1 // SPDX-License-Identifier: GPL-2.0-only 2 /* The industrial I/O core 3 * 4 * Copyright (c) 2008 Jonathan Cameron 5 * 6 * Handling of buffer allocation / resizing. 7 * 8 * Things to look at here. 9 * - Better memory allocation techniques? 10 * - Alternative access techniques? 11 */ 12 #include <linux/anon_inodes.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/device.h> 16 #include <linux/file.h> 17 #include <linux/fs.h> 18 #include <linux/cdev.h> 19 #include <linux/slab.h> 20 #include <linux/poll.h> 21 #include <linux/sched/signal.h> 22 23 #include <linux/iio/iio.h> 24 #include <linux/iio/iio-opaque.h> 25 #include "iio_core.h" 26 #include "iio_core_trigger.h" 27 #include <linux/iio/sysfs.h> 28 #include <linux/iio/buffer.h> 29 #include <linux/iio/buffer_impl.h> 30 31 static const char * const iio_endian_prefix[] = { 32 [IIO_BE] = "be", 33 [IIO_LE] = "le", 34 }; 35 36 static bool iio_buffer_is_active(struct iio_buffer *buf) 37 { 38 return !list_empty(&buf->buffer_list); 39 } 40 41 static size_t iio_buffer_data_available(struct iio_buffer *buf) 42 { 43 return buf->access->data_available(buf); 44 } 45 46 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev, 47 struct iio_buffer *buf, size_t required) 48 { 49 if (!indio_dev->info->hwfifo_flush_to_buffer) 50 return -ENODEV; 51 52 return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required); 53 } 54 55 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf, 56 size_t to_wait, int to_flush) 57 { 58 size_t avail; 59 int flushed = 0; 60 61 /* wakeup if the device was unregistered */ 62 if (!indio_dev->info) 63 return true; 64 65 /* drain the buffer if it was disabled */ 66 if (!iio_buffer_is_active(buf)) { 67 to_wait = min_t(size_t, to_wait, 1); 68 to_flush = 0; 69 } 70 71 avail = iio_buffer_data_available(buf); 72 73 if (avail >= to_wait) { 74 /* force a flush for non-blocking reads */ 75 if (!to_wait && avail < to_flush) 76 iio_buffer_flush_hwfifo(indio_dev, buf, 77 to_flush - avail); 78 return true; 79 } 80 81 if (to_flush) 82 flushed = iio_buffer_flush_hwfifo(indio_dev, buf, 83 to_wait - avail); 84 if (flushed <= 0) 85 return false; 86 87 if (avail + flushed >= to_wait) 88 return true; 89 90 return false; 91 } 92 93 /** 94 * iio_buffer_read() - chrdev read for buffer access 95 * @filp: File structure pointer for the char device 96 * @buf: Destination buffer for iio buffer read 97 * @n: First n bytes to read 98 * @f_ps: Long offset provided by the user as a seek position 99 * 100 * This function relies on all buffer implementations having an 101 * iio_buffer as their first element. 102 * 103 * Return: negative values corresponding to error codes or ret != 0 104 * for ending the reading activity 105 **/ 106 static ssize_t iio_buffer_read(struct file *filp, char __user *buf, 107 size_t n, loff_t *f_ps) 108 { 109 struct iio_dev_buffer_pair *ib = filp->private_data; 110 struct iio_buffer *rb = ib->buffer; 111 struct iio_dev *indio_dev = ib->indio_dev; 112 DEFINE_WAIT_FUNC(wait, woken_wake_function); 113 size_t datum_size; 114 size_t to_wait; 115 int ret = 0; 116 117 if (!indio_dev->info) 118 return -ENODEV; 119 120 if (!rb || !rb->access->read) 121 return -EINVAL; 122 123 if (rb->direction != IIO_BUFFER_DIRECTION_IN) 124 return -EPERM; 125 126 datum_size = rb->bytes_per_datum; 127 128 /* 129 * If datum_size is 0 there will never be anything to read from the 130 * buffer, so signal end of file now. 131 */ 132 if (!datum_size) 133 return 0; 134 135 if (filp->f_flags & O_NONBLOCK) 136 to_wait = 0; 137 else 138 to_wait = min_t(size_t, n / datum_size, rb->watermark); 139 140 add_wait_queue(&rb->pollq, &wait); 141 do { 142 if (!indio_dev->info) { 143 ret = -ENODEV; 144 break; 145 } 146 147 if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) { 148 if (signal_pending(current)) { 149 ret = -ERESTARTSYS; 150 break; 151 } 152 153 wait_woken(&wait, TASK_INTERRUPTIBLE, 154 MAX_SCHEDULE_TIMEOUT); 155 continue; 156 } 157 158 ret = rb->access->read(rb, n, buf); 159 if (ret == 0 && (filp->f_flags & O_NONBLOCK)) 160 ret = -EAGAIN; 161 } while (ret == 0); 162 remove_wait_queue(&rb->pollq, &wait); 163 164 return ret; 165 } 166 167 static size_t iio_buffer_space_available(struct iio_buffer *buf) 168 { 169 if (buf->access->space_available) 170 return buf->access->space_available(buf); 171 172 return SIZE_MAX; 173 } 174 175 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf, 176 size_t n, loff_t *f_ps) 177 { 178 struct iio_dev_buffer_pair *ib = filp->private_data; 179 struct iio_buffer *rb = ib->buffer; 180 struct iio_dev *indio_dev = ib->indio_dev; 181 DEFINE_WAIT_FUNC(wait, woken_wake_function); 182 int ret = 0; 183 size_t written; 184 185 if (!indio_dev->info) 186 return -ENODEV; 187 188 if (!rb || !rb->access->write) 189 return -EINVAL; 190 191 if (rb->direction != IIO_BUFFER_DIRECTION_OUT) 192 return -EPERM; 193 194 written = 0; 195 add_wait_queue(&rb->pollq, &wait); 196 do { 197 if (!indio_dev->info) 198 return -ENODEV; 199 200 if (!iio_buffer_space_available(rb)) { 201 if (signal_pending(current)) { 202 ret = -ERESTARTSYS; 203 break; 204 } 205 206 if (filp->f_flags & O_NONBLOCK) { 207 if (!written) 208 ret = -EAGAIN; 209 break; 210 } 211 212 wait_woken(&wait, TASK_INTERRUPTIBLE, 213 MAX_SCHEDULE_TIMEOUT); 214 continue; 215 } 216 217 ret = rb->access->write(rb, n - written, buf + written); 218 if (ret < 0) 219 break; 220 221 written += ret; 222 223 } while (written != n); 224 remove_wait_queue(&rb->pollq, &wait); 225 226 return ret < 0 ? ret : written; 227 } 228 229 /** 230 * iio_buffer_poll() - poll the buffer to find out if it has data 231 * @filp: File structure pointer for device access 232 * @wait: Poll table structure pointer for which the driver adds 233 * a wait queue 234 * 235 * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading 236 * or 0 for other cases 237 */ 238 static __poll_t iio_buffer_poll(struct file *filp, 239 struct poll_table_struct *wait) 240 { 241 struct iio_dev_buffer_pair *ib = filp->private_data; 242 struct iio_buffer *rb = ib->buffer; 243 struct iio_dev *indio_dev = ib->indio_dev; 244 245 if (!indio_dev->info || !rb) 246 return 0; 247 248 poll_wait(filp, &rb->pollq, wait); 249 250 switch (rb->direction) { 251 case IIO_BUFFER_DIRECTION_IN: 252 if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0)) 253 return EPOLLIN | EPOLLRDNORM; 254 break; 255 case IIO_BUFFER_DIRECTION_OUT: 256 if (iio_buffer_space_available(rb)) 257 return EPOLLOUT | EPOLLWRNORM; 258 break; 259 } 260 261 return 0; 262 } 263 264 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf, 265 size_t n, loff_t *f_ps) 266 { 267 struct iio_dev_buffer_pair *ib = filp->private_data; 268 struct iio_buffer *rb = ib->buffer; 269 270 /* check if buffer was opened through new API */ 271 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 272 return -EBUSY; 273 274 return iio_buffer_read(filp, buf, n, f_ps); 275 } 276 277 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf, 278 size_t n, loff_t *f_ps) 279 { 280 struct iio_dev_buffer_pair *ib = filp->private_data; 281 struct iio_buffer *rb = ib->buffer; 282 283 /* check if buffer was opened through new API */ 284 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 285 return -EBUSY; 286 287 return iio_buffer_write(filp, buf, n, f_ps); 288 } 289 290 __poll_t iio_buffer_poll_wrapper(struct file *filp, 291 struct poll_table_struct *wait) 292 { 293 struct iio_dev_buffer_pair *ib = filp->private_data; 294 struct iio_buffer *rb = ib->buffer; 295 296 /* check if buffer was opened through new API */ 297 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 298 return 0; 299 300 return iio_buffer_poll(filp, wait); 301 } 302 303 /** 304 * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue 305 * @indio_dev: The IIO device 306 * 307 * Wakes up the event waitqueue used for poll(). Should usually 308 * be called when the device is unregistered. 