xref: /linux/drivers/iio/industrialio-buffer.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* The industrial I/O core
3  *
4  * Copyright (c) 2008 Jonathan Cameron
5  *
6  * Handling of buffer allocation / resizing.
7  *
8  * Things to look at here.
9  * - Better memory allocation techniques?
10  * - Alternative access techniques?
11  */
12 #include <linux/atomic.h>
13 #include <linux/anon_inodes.h>
14 #include <linux/cleanup.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/device.h>
18 #include <linux/dma-buf.h>
19 #include <linux/dma-fence.h>
20 #include <linux/dma-resv.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/cdev.h>
24 #include <linux/slab.h>
25 #include <linux/mm.h>
26 #include <linux/poll.h>
27 #include <linux/sched/signal.h>
28 
29 #include <linux/iio/iio.h>
30 #include <linux/iio/iio-opaque.h>
31 #include "iio_core.h"
32 #include "iio_core_trigger.h"
33 #include <linux/iio/sysfs.h>
34 #include <linux/iio/buffer.h>
35 #include <linux/iio/buffer_impl.h>
36 
37 #define DMABUF_ENQUEUE_TIMEOUT_MS 5000
38 
39 MODULE_IMPORT_NS(DMA_BUF);
40 
41 struct iio_dmabuf_priv {
42 	struct list_head entry;
43 	struct kref ref;
44 
45 	struct iio_buffer *buffer;
46 	struct iio_dma_buffer_block *block;
47 
48 	u64 context;
49 
50 	/* Spinlock used for locking the dma_fence */
51 	spinlock_t lock;
52 
53 	struct dma_buf_attachment *attach;
54 	struct sg_table *sgt;
55 	enum dma_data_direction dir;
56 	atomic_t seqno;
57 };
58 
59 struct iio_dma_fence {
60 	struct dma_fence base;
61 	struct iio_dmabuf_priv *priv;
62 	struct work_struct work;
63 };
64 
65 static const char * const iio_endian_prefix[] = {
66 	[IIO_BE] = "be",
67 	[IIO_LE] = "le",
68 };
69 
70 static bool iio_buffer_is_active(struct iio_buffer *buf)
71 {
72 	return !list_empty(&buf->buffer_list);
73 }
74 
75 static size_t iio_buffer_data_available(struct iio_buffer *buf)
76 {
77 	return buf->access->data_available(buf);
78 }
79 
80 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev,
81 				   struct iio_buffer *buf, size_t required)
82 {
83 	if (!indio_dev->info->hwfifo_flush_to_buffer)
84 		return -ENODEV;
85 
86 	return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required);
87 }
88 
89 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf,
90 			     size_t to_wait, int to_flush)
91 {
92 	size_t avail;
93 	int flushed = 0;
94 
95 	/* wakeup if the device was unregistered */
96 	if (!indio_dev->info)
97 		return true;
98 
99 	/* drain the buffer if it was disabled */
100 	if (!iio_buffer_is_active(buf)) {
101 		to_wait = min_t(size_t, to_wait, 1);
102 		to_flush = 0;
103 	}
104 
105 	avail = iio_buffer_data_available(buf);
106 
107 	if (avail >= to_wait) {
108 		/* force a flush for non-blocking reads */
109 		if (!to_wait && avail < to_flush)
110 			iio_buffer_flush_hwfifo(indio_dev, buf,
111 						to_flush - avail);
112 		return true;
113 	}
114 
115 	if (to_flush)
116 		flushed = iio_buffer_flush_hwfifo(indio_dev, buf,
117 						  to_wait - avail);
118 	if (flushed <= 0)
119 		return false;
120 
121 	if (avail + flushed >= to_wait)
122 		return true;
123 
124 	return false;
125 }
126 
127 /**
128  * iio_buffer_read() - chrdev read for buffer access
129  * @filp:	File structure pointer for the char device
130  * @buf:	Destination buffer for iio buffer read
131  * @n:		First n bytes to read
132  * @f_ps:	Long offset provided by the user as a seek position
133  *
134  * This function relies on all buffer implementations having an
135  * iio_buffer as their first element.
