1 // SPDX-License-Identifier: GPL-2.0-only 2 /* The industrial I/O core 3 * 4 * Copyright (c) 2008 Jonathan Cameron 5 * 6 * Handling of buffer allocation / resizing. 7 * 8 * Things to look at here. 9 * - Better memory allocation techniques? 10 * - Alternative access techniques? 11 */ 12 #include <linux/anon_inodes.h> 13 #include <linux/kernel.h> 14 #include <linux/export.h> 15 #include <linux/device.h> 16 #include <linux/file.h> 17 #include <linux/fs.h> 18 #include <linux/cdev.h> 19 #include <linux/slab.h> 20 #include <linux/poll.h> 21 #include <linux/sched/signal.h> 22 23 #include <linux/iio/iio.h> 24 #include <linux/iio/iio-opaque.h> 25 #include "iio_core.h" 26 #include "iio_core_trigger.h" 27 #include <linux/iio/sysfs.h> 28 #include <linux/iio/buffer.h> 29 #include <linux/iio/buffer_impl.h> 30 31 static const char * const iio_endian_prefix[] = { 32 [IIO_BE] = "be", 33 [IIO_LE] = "le", 34 }; 35 36 static bool iio_buffer_is_active(struct iio_buffer *buf) 37 { 38 return !list_empty(&buf->buffer_list); 39 } 40 41 static size_t iio_buffer_data_available(struct iio_buffer *buf) 42 { 43 return buf->access->data_available(buf); 44 } 45 46 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev, 47 struct iio_buffer *buf, size_t required) 48 { 49 if (!indio_dev->info->hwfifo_flush_to_buffer) 50 return -ENODEV; 51 52 return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required); 53 } 54 55 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf, 56 size_t to_wait, int to_flush) 57 { 58 size_t avail; 59 int flushed = 0; 60 61 /* wakeup if the device was unregistered */ 62 if (!indio_dev->info) 63 return true; 64 65 /* drain the buffer if it was disabled */ 66 if (!iio_buffer_is_active(buf)) { 67 to_wait = min_t(size_t, to_wait, 1); 68 to_flush = 0; 69 } 70 71 avail = iio_buffer_data_available(buf); 72 73 if (avail >= to_wait) { 74 /* force a flush for non-blocking reads */ 75 if (!to_wait && avail < to_flush) 76 iio_buffer_flush_hwfifo(indio_dev, buf, 77 to_flush - avail); 78 return true; 79 } 80 81 if (to_flush) 82 flushed = iio_buffer_flush_hwfifo(indio_dev, buf, 83 to_wait - avail); 84 if (flushed <= 0) 85 return false; 86 87 if (avail + flushed >= to_wait) 88 return true; 89 90 return false; 91 } 92 93 /** 94 * iio_buffer_read() - chrdev read for buffer access 95 * @filp: File structure pointer for the char device 96 * @buf: Destination buffer for iio buffer read 97 * @n: First n bytes to read 98 * @f_ps: Long offset provided by the user as a seek position 99 * 100 * This function relies on all buffer implementations having an 101 * iio_buffer as their first element. 102 * 103 * Return: negative values corresponding to error codes or ret != 0 104 * for ending the reading activity 105 **/ 106 static ssize_t iio_buffer_read(struct file *filp, char __user *buf, 107 size_t n, loff_t *f_ps) 108 { 109 struct iio_dev_buffer_pair *ib = filp->private_data; 110 struct iio_buffer *rb = ib->buffer; 111 struct iio_dev *indio_dev = ib->indio_dev; 112 DEFINE_WAIT_FUNC(wait, woken_wake_function); 113 size_t datum_size; 114 size_t to_wait; 115 int ret = 0; 116 117 if (!indio_dev->info) 118 return -ENODEV; 119 120 if (!rb || !rb->access->read) 121 return -EINVAL; 122 123 if (rb->direction != IIO_BUFFER_DIRECTION_IN) 124 return -EPERM; 125 126 datum_size = rb->bytes_per_datum; 127 128 /* 129 * If datum_size is 0 there will never be anything to read from the 130 * buffer, so signal end of file now. 131 */ 132 if (!datum_size) 133 return 0; 134 135 if (filp->f_flags & O_NONBLOCK) 136 to_wait = 0; 137 else 138 to_wait = min_t(size_t, n / datum_size, rb->watermark); 139 140 add_wait_queue(&rb->pollq, &wait); 141 do { 142 if (!indio_dev->info) { 143 ret = -ENODEV; 144 break; 145 } 146 147 if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) { 148 if (signal_pending(current)) { 149 ret = -ERESTARTSYS; 150 break; 151 } 152 153 wait_woken(&wait, TASK_INTERRUPTIBLE, 154 MAX_SCHEDULE_TIMEOUT); 155 continue; 156 } 157 158 ret = rb->access->read(rb, n, buf); 159 if (ret == 0 && (filp->f_flags & O_NONBLOCK)) 160 ret = -EAGAIN; 161 } while (ret == 0); 162 remove_wait_queue(&rb->pollq, &wait); 163 164 return ret; 165 } 166 167 static size_t iio_buffer_space_available(struct iio_buffer *buf) 168 { 169 if (buf->access->space_available) 170 return buf->access->space_available(buf); 171 172 return SIZE_MAX; 173 } 174 175 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf, 176 size_t n, loff_t *f_ps) 177 { 178 struct iio_dev_buffer_pair *ib = filp->private_data; 179 struct iio_buffer *rb = ib->buffer; 180 struct iio_dev *indio_dev = ib->indio_dev; 181 DEFINE_WAIT_FUNC(wait, woken_wake_function); 182 int ret = 0; 183 size_t written; 184 185 if (!indio_dev->info) 186 return -ENODEV; 187 188 if (!rb || !rb->access->write) 189 return -EINVAL; 190 191 if (rb->direction != IIO_BUFFER_DIRECTION_OUT) 192 return -EPERM; 193 194 written = 0; 195 add_wait_queue(&rb->pollq, &wait); 196 do { 197 if (indio_dev->info == NULL) 198 return -ENODEV; 199 200 if (!iio_buffer_space_available(rb)) { 201 if (signal_pending(current)) { 202 ret = -ERESTARTSYS; 203 break; 204 } 205 206 wait_woken(&wait, TASK_INTERRUPTIBLE, 207 MAX_SCHEDULE_TIMEOUT); 208 continue; 209 } 210 211 ret = rb->access->write(rb, n - written, buf + written); 212 if (ret == 0 && (filp->f_flags & O_NONBLOCK)) 213 ret = -EAGAIN; 214 215 if (ret > 0) { 216 written += ret; 217 if (written != n && !(filp->f_flags & O_NONBLOCK)) 218 continue; 219 } 220 } while (ret == 0); 221 remove_wait_queue(&rb->pollq, &wait); 222 223 return ret < 0 ? ret : n; 224 } 225 226 /** 227 * iio_buffer_poll() - poll the buffer to find out if it has data 228 * @filp: File structure pointer for device access 229 * @wait: Poll table structure pointer for which the driver adds 230 * a wait queue 231 * 232 * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading 233 * or 0 for other cases 234 */ 235 static __poll_t iio_buffer_poll(struct file *filp, 236 struct poll_table_struct *wait) 237 { 238 struct iio_dev_buffer_pair *ib = filp->private_data; 239 struct iio_buffer *rb = ib->buffer; 240 struct iio_dev *indio_dev = ib->indio_dev; 241 242 if (!indio_dev->info || rb == NULL) 243 return 0; 244 245 poll_wait(filp, &rb->pollq, wait); 246 247 switch (rb->direction) { 248 case IIO_BUFFER_DIRECTION_IN: 249 if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0)) 250 return EPOLLIN | EPOLLRDNORM; 251 break; 252 case IIO_BUFFER_DIRECTION_OUT: 253 if (iio_buffer_space_available(rb)) 254 return EPOLLOUT | EPOLLWRNORM; 255 break; 256 } 257 258 return 0; 259 } 260 261 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf, 262 size_t n, loff_t *f_ps) 263 { 264 struct iio_dev_buffer_pair *ib = filp->private_data; 265 struct iio_buffer *rb = ib->buffer; 266 267 /* check if buffer was opened through new API */ 268 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 269 return -EBUSY; 270 271 return iio_buffer_read(filp, buf, n, f_ps); 272 } 273 274 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf, 275 size_t n, loff_t *f_ps) 276 { 277 struct iio_dev_buffer_pair *ib = filp->private_data; 278 struct iio_buffer *rb = ib->buffer; 279 280 /* check if buffer was opened through new API */ 281 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 282 return -EBUSY; 283 284 return iio_buffer_write(filp, buf, n, f_ps); 285 } 286 287 __poll_t iio_buffer_poll_wrapper(struct file *filp, 288 struct poll_table_struct *wait) 289 { 290 struct iio_dev_buffer_pair *ib = filp->private_data; 291 struct iio_buffer *rb = ib->buffer; 292 293 /* check if buffer was opened through new API */ 294 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 295 return 0; 296 297 return iio_buffer_poll(filp, wait); 298 } 299 300 /** 301 * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue 302 * @indio_dev: The IIO device 303 * 304 * Wakes up the event waitqueue used for poll(). Should usually 305 * be called when the device is unregistered. 