309 */ 310 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev) 311 { 312 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 313 struct iio_buffer *buffer; 314 unsigned int i; 315 316 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) { 317 buffer = iio_dev_opaque->attached_buffers[i]; 318 wake_up(&buffer->pollq); 319 } 320 } 321 322 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data) 323 { 324 if (!buffer || !buffer->access || !buffer->access->remove_from) 325 return -EINVAL; 326 327 return buffer->access->remove_from(buffer, data); 328 } 329 EXPORT_SYMBOL_GPL(iio_pop_from_buffer); 330 331 void iio_buffer_init(struct iio_buffer *buffer) 332 { 333 INIT_LIST_HEAD(&buffer->demux_list); 334 INIT_LIST_HEAD(&buffer->buffer_list); 335 init_waitqueue_head(&buffer->pollq); 336 kref_init(&buffer->ref); 337 if (!buffer->watermark) 338 buffer->watermark = 1; 339 } 340 EXPORT_SYMBOL(iio_buffer_init); 341 342 void iio_device_detach_buffers(struct iio_dev *indio_dev) 343 { 344 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 345 struct iio_buffer *buffer; 346 unsigned int i; 347 348 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) { 349 buffer = iio_dev_opaque->attached_buffers[i]; 350 iio_buffer_put(buffer); 351 } 352 353 kfree(iio_dev_opaque->attached_buffers); 354 } 355 356 static ssize_t iio_show_scan_index(struct device *dev, 357 struct device_attribute *attr, 358 char *buf) 359 { 360 return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index); 361 } 362 363 static ssize_t iio_show_fixed_type(struct device *dev, 364 struct device_attribute *attr, 365 char *buf) 366 { 367 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 368 u8 type = this_attr->c->scan_type.endianness; 369 370 if (type == IIO_CPU) { 371 #ifdef __LITTLE_ENDIAN 372 type = IIO_LE; 373 #else 374 type = IIO_BE; 375 #endif 376 } 377 if (this_attr->c->scan_type.repeat > 1) 378 return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n", 379 iio_endian_prefix[type], 380 this_attr->c->scan_type.sign, 381 this_attr->c->scan_type.realbits, 382 this_attr->c->scan_type.storagebits, 383 this_attr->c->scan_type.repeat, 384 this_attr->c->scan_type.shift); 385 else 386 return sysfs_emit(buf, "%s:%c%d/%d>>%u\n", 387 iio_endian_prefix[type], 388 this_attr->c->scan_type.sign, 389 this_attr->c->scan_type.realbits, 390 this_attr->c->scan_type.storagebits, 391 this_attr->c->scan_type.shift); 392 } 393 394 static ssize_t iio_scan_el_show(struct device *dev, 395 struct device_attribute *attr, 396 char *buf) 397 { 398 int ret; 399 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 400 401 /* Ensure ret is 0 or 1. */ 402 ret = !!test_bit(to_iio_dev_attr(attr)->address, 403 buffer->scan_mask); 404 405 return sysfs_emit(buf, "%d\n", ret); 406 } 407 408 /* Note NULL used as error indicator as it doesn't make sense. */ 409 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks, 410 unsigned int masklength, 411 const unsigned long *mask, 412 bool strict) 413 { 414 if (bitmap_empty(mask, masklength)) 415 return NULL; 416 /* 417 * The condition here do not handle multi-long masks correctly. 418 * It only checks the first long to be zero, and will use such mask 419 * as a terminator even if there was bits set after the first long. 420 * 421 * Correct check would require using: 422 * while (!bitmap_empty(av_masks, masklength)) 423 * instead. This is potentially hazardous because the 424 * avaliable_scan_masks is a zero terminated array of longs - and 425 * using the proper bitmap_empty() check for multi-long wide masks 426 * would require the array to be terminated with multiple zero longs - 427 * which is not such an usual pattern. 428 * 429 * As writing of this no multi-long wide masks were found in-tree, so 430 * the simple while (*av_masks) check is working. 431 */ 432 while (*av_masks) { 433 if (strict) { 434 if (bitmap_equal(mask, av_masks, masklength)) 435 return av_masks; 436 } else { 437 if (bitmap_subset(mask, av_masks, masklength)) 438 return av_masks; 439 } 440 av_masks += BITS_TO_LONGS(masklength); 441 } 442 return NULL; 443 } 444 445 static bool iio_validate_scan_mask(struct iio_dev *indio_dev, 446 const unsigned long *mask) 447 { 448 if (!indio_dev->setup_ops->validate_scan_mask) 449 return true; 450 451 return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask); 452 } 453 454 /** 455 * iio_scan_mask_set() - set particular bit in the scan mask 456 * @indio_dev: the iio device 457 * @buffer: the buffer whose scan mask we are interested in 458 * @bit: the bit to be set. 459 * 460 * Note that at this point we have no way of knowing what other 461 * buffers might request, hence this code only verifies that the 462 * individual buffers request is plausible. 463 */ 464 static int iio_scan_mask_set(struct iio_dev *indio_dev, 465 struct iio_buffer *buffer, int bit) 466 { 467 const unsigned long *mask; 468 unsigned long *trialmask; 469 470 if (!indio_dev->masklength) { 471 WARN(1, "Trying to set scanmask prior to registering buffer\n"); 472 return -EINVAL; 473 } 474 475 trialmask = bitmap_alloc(indio_dev->masklength, GFP_KERNEL); 476 if (!trialmask) 477 return -ENOMEM; 478 bitmap_copy(trialmask, buffer->scan_mask, indio_dev->masklength); 479 set_bit(bit, trialmask); 480 481 if (!iio_validate_scan_mask(indio_dev, trialmask)) 482 goto err_invalid_mask; 483 484 if (indio_dev->available_scan_masks) { 485 mask = iio_scan_mask_match(indio_dev->available_scan_masks, 486 indio_dev->masklength, 487 trialmask, false); 488 if (!mask) 489 goto err_invalid_mask; 490 } 491 bitmap_copy(buffer->scan_mask, trialmask, indio_dev->masklength); 492 493 bitmap_free(trialmask); 494 495 return 0; 496 497 err_invalid_mask: 498 bitmap_free(trialmask); 499 return -EINVAL; 500 } 501 502 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit) 503 { 504 clear_bit(bit, buffer->scan_mask); 505 return 0; 506 } 507 508 static int iio_scan_mask_query(struct iio_dev *indio_dev, 509 struct iio_buffer *buffer, int bit) 510 { 511 if (bit > indio_dev->masklength) 512 return -EINVAL; 513 514 if (!buffer->scan_mask) 515 return 0; 516 517 /* Ensure return value is 0 or 1. */ 518 return !!test_bit(bit, buffer->scan_mask); 519 }; 520 521 static ssize_t iio_scan_el_store(struct device *dev, 522 struct device_attribute *attr, 523 const char *buf, 524 size_t len) 525 { 526 int ret; 527 bool state; 528 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 529 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 530 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 