136  *
137  * Return: negative values corresponding to error codes or ret != 0
138  *	   for ending the reading activity
139  **/
140 static ssize_t iio_buffer_read(struct file *filp, char __user *buf,
141 			       size_t n, loff_t *f_ps)
142 {
143 	struct iio_dev_buffer_pair *ib = filp->private_data;
144 	struct iio_buffer *rb = ib->buffer;
145 	struct iio_dev *indio_dev = ib->indio_dev;
146 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
147 	size_t datum_size;
148 	size_t to_wait;
149 	int ret = 0;
150 
151 	if (!indio_dev->info)
152 		return -ENODEV;
153 
154 	if (!rb || !rb->access->read)
155 		return -EINVAL;
156 
157 	if (rb->direction != IIO_BUFFER_DIRECTION_IN)
158 		return -EPERM;
159 
160 	datum_size = rb->bytes_per_datum;
161 
162 	/*
163 	 * If datum_size is 0 there will never be anything to read from the
164 	 * buffer, so signal end of file now.
165 	 */
166 	if (!datum_size)
167 		return 0;
168 
169 	if (filp->f_flags & O_NONBLOCK)
170 		to_wait = 0;
171 	else
172 		to_wait = min_t(size_t, n / datum_size, rb->watermark);
173 
174 	add_wait_queue(&rb->pollq, &wait);
175 	do {
176 		if (!indio_dev->info) {
177 			ret = -ENODEV;
178 			break;
179 		}
180 
181 		if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) {
182 			if (signal_pending(current)) {
183 				ret = -ERESTARTSYS;
184 				break;
185 			}
186 
187 			wait_woken(&wait, TASK_INTERRUPTIBLE,
188 				   MAX_SCHEDULE_TIMEOUT);
189 			continue;
190 		}
191 
192 		ret = rb->access->read(rb, n, buf);
193 		if (ret == 0 && (filp->f_flags & O_NONBLOCK))
194 			ret = -EAGAIN;
195 	} while (ret == 0);
196 	remove_wait_queue(&rb->pollq, &wait);
197 
198 	return ret;
199 }
200 
201 static size_t iio_buffer_space_available(struct iio_buffer *buf)
202 {
203 	if (buf->access->space_available)
204 		return buf->access->space_available(buf);
205 
206 	return SIZE_MAX;
207 }
208 
209 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf,
210 				size_t n, loff_t *f_ps)
211 {
212 	struct iio_dev_buffer_pair *ib = filp->private_data;
213 	struct iio_buffer *rb = ib->buffer;
214 	struct iio_dev *indio_dev = ib->indio_dev;
215 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
216 	int ret = 0;
217 	size_t written;
218 
219 	if (!indio_dev->info)
220 		return -ENODEV;
221 
222 	if (!rb || !rb->access->write)
223 		return -EINVAL;
224 
225 	if (rb->direction != IIO_BUFFER_DIRECTION_OUT)
226 		return -EPERM;
227 
228 	written = 0;
229 	add_wait_queue(&rb->pollq, &wait);
230 	do {
231 		if (!indio_dev->info)
232 			return -ENODEV;
233 
234 		if (!iio_buffer_space_available(rb)) {
235 			if (signal_pending(current)) {
236 				ret = -ERESTARTSYS;
237 				break;
238 			}
239 
240 			if (filp->f_flags & O_NONBLOCK) {
241 				if (!written)
242 					ret = -EAGAIN;
243 				break;
244 			}
245 