306 */ 307 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev) 308 { 309 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 310 struct iio_buffer *buffer; 311 unsigned int i; 312 313 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) { 314 buffer = iio_dev_opaque->attached_buffers[i]; 315 wake_up(&buffer->pollq); 316 } 317 } 318 319 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data) 320 { 321 if (!buffer || !buffer->access || !buffer->access->remove_from) 322 return -EINVAL; 323 324 return buffer->access->remove_from(buffer, data); 325 } 326 EXPORT_SYMBOL_GPL(iio_pop_from_buffer); 327 328 void iio_buffer_init(struct iio_buffer *buffer) 329 { 330 INIT_LIST_HEAD(&buffer->demux_list); 331 INIT_LIST_HEAD(&buffer->buffer_list); 332 init_waitqueue_head(&buffer->pollq); 333 kref_init(&buffer->ref); 334 if (!buffer->watermark) 335 buffer->watermark = 1; 336 } 337 EXPORT_SYMBOL(iio_buffer_init); 338 339 void iio_device_detach_buffers(struct iio_dev *indio_dev) 340 { 341 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 342 struct iio_buffer *buffer; 343 unsigned int i; 344 345 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) { 346 buffer = iio_dev_opaque->attached_buffers[i]; 347 iio_buffer_put(buffer); 348 } 349 350 kfree(iio_dev_opaque->attached_buffers); 351 } 352 353 static ssize_t iio_show_scan_index(struct device *dev, 354 struct device_attribute *attr, 355 char *buf) 356 { 357 return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index); 358 } 359 360 static ssize_t iio_show_fixed_type(struct device *dev, 361 struct device_attribute *attr, 362 char *buf) 363 { 364 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 365 u8 type = this_attr->c->scan_type.endianness; 366 367 if (type == IIO_CPU) { 368 #ifdef __LITTLE_ENDIAN 369 type = IIO_LE; 370 #else 371 type = IIO_BE; 372 #endif 373 } 374 if (this_attr->c->scan_type.repeat > 1) 375 return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n", 376 iio_endian_prefix[type], 377 this_attr->c->scan_type.sign, 378 this_attr->c->scan_type.realbits, 379 this_attr->c->scan_type.storagebits, 380 this_attr->c->scan_type.repeat, 381 this_attr->c->scan_type.shift); 382 else 383 return sysfs_emit(buf, "%s:%c%d/%d>>%u\n", 384 iio_endian_prefix[type], 385 this_attr->c->scan_type.sign, 386 this_attr->c->scan_type.realbits, 387 this_attr->c->scan_type.storagebits, 388 this_attr->c->scan_type.shift); 389 } 390 391 static ssize_t iio_scan_el_show(struct device *dev, 392 struct device_attribute *attr, 393 char *buf) 394 { 395 int ret; 396 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 397 398 /* Ensure ret is 0 or 1. */ 399 ret = !!test_bit(to_iio_dev_attr(attr)->address, 400 buffer->scan_mask); 401 402 return sysfs_emit(buf, "%d\n", ret); 403 } 404 405 /* Note NULL used as error indicator as it doesn't make sense. */ 406 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks, 407 unsigned int masklength, 408 const unsigned long *mask, 409 bool strict) 410 { 411 if (bitmap_empty(mask, masklength)) 412 return NULL; 413 while (*av_masks) { 414 if (strict) { 415 if (bitmap_equal(mask, av_masks, masklength)) 416 return av_masks; 417 } else { 418 if (bitmap_subset(mask, av_masks, masklength)) 419 return av_masks; 420 } 421 av_masks += BITS_TO_LONGS(masklength); 422 } 423 return NULL; 424 } 425 426 static bool iio_validate_scan_mask(struct iio_dev *indio_dev, 427 const unsigned long *mask) 428 { 429 if (!indio_dev->setup_ops->validate_scan_mask) 430 return true; 431 432 return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask); 433 } 434 435 /** 436 * iio_scan_mask_set() - set particular bit in the scan mask 437 * @indio_dev: the iio device 438 * @buffer: the buffer whose scan mask we are interested in 439 * @bit: the bit to be set. 440 * 441 * Note that at this point we have no way of knowing what other 442 * buffers might request, hence this code only verifies that the 443 * individual buffers request is plausible. 444 */ 445 static int iio_scan_mask_set(struct iio_dev *indio_dev, 446 struct iio_buffer *buffer, int bit) 447 { 448 const unsigned long *mask; 449 unsigned long *trialmask; 450 451 if (!indio_dev->masklength) { 452 WARN(1, "Trying to set scanmask prior to registering buffer\n"); 453 return -EINVAL; 454 } 455 456 trialmask = bitmap_alloc(indio_dev->masklength, GFP_KERNEL); 457 if (!trialmask) 458 return -ENOMEM; 459 bitmap_copy(trialmask, buffer->scan_mask, indio_dev->masklength); 460 set_bit(bit, trialmask); 461 462 if (!iio_validate_scan_mask(indio_dev, trialmask)) 463 goto err_invalid_mask; 464 465 if (indio_dev->available_scan_masks) { 466 mask = iio_scan_mask_match(indio_dev->available_scan_masks, 467 indio_dev->masklength, 468 trialmask, false); 469 if (!mask) 470 goto err_invalid_mask; 471 } 472 bitmap_copy(buffer->scan_mask, trialmask, indio_dev->masklength); 473 474 bitmap_free(trialmask); 475 476 return 0; 477 478 err_invalid_mask: 479 bitmap_free(trialmask); 480 return -EINVAL; 481 } 482 483 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit) 484 { 485 clear_bit(bit, buffer->scan_mask); 486 return 0; 487 } 488 489 static int iio_scan_mask_query(struct iio_dev *indio_dev, 490 struct iio_buffer *buffer, int bit) 491 { 492 if (bit > indio_dev->masklength) 493 return -EINVAL; 494 495 if (!buffer->scan_mask) 496 return 0; 497 498 /* Ensure return value is 0 or 1. */ 499 return !!test_bit(bit, buffer->scan_mask); 500 }; 501 502 static ssize_t iio_scan_el_store(struct device *dev, 503 struct device_attribute *attr, 504 const char *buf, 505 size_t len) 506 { 507 int ret; 508 bool state; 509 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 510 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 511 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 512 struct iio_buffer *buffer = this_attr->buffer; 513 514 ret = kstrtobool(buf, &state); 515 if (ret < 0) 516 return ret; 517 mutex_lock(&iio_dev_opaque->mlock); 518 if (iio_buffer_is_active(buffer)) { 519 ret = -EBUSY; 520 goto error_ret; 521 } 522 ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address); 523 if (ret < 0) 524 goto error_ret; 525 if (!state && ret) { 526 ret = iio_scan_mask_clear(buffer, this_attr->address); 527 if (ret) 528 goto error_ret; 529 } else if (state && !ret) { 530 ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address); 531 if (ret) 532 goto error_ret; 533 } 534 535 error_ret: 536 mutex_unlock(&iio_dev_opaque->mlock); 537 538 return ret < 0 ? ret : len; 539 540 } 541 542 static ssize_t iio_scan_el_ts_show(struct device *dev, 543 struct device_attribute *attr, 544 char *buf) 545 { 546 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 547 548 return sysfs_emit(buf, "%d\n", buffer->scan_timestamp); 549 } 550 551 static ssize_t iio_scan_el_ts_store(struct device *dev, 552 struct device_attribute *attr, 553 const char *buf, 554 size_t len) 555 { 556 int ret; 557 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 558 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 559 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 560 bool state; 561 562 ret = kstrtobool(buf, &state); 563 if (ret < 0) 564 return ret; 565 566 mutex_lock(&iio_dev_opaque->mlock); 567 if (iio_buffer_is_active(buffer)) { 568 ret = -EBUSY; 569 goto error_ret; 570 } 571 buffer->scan_timestamp = state; 572 error_ret: 573 mutex_unlock(&iio_dev_opaque->mlock); 574 575 return ret ? ret : len; 576 } 577 578 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev, 579 struct iio_buffer *buffer, 580 const struct iio_chan_spec *chan) 581 { 582 int ret, attrcount = 0; 583 584 ret = __iio_add_chan_devattr("index", 585 chan, 586 &iio_show_scan_index, 587 NULL, 588 0, 589 IIO_SEPARATE, 590 &indio_dev->dev, 591 buffer, 592 &buffer->buffer_attr_list); 593 if (ret) 594 return ret; 595 attrcount++; 596 ret = __iio_add_chan_devattr("type", 597 chan, 598 &iio_show_fixed_type, 599 NULL, 600 0, 601 0, 602 &indio_dev->dev, 603 buffer, 604 &buffer->buffer_attr_list); 605 if (ret) 606 return ret; 607 attrcount++; 608 if (chan->type != IIO_TIMESTAMP) 609 ret = __iio_add_chan_devattr("en", 610 chan, 611 &iio_scan_el_show, 612 &iio_scan_el_store, 613 chan->scan_index, 614 0, 615 &indio_dev->dev, 616 buffer, 617 &buffer->buffer_attr_list); 618 else 619 ret = __iio_add_chan_devattr("en", 620 chan, 621 &iio_scan_el_ts_show, 622 &iio_scan_el_ts_store, 623 chan->scan_index, 624 0, 625 &indio_dev->dev, 626 buffer, 627 &buffer->buffer_attr_list); 628 if (ret) 629 return ret; 630 attrcount++; 631 ret = attrcount; 632 return ret; 633 } 634 635 static ssize_t length_show(struct device *dev, struct device_attribute *attr, 636 char *buf) 637 { 638 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 639 640 return sysfs_emit(buf, "%d\n", buffer->length); 641 } 642 643 static ssize_t length_store(struct device *dev, struct device_attribute *attr, 644 const char *buf, size_t len) 645 { 646 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 647 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 648 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 649 unsigned int val; 650 int ret; 651 652 ret = kstrtouint(buf, 10, &val); 653 if (ret) 654 return ret; 655 656 if (val == buffer->length) 657 return len; 658 659 mutex_lock(&iio_dev_opaque->mlock); 660 if (iio_buffer_is_active(buffer)) { 661 ret = -EBUSY; 662 } else { 663 buffer->access->set_length(buffer, val); 664 ret = 0; 665 } 666 if (ret) 667 goto out; 668 if (buffer->length && buffer->length < buffer->watermark) 669 buffer->watermark = buffer->length; 670 out: 671 mutex_unlock(&iio_dev_opaque->mlock); 672 673 return ret ? ret : len; 674 } 675 676 static ssize_t enable_show(struct device *dev, struct device_attribute *attr, 677 char *buf) 678 { 679 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 680 681 return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer)); 682 } 683 684 static unsigned int iio_storage_bytes_for_si(struct iio_dev *indio_dev, 685 unsigned int scan_index) 686 { 687 const struct iio_chan_spec *ch; 688 unsigned int bytes; 689 690 ch = iio_find_channel_from_si(indio_dev, scan_index); 691 bytes = ch->scan_type.storagebits / 8; 692 if (ch->scan_type.repeat > 1) 693 bytes *= ch->scan_type.repeat; 694 return bytes; 695 } 696 697 static unsigned int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev) 698 { 699 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 700 701 return iio_storage_bytes_for_si(indio_dev, 702 iio_dev_opaque->scan_index_timestamp); 703 } 704 705 static int iio_compute_scan_bytes(struct iio_dev *indio_dev, 706 const unsigned long *mask, bool timestamp) 707 { 708 unsigned int bytes = 0; 709 int length, i, largest = 0; 710 711 /* How much space will the demuxed element take? */ 712 for_each_set_bit(i, mask, 713 indio_dev->masklength) { 714 length = iio_storage_bytes_for_si(indio_dev, i); 715 bytes = ALIGN(bytes, length); 716 bytes += length; 717 largest = max(largest, length); 718 } 719 720 if (timestamp) { 721 length = iio_storage_bytes_for_timestamp(indio_dev); 722 bytes = ALIGN(bytes, length); 723 bytes += length; 724 largest = max(largest, length); 725 } 726 727 bytes = ALIGN(bytes, largest); 728 return bytes; 729 } 730 731 static void iio_buffer_activate(struct iio_dev *indio_dev, 732 struct iio_buffer *buffer) 733 { 734 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 735 736 iio_buffer_get(buffer); 737 list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list); 738 } 739 740 static void iio_buffer_deactivate(struct iio_buffer *buffer) 741 { 742 list_del_init(&buffer->buffer_list); 743 wake_up_interruptible(&buffer->pollq); 744 iio_buffer_put(buffer); 745 } 746 747 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev) 748 { 749 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 750 struct iio_buffer *buffer, *_buffer; 751 752 list_for_each_entry_safe(buffer, _buffer, 753 &iio_dev_opaque->buffer_list, buffer_list) 754 iio_buffer_deactivate(buffer); 755 } 756 757 static int iio_buffer_enable(struct iio_buffer *buffer, 758 struct iio_dev *indio_dev) 759 { 760 if (!buffer->access->enable) 761 return 0; 762 return buffer->access->enable(buffer, indio_dev); 763 } 764 765 static int iio_buffer_disable(struct iio_buffer *buffer, 766 struct iio_dev *indio_dev) 767 { 768 if (!buffer->access->disable) 769 return 0; 770 return buffer->access->disable(buffer, indio_dev); 771 } 772 773 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev, 774 struct iio_buffer *buffer) 775 { 776 unsigned int bytes; 777 778 if (!buffer->access->set_bytes_per_datum) 779 return; 780 781 bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask, 782 buffer->scan_timestamp); 783 784 buffer->access->set_bytes_per_datum(buffer, bytes); 785 } 786 787 static int iio_buffer_request_update(struct iio_dev *indio_dev, 788 struct iio_buffer *buffer) 789 { 790 int ret; 791 792 iio_buffer_update_bytes_per_datum(indio_dev, buffer); 793 if (buffer->access->request_update) { 794 ret = buffer->access->request_update(buffer); 795 if (ret) { 796 dev_dbg(&indio_dev->dev, 797 "Buffer not started: buffer parameter update failed (%d)\n", 798 ret); 799 return ret; 800 } 801 } 802 803 return 0; 804 } 805 806 static void iio_free_scan_mask(struct iio_dev *indio_dev, 807 const unsigned long *mask) 808 { 809 /* If the mask is dynamically allocated free it, otherwise do nothing */ 810 if (!indio_dev->available_scan_masks) 811 bitmap_free(mask); 812 } 813 814 struct iio_device_config { 815 unsigned int mode; 816 unsigned int watermark; 817 const unsigned long *scan_mask; 818 unsigned int scan_bytes; 819 bool scan_timestamp; 820 }; 821 822 static int iio_verify_update(struct iio_dev *indio_dev, 823 struct iio_buffer *insert_buffer, struct iio_buffer *remove_buffer, 824 struct iio_device_config *config) 825 { 826 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 827 unsigned long *compound_mask; 828 const unsigned long *scan_mask; 829 bool strict_scanmask = false; 830 struct iio_buffer *buffer; 831 bool scan_timestamp; 832 unsigned int modes; 833 834 if (insert_buffer && 835 bitmap_empty(insert_buffer->scan_mask, indio_dev->masklength)) { 836 dev_dbg(&indio_dev->dev, 837 "At least one scan element must be enabled first\n"); 838 return -EINVAL; 839 } 840 841 memset(config, 0, sizeof(*config)); 842 config->watermark = ~0; 843 844 /* 845 * If there is just one buffer and we are removing it there is nothing 846 * to verify. 