531 struct iio_buffer *buffer = this_attr->buffer; 532 533 ret = kstrtobool(buf, &state); 534 if (ret < 0) 535 return ret; 536 mutex_lock(&iio_dev_opaque->mlock); 537 if (iio_buffer_is_active(buffer)) { 538 ret = -EBUSY; 539 goto error_ret; 540 } 541 ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address); 542 if (ret < 0) 543 goto error_ret; 544 if (!state && ret) { 545 ret = iio_scan_mask_clear(buffer, this_attr->address); 546 if (ret) 547 goto error_ret; 548 } else if (state && !ret) { 549 ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address); 550 if (ret) 551 goto error_ret; 552 } 553 554 error_ret: 555 mutex_unlock(&iio_dev_opaque->mlock); 556 557 return ret < 0 ? ret : len; 558 } 559 560 static ssize_t iio_scan_el_ts_show(struct device *dev, 561 struct device_attribute *attr, 562 char *buf) 563 { 564 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 565 566 return sysfs_emit(buf, "%d\n", buffer->scan_timestamp); 567 } 568 569 static ssize_t iio_scan_el_ts_store(struct device *dev, 570 struct device_attribute *attr, 571 const char *buf, 572 size_t len) 573 { 574 int ret; 575 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 576 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 577 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 578 bool state; 579 580 ret = kstrtobool(buf, &state); 581 if (ret < 0) 582 return ret; 583 584 mutex_lock(&iio_dev_opaque->mlock); 585 if (iio_buffer_is_active(buffer)) { 586 ret = -EBUSY; 587 goto error_ret; 588 } 589 buffer->scan_timestamp = state; 590 error_ret: 591 mutex_unlock(&iio_dev_opaque->mlock); 592 593 return ret ? ret : len; 594 } 595 596 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev, 597 struct iio_buffer *buffer, 598 const struct iio_chan_spec *chan) 599 { 600 int ret, attrcount = 0; 601 602 ret = __iio_add_chan_devattr("index", 603 chan, 604 &iio_show_scan_index, 605 NULL, 606 0, 607 IIO_SEPARATE, 608 &indio_dev->dev, 609 buffer, 610 &buffer->buffer_attr_list); 611 if (ret) 612 return ret; 613 attrcount++; 614 ret = __iio_add_chan_devattr("type", 615 chan, 616 &iio_show_fixed_type, 617 NULL, 618 0, 619 IIO_SEPARATE, 620 &indio_dev->dev, 621 buffer, 622 &buffer->buffer_attr_list); 623 if (ret) 624 return ret; 625 attrcount++; 626 if (chan->type != IIO_TIMESTAMP) 627 ret = __iio_add_chan_devattr("en", 628 chan, 629 &iio_scan_el_show, 630 &iio_scan_el_store, 631 chan->scan_index, 632 IIO_SEPARATE, 633 &indio_dev->dev, 634 buffer, 635 &buffer->buffer_attr_list); 636 else 637 ret = __iio_add_chan_devattr("en", 638 chan, 639 &iio_scan_el_ts_show, 640 &iio_scan_el_ts_store, 641 chan->scan_index, 642 IIO_SEPARATE, 643 &indio_dev->dev, 644 buffer, 645 &buffer->buffer_attr_list); 646 if (ret) 647 return ret; 648 attrcount++; 649 ret = attrcount; 650 return ret; 651 } 652 653 static ssize_t length_show(struct device *dev, struct device_attribute *attr, 654 char *buf) 655 { 656 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 657 658 return sysfs_emit(buf, "%d\n", buffer->length); 659 } 660 661 static ssize_t length_store(struct device *dev, struct device_attribute *attr, 662 const char *buf, size_t len) 663 { 664 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 665 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 666 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 667 unsigned int val; 668 int ret; 669 670 ret = kstrtouint(buf, 10, &val); 671 if (ret) 672 return ret; 673 674 if (val == buffer->length) 675 return len; 676 677 mutex_lock(&iio_dev_opaque->mlock); 678 if (iio_buffer_is_active(buffer)) { 679 ret = -EBUSY; 680 } else { 681 buffer->access->set_length(buffer, val); 682 ret = 0; 683 } 684 if (ret) 685 goto out; 686 if (buffer->length && buffer->length < buffer->watermark) 687 buffer->watermark = buffer->length; 688 out: 689 mutex_unlock(&iio_dev_opaque->mlock); 690 691 return ret ? ret : len; 692 } 693 694 static ssize_t enable_show(struct device *dev, struct device_attribute *attr, 695 char *buf) 696 { 697 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 698 699 return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer)); 700 } 701 702 static unsigned int iio_storage_bytes_for_si(struct iio_dev *indio_dev, 703 unsigned int scan_index) 704 { 705 const struct iio_chan_spec *ch; 706 unsigned int bytes; 707 708 ch = iio_find_channel_from_si(indio_dev, scan_index); 709 bytes = ch->scan_type.storagebits / 8; 710 if (ch->scan_type.repeat > 1) 711 bytes *= ch->scan_type.repeat; 712 return bytes; 713 } 714 715 static unsigned int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev) 716 { 717 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 718 719 return iio_storage_bytes_for_si(indio_dev, 720 iio_dev_opaque->scan_index_timestamp); 721 } 722 723 static int iio_compute_scan_bytes(struct iio_dev *indio_dev, 724 const unsigned long *mask, bool timestamp) 725 { 726 unsigned int bytes = 0; 727 int length, i, largest = 0; 728 729 /* How much space will the demuxed element take? */ 730 for_each_set_bit(i, mask, 731 indio_dev->masklength) { 732 length = iio_storage_bytes_for_si(indio_dev, i); 733 bytes = ALIGN(bytes, length); 734 bytes += length; 735 largest = max(largest, length); 736 } 737 738 if (timestamp) { 739 length = iio_storage_bytes_for_timestamp(indio_dev); 740 bytes = ALIGN(bytes, length); 741 bytes += length; 742 largest = max(largest, length); 743 } 744 745 bytes = ALIGN(bytes, largest); 746 return bytes; 747 } 748 749 static void iio_buffer_activate(struct iio_dev *indio_dev, 750 struct iio_buffer *buffer) 751 { 752 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 753 754 iio_buffer_get(buffer); 755 list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list); 756 } 757 758 static void iio_buffer_deactivate(struct iio_buffer *buffer) 759 { 760 list_del_init(&buffer->buffer_list); 761 wake_up_interruptible(&buffer->pollq); 762 iio_buffer_put(buffer); 763 } 764 765 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev) 766 { 767 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 768 struct iio_buffer *buffer, *_buffer; 769 770 list_for_each_entry_safe(buffer, _buffer, 771 &iio_dev_opaque->buffer_list, buffer_list) 772 iio_buffer_deactivate(buffer); 773 } 774 775 static int iio_buffer_enable(struct iio_buffer *buffer, 776 struct iio_dev *indio_dev) 777 { 778 if (!buffer->access->enable) 779 return 0; 780 return buffer->access->enable(buffer, indio_dev); 781 } 782 783 static int iio_buffer_disable(struct iio_buffer *buffer, 784 struct iio_dev *indio_dev) 785 { 786 if (!buffer->access->disable) 787 return 0; 788 return buffer->access->disable(buffer, indio_dev); 789 } 790 791 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev, 792 struct iio_buffer *buffer) 793 { 794 unsigned int bytes; 795 796 if (!buffer->access->set_bytes_per_datum) 797 return; 798 799 bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask, 800 buffer->scan_timestamp); 801 802 buffer->access->set_bytes_per_datum(buffer, bytes); 803 } 804 805 static int iio_buffer_request_update(struct iio_dev *indio_dev, 806 struct iio_buffer *buffer) 807 { 808 int ret; 809 810 iio_buffer_update_bytes_per_datum(indio_dev, buffer); 811 if (buffer->access->request_update) { 812 ret = buffer->access->request_update(buffer); 813 if (ret) { 814 dev_dbg(&indio_dev->dev, 815 "Buffer not started: buffer parameter update failed (%d)\n", 816 ret); 817 return ret; 818 } 819 } 820 821 return 0; 822 } 823 824 static void iio_free_scan_mask(struct iio_dev *indio_dev, 825 const unsigned long *mask) 826 { 827 /* If the mask is dynamically allocated free it, otherwise do nothing */ 828 if (!indio_dev->available_scan_masks) 829 bitmap_free(mask); 830 } 831 832 struct iio_device_config { 833 unsigned int mode; 834 unsigned int watermark; 835 const unsigned long *scan_mask; 836 unsigned int scan_bytes; 837 bool scan_timestamp; 838 }; 839 840 static int iio_verify_update(struct iio_dev *indio_dev, 841 struct iio_buffer *insert_buffer, 842 struct iio_buffer *remove_buffer, 843 struct iio_device_config *config) 844 { 845 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 846 unsigned long *compound_mask; 847 const unsigned long *scan_mask; 848 bool strict_scanmask = false; 849 struct iio_buffer *buffer; 850 bool scan_timestamp; 851 unsigned int modes; 852 853 if (insert_buffer && 854 bitmap_empty(insert_buffer->scan_mask, indio_dev->masklength)) { 855 dev_dbg(&indio_dev->dev, 856 "At least one scan element must be enabled first\n"); 857 return -EINVAL; 858 } 859 860 memset(config, 0, sizeof(*config)); 861 config->watermark = ~0; 862 863 /* 864 * If there is just one buffer and we are removing it there is nothing 865 * to verify. 866 */ 867 if (remove_buffer && !insert_buffer && 868 list_is_singular(&iio_dev_opaque->buffer_list)) 869 return 0; 870 871 modes = indio_dev->modes; 872 873 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 874 if (buffer == remove_buffer) 875 continue; 876 modes &= buffer->access->modes; 877 config->watermark = min(config->watermark, buffer->watermark); 878 } 879 880 if (insert_buffer) { 881 modes &= insert_buffer->access->modes; 882 config->watermark = min(config->watermark, 883 insert_buffer->watermark); 884 } 885 886 /* Definitely possible for devices to support both of these. */ 887 if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) { 888 config->mode = INDIO_BUFFER_TRIGGERED; 889 } else if (modes & INDIO_BUFFER_HARDWARE) { 890 /* 891 * Keep things simple for now and only allow a single buffer to 892 * be connected in hardware mode. 893 */ 894 if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list)) 895 return -EINVAL; 896 config->mode = INDIO_BUFFER_HARDWARE; 897 strict_scanmask = true; 898 } else if (modes & INDIO_BUFFER_SOFTWARE) { 899 config->mode = INDIO_BUFFER_SOFTWARE; 900 } else { 901 /* Can only occur on first buffer */ 902 if (indio_dev->modes & INDIO_BUFFER_TRIGGERED) 903 dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n"); 904 return -EINVAL; 905 } 906 907 /* What scan mask do we actually have? */ 908 compound_mask = bitmap_zalloc(indio_dev->masklength, GFP_KERNEL); 909 if (!compound_mask) 910 return -ENOMEM; 911 912 scan_timestamp = false; 913 914 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 915 if (buffer == remove_buffer) 916 continue; 917 bitmap_or(compound_mask, compound_mask, buffer->scan_mask, 918 indio_dev->masklength); 919 scan_timestamp |= buffer->scan_timestamp; 920 } 921 922 if (insert_buffer) { 923 bitmap_or(compound_mask, compound_mask, 924 insert_buffer->scan_mask, indio_dev->masklength); 925 scan_timestamp |= insert_buffer->scan_timestamp; 926 } 927 928 if (indio_dev->available_scan_masks) { 929 scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks, 930 indio_dev->masklength, 931 compound_mask, 932 strict_scanmask); 933 bitmap_free(compound_mask); 934 if (!scan_mask) 935 return -EINVAL; 936 } else { 937 scan_mask = compound_mask; 938 } 939 940 config->scan_bytes = iio_compute_scan_bytes(indio_dev, 941 scan_mask, scan_timestamp); 942 config->scan_mask = scan_mask; 943 config->scan_timestamp = scan_timestamp; 944 945 return 0; 946 } 947 948 /** 949 * struct iio_demux_table - table describing demux memcpy ops 950 * @from: index to copy from 951 * @to: index to copy to 952 * @length: how many bytes to copy 953 * @l: list head used for management 954 */ 955 struct iio_demux_table { 956 unsigned int from; 957 unsigned int to; 958 unsigned int length; 959 struct list_head l; 960 }; 961 962 static void iio_buffer_demux_free(struct iio_buffer *buffer) 963 { 964 struct iio_demux_table *p, *q; 965 966 list_for_each_entry_safe(p, q, &buffer->demux_list, l) { 967 list_del(&p->l); 968 kfree(p); 969 } 970 } 971 972 static int iio_buffer_add_demux(struct iio_buffer *buffer, 973 struct iio_demux_table **p, unsigned int in_loc, 974 unsigned int out_loc, 975 unsigned int length) 976 { 977 if (*p && (*p)->from + (*p)->length == in_loc && 978 (*p)->to + (*p)->length == out_loc) { 979 (*p)->length += length; 980 } else { 981 *p = kmalloc(sizeof(**p), GFP_KERNEL); 982 if (!(*p)) 983 return -ENOMEM; 984 (*p)->from = in_loc; 985 (*p)->to = out_loc; 986 (*p)->length = length; 987 list_add_tail(&(*p)->l, &buffer->demux_list); 988 } 989 990 return 0; 991 } 992 993 static int iio_buffer_update_demux(struct iio_dev *indio_dev, 994 struct iio_buffer *buffer) 995 { 996 int ret, in_ind = -1, out_ind, length; 997 unsigned int in_loc = 0, out_loc = 0; 998 struct iio_demux_table *p = NULL; 999 1000 /* Clear out any old demux */ 1001 iio_buffer_demux_free(buffer); 1002 kfree(buffer->demux_bounce); 1003 buffer->demux_bounce = NULL; 1004 1005 /* First work out which scan mode we will actually have */ 1006 if (bitmap_equal(indio_dev->active_scan_mask, 1007 buffer->scan_mask, 1008 indio_dev->masklength)) 1009 return 0; 1010 1011 /* Now we have the two masks, work from least sig and build up sizes */ 1012 for_each_set_bit(out_ind, 1013 buffer->scan_mask, 1014 indio_dev->masklength) { 1015 in_ind = find_next_bit(indio_dev->active_scan_mask, 1016 indio_dev->masklength, 1017 in_ind + 1); 1018 while (in_ind != out_ind) { 1019 length = iio_storage_bytes_for_si(indio_dev, in_ind); 1020 /* Make sure we are aligned */ 1021 in_loc = roundup(in_loc, length) + length; 1022 in_ind = find_next_bit(indio_dev->active_scan_mask, 1023 indio_dev->masklength, 1024 in_ind + 1); 1025 } 1026 length = iio_storage_bytes_for_si(indio_dev, in_ind); 1027 out_loc = roundup(out_loc, length); 1028 in_loc = roundup(in_loc, length); 1029 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length); 1030 if (ret) 1031 goto error_clear_mux_table; 1032 out_loc += length; 1033 in_loc += length; 1034 } 1035 /* Relies on scan_timestamp being last */ 1036 if (buffer->scan_timestamp) { 1037 length = iio_storage_bytes_for_timestamp(indio_dev); 1038 out_loc = roundup(out_loc, length); 1039 in_loc = roundup(in_loc, length); 1040 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length); 1041 if (ret) 1042 goto error_clear_mux_table; 1043 out_loc += length; 1044 } 1045 buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL); 1046 if (!buffer->demux_bounce) { 1047 ret = -ENOMEM; 1048 goto error_clear_mux_table; 1049 } 1050 return 0; 1051 1052 error_clear_mux_table: 1053 iio_buffer_demux_free(buffer); 1054 1055 return ret; 1056 } 1057 1058 static int iio_update_demux(struct iio_dev *indio_dev) 1059 { 