246 			wait_woken(&wait, TASK_INTERRUPTIBLE,
247 				   MAX_SCHEDULE_TIMEOUT);
248 			continue;
249 		}
250 
251 		ret = rb->access->write(rb, n - written, buf + written);
252 		if (ret < 0)
253 			break;
254 
255 		written += ret;
256 
257 	} while (written != n);
258 	remove_wait_queue(&rb->pollq, &wait);
259 
260 	return ret < 0 ? ret : written;
261 }
262 
263 /**
264  * iio_buffer_poll() - poll the buffer to find out if it has data
265  * @filp:	File structure pointer for device access
266  * @wait:	Poll table structure pointer for which the driver adds
267  *		a wait queue
268  *
269  * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading
270  *	   or 0 for other cases
271  */
272 static __poll_t iio_buffer_poll(struct file *filp,
273 				struct poll_table_struct *wait)
274 {
275 	struct iio_dev_buffer_pair *ib = filp->private_data;
276 	struct iio_buffer *rb = ib->buffer;
277 	struct iio_dev *indio_dev = ib->indio_dev;
278 
279 	if (!indio_dev->info || !rb)
280 		return 0;
281 
282 	poll_wait(filp, &rb->pollq, wait);
283 
284 	switch (rb->direction) {
285 	case IIO_BUFFER_DIRECTION_IN:
286 		if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0))
287 			return EPOLLIN | EPOLLRDNORM;
288 		break;
289 	case IIO_BUFFER_DIRECTION_OUT:
290 		if (iio_buffer_space_available(rb))
291 			return EPOLLOUT | EPOLLWRNORM;
292 		break;
293 	}
294 
295 	return 0;
296 }
297 
298 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf,
299 				size_t n, loff_t *f_ps)
300 {
301 	struct iio_dev_buffer_pair *ib = filp->private_data;
302 	struct iio_buffer *rb = ib->buffer;
303 
304 	/* check if buffer was opened through new API */
305 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
306 		return -EBUSY;
307 
308 	return iio_buffer_read(filp, buf, n, f_ps);
309 }
310 
311 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf,
312 				 size_t n, loff_t *f_ps)
313 {
314 	struct iio_dev_buffer_pair *ib = filp->private_data;
315 	struct iio_buffer *rb = ib->buffer;
316 
317 	/* check if buffer was opened through new API */
318 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
319 		return -EBUSY;
320 
321 	return iio_buffer_write(filp, buf, n, f_ps);
322 }
323 
324 __poll_t iio_buffer_poll_wrapper(struct file *filp,
325 				 struct poll_table_struct *wait)
326 {
327 	struct iio_dev_buffer_pair *ib = filp->private_data;
328 	struct iio_buffer *rb = ib->buffer;
329 
330 	/* check if buffer was opened through new API */
331 	if (test_bit(IIO_BUSY_BIT_POS, &rb->flags))
332 		return 0;
333 
334 	return iio_buffer_poll(filp, wait);
335 }
336 
337 /**
338  * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue
339  * @indio_dev: The IIO device
340  *
341  * Wakes up the event waitqueue used for poll(). Should usually
342  * be called when the device is unregistered.