847 */ 848 if (remove_buffer && !insert_buffer && 849 list_is_singular(&iio_dev_opaque->buffer_list)) 850 return 0; 851 852 modes = indio_dev->modes; 853 854 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 855 if (buffer == remove_buffer) 856 continue; 857 modes &= buffer->access->modes; 858 config->watermark = min(config->watermark, buffer->watermark); 859 } 860 861 if (insert_buffer) { 862 modes &= insert_buffer->access->modes; 863 config->watermark = min(config->watermark, 864 insert_buffer->watermark); 865 } 866 867 /* Definitely possible for devices to support both of these. */ 868 if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) { 869 config->mode = INDIO_BUFFER_TRIGGERED; 870 } else if (modes & INDIO_BUFFER_HARDWARE) { 871 /* 872 * Keep things simple for now and only allow a single buffer to 873 * be connected in hardware mode. 874 */ 875 if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list)) 876 return -EINVAL; 877 config->mode = INDIO_BUFFER_HARDWARE; 878 strict_scanmask = true; 879 } else if (modes & INDIO_BUFFER_SOFTWARE) { 880 config->mode = INDIO_BUFFER_SOFTWARE; 881 } else { 882 /* Can only occur on first buffer */ 883 if (indio_dev->modes & INDIO_BUFFER_TRIGGERED) 884 dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n"); 885 return -EINVAL; 886 } 887 888 /* What scan mask do we actually have? */ 889 compound_mask = bitmap_zalloc(indio_dev->masklength, GFP_KERNEL); 890 if (compound_mask == NULL) 891 return -ENOMEM; 892 893 scan_timestamp = false; 894 895 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 896 if (buffer == remove_buffer) 897 continue; 898 bitmap_or(compound_mask, compound_mask, buffer->scan_mask, 899 indio_dev->masklength); 900 scan_timestamp |= buffer->scan_timestamp; 901 } 902 903 if (insert_buffer) { 904 bitmap_or(compound_mask, compound_mask, 905 insert_buffer->scan_mask, indio_dev->masklength); 906 scan_timestamp |= insert_buffer->scan_timestamp; 907 } 908 909 if (indio_dev->available_scan_masks) { 910 scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks, 911 indio_dev->masklength, 912 compound_mask, 913 strict_scanmask); 914 bitmap_free(compound_mask); 915 if (scan_mask == NULL) 916 return -EINVAL; 917 } else { 918 scan_mask = compound_mask; 919 } 920 921 config->scan_bytes = iio_compute_scan_bytes(indio_dev, 922 scan_mask, scan_timestamp); 923 config->scan_mask = scan_mask; 924 config->scan_timestamp = scan_timestamp; 925 926 return 0; 927 } 928 929 /** 930 * struct iio_demux_table - table describing demux memcpy ops 931 * @from: index to copy from 932 * @to: index to copy to 933 * @length: how many bytes to copy 934 * @l: list head used for management 935 */ 936 struct iio_demux_table { 937 unsigned int from; 938 unsigned int to; 939 unsigned int length; 940 struct list_head l; 941 }; 942 943 static void iio_buffer_demux_free(struct iio_buffer *buffer) 944 { 945 struct iio_demux_table *p, *q; 946 947 list_for_each_entry_safe(p, q, &buffer->demux_list, l) { 948 list_del(&p->l); 949 kfree(p); 950 } 951 } 952 953 static int iio_buffer_add_demux(struct iio_buffer *buffer, 954 struct iio_demux_table **p, unsigned int in_loc, unsigned int out_loc, 955 unsigned int length) 956 { 957 958 if (*p && (*p)->from + (*p)->length == in_loc && 959 (*p)->to + (*p)->length == out_loc) { 960 (*p)->length += length; 961 } else { 962 *p = kmalloc(sizeof(**p), GFP_KERNEL); 963 if (*p == NULL) 964 return -ENOMEM; 965 (*p)->from = in_loc; 966 (*p)->to = out_loc; 967 (*p)->length = length; 968 list_add_tail(&(*p)->l, &buffer->demux_list); 969 } 970 971 return 0; 972 } 973 974 static int iio_buffer_update_demux(struct iio_dev *indio_dev, 975 struct iio_buffer *buffer) 976 { 977 int ret, in_ind = -1, out_ind, length; 978 unsigned int in_loc = 0, out_loc = 0; 979 struct iio_demux_table *p = NULL; 980 981 /* Clear out any old demux */ 982 iio_buffer_demux_free(buffer); 983 kfree(buffer->demux_bounce); 984 buffer->demux_bounce = NULL; 985 986 /* First work out which scan mode we will actually have */ 987 if (bitmap_equal(indio_dev->active_scan_mask, 988 buffer->scan_mask, 989 indio_dev->masklength)) 990 return 0; 991 992 /* Now we have the two masks, work from least sig and build up sizes */ 993 for_each_set_bit(out_ind, 994 buffer->scan_mask, 995 indio_dev->masklength) { 996 in_ind = find_next_bit(indio_dev->active_scan_mask, 997 indio_dev->masklength, 998 in_ind + 1); 999 while (in_ind != out_ind) { 1000 length = iio_storage_bytes_for_si(indio_dev, in_ind); 1001 /* Make sure we are aligned */ 1002 in_loc = roundup(in_loc, length) + length; 1003 in_ind = find_next_bit(indio_dev->active_scan_mask, 1004 indio_dev->masklength, 1005 in_ind + 1); 1006 } 1007 length = iio_storage_bytes_for_si(indio_dev, in_ind); 1008 out_loc = roundup(out_loc, length); 1009 in_loc = roundup(in_loc, length); 1010 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length); 1011 if (ret) 1012 goto error_clear_mux_table; 1013 out_loc += length; 1014 in_loc += length; 1015 } 1016 /* Relies on scan_timestamp being last */ 1017 if (buffer->scan_timestamp) { 1018 length = iio_storage_bytes_for_timestamp(indio_dev); 1019 out_loc = roundup(out_loc, length); 1020 in_loc = roundup(in_loc, length); 1021 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length); 1022 if (ret) 1023 goto error_clear_mux_table; 1024 out_loc += length; 1025 } 1026 buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL); 1027 if (buffer->demux_bounce == NULL) { 1028 ret = -ENOMEM; 1029 goto error_clear_mux_table; 1030 } 1031 return 0; 1032 1033 error_clear_mux_table: 1034 iio_buffer_demux_free(buffer); 1035 1036 return ret; 1037 } 1038 1039 static int iio_update_demux(struct iio_dev *indio_dev) 1040 { 1041 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1042 struct iio_buffer *buffer; 1043 int ret; 1044 1045 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1046 ret = iio_buffer_update_demux(indio_dev, buffer); 1047 if (ret < 0) 1048 goto error_clear_mux_table; 1049 } 1050 return 0; 1051 1052 error_clear_mux_table: 1053 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) 