1060 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1061 struct iio_buffer *buffer; 1062 int ret; 1063 1064 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1065 ret = iio_buffer_update_demux(indio_dev, buffer); 1066 if (ret < 0) 1067 goto error_clear_mux_table; 1068 } 1069 return 0; 1070 1071 error_clear_mux_table: 1072 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) 1073 iio_buffer_demux_free(buffer); 1074 1075 return ret; 1076 } 1077 1078 static int iio_enable_buffers(struct iio_dev *indio_dev, 1079 struct iio_device_config *config) 1080 { 1081 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1082 struct iio_buffer *buffer, *tmp = NULL; 1083 int ret; 1084 1085 indio_dev->active_scan_mask = config->scan_mask; 1086 indio_dev->scan_timestamp = config->scan_timestamp; 1087 indio_dev->scan_bytes = config->scan_bytes; 1088 iio_dev_opaque->currentmode = config->mode; 1089 1090 iio_update_demux(indio_dev); 1091 1092 /* Wind up again */ 1093 if (indio_dev->setup_ops->preenable) { 1094 ret = indio_dev->setup_ops->preenable(indio_dev); 1095 if (ret) { 1096 dev_dbg(&indio_dev->dev, 1097 "Buffer not started: buffer preenable failed (%d)\n", ret); 1098 goto err_undo_config; 1099 } 1100 } 1101 1102 if (indio_dev->info->update_scan_mode) { 1103 ret = indio_dev->info 1104 ->update_scan_mode(indio_dev, 1105 indio_dev->active_scan_mask); 1106 if (ret < 0) { 1107 dev_dbg(&indio_dev->dev, 1108 "Buffer not started: update scan mode failed (%d)\n", 1109 ret); 1110 goto err_run_postdisable; 1111 } 1112 } 1113 1114 if (indio_dev->info->hwfifo_set_watermark) 1115 indio_dev->info->hwfifo_set_watermark(indio_dev, 1116 config->watermark); 1117 1118 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1119 ret = iio_buffer_enable(buffer, indio_dev); 1120 if (ret) { 1121 tmp = buffer; 1122 goto err_disable_buffers; 1123 } 1124 } 1125 1126 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1127 ret = iio_trigger_attach_poll_func(indio_dev->trig, 1128 indio_dev->pollfunc); 1129 if (ret) 1130 goto err_disable_buffers; 1131 } 1132 1133 if (indio_dev->setup_ops->postenable) { 1134 ret = indio_dev->setup_ops->postenable(indio_dev); 1135 if (ret) { 1136 dev_dbg(&indio_dev->dev, 1137 "Buffer not started: postenable failed (%d)\n", ret); 1138 goto err_detach_pollfunc; 1139 } 1140 } 1141 1142 return 0; 1143 1144 err_detach_pollfunc: 1145 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1146 iio_trigger_detach_poll_func(indio_dev->trig, 1147 indio_dev->pollfunc); 1148 } 1149 err_disable_buffers: 1150 buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list); 1151 list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list, 1152 buffer_list) 1153 iio_buffer_disable(buffer, indio_dev); 1154 err_run_postdisable: 1155 if (indio_dev->setup_ops->postdisable) 1156 indio_dev->setup_ops->postdisable(indio_dev); 1157 err_undo_config: 1158 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE; 1159 indio_dev->active_scan_mask = NULL; 1160 1161 return ret; 1162 } 1163 1164 static int iio_disable_buffers(struct iio_dev *indio_dev) 1165 { 1166 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1167 struct iio_buffer *buffer; 1168 int ret = 0; 1169 int ret2; 1170 1171 /* Wind down existing buffers - iff there are any */ 1172 if (list_empty(&iio_dev_opaque->buffer_list)) 1173 return 0; 1174 1175 /* 1176 * If things go wrong at some step in disable we still need to continue 1177 * to perform the other steps, otherwise we leave the device in a 1178 * inconsistent state. We return the error code for the first error we 1179 * encountered. 1180 */ 1181 1182 if (indio_dev->setup_ops->predisable) { 1183 ret2 = indio_dev->setup_ops->predisable(indio_dev); 1184 if (ret2 && !ret) 1185 ret = ret2; 1186 } 1187 1188 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1189 iio_trigger_detach_poll_func(indio_dev->trig, 1190 indio_dev->pollfunc); 1191 } 1192 1193 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1194 ret2 = iio_buffer_disable(buffer, indio_dev); 1195 if (ret2 && !ret) 1196 ret = ret2; 1197 } 1198 1199 if (indio_dev->setup_ops->postdisable) { 1200 ret2 = indio_dev->setup_ops->postdisable(indio_dev); 1201 if (ret2 && !ret) 1202 ret = ret2; 1203 } 1204 1205 iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask); 1206 indio_dev->active_scan_mask = NULL; 1207 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE; 1208 1209 return ret; 1210 } 1211 1212 static int __iio_update_buffers(struct iio_dev *indio_dev, 1213 struct iio_buffer *insert_buffer, 1214 struct iio_buffer *remove_buffer) 1215 { 1216 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1217 struct iio_device_config new_config; 1218 int ret; 1219 1220 ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer, 1221 &new_config); 1222 if (ret) 1223 return ret; 1224 1225 if (insert_buffer) { 1226 ret = iio_buffer_request_update(indio_dev, insert_buffer); 1227 if (ret) 1228 goto err_free_config; 1229 } 1230 1231 ret = iio_disable_buffers(indio_dev); 1232 if (ret) 1233 goto err_deactivate_all; 1234 1235 if (remove_buffer) 1236 iio_buffer_deactivate(remove_buffer); 1237 if (insert_buffer) 1238 iio_buffer_activate(indio_dev, insert_buffer); 1239 1240 /* If no buffers in list, we are done */ 1241 if (list_empty(&iio_dev_opaque->buffer_list)) 1242 return 0; 1243 1244 ret = iio_enable_buffers(indio_dev, &new_config); 1245 if (ret) 1246 goto err_deactivate_all; 1247 1248 return 0; 1249 1250 err_deactivate_all: 1251 /* 1252 * We've already verified that the config is valid earlier. If things go 1253 * wrong in either enable or disable the most likely reason is an IO 1254 * error from the device. In this case there is no good recovery 1255 * strategy. Just make sure to disable everything and leave the device 1256 * in a sane state. With a bit of luck the device might come back to 1257 * life again later and userspace can try again. 1258 */ 1259 iio_buffer_deactivate_all(indio_dev); 1260 1261 err_free_config: 1262 iio_free_scan_mask(indio_dev, new_config.scan_mask); 1263 return ret; 1264 } 1265 1266 int iio_update_buffers(struct iio_dev *indio_dev, 1267 struct iio_buffer *insert_buffer, 1268 struct iio_buffer *remove_buffer) 1269 { 1270 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1271 int ret; 1272 1273 if (insert_buffer == remove_buffer) 1274 return 0; 1275 1276 if (insert_buffer && 1277 insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT) 1278 return -EINVAL; 1279 1280 mutex_lock(&iio_dev_opaque->info_exist_lock); 1281 mutex_lock(&iio_dev_opaque->mlock); 1282 1283 if (insert_buffer && iio_buffer_is_active(insert_buffer)) 1284 insert_buffer = NULL; 1285 1286 if (remove_buffer && !iio_buffer_is_active(remove_buffer)) 1287 remove_buffer = NULL; 1288 1289 if (!insert_buffer && !remove_buffer) { 1290 ret = 0; 1291 goto out_unlock; 1292 } 1293 1294 if (!indio_dev->info) { 1295 ret = -ENODEV; 1296 goto out_unlock; 1297 } 1298 1299 ret = __iio_update_buffers(indio_dev, insert_buffer, remove_buffer); 1300 1301 out_unlock: 1302 mutex_unlock(&iio_dev_opaque->mlock); 1303 mutex_unlock(&iio_dev_opaque->info_exist_lock); 1304 1305 return ret; 1306 } 1307 EXPORT_SYMBOL_GPL(iio_update_buffers); 1308 1309 void