343  */
344 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev)
345 {
346 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
347 	struct iio_buffer *buffer;
348 	unsigned int i;
349 
350 	for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
351 		buffer = iio_dev_opaque->attached_buffers[i];
352 		wake_up(&buffer->pollq);
353 	}
354 }
355 
356 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data)
357 {
358 	if (!buffer || !buffer->access || !buffer->access->remove_from)
359 		return -EINVAL;
360 
361 	return buffer->access->remove_from(buffer, data);
362 }
363 EXPORT_SYMBOL_GPL(iio_pop_from_buffer);
364 
365 void iio_buffer_init(struct iio_buffer *buffer)
366 {
367 	INIT_LIST_HEAD(&buffer->demux_list);
368 	INIT_LIST_HEAD(&buffer->buffer_list);
369 	INIT_LIST_HEAD(&buffer->dmabufs);
370 	mutex_init(&buffer->dmabufs_mutex);
371 	init_waitqueue_head(&buffer->pollq);
372 	kref_init(&buffer->ref);
373 	if (!buffer->watermark)
374 		buffer->watermark = 1;
375 }
376 EXPORT_SYMBOL(iio_buffer_init);
377 
378 void iio_device_detach_buffers(struct iio_dev *indio_dev)
379 {
380 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
381 	struct iio_buffer *buffer;
382 	unsigned int i;
383 
384 	for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) {
385 		buffer = iio_dev_opaque->attached_buffers[i];
386 		iio_buffer_put(buffer);
387 	}
388 
389 	kfree(iio_dev_opaque->attached_buffers);
390 }
391 
392 static ssize_t iio_show_scan_index(struct device *dev,
393 				   struct device_attribute *attr,
394 				   char *buf)
395 {
396 	return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index);
397 }
398 
399 static ssize_t iio_show_fixed_type(struct device *dev,
400 				   struct device_attribute *attr,
401 				   char *buf)
402 {
403 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
404 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
405 	const struct iio_scan_type *scan_type;
406 	u8 type;
407 
408 	scan_type = iio_get_current_scan_type(indio_dev, this_attr->c);
409 	if (IS_ERR(scan_type))
410 		return PTR_ERR(scan_type);
411 
412 	type = scan_type->endianness;
413 
414 	if (type == IIO_CPU) {
415 #ifdef __LITTLE_ENDIAN
416 		type = IIO_LE;
417 #else
418 		type = IIO_BE;
419 #endif
420 	}
421 	if (scan_type->repeat > 1)
422 		return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n",
423 		       iio_endian_prefix[type],
424 		       scan_type->sign,
425 		       scan_type->realbits,
426 		       scan_type->storagebits,
427 		       scan_type->repeat,
428 		       scan_type->shift);
429 	else
430 		return sysfs_emit(buf, "%s:%c%d/%d>>%u\n",
431 		       iio_endian_prefix[type],
432 		       scan_type->sign,
433 		       scan_type->realbits,
434 		       scan_type->storagebits,
435 		       scan_type->shift);
436 }
437 
438 static ssize_t iio_scan_el_show(struct device *dev,
439 				struct device_attribute *attr,
440 				char *buf)
441 {
442 	int ret;
443 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
444 
445 	/* Ensure ret is 0 or 1. */
446 	ret = !!test_bit(to_iio_dev_attr(attr)->address,
447 		       buffer->scan_mask);
448 
449 	return sysfs_emit(buf, "%d\n", ret);
450 }
451 
452 /* Note NULL used as error indicator as it doesn't make sense. */
453 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks,
454 						unsigned int masklength,
455 						const unsigned long *mask,
456 						bool strict)
457 {
458 	if (bitmap_empty(mask, masklength))
459 		return NULL;
460 	/*
461 	 * The condition here do not handle multi-long masks correctly.
462 	 * It only checks the first long to be zero, and will use such mask
463 	 * as a terminator even if there was bits set after the first long.
464 	 *
465 	 * Correct check would require using:
466 	 * while (!bitmap_empty(av_masks, masklength))
467 	 * instead. This is potentially hazardous because the
468 	 * avaliable_scan_masks is a zero terminated array of longs - and
469 	 * using the proper bitmap_empty() check for multi-long wide masks
470 	 * would require the array to be terminated with multiple zero longs -
471 	 * which is not such an usual pattern.
472 	 *
473 	 * As writing of this no multi-long wide masks were found in-tree, so
474 	 * the simple while (*av_masks) check is working.
475 	 */
476 	while (*av_masks) {
477 		if (strict) {
478 			if (bitmap_equal(mask, av_masks, masklength))
479 				return av_masks;
480 		} else {
481 			if (bitmap_subset(mask, av_masks, masklength))
482 				return av_masks;
483 		}
484 		av_masks += BITS_TO_LONGS(masklength);
485 	}
486 	return NULL;
487 }
488 
489 static bool iio_validate_scan_mask(struct iio_dev *indio_dev,
490 				   const unsigned long *mask)
491 {
492 	if (!indio_dev->setup_ops->validate_scan_mask)
493 		return true;
494 
495 	return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask);
496 }
497 
498 /**
499  * iio_scan_mask_set() - set particular bit in the scan mask
500  * @indio_dev: the iio device
501  * @buffer: the buffer whose scan mask we are interested in
502  * @bit: the bit to be set.