1054 iio_buffer_demux_free(buffer); 1055 1056 return ret; 1057 } 1058 1059 static int iio_enable_buffers(struct iio_dev *indio_dev, 1060 struct iio_device_config *config) 1061 { 1062 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1063 struct iio_buffer *buffer, *tmp = NULL; 1064 int ret; 1065 1066 indio_dev->active_scan_mask = config->scan_mask; 1067 indio_dev->scan_timestamp = config->scan_timestamp; 1068 indio_dev->scan_bytes = config->scan_bytes; 1069 iio_dev_opaque->currentmode = config->mode; 1070 1071 iio_update_demux(indio_dev); 1072 1073 /* Wind up again */ 1074 if (indio_dev->setup_ops->preenable) { 1075 ret = indio_dev->setup_ops->preenable(indio_dev); 1076 if (ret) { 1077 dev_dbg(&indio_dev->dev, 1078 "Buffer not started: buffer preenable failed (%d)\n", ret); 1079 goto err_undo_config; 1080 } 1081 } 1082 1083 if (indio_dev->info->update_scan_mode) { 1084 ret = indio_dev->info 1085 ->update_scan_mode(indio_dev, 1086 indio_dev->active_scan_mask); 1087 if (ret < 0) { 1088 dev_dbg(&indio_dev->dev, 1089 "Buffer not started: update scan mode failed (%d)\n", 1090 ret); 1091 goto err_run_postdisable; 1092 } 1093 } 1094 1095 if (indio_dev->info->hwfifo_set_watermark) 1096 indio_dev->info->hwfifo_set_watermark(indio_dev, 1097 config->watermark); 1098 1099 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1100 ret = iio_buffer_enable(buffer, indio_dev); 1101 if (ret) { 1102 tmp = buffer; 1103 goto err_disable_buffers; 1104 } 1105 } 1106 1107 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1108 ret = iio_trigger_attach_poll_func(indio_dev->trig, 1109 indio_dev->pollfunc); 1110 if (ret) 1111 goto err_disable_buffers; 1112 } 1113 1114 if (indio_dev->setup_ops->postenable) { 1115 ret = indio_dev->setup_ops->postenable(indio_dev); 1116 if (ret) { 1117 dev_dbg(&indio_dev->dev, 1118 "Buffer not started: postenable failed (%d)\n", ret); 1119 goto err_detach_pollfunc; 1120 } 1121 } 1122 1123 return 0; 1124 1125 err_detach_pollfunc: 1126 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1127 iio_trigger_detach_poll_func(indio_dev->trig, 1128 indio_dev->pollfunc); 1129 } 1130 err_disable_buffers: 1131 buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list); 1132 list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list, 1133 buffer_list) 1134 iio_buffer_disable(buffer, indio_dev); 1135 err_run_postdisable: 1136 if (indio_dev->setup_ops->postdisable) 1137 indio_dev->setup_ops->postdisable(indio_dev); 1138 err_undo_config: 1139 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE; 1140 indio_dev->active_scan_mask = NULL; 1141 1142 return ret; 1143 } 1144 1145 static int iio_disable_buffers(struct iio_dev *indio_dev) 1146 { 1147 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1148 struct iio_buffer *buffer; 1149 int ret = 0; 1150 int ret2; 1151 1152 /* Wind down existing buffers - iff there are any */ 1153 if (list_empty(&iio_dev_opaque->buffer_list)) 1154 return 0; 1155 1156 /* 1157 * If things go wrong at some step in disable we still need to continue 1158 * to perform the other steps, otherwise we leave the device in a 1159 * inconsistent state. We return the error code for the first error we 1160 * encountered. 1161 */ 1162 1163 if (indio_dev->setup_ops->predisable) { 1164 ret2 = indio_dev->setup_ops->predisable(indio_dev); 1165 if (ret2 && !ret) 1166 ret = ret2; 1167 } 1168 1169 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1170 iio_trigger_detach_poll_func(indio_dev->trig, 1171 indio_dev->pollfunc); 1172 } 1173 1174 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1175 ret2 = iio_buffer_disable(buffer, indio_dev); 1176 if (ret2 && !ret) 1177 ret = ret2; 1178 } 1179 1180 if (indio_dev->setup_ops->postdisable) { 1181 ret2 = indio_dev->setup_ops->postdisable(indio_dev); 1182 if (ret2 && !ret) 1183 ret = ret2; 1184 } 1185 1186 iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask); 1187 indio_dev->active_scan_mask = NULL; 1188 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE; 1189 1190 return ret; 1191 } 1192 1193 static int __iio_update_buffers(struct iio_dev *indio_dev, 1194 struct iio_buffer *insert_buffer, 1195 struct iio_buffer *remove_buffer) 1196 { 1197 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1198 struct iio_device_config new_config; 1199 int ret; 1200 1201 ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer, 1202 &new_config); 1203 if (ret) 1204 return ret; 1205 1206 if (insert_buffer) { 1207 ret = iio_buffer_request_update(indio_dev, insert_buffer); 1208 if (ret) 1209 goto err_free_config; 1210 } 1211 1212 ret = iio_disable_buffers(indio_dev); 1213 if (ret) 1214 goto err_deactivate_all; 1215 1216 if (remove_buffer) 1217 iio_buffer_deactivate(remove_buffer); 1218 if (insert_buffer) 1219 iio_buffer_activate(indio_dev, insert_buffer); 1220 1221 /* If no buffers in list, we are done */ 1222 if (list_empty(&iio_dev_opaque->buffer_list)) 1223 return 0; 1224 1225 ret = iio_enable_buffers(indio_dev, &new_config); 1226 if (ret) 1227 goto err_deactivate_all; 1228 1229 return 0; 1230 1231 err_deactivate_all: 1232 /* 1233 * We've already verified that the config is valid earlier. If things go 1234 * wrong in either enable or disable the most likely reason is an IO 1235 * error from the device. In this case there is no good recovery 1236 * strategy. Just make sure to disable everything and leave the device 1237 * in a sane state. With a bit of luck the device might come back to 1238 * life again later and userspace can try again. 1239 */ 1240 iio_buffer_deactivate_all(indio_dev); 1241 1242 err_free_config: 1243 iio_free_scan_mask(indio_dev, new_config.scan_mask); 1244 return ret; 1245 } 1246 1247 int iio_update_buffers(struct iio_dev *indio_dev, 1248 struct iio_buffer *insert_buffer, 1249 struct iio_buffer *remove_buffer) 1250 { 1251 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1252 int ret; 1253 1254 if (insert_buffer == remove_buffer) 1255 return 0; 1256 1257 if (insert_buffer && 1258 (insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT)) 1259 return -EINVAL; 1260 1261 mutex_lock(&iio_dev_opaque->info_exist_lock); 1262 mutex_lock(&iio_dev_opaque->mlock); 1263 1264 if (insert_buffer && iio_buffer_is_active(insert_buffer)) 1265 insert_buffer = NULL; 1266 1267 if (remove_buffer && !iio_buffer_is_active(remove_buffer)) 1268 remove_buffer = NULL; 1269 1270 if (!insert_buffer && !remove_buffer) { 1271 ret = 0; 1272 goto out_unlock; 1273 } 1274 1275 if (indio_dev->info == NULL) { 1276 ret = -ENODEV; 1277 goto out_unlock; 1278 } 1279 1280 ret = __iio_update_buffers(indio_dev, insert_buffer, remove_buffer); 1281 1282 out_unlock: 1283 mutex_unlock(&iio_dev_opaque->mlock); 1284 mutex_unlock(&iio_dev_opaque->info_exist_lock); 1285 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(iio_update_buffers); 1289 1290 void iio_disable_all_buffers(struct iio_dev *indio_dev) 1291 { 1292 iio_disable_buffers(indio_dev); 1293 iio_buffer_deactivate_all(indio_dev); 1294 } 1295 1296 static ssize_t enable_store(struct device *dev, struct device_attribute *attr, 1297 const char *buf, size_t len) 1298 { 1299 int ret; 