iio_disable_all_buffers(struct iio_dev *indio_dev) 1310 { 1311 iio_disable_buffers(indio_dev); 1312 iio_buffer_deactivate_all(indio_dev); 1313 } 1314 1315 static ssize_t enable_store(struct device *dev, struct device_attribute *attr, 1316 const char *buf, size_t len) 1317 { 1318 int ret; 1319 bool requested_state; 1320 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1321 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1322 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1323 bool inlist; 1324 1325 ret = kstrtobool(buf, &requested_state); 1326 if (ret < 0) 1327 return ret; 1328 1329 mutex_lock(&iio_dev_opaque->mlock); 1330 1331 /* Find out if it is in the list */ 1332 inlist = iio_buffer_is_active(buffer); 1333 /* Already in desired state */ 1334 if (inlist == requested_state) 1335 goto done; 1336 1337 if (requested_state) 1338 ret = __iio_update_buffers(indio_dev, buffer, NULL); 1339 else 1340 ret = __iio_update_buffers(indio_dev, NULL, buffer); 1341 1342 done: 1343 mutex_unlock(&iio_dev_opaque->mlock); 1344 return (ret < 0) ? ret : len; 1345 } 1346 1347 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr, 1348 char *buf) 1349 { 1350 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1351 1352 return sysfs_emit(buf, "%u\n", buffer->watermark); 1353 } 1354 1355 static ssize_t watermark_store(struct device *dev, 1356 struct device_attribute *attr, 1357 const char *buf, size_t len) 1358 { 1359 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1360 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1361 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1362 unsigned int val; 1363 int ret; 1364 1365 ret = kstrtouint(buf, 10, &val); 1366 if (ret) 1367 return ret; 1368 if (!val) 1369 return -EINVAL; 1370 1371 mutex_lock(&iio_dev_opaque->mlock); 1372 1373 if (val > buffer->length) { 1374 ret = -EINVAL; 1375 goto out; 1376 } 1377 1378 if (iio_buffer_is_active(buffer)) { 1379 ret = -EBUSY; 1380 goto out; 1381 } 1382 1383 buffer->watermark = val; 1384 out: 1385 mutex_unlock(&iio_dev_opaque->mlock); 1386 1387 return ret ? ret : len; 1388 } 1389 1390 static ssize_t data_available_show(struct device *dev, 1391 struct device_attribute *attr, char *buf) 1392 { 1393 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1394 1395 return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer)); 1396 } 1397 1398 static ssize_t direction_show(struct device *dev, 1399 struct device_attribute *attr, 1400 char *buf) 1401 { 1402 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1403 1404 switch (buffer->direction) { 1405 case IIO_BUFFER_DIRECTION_IN: 1406 return sysfs_emit(buf, "in\n"); 1407 case IIO_BUFFER_DIRECTION_OUT: 1408 return sysfs_emit(buf, "out\n"); 1409 default: 1410 return -EINVAL; 1411 } 1412 } 1413 1414 static DEVICE_ATTR_RW(length); 1415 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length); 1416 static DEVICE_ATTR_RW(enable); 1417 static DEVICE_ATTR_RW(watermark); 1418 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark); 1419 static DEVICE_ATTR_RO(data_available); 1420 static DEVICE_ATTR_RO(direction); 1421 1422 /* 1423 * When adding new attributes here, put the at the end, at least until 1424 * the code that handles the length/length_ro & watermark/watermark_ro 1425 * assignments gets cleaned up. Otherwise these can create some weird 1426 * duplicate attributes errors under some setups. 1427 */ 1428 static struct attribute *iio_buffer_attrs[] = { 1429 &dev_attr_length.attr, 1430 &dev_attr_enable.attr, 1431 &dev_attr_watermark.attr, 1432 &dev_attr_data_available.attr, 1433 &dev_attr_direction.attr, 1434 }; 1435 1436 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1437 1438 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer, 1439 struct attribute *attr) 1440 { 1441 struct device_attribute *dattr = to_dev_attr(attr); 1442 struct iio_dev_attr *iio_attr; 1443 1444 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL); 1445 if (!iio_attr) 1446 return NULL; 1447 1448 iio_attr->buffer = buffer; 1449 memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr)); 1450 iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL); 1451 if (!iio_attr->dev_attr.attr.name) { 1452 kfree(iio_attr); 1453 return NULL; 1454 } 1455 1456 sysfs_attr_init(&iio_attr->dev_attr.attr); 1457 1458 list_add(&iio_attr->l, &buffer->buffer_attr_list); 1459 1460 return &iio_attr->dev_attr.attr; 1461 } 1462 1463 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev, 1464 struct attribute **buffer_attrs, 1465 int buffer_attrcount, 1466 int scan_el_attrcount) 1467 { 1468 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1469 struct attribute_group *group; 1470 struct attribute **attrs; 1471 int ret; 1472 1473 attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL); 1474 if (!attrs) 1475 return -ENOMEM; 1476 1477 memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs)); 1478 1479 group = &iio_dev_opaque->legacy_buffer_group; 1480 group->attrs = attrs; 1481 group->name = "buffer"; 1482 1483 ret = iio_device_register_sysfs_group(indio_dev, group); 1484 if (ret) 1485 goto error_free_buffer_attrs; 1486 1487 attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL); 1488 if (!attrs) { 1489 ret = -ENOMEM; 1490 goto error_free_buffer_attrs; 1491 } 1492 1493 memcpy(attrs, &buffer_attrs[buffer_attrcount], 1494 scan_el_attrcount * sizeof(*attrs)); 1495 1496 group = &iio_dev_opaque->legacy_scan_el_group; 1497 group->attrs = attrs; 1498 group->name = "scan_elements"; 1499 1500 ret = iio_device_register_sysfs_group(indio_dev, group); 1501 if (ret) 1502 goto error_free_scan_el_attrs; 1503 1504 return 0; 1505 1506 error_free_scan_el_attrs: 1507 kfree(iio_dev_opaque->legacy_scan_el_group.attrs); 1508 error_free_buffer_attrs: 1509 kfree(iio_dev_opaque->legacy_buffer_group.attrs); 1510 1511 return ret; 1512 } 1513 1514 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev) 1515 { 1516 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1517 1518 kfree(iio_dev_opaque->legacy_buffer_group.attrs); 1519 kfree(iio_dev_opaque->legacy_scan_el_group.attrs); 1520 } 1521 1522 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep) 1523 { 1524 struct iio_dev_buffer_pair *ib = filep->private_data; 1525 struct iio_dev *indio_dev = ib->indio_dev; 1526 struct iio_buffer *buffer = ib->buffer; 1527 1528 wake_up(&buffer->pollq); 1529 1530 kfree(ib); 1531 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags); 1532 iio_device_put(indio_dev); 1533 1534 return 0; 1535 } 1536 1537 static const struct file_operations iio_buffer_chrdev_fileops = { 1538 .owner = THIS_MODULE, 1539 .llseek = noop_llseek, 1540 .read = iio_buffer_read, 1541 .write = iio_buffer_write, 1542 .poll = iio_buffer_poll, 1543 .release = iio_buffer_chrdev_release, 1544 }; 1545 1546 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg) 1547 { 1548 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1549 int __user *ival = (int __user *)arg; 1550 struct iio_dev_buffer_pair *ib; 1551 struct iio_buffer *buffer; 1552 int fd, idx, ret; 1553 1554 if (copy_from_user(&idx, ival, sizeof(idx))) 1555 return -EFAULT; 1556 1557 if (idx >= iio_dev_opaque->attached_buffers_cnt) 1558 return -ENODEV; 1559 1560 iio_device_get(indio_dev); 1561 1562 buffer = iio_dev_opaque->attached_buffers[idx]; 1563 1564 if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) { 1565 ret = -EBUSY; 1566 goto error_iio_dev_put; 1567 } 1568 1569 ib = kzalloc(sizeof(*ib), GFP_KERNEL); 1570 if (!ib) { 1571 ret = -ENOMEM; 1572 goto error_clear_busy_bit; 1573 } 1574 1575 ib->indio_dev = indio_dev; 1576 ib->buffer = buffer; 1577 1578 fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops, 1579 ib, O_RDWR | O_CLOEXEC); 1580 if (fd < 0) { 1581 ret = fd; 1582 goto error_free_ib; 1583 } 1584 1585 if (copy_to_user(ival, &fd, sizeof(fd))) { 1586 /* 1587 * "Leak" the fd, as there's not much we can do about this 1588 * anyway. 