503  *
504  * Note that at this point we have no way of knowing what other
505  * buffers might request, hence this code only verifies that the
506  * individual buffers request is plausible.
507  */
508 static int iio_scan_mask_set(struct iio_dev *indio_dev,
509 			     struct iio_buffer *buffer, int bit)
510 {
511 	unsigned int masklength = iio_get_masklength(indio_dev);
512 	const unsigned long *mask;
513 	unsigned long *trialmask;
514 
515 	if (!masklength) {
516 		WARN(1, "Trying to set scanmask prior to registering buffer\n");
517 		return -EINVAL;
518 	}
519 
520 	trialmask = bitmap_alloc(masklength, GFP_KERNEL);
521 	if (!trialmask)
522 		return -ENOMEM;
523 	bitmap_copy(trialmask, buffer->scan_mask, masklength);
524 	set_bit(bit, trialmask);
525 
526 	if (!iio_validate_scan_mask(indio_dev, trialmask))
527 		goto err_invalid_mask;
528 
529 	if (indio_dev->available_scan_masks) {
530 		mask = iio_scan_mask_match(indio_dev->available_scan_masks,
531 					   masklength, trialmask, false);
532 		if (!mask)
533 			goto err_invalid_mask;
534 	}
535 	bitmap_copy(buffer->scan_mask, trialmask, masklength);
536 
537 	bitmap_free(trialmask);
538 
539 	return 0;
540 
541 err_invalid_mask:
542 	bitmap_free(trialmask);
543 	return -EINVAL;
544 }
545 
546 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit)
547 {
548 	clear_bit(bit, buffer->scan_mask);
549 	return 0;
550 }
551 
552 static int iio_scan_mask_query(struct iio_dev *indio_dev,
553 			       struct iio_buffer *buffer, int bit)
554 {
555 	if (bit > iio_get_masklength(indio_dev))
556 		return -EINVAL;
557 
558 	if (!buffer->scan_mask)
559 		return 0;
560 
561 	/* Ensure return value is 0 or 1. */
562 	return !!test_bit(bit, buffer->scan_mask);
563 };
564 
565 static ssize_t iio_scan_el_store(struct device *dev,
566 				 struct device_attribute *attr,
567 				 const char *buf,
568 				 size_t len)
569 {
570 	int ret;
571 	bool state;
572 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
573 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
574 	struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
575 	struct iio_buffer *buffer = this_attr->buffer;
576 
577 	ret = kstrtobool(buf, &state);
578 	if (ret < 0)
579 		return ret;
580 
581 	guard(mutex)(&iio_dev_opaque->mlock);
582 	if (iio_buffer_is_active(buffer))
583 		return -EBUSY;
584 
585 	ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address);
586 	if (ret < 0)
587 		return ret;
588 
589 	if (state && ret)
590 		return len;
591 
592 	if (state)
593 		ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address);
594 	else
595 		ret = iio_scan_mask_clear(buffer, this_attr->address);
596 	if (ret)
597 		return ret;
598 
599 	return len;
600 }
601 
602 static ssize_t iio_scan_el_ts_show(struct device *dev,
603 				   struct device_attribute *attr,
604 				   char *buf)
605 {
606 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
607 
608 	return sysfs_emit(buf, "%d\n", buffer->scan_timestamp);
609 }
610 
611 static ssize_t iio_scan_el_ts_store(struct device *dev,
612 				    struct device_attribute *attr,
613 				    const char *buf,
614 				    size_t len)
615 {
616 	int ret;
617 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
618 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
619 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
620 	bool state;
621 
622 	ret = kstrtobool(buf, &state);
623 	if (ret < 0)
624 		return ret;
625 
626 	guard(mutex)(&iio_dev_opaque->mlock);
627 	if (iio_buffer_is_active(buffer))
628 		return -EBUSY;
629 
630 	buffer->scan_timestamp = state;
631 
632 	return len;
633 }
634 
635 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev,
636 					struct iio_buffer *buffer,
637 					const struct iio_chan_spec *chan)
638 {
639 	int ret, attrcount = 0;
640 
641 	ret = __iio_add_chan_devattr("index",