1300 bool requested_state; 1301 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1302 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1303 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1304 bool inlist; 1305 1306 ret = kstrtobool(buf, &requested_state); 1307 if (ret < 0) 1308 return ret; 1309 1310 mutex_lock(&iio_dev_opaque->mlock); 1311 1312 /* Find out if it is in the list */ 1313 inlist = iio_buffer_is_active(buffer); 1314 /* Already in desired state */ 1315 if (inlist == requested_state) 1316 goto done; 1317 1318 if (requested_state) 1319 ret = __iio_update_buffers(indio_dev, buffer, NULL); 1320 else 1321 ret = __iio_update_buffers(indio_dev, NULL, buffer); 1322 1323 done: 1324 mutex_unlock(&iio_dev_opaque->mlock); 1325 return (ret < 0) ? ret : len; 1326 } 1327 1328 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr, 1329 char *buf) 1330 { 1331 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1332 1333 return sysfs_emit(buf, "%u\n", buffer->watermark); 1334 } 1335 1336 static ssize_t watermark_store(struct device *dev, 1337 struct device_attribute *attr, 1338 const char *buf, size_t len) 1339 { 1340 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1341 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1342 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1343 unsigned int val; 1344 int ret; 1345 1346 ret = kstrtouint(buf, 10, &val); 1347 if (ret) 1348 return ret; 1349 if (!val) 1350 return -EINVAL; 1351 1352 mutex_lock(&iio_dev_opaque->mlock); 1353 1354 if (val > buffer->length) { 1355 ret = -EINVAL; 1356 goto out; 1357 } 1358 1359 if (iio_buffer_is_active(buffer)) { 1360 ret = -EBUSY; 1361 goto out; 1362 } 1363 1364 buffer->watermark = val; 1365 out: 1366 mutex_unlock(&iio_dev_opaque->mlock); 1367 1368 return ret ? ret : len; 1369 } 1370 1371 static ssize_t data_available_show(struct device *dev, 1372 struct device_attribute *attr, char *buf) 1373 { 1374 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1375 1376 return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer)); 1377 } 1378 1379 static ssize_t direction_show(struct device *dev, 1380 struct device_attribute *attr, 1381 char *buf) 1382 { 1383 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1384 1385 switch (buffer->direction) { 1386 case IIO_BUFFER_DIRECTION_IN: 1387 return sysfs_emit(buf, "in\n"); 1388 case IIO_BUFFER_DIRECTION_OUT: 1389 return sysfs_emit(buf, "out\n"); 1390 default: 1391 return -EINVAL; 1392 } 1393 } 1394 1395 static DEVICE_ATTR_RW(length); 1396 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length); 1397 static DEVICE_ATTR_RW(enable); 1398 static DEVICE_ATTR_RW(watermark); 1399 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark); 1400 static DEVICE_ATTR_RO(data_available); 1401 static DEVICE_ATTR_RO(direction); 1402 1403 /* 1404 * When adding new attributes here, put the at the end, at least until 1405 * the code that handles the length/length_ro & watermark/watermark_ro 1406 * assignments gets cleaned up. Otherwise these can create some weird 1407 * duplicate attributes errors under some setups. 1408 */ 1409 static struct attribute *iio_buffer_attrs[] = { 1410 &dev_attr_length.attr, 1411 &dev_attr_enable.attr, 1412 &dev_attr_watermark.attr, 1413 &dev_attr_data_available.attr, 1414 &dev_attr_direction.attr, 1415 }; 1416 1417 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1418 1419 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer, 1420 struct attribute *attr) 1421 { 1422 struct device_attribute *dattr = to_dev_attr(attr); 1423 struct iio_dev_attr *iio_attr; 1424 1425 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL); 1426 if (!iio_attr) 1427 return NULL; 1428 1429 iio_attr->buffer = buffer; 1430 memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr)); 1431 iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL); 1432 if (!iio_attr->dev_attr.attr.name) { 1433 kfree(iio_attr); 1434 return NULL; 1435 } 1436 1437 sysfs_attr_init(&iio_attr->dev_attr.attr); 1438 1439 list_add(&iio_attr->l, &buffer->buffer_attr_list); 1440 1441 return &iio_attr->dev_attr.attr; 1442 } 1443 1444 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev, 1445 struct attribute **buffer_attrs, 1446 int buffer_attrcount, 1447 int scan_el_attrcount) 1448 { 1449 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1450 struct attribute_group *group; 1451 struct attribute **attrs; 1452 int ret; 1453 1454 attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL); 1455 if (!attrs) 1456 return -ENOMEM; 1457 1458 memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs)); 1459 1460 group = &iio_dev_opaque->legacy_buffer_group; 1461 group->attrs = attrs; 1462 group->name = "buffer"; 1463 1464 ret = iio_device_register_sysfs_group(indio_dev, group); 1465 if (ret) 1466 goto error_free_buffer_attrs; 1467 1468 attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL); 1469 if (!attrs) { 1470 ret = -ENOMEM; 1471 goto error_free_buffer_attrs; 1472 } 1473 1474 memcpy(attrs, &buffer_attrs[buffer_attrcount], 1475 scan_el_attrcount * sizeof(*attrs)); 1476 1477 group = &iio_dev_opaque->legacy_scan_el_group; 1478 group->attrs = attrs; 1479 group->name = "scan_elements"; 1480 1481 ret = iio_device_register_sysfs_group(indio_dev, group); 1482 if (ret) 1483 goto error_free_scan_el_attrs; 1484 1485 return 0; 1486 1487 error_free_scan_el_attrs: 1488 kfree(iio_dev_opaque->legacy_scan_el_group.attrs); 1489 error_free_buffer_attrs: 1490 kfree(iio_dev_opaque->legacy_buffer_group.attrs); 1491 1492 return ret; 1493 } 1494 1495 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev) 1496 { 1497 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1498 1499 kfree(iio_dev_opaque->legacy_buffer_group.attrs); 1500 kfree(iio_dev_opaque->legacy_scan_el_group.attrs); 1501 } 1502 1503 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep) 1504 { 1505 struct iio_dev_buffer_pair *ib = filep->private_data; 1506 struct iio_dev *indio_dev = ib->indio_dev; 1507 struct iio_buffer *buffer = ib->buffer; 1508 1509 wake_up(&buffer->pollq); 1510 1511 kfree(ib); 1512 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags); 1513 iio_device_put(indio_dev); 1514 1515 return 0; 1516 } 1517 1518 static const struct file_operations iio_buffer_chrdev_fileops = { 1519 .owner = THIS_MODULE, 1520 .llseek = noop_llseek, 1521 .read = iio_buffer_read, 1522 .write = iio_buffer_write, 1523 .poll = iio_buffer_poll, 1524 .release = iio_buffer_chrdev_release, 1525 }; 1526 1527 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg) 1528 { 1529 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1530 int __user *ival = (int __user *)arg; 1531 struct iio_dev_buffer_pair *ib; 1532 struct iio_buffer *buffer; 1533 int fd, idx, ret; 1534 1535 if (copy_from_user(&idx, ival, sizeof(idx))) 1536 return -EFAULT; 1537 1538 if (idx >= iio_dev_opaque->attached_buffers_cnt) 1539 return -ENODEV; 1540 1541 iio_device_get(indio_dev); 1542 1543 buffer = iio_dev_opaque->attached_buffers[idx]; 1544 1545 if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) { 1546 ret = -EBUSY; 1547 goto error_iio_dev_put; 1548 } 1549 1550 ib = kzalloc(sizeof(*ib), GFP_KERNEL); 1551 if (!ib) { 1552 ret = -ENOMEM; 1553 goto error_clear_busy_bit; 1554 } 1555 1556 ib->indio_dev = indio_dev; 1557 ib->buffer = buffer; 1558 1559 fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops, 1560 ib, O_RDWR | O_CLOEXEC); 1561 if (fd < 0) { 1562 ret = fd; 1563 goto error_free_ib; 1564 } 1565 1566 if (copy_to_user(ival, &fd, sizeof(fd))) { 1567 /* 1568 * "Leak" the fd, as there's not much we can do about this 1569 * anyway. 