'fd' might have been closed already, as 1589 * anon_inode_getfd() called fd_install() on it, which made 1590 * it reachable by userland. 1591 * 1592 * Instead of allowing a malicious user to play tricks with 1593 * us, rely on the process exit path to do any necessary 1594 * cleanup, as in releasing the file, if still needed. 1595 */ 1596 return -EFAULT; 1597 } 1598 1599 return 0; 1600 1601 error_free_ib: 1602 kfree(ib); 1603 error_clear_busy_bit: 1604 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags); 1605 error_iio_dev_put: 1606 iio_device_put(indio_dev); 1607 return ret; 1608 } 1609 1610 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp, 1611 unsigned int cmd, unsigned long arg) 1612 { 1613 switch (cmd) { 1614 case IIO_BUFFER_GET_FD_IOCTL: 1615 return iio_device_buffer_getfd(indio_dev, arg); 1616 default: 1617 return IIO_IOCTL_UNHANDLED; 1618 } 1619 } 1620 1621 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer, 1622 struct iio_dev *indio_dev, 1623 int index) 1624 { 1625 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1626 struct iio_dev_attr *p; 1627 const struct iio_dev_attr *id_attr; 1628 struct attribute **attr; 1629 int ret, i, attrn, scan_el_attrcount, buffer_attrcount; 1630 const struct iio_chan_spec *channels; 1631 1632 buffer_attrcount = 0; 1633 if (buffer->attrs) { 1634 while (buffer->attrs[buffer_attrcount]) 1635 buffer_attrcount++; 1636 } 1637 buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs); 1638 1639 scan_el_attrcount = 0; 1640 INIT_LIST_HEAD(&buffer->buffer_attr_list); 1641 channels = indio_dev->channels; 1642 if (channels) { 1643 /* new magic */ 1644 for (i = 0; i < indio_dev->num_channels; i++) { 1645 if (channels[i].scan_index < 0) 1646 continue; 1647 1648 /* Verify that sample bits fit into storage */ 1649 if (channels[i].scan_type.storagebits < 1650 channels[i].scan_type.realbits + 1651 channels[i].scan_type.shift) { 1652 dev_err(&indio_dev->dev, 1653 "Channel %d storagebits (%d) < shifted realbits (%d + %d)\n", 1654 i, channels[i].scan_type.storagebits, 1655 channels[i].scan_type.realbits, 1656 channels[i].scan_type.shift); 1657 ret = -EINVAL; 1658 goto error_cleanup_dynamic; 1659 } 1660 1661 ret = iio_buffer_add_channel_sysfs(indio_dev, buffer, 1662 &channels[i]); 1663 if (ret < 0) 1664 goto error_cleanup_dynamic; 1665 scan_el_attrcount += ret; 1666 if (channels[i].type == IIO_TIMESTAMP) 1667 iio_dev_opaque->scan_index_timestamp = 1668 channels[i].scan_index; 1669 } 1670 if (indio_dev->masklength && !buffer->scan_mask) { 1671 buffer->scan_mask = bitmap_zalloc(indio_dev->masklength, 1672 GFP_KERNEL); 1673 if (!buffer->scan_mask) { 1674 ret = -ENOMEM; 1675 goto error_cleanup_dynamic; 1676 } 1677 } 1678 } 1679 1680 attrn = buffer_attrcount + scan_el_attrcount; 1681 attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL); 1682 if (!attr) { 1683 ret = -ENOMEM; 1684 goto error_free_scan_mask; 1685 } 1686 1687 memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs)); 1688 if (!buffer->access->set_length) 1689 attr[0] = &dev_attr_length_ro.attr; 1690 1691 if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK) 1692 attr[2] = &dev_attr_watermark_ro.attr; 1693 1694 if (buffer->attrs) 1695 for (i = 0, id_attr = buffer->attrs[i]; 1696 (id_attr = buffer->attrs[i]); i++) 1697 attr[ARRAY_SIZE(iio_buffer_attrs) + i] = 1698 (struct attribute *)&id_attr->dev_attr.attr; 1699 1700 buffer->buffer_group.attrs = attr; 1701 1702 for (i = 0; i < buffer_attrcount; i++) { 1703 struct attribute *wrapped; 1704 1705 wrapped = iio_buffer_wrap_attr(buffer, attr[i]); 1706 if (!wrapped) { 1707 ret = -ENOMEM; 1708 goto error_free_buffer_attrs; 1709 } 1710 attr[i] = wrapped; 1711 } 1712 1713 attrn = 0; 1714 list_for_each_entry(p, &buffer->buffer_attr_list, l) 1715 attr[attrn++] = &p->dev_attr.attr; 1716 1717 buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index); 1718 if (!buffer->buffer_group.name) { 1719 ret = -ENOMEM; 1720 goto error_free_buffer_attrs; 1721 } 1722 1723 ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group); 1724 if (ret) 1725 goto error_free_buffer_attr_group_name; 1726 1727 /* we only need to register the legacy groups for the first buffer */ 1728 if (index > 0) 1729 return 0; 1730 1731 ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr, 1732 buffer_attrcount, 1733 scan_el_attrcount); 1734 if (ret) 1735 goto error_free_buffer_attr_group_name; 1736 1737 return 0; 1738 1739 error_free_buffer_attr_group_name: 1740 kfree(buffer->buffer_group.name); 1741 error_free_buffer_attrs: 1742 kfree(buffer->buffer_group.attrs); 1743 error_free_scan_mask: 1744 bitmap_free(buffer->scan_mask); 1745 error_cleanup_dynamic: 1746 iio_free_chan_devattr_list(&buffer->buffer_attr_list); 1747 1748 return ret; 1749 } 1750 1751 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer, 1752 struct iio_dev *indio_dev, 1753 int index) 1754 { 1755 if (index == 0) 1756 iio_buffer_unregister_legacy_sysfs_groups(indio_dev); 1757 bitmap_free(buffer->scan_mask); 1758 kfree(buffer->buffer_group.name); 1759 kfree(buffer->buffer_group.attrs); 1760 iio_free_chan_devattr_list(&buffer->buffer_attr_list); 1761 } 1762 1763 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev) 1764 { 1765 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1766 const struct iio_chan_spec *channels; 1767 struct iio_buffer *buffer; 1768 int ret, i, idx; 1769 size_t sz; 1770 1771 channels = indio_dev->channels; 1772 if (channels) { 1773 int ml = indio_dev->masklength; 1774 1775 for (i = 0; i < indio_dev->num_channels; i++) 1776 ml = max(ml, channels[i].scan_index + 1); 1777 indio_dev->masklength = ml; 1778 } 1779 1780 if (!iio_dev_opaque->attached_buffers_cnt) 1781 return 0; 1782 1783 for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) { 1784 buffer = iio_dev_opaque->attached_buffers[idx]; 1785 ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx); 1786 if (ret) 1787 goto error_unwind_sysfs_and_mask; 1788 } 1789 1790 sz = sizeof(*iio_dev_opaque->buffer_ioctl_handler); 1791 iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL); 1792 if (!iio_dev_opaque->buffer_ioctl_handler) { 1793 ret = -ENOMEM; 1794 goto error_unwind_sysfs_and_mask; 1795 } 1796 1797 iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl; 1798 iio_device_ioctl_handler_register(indio_dev, 1799 iio_dev_opaque->buffer_ioctl_handler); 1800 1801 return 0; 1802 1803 error_unwind_sysfs_and_mask: 1804 while (idx--) { 1805 buffer = iio_dev_opaque->attached_buffers[idx]; 1806 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx); 