].extend_name) {
1897 			dev_err(&indio_dev->dev,
1898 				"Cannot use labels and extend_name at the same time\n");
1899 			return -EINVAL;
1900 		}
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1907 
1908 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1909 {
1910 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1911 	struct fwnode_handle *fwnode;
1912 	int ret;
1913 
1914 	if (!indio_dev->info)
1915 		return -EINVAL;
1916 
1917 	iio_dev_opaque->driver_module = this_mod;
1918 
1919 	/* If the calling driver did not initialize firmware node, do it here */
1920 	if (dev_fwnode(&indio_dev->dev))
1921 		fwnode = dev_fwnode(&indio_dev->dev);
1922 	else
1923 		fwnode = dev_fwnode(indio_dev->dev.parent);
1924 	device_set_node(&indio_dev->dev, fwnode);
1925 
1926 	fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1927 
1928 	ret = iio_check_unique_scan_index(indio_dev);
1929 	if (ret < 0)
1930 		return ret;
1931 
1932 	ret = iio_check_extended_name(indio_dev);
1933 	if (ret < 0)
1934 		return ret;
1935 
1936 	iio_device_register_debugfs(indio_dev);
1937 
1938 	ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1939 	if (ret) {
1940 		dev_err(indio_dev->dev.parent,
1941 			"Failed to create buffer sysfs interfaces\n");
1942 		goto error_unreg_debugfs;
1943 	}
1944 
1945 	ret = iio_device_register_sysfs(indio_dev);
1946 	if (ret) {
1947 		dev_err(indio_dev->dev.parent,
1948 			"Failed to register sysfs interfaces\n");
1949 		goto error_buffer_free_sysfs;
1950 	}
1951 	ret = iio_device_register_eventset(indio_dev);
1952 	if (ret) {
1953 		dev_err(indio_dev->dev.parent,
1954 			"Failed to register event set\n");
1955 		goto error_free_sysfs;
1956 	}
1957 	if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1958 		iio_device_register_trigger_consumer(indio_dev);
1959 
1960 	if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1961 		indio_dev->setup_ops == NULL)
1962 		indio_dev->setup_ops = &noop_ring_setup_ops;
1963 
1964 	if (iio_dev_opaque->attached_buffers_cnt)
1965 		cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1966 	else if (iio_dev_opaque->event_interface)
1967 		cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1968 
1969 	if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1970 		indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1971 		iio_dev_opaque->chrdev.owner = this_mod;
1972 	}
1973 
1974 	/* assign device groups now; they should be all registered now */
1975 	indio_dev->dev.groups = iio_dev_opaque->groups;
1976 
1977 	ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1978 	if (ret < 0)
1979 		goto error_unreg_eventset;
1980 
1981 	return 0;
1982 
1983 error_unreg_eventset:
1984 	iio_device_unregister_eventset(indio_dev);
1985 error_free_sysfs:
1986 	iio_device_unregister_sysfs(indio_dev);
1987 error_buffer_free_sysfs:
1988 	iio_buffers_free_sysfs_and_mask(indio_dev);
1989 error_unreg_debugfs:
1990 	iio_device_unregister_debugfs(indio_dev);
1991 	return ret;
1992 }
1993 EXPORT_SYMBOL(__iio_device_register);
1994 
1995 /**
1996  * iio_device_unregister() - unregister a device from the IIO subsystem
1997  * @indio_dev:		Device structure representing the device.
1998  **/
1999 void iio_device_unregister(struct iio_dev *indio_dev)
2000 {
2001 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2002 
2003 	cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
2004 
2005 	mutex_lock(&iio_dev_opaque->info_exist_lock);
2006 
2007 	iio_device_unregister_debugfs(indio_dev);
2008 
2009 	iio_disable_all_buffers(indio_dev);
2010 
2011 	indio_dev->info = NULL;
2012 
2013 	iio_device_wakeup_eventset(indio_dev);
2014 	iio_buffer_wakeup_poll(indio_dev);
2015 
2016 	mutex_unlock(&iio_dev_opaque->info_exist_lock);
2017 
2018 	iio_buffers_free_sysfs_and_mask(indio_dev);
2019 }
2020 EXPORT_SYMBOL(iio_device_unregister);
2021 
2022 static void devm_iio_device_unreg(void *indio_dev)
2023 {
2024 	iio_device_unregister(indio_dev);
2025 }
2026 
2027 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2028 			       struct module *this_mod)
2029 {
2030 	int ret;
2031 
2032 	ret = __iio_device_register(indio_dev, this_mod);
2033 	if (ret)
2034 		return ret;
2035 
2036 	return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2037 }
2038 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2039 
2040 /**
2041  * iio_device_claim_direct_mode - Keep device in direct mode
2042  * @indio_dev:	the iio_dev associated with the device
2043  *
2044  * If the device is in direct mode it is guaranteed to stay
2045  * that way until iio_device_release_direct_mode() is called.
2046  *
2047  * Use with iio_device_release_direct_mode()
2048  *
2049  * Returns: 0 on success, -EBUSY on failure
2050  */
2051 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2052 {
2053 	mutex_lock(&indio_dev->mlock);
2054 
2055 	if (iio_buffer_enabled(indio_dev)) {
2056 		mutex_unlock(&indio_dev->mlock);
2057 		return -EBUSY;
2058 	}
2059 	return 0;
2060 }
2061 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2062 
2063 /**
2064  * iio_device_release_direct_mode - releases claim on direct mode
2065  * @indio_dev:	the iio_dev associated with the device
2066  *
2067  * Release the claim. Device is no longer guaranteed to stay
2068  * in direct mode.
2069  *
2070  * Use with iio_device_claim_direct_mode()
2071  */
2072 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2073 {
2074 	mutex_unlock(&indio_dev->mlock);
2075 }
2076 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2077 
2078 /**
2079  * iio_device_get_current_mode() - helper function providing read-only access to
2080  *				   the opaque @currentmode variable
2081  * @indio_dev:			   IIO device structure for device
2082  */
2083 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2084 {
2085 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2086 
2087 	return iio_dev_opaque->currentmode;
2088 }
2089 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2090 
2091 subsys_initcall(iio_init);
2092 module_exit(iio_exit);
2093 
2094 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2095 MODULE_DESCRIPTION("Industrial I/O core");
2096 MODULE_LICENSE("GPL");
2097