642 				     chan,
643 				     &iio_show_scan_index,
644 				     NULL,
645 				     0,
646 				     IIO_SEPARATE,
647 				     &indio_dev->dev,
648 				     buffer,
649 				     &buffer->buffer_attr_list);
650 	if (ret)
651 		return ret;
652 	attrcount++;
653 	ret = __iio_add_chan_devattr("type",
654 				     chan,
655 				     &iio_show_fixed_type,
656 				     NULL,
657 				     0,
658 				     IIO_SEPARATE,
659 				     &indio_dev->dev,
660 				     buffer,
661 				     &buffer->buffer_attr_list);
662 	if (ret)
663 		return ret;
664 	attrcount++;
665 	if (chan->type != IIO_TIMESTAMP)
666 		ret = __iio_add_chan_devattr("en",
667 					     chan,
668 					     &iio_scan_el_show,
669 					     &iio_scan_el_store,
670 					     chan->scan_index,
671 					     IIO_SEPARATE,
672 					     &indio_dev->dev,
673 					     buffer,
674 					     &buffer->buffer_attr_list);
675 	else
676 		ret = __iio_add_chan_devattr("en",
677 					     chan,
678 					     &iio_scan_el_ts_show,
679 					     &iio_scan_el_ts_store,
680 					     chan->scan_index,
681 					     IIO_SEPARATE,
682 					     &indio_dev->dev,
683 					     buffer,
684 					     &buffer->buffer_attr_list);
685 	if (ret)
686 		return ret;
687 	attrcount++;
688 	ret = attrcount;
689 	return ret;
690 }
691 
692 static ssize_t length_show(struct device *dev, struct device_attribute *attr,
693 			   char *buf)
694 {
695 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
696 
697 	return sysfs_emit(buf, "%d\n", buffer->length);
698 }
699 
700 static ssize_t length_store(struct device *dev, struct device_attribute *attr,
701 			    const char *buf, size_t len)
702 {
703 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
704 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
705 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
706 	unsigned int val;
707 	int ret;
708 
709 	ret = kstrtouint(buf, 10, &val);
710 	if (ret)
711 		return ret;
712 
713 	if (val == buffer->length)
714 		return len;
715 
716 	guard(mutex)(&iio_dev_opaque->mlock);
717 	if (iio_buffer_is_active(buffer))
718 		return -EBUSY;
719 
720 	buffer->access->set_length(buffer, val);
721 
722 	if (buffer->length && buffer->length < buffer->watermark)
723 		buffer->watermark = buffer->length;
724 
725 	return len;
726 }
727 
728 static ssize_t enable_show(struct device *dev, struct device_attribute *attr,
729 			   char *buf)
730 {
731 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
732 
733 	return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer));
734 }
735 
736 static int iio_storage_bytes_for_si(struct iio_dev *indio_dev,
737 				    unsigned int scan_index)
738 {
739 	const struct iio_chan_spec *ch;
740 	const struct iio_scan_type *scan_type;
741 	unsigned int bytes;
742 
743 	ch = iio_find_channel_from_si(indio_dev, scan_index);
744 	scan_type = iio_get_current_scan_type(indio_dev, ch);
745 	if (IS_ERR(scan_type))
746 		return PTR_ERR(scan_type);
747 
748 	bytes = scan_type->storagebits / 8;
749 
750 	if (scan_type->repeat > 1)
751 		bytes *= scan_type->repeat;
752 
753 	return bytes;
754 }
755 
756 static int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev)
757 {
758 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
759 
760 	return iio_storage_bytes_for_si(indio_dev,
761 					iio_dev_opaque->scan_index_timestamp);
762 }
763 
764 static int iio_compute_scan_bytes(struct iio_dev *indio_dev,
765 				  const unsigned long *mask, bool timestamp)
766 {
767 	unsigned int bytes = 0;
768 	int length, i, largest = 0;
769 
770 	/* How much space will the demuxed element take? */
771 	for_each_set_bit(i, mask, iio_get_masklength(indio_dev)) {
772 		length = iio_storage_bytes_for_si(indio_dev, i);
773 		if (length < 0)
774 			return length;
775 
776 		bytes = ALIGN(bytes, length);
777 		bytes += length;