1807 } 1808 return ret; 1809 } 1810 1811 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev) 1812 { 1813 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1814 struct iio_buffer *buffer; 1815 int i; 1816 1817 if (!iio_dev_opaque->attached_buffers_cnt) 1818 return; 1819 1820 iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler); 1821 kfree(iio_dev_opaque->buffer_ioctl_handler); 1822 1823 for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) { 1824 buffer = iio_dev_opaque->attached_buffers[i]; 1825 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i); 1826 } 1827 } 1828 1829 /** 1830 * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected 1831 * @indio_dev: the iio device 1832 * @mask: scan mask to be checked 1833 * 1834 * Return true if exactly one bit is set in the scan mask, false otherwise. It 1835 * can be used for devices where only one channel can be active for sampling at 1836 * a time. 1837 */ 1838 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev, 1839 const unsigned long *mask) 1840 { 1841 return bitmap_weight(mask, indio_dev->masklength) == 1; 1842 } 1843 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot); 1844 1845 static const void *iio_demux(struct iio_buffer *buffer, 1846 const void *datain) 1847 { 1848 struct iio_demux_table *t; 1849 1850 if (list_empty(&buffer->demux_list)) 1851 return datain; 1852 list_for_each_entry(t, &buffer->demux_list, l) 1853 memcpy(buffer->demux_bounce + t->to, 1854 datain + t->from, t->length); 1855 1856 return buffer->demux_bounce; 1857 } 1858 1859 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data) 1860 { 1861 const void *dataout = iio_demux(buffer, data); 1862 int ret; 1863 1864 ret = buffer->access->store_to(buffer, dataout); 1865 if (ret) 1866 return ret; 1867 1868 /* 1869 * We can't just test for watermark to decide if we wake the poll queue 1870 * because read may request less samples than the watermark. 1871 */ 1872 wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM); 1873 return 0; 1874 } 1875 1876 /** 1877 * iio_push_to_buffers() - push to a registered buffer. 1878 * @indio_dev: iio_dev structure for device. 1879 * @data: Full scan. 1880 */ 1881 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data) 1882 { 1883 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1884 int ret; 1885 struct iio_buffer *buf; 1886 1887 list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) { 1888 ret = iio_push_to_buffer(buf, data); 1889 if (ret < 0) 1890 return ret; 1891 } 1892 1893 return 0; 1894 } 1895 EXPORT_SYMBOL_GPL(iio_push_to_buffers); 1896 1897 /** 1898 * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer, 1899 * no alignment or space requirements. 1900 * @indio_dev: iio_dev structure for device. 1901 * @data: channel data excluding the timestamp. 1902 * @data_sz: size of data. 1903 * @timestamp: timestamp for the sample data. 1904 * 1905 * This special variant of iio_push_to_buffers_with_timestamp() does 1906 * not require space for the timestamp, or 8 byte alignment of data. 1907 * It does however require an allocation on first call and additional 1908 * copies on all calls, so should be avoided if possible. 1909 */ 1910 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev, 1911 const void *data, 1912 size_t data_sz, 1913 int64_t timestamp) 1914 { 1915 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1916 1917 /* 1918 * Conservative estimate - we can always safely copy the minimum 1919 * of either the data provided or the length of the destination buffer. 1920 * This relaxed limit allows the calling drivers to be lax about 1921 * tracking the size of the data they are pushing, at the cost of 1922 * unnecessary copying of padding. 1923 */ 1924 data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz); 1925 if (iio_dev_opaque->bounce_buffer_size != indio_dev->scan_bytes) { 1926 void *bb; 1927 1928 bb = devm_krealloc(&indio_dev->dev, 1929 iio_dev_opaque->bounce_buffer, 1930 indio_dev->scan_bytes, GFP_KERNEL); 1931 if (!bb) 1932 return -ENOMEM; 1933 iio_dev_opaque->bounce_buffer = bb; 1934 iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes; 1935 } 1936 memcpy(iio_dev_opaque->bounce_buffer, data, data_sz); 1937 return iio_push_to_buffers_with_timestamp(indio_dev, 1938 iio_dev_opaque->bounce_buffer, 1939 timestamp); 1940 } 1941 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned); 1942 1943 /** 1944 * iio_buffer_release() - Free a buffer's resources 1945 * @ref: Pointer to the kref embedded in the iio_buffer struct 1946 * 1947 * This function is called when the last reference to the buffer has been 1948 * dropped. It will typically free all resources allocated by the buffer. Do not 1949 * call this function manually, always use iio_buffer_put() when done using a 1950 * buffer. 1951 */ 1952 static void iio_buffer_release(struct kref *ref) 1953 { 1954 struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref); 1955 1956 buffer->access->release(buffer); 1957 } 1958 1959 /** 1960 * iio_buffer_get() - Grab a reference to the buffer 1961 * @buffer: The buffer to grab a reference for, may be NULL 1962 * 1963 * Returns the pointer to the buffer that was passed into the function. 1964 */ 1965 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer) 1966 { 1967 if (buffer) 1968 kref_get(&buffer->ref); 1969 1970 return buffer; 1971 } 1972 EXPORT_SYMBOL_GPL(iio_buffer_get); 1973 1974 /** 1975 * iio_buffer_put() - Release the reference to the buffer 1976 * @buffer: The buffer to release the reference for, may be NULL 1977 */ 1978 void iio_buffer_put(struct iio_buffer *buffer) 1979 { 1980 if (buffer) 1981 kref_put(&buffer->ref, iio_buffer_release); 1982 } 1983 EXPORT_SYMBOL_GPL(iio_buffer_put); 1984 1985 /** 1986 * iio_device_attach_buffer - Attach a buffer to a IIO device 1987 * @indio_dev: The device the buffer should be attached to 1988 * @buffer: The buffer to attach to the device 1989 * 1990 * Return 0 if successful, negative if error. 1991 * 1992 * This function attaches a buffer to a IIO device. The buffer stays attached to 1993 * the device until the device is freed. For legacy reasons, the first attached 1994 * buffer will also be assigned to 'indio_dev->buffer'. 1995 * The array allocated here, will be free'd via the iio_device_detach_buffers() 1996 * call which is handled by the iio_device_free(). 1997 */ 1998 int iio_device_attach_buffer(struct iio_dev *indio_dev, 1999 struct iio_buffer *buffer) 2000 { 2001 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 2002 struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers; 2003 unsigned int cnt = iio_dev_opaque->attached_buffers_cnt; 2004 2005 cnt++; 2006 2007 new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL); 2008 if (!new) 2009 return -ENOMEM; 2010 iio_dev_opaque->attached_buffers = new; 2011 2012 buffer = iio_buffer_get(buffer); 2013 2014 /* first buffer is legacy; attach it to the IIO device directly */ 2015 if (!indio_dev->buffer) 2016 indio_dev->buffer = buffer; 2017 2018 iio_dev_opaque->attached_buffers[cnt - 1] = buffer; 2019 iio_dev_opaque->attached_buffers_cnt = cnt; 2020 2021 return 0; 2022 } 2023 EXPORT_SYMBOL_GPL(iio_device_attach_buffer); 2024