'fd' might have been closed already, as 1570 * anon_inode_getfd() called fd_install() on it, which made 1571 * it reachable by userland. 1572 * 1573 * Instead of allowing a malicious user to play tricks with 1574 * us, rely on the process exit path to do any necessary 1575 * cleanup, as in releasing the file, if still needed. 1576 */ 1577 return -EFAULT; 1578 } 1579 1580 return 0; 1581 1582 error_free_ib: 1583 kfree(ib); 1584 error_clear_busy_bit: 1585 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags); 1586 error_iio_dev_put: 1587 iio_device_put(indio_dev); 1588 return ret; 1589 } 1590 1591 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp, 1592 unsigned int cmd, unsigned long arg) 1593 { 1594 switch (cmd) { 1595 case IIO_BUFFER_GET_FD_IOCTL: 1596 return iio_device_buffer_getfd(indio_dev, arg); 1597 default: 1598 return IIO_IOCTL_UNHANDLED; 1599 } 1600 } 1601 1602 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer, 1603 struct iio_dev *indio_dev, 1604 int index) 1605 { 1606 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1607 struct iio_dev_attr *p; 1608 const struct iio_dev_attr *id_attr; 1609 struct attribute **attr; 1610 int ret, i, attrn, scan_el_attrcount, buffer_attrcount; 1611 const struct iio_chan_spec *channels; 1612 1613 buffer_attrcount = 0; 1614 if (buffer->attrs) { 1615 while (buffer->attrs[buffer_attrcount] != NULL) 1616 buffer_attrcount++; 1617 } 1618 buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs); 1619 1620 scan_el_attrcount = 0; 1621 INIT_LIST_HEAD(&buffer->buffer_attr_list); 1622 channels = indio_dev->channels; 1623 if (channels) { 1624 /* new magic */ 1625 for (i = 0; i < indio_dev->num_channels; i++) { 1626 if (channels[i].scan_index < 0) 1627 continue; 1628 1629 /* Verify that sample bits fit into storage */ 1630 if (channels[i].scan_type.storagebits < 1631 channels[i].scan_type.realbits + 1632 channels[i].scan_type.shift) { 1633 dev_err(&indio_dev->dev, 1634 "Channel %d storagebits (%d) < shifted realbits (%d + %d)\n", 1635 i, channels[i].scan_type.storagebits, 1636 channels[i].scan_type.realbits, 1637 channels[i].scan_type.shift); 1638 ret = -EINVAL; 1639 goto error_cleanup_dynamic; 1640 } 1641 1642 ret = iio_buffer_add_channel_sysfs(indio_dev, buffer, 1643 &channels[i]); 1644 if (ret < 0) 1645 goto error_cleanup_dynamic; 1646 scan_el_attrcount += ret; 1647 if (channels[i].type == IIO_TIMESTAMP) 1648 iio_dev_opaque->scan_index_timestamp = 1649 channels[i].scan_index; 1650 } 1651 if (indio_dev->masklength && buffer->scan_mask == NULL) { 1652 buffer->scan_mask = bitmap_zalloc(indio_dev->masklength, 1653 GFP_KERNEL); 1654 if (buffer->scan_mask == NULL) { 1655 ret = -ENOMEM; 1656 goto error_cleanup_dynamic; 1657 } 1658 } 1659 } 1660 1661 attrn = buffer_attrcount + scan_el_attrcount; 1662 attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL); 1663 if (!attr) { 1664 ret = -ENOMEM; 1665 goto error_free_scan_mask; 1666 } 1667 1668 memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs)); 1669 if (!buffer->access->set_length) 1670 attr[0] = &dev_attr_length_ro.attr; 1671 1672 if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK) 1673 attr[2] = &dev_attr_watermark_ro.attr; 1674 1675 if (buffer->attrs) 1676 for (i = 0, id_attr = buffer->attrs[i]; 1677 (id_attr = buffer->attrs[i]); i++) 1678 attr[ARRAY_SIZE(iio_buffer_attrs) + i] = 1679 (struct attribute *)&id_attr->dev_attr.attr; 1680 1681 buffer->buffer_group.attrs = attr; 1682 1683 for (i = 0; i < buffer_attrcount; i++) { 1684 struct attribute *wrapped; 1685 1686 wrapped = iio_buffer_wrap_attr(buffer, attr[i]); 1687 if (!wrapped) { 1688 ret = -ENOMEM; 1689 goto error_free_buffer_attrs; 1690 } 1691 attr[i] = wrapped; 1692 } 1693 1694 attrn = 0; 1695 list_for_each_entry(p, &buffer->buffer_attr_list, l) 1696 attr[attrn++] = &p->dev_attr.attr; 1697 1698 buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index); 1699 if (!buffer->buffer_group.name) { 1700 ret = -ENOMEM; 1701 goto error_free_buffer_attrs; 1702 } 1703 1704 ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group); 1705 if (ret) 1706 goto error_free_buffer_attr_group_name; 1707 1708 /* we only need to register the legacy groups for the first buffer */ 1709 if (index > 0) 1710 return 0; 1711 1712 ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr, 1713 buffer_attrcount, 1714 scan_el_attrcount); 1715 if (ret) 1716 goto error_free_buffer_attr_group_name; 1717 1718 return 0; 1719 1720 error_free_buffer_attr_group_name: 1721 kfree(buffer->buffer_group.name); 1722 error_free_buffer_attrs: 1723 kfree(buffer->buffer_group.attrs); 1724 error_free_scan_mask: 1725 bitmap_free(buffer->scan_mask); 1726 error_cleanup_dynamic: 1727 iio_free_chan_devattr_list(&buffer->buffer_attr_list); 1728 1729 return ret; 1730 } 1731 1732 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer, 1733 struct iio_dev *indio_dev, 1734 int index) 1735 { 1736 if (index == 0) 1737 iio_buffer_unregister_legacy_sysfs_groups(indio_dev); 1738 bitmap_free(buffer->scan_mask); 1739 kfree(buffer->buffer_group.name); 1740 kfree(buffer->buffer_group.attrs); 1741 iio_free_chan_devattr_list(&buffer->buffer_attr_list); 1742 } 1743 1744 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev) 1745 { 1746 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1747 const struct iio_chan_spec *channels; 1748 struct iio_buffer *buffer; 1749 int ret, i, idx; 1750 size_t sz; 1751 1752 channels = indio_dev->channels; 1753 if (channels) { 1754 int ml = indio_dev->masklength; 1755 1756 for (i = 0; i < indio_dev->num_channels; i++) 1757 ml = max(ml, channels[i].scan_index + 1); 1758 indio_dev->masklength = ml; 1759 } 1760 1761 if (!iio_dev_opaque->attached_buffers_cnt) 1762 return 0; 1763 1764 for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) { 1765 buffer = iio_dev_opaque->attached_buffers[idx]; 1766 ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx); 1767 if (ret) 1768 goto error_unwind_sysfs_and_mask; 1769 } 1770 1771 sz = sizeof(*(iio_dev_opaque->buffer_ioctl_handler)); 1772 iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL); 1773 if (!iio_dev_opaque->buffer_ioctl_handler) { 1774 ret = -ENOMEM; 1775 goto error_unwind_sysfs_and_mask; 1776 } 1777 1778 iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl; 1779 iio_device_ioctl_handler_register(indio_dev, 1780 iio_dev_opaque->buffer_ioctl_handler); 1781 1782 return 0; 1783 1784 error_unwind_sysfs_and_mask: 1785 while (idx--) { 1786 buffer = iio_dev_opaque->attached_buffers[idx]; 1787 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx); 1788 } 1789 return ret; 1790 } 1791 1792 