778 		largest = max(largest, length);
779 	}
780 
781 	if (timestamp) {
782 		length = iio_storage_bytes_for_timestamp(indio_dev);
783 		if (length < 0)
784 			return length;
785 
786 		bytes = ALIGN(bytes, length);
787 		bytes += length;
788 		largest = max(largest, length);
789 	}
790 
791 	bytes = ALIGN(bytes, largest);
792 	return bytes;
793 }
794 
795 static void iio_buffer_activate(struct iio_dev *indio_dev,
796 				struct iio_buffer *buffer)
797 {
798 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
799 
800 	iio_buffer_get(buffer);
801 	list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list);
802 }
803 
804 static void iio_buffer_deactivate(struct iio_buffer *buffer)
805 {
806 	list_del_init(&buffer->buffer_list);
807 	wake_up_interruptible(&buffer->pollq);
808 	iio_buffer_put(buffer);
809 }
810 
811 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev)
812 {
813 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
814 	struct iio_buffer *buffer, *_buffer;
815 
816 	list_for_each_entry_safe(buffer, _buffer,
817 				 &iio_dev_opaque->buffer_list, buffer_list)
818 		iio_buffer_deactivate(buffer);
819 }
820 
821 static int iio_buffer_enable(struct iio_buffer *buffer,
822 			     struct iio_dev *indio_dev)
823 {
824 	if (!buffer->access->enable)
825 		return 0;
826 	return buffer->access->enable(buffer, indio_dev);
827 }
828 
829 static int iio_buffer_disable(struct iio_buffer *buffer,
830 			      struct iio_dev *indio_dev)
831 {
832 	if (!buffer->access->disable)
833 		return 0;
834 	return buffer->access->disable(buffer, indio_dev);
835 }
836 
837 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev,
838 					      struct iio_buffer *buffer)
839 {
840 	unsigned int bytes;
841 
842 	if (!buffer->access->set_bytes_per_datum)
843 		return;
844 
845 	bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask,
846 				       buffer->scan_timestamp);
847 
848 	buffer->access->set_bytes_per_datum(buffer, bytes);
849 }
850 
851 static int iio_buffer_request_update(struct iio_dev *indio_dev,
852 				     struct iio_buffer *buffer)
853 {
854 	int ret;
855 
856 	iio_buffer_update_bytes_per_datum(indio_dev, buffer);
857 	if (buffer->access->request_update) {
858 		ret = buffer->access->request_update(buffer);
859 		if (ret) {
860 			dev_dbg(&indio_dev->dev,
861 				"Buffer not started: buffer parameter update failed (%d)\n",
862 				ret);
863 			return ret;
864 		}
865 	}
866 
867 	return 0;
868 }
869 
870 static void iio_free_scan_mask(struct iio_dev *indio_dev,
871 			       const unsigned long *mask)
872 {
873 	/* If the mask is dynamically allocated free it, otherwise do nothing */
874 	if (!indio_dev->available_scan_masks)
875 		bitmap_free(mask);
876 }
877 
878 struct iio_device_config {
879 	unsigned int mode;
880 	unsigned int watermark;
881 	const unsigned long *scan_mask;
882 	unsigned int scan_bytes;
883 	bool scan_timestamp;
884 };
885 
886 static int iio_verify_update(struct iio_dev *indio_dev,
887 			     struct iio_buffer *insert_buffer,
888 			     struct iio_buffer *remove_buffer,
889 			     struct iio_device_config *config)
890 {
891 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
892 	unsigned int masklength = iio_get_masklength(indio_dev);
893 	unsigned long *compound_mask;
894 	const unsigned long *scan_mask;
895 	bool strict_scanmask = false;
896 	struct iio_buffer *buffer;
897 	bool scan_timestamp;
898 	unsigned int modes;
899 
900 	if (insert_buffer &&
901 	    bitmap_empty(insert_buffer->scan_mask, masklength)) {
902 		dev_dbg(&indio_dev->dev,
903 			"At least one scan element must be enabled first\n");
904 		return -EINVAL;
905 	}
906 
907 	memset(config, 0, sizeof(*config));
908 	config->watermark = ~0;
909 
910 	/*
911 	 * If there is just one buffer and we are removing it there is nothing
912 	 * to verify.