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev) 1793 { 1794 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1795 struct iio_buffer *buffer; 1796 int i; 1797 1798 if (!iio_dev_opaque->attached_buffers_cnt) 1799 return; 1800 1801 iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler); 1802 kfree(iio_dev_opaque->buffer_ioctl_handler); 1803 1804 for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) { 1805 buffer = iio_dev_opaque->attached_buffers[i]; 1806 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i); 1807 } 1808 } 1809 1810 /** 1811 * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected 1812 * @indio_dev: the iio device 1813 * @mask: scan mask to be checked 1814 * 1815 * Return true if exactly one bit is set in the scan mask, false otherwise. It 1816 * can be used for devices where only one channel can be active for sampling at 1817 * a time. 1818 */ 1819 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev, 1820 const unsigned long *mask) 1821 { 1822 return bitmap_weight(mask, indio_dev->masklength) == 1; 1823 } 1824 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot); 1825 1826 static const void *iio_demux(struct iio_buffer *buffer, 1827 const void *datain) 1828 { 1829 struct iio_demux_table *t; 1830 1831 if (list_empty(&buffer->demux_list)) 1832 return datain; 1833 list_for_each_entry(t, &buffer->demux_list, l) 1834 memcpy(buffer->demux_bounce + t->to, 1835 datain + t->from, t->length); 1836 1837 return buffer->demux_bounce; 1838 } 1839 1840 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data) 1841 { 1842 const void *dataout = iio_demux(buffer, data); 1843 int ret; 1844 1845 ret = buffer->access->store_to(buffer, dataout); 1846 if (ret) 1847 return ret; 1848 1849 /* 1850 * We can't just test for watermark to decide if we wake the poll queue 1851 * because read may request less samples than the watermark. 1852 */ 1853 wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM); 1854 return 0; 1855 } 1856 1857 /** 1858 * iio_push_to_buffers() - push to a registered buffer. 1859 * @indio_dev: iio_dev structure for device. 1860 * @data: Full scan. 1861 */ 1862 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data) 1863 { 1864 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1865 int ret; 1866 struct iio_buffer *buf; 1867 1868 list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) { 1869 ret = iio_push_to_buffer(buf, data); 1870 if (ret < 0) 1871 return ret; 1872 } 1873 1874 return 0; 1875 } 1876 EXPORT_SYMBOL_GPL(iio_push_to_buffers); 1877 1878 /** 1879 * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer, 1880 * no alignment or space requirements. 1881 * @indio_dev: iio_dev structure for device. 1882 * @data: channel data excluding the timestamp. 1883 * @data_sz: size of data. 1884 * @timestamp: timestamp for the sample data. 1885 * 1886 * This special variant of iio_push_to_buffers_with_timestamp() does 1887 * not require space for the timestamp, or 8 byte alignment of data. 1888 * It does however require an allocation on first call and additional 1889 * copies on all calls, so should be avoided if possible. 1890 */ 1891 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev, 1892 const void *data, 1893 size_t data_sz, 1894 int64_t timestamp) 1895 { 1896 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1897 1898 /* 1899 * Conservative estimate - we can always safely copy the minimum 1900 * of either the data provided or the length of the destination buffer. 1901 * This relaxed limit allows the calling drivers to be lax about 1902 * tracking the size of the data they are pushing, at the cost of 1903 * unnecessary copying of padding. 1904 */ 1905 data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz); 1906 if (iio_dev_opaque->bounce_buffer_size != indio_dev->scan_bytes) { 1907 void *bb; 1908 1909 bb = devm_krealloc(&indio_dev->dev, 1910 iio_dev_opaque->bounce_buffer, 1911 indio_dev->scan_bytes, GFP_KERNEL); 1912 if (!bb) 1913 return -ENOMEM; 1914 iio_dev_opaque->bounce_buffer = bb; 1915 iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes; 1916 } 1917 memcpy(iio_dev_opaque->bounce_buffer, data, data_sz); 1918 return iio_push_to_buffers_with_timestamp(indio_dev, 1919 iio_dev_opaque->bounce_buffer, 1920 timestamp); 1921 } 1922 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned); 1923 1924 /** 1925 * iio_buffer_release() - Free a buffer's resources 1926 * @ref: Pointer to the kref embedded in the iio_buffer struct 1927 * 1928 * This function is called when the last reference to the buffer has been 1929 * dropped. It will typically free all resources allocated by the buffer. Do not 1930 * call this function manually, always use iio_buffer_put() when done using a 1931 * buffer. 1932 */ 1933 static void iio_buffer_release(struct kref *ref) 1934 { 1935 struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref); 1936 1937 buffer->access->release(buffer); 1938 } 1939 1940 /** 1941 * iio_buffer_get() - Grab a reference to the buffer 1942 * @buffer: The buffer to grab a reference for, may be NULL 1943 * 1944 * Returns the pointer to the buffer that was passed into the function. 1945 */ 1946 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer) 1947 { 1948 if (buffer) 1949 kref_get(&buffer->ref); 1950 1951 return buffer; 1952 } 1953 EXPORT_SYMBOL_GPL(iio_buffer_get); 1954 1955 /** 1956 * iio_buffer_put() - Release the reference to the buffer 1957 * @buffer: The buffer to release the reference for, may be NULL 1958 */ 1959 void iio_buffer_put(struct iio_buffer *buffer) 1960 { 1961 if (buffer) 1962 kref_put(&buffer->ref, iio_buffer_release); 1963 } 1964 EXPORT_SYMBOL_GPL(iio_buffer_put); 1965 1966 /** 1967 * iio_device_attach_buffer - Attach a buffer to a IIO device 1968 * @indio_dev: The device the buffer should be attached to 1969 * @buffer: The buffer to attach to the device 1970 * 1971 * Return 0 if successful, negative if error. 1972 * 1973 * This function attaches a buffer to a IIO device. The buffer stays attached to 1974 * the device until the device is freed. For legacy reasons, the first attached 1975 * buffer will also be assigned to 'indio_dev->buffer'. 1976 * The array allocated here, will be free'd via the iio_device_detach_buffers() 1977 * call which is handled by the iio_device_free(). 1978 */ 1979 int iio_device_attach_buffer(struct iio_dev *indio_dev, 1980 struct iio_buffer *buffer) 1981 { 1982 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1983 struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers; 1984 unsigned int cnt = iio_dev_opaque->attached_buffers_cnt; 1985 1986 cnt++; 1987 1988 new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL); 1989 if (!new) 1990 return -ENOMEM; 1991 iio_dev_opaque->attached_buffers = new; 1992 1993 buffer = iio_buffer_get(buffer); 1994 1995 /* first buffer is legacy; attach it to the IIO device directly */ 1996 if (!indio_dev->buffer) 1997 indio_dev->buffer = buffer; 1998 1999 iio_dev_opaque->attached_buffers[cnt - 1] = buffer; 2000 iio_dev_opaque->attached_buffers_cnt = cnt; 2001 2002 return 0; 2003 } 2004 EXPORT_SYMBOL_GPL(iio_device_attach_buffer); 2005