913 	 */
914 	if (remove_buffer && !insert_buffer &&
915 	    list_is_singular(&iio_dev_opaque->buffer_list))
916 		return 0;
917 
918 	modes = indio_dev->modes;
919 
920 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
921 		if (buffer == remove_buffer)
922 			continue;
923 		modes &= buffer->access->modes;
924 		config->watermark = min(config->watermark, buffer->watermark);
925 	}
926 
927 	if (insert_buffer) {
928 		modes &= insert_buffer->access->modes;
929 		config->watermark = min(config->watermark,
930 					insert_buffer->watermark);
931 	}
932 
933 	/* Definitely possible for devices to support both of these. */
934 	if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) {
935 		config->mode = INDIO_BUFFER_TRIGGERED;
936 	} else if (modes & INDIO_BUFFER_HARDWARE) {
937 		/*
938 		 * Keep things simple for now and only allow a single buffer to
939 		 * be connected in hardware mode.
940 		 */
941 		if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list))
942 			return -EINVAL;
943 		config->mode = INDIO_BUFFER_HARDWARE;
944 		strict_scanmask = true;
945 	} else if (modes & INDIO_BUFFER_SOFTWARE) {
946 		config->mode = INDIO_BUFFER_SOFTWARE;
947 	} else {
948 		/* Can only occur on first buffer */
949 		if (indio_dev->modes & INDIO_BUFFER_TRIGGERED)
950 			dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n");
951 		return -EINVAL;
952 	}
953 
954 	/* What scan mask do we actually have? */
955 	compound_mask = bitmap_zalloc(masklength, GFP_KERNEL);
956 	if (!compound_mask)
957 		return -ENOMEM;
958 
959 	scan_timestamp = false;
960 
961 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
962 		if (buffer == remove_buffer)
963 			continue;
964 		bitmap_or(compound_mask, compound_mask, buffer->scan_mask,
965 			  masklength);
966 		scan_timestamp |= buffer->scan_timestamp;
967 	}
968 
969 	if (insert_buffer) {
970 		bitmap_or(compound_mask, compound_mask,
971 			  insert_buffer->scan_mask, masklength);
972 		scan_timestamp |= insert_buffer->scan_timestamp;
973 	}
974 
975 	if (indio_dev->available_scan_masks) {
976 		scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks,
977 						masklength, compound_mask,
978 						strict_scanmask);
979 		bitmap_free(compound_mask);
980 		if (!scan_mask)
981 			return -EINVAL;
982 	} else {
983 		scan_mask = compound_mask;
984 	}
985 
986 	config->scan_bytes = iio_compute_scan_bytes(indio_dev,
987 						    scan_mask, scan_timestamp);
988 	config->scan_mask = scan_mask;
989 	config->scan_timestamp = scan_timestamp;
990 
991 	return 0;
992 }
993 
994 /**
995  * struct iio_demux_table - table describing demux memcpy ops
996  * @from:	index to copy from
997  * @to:		index to copy to
998  * @length:	how many bytes to copy
999  * @l:		list head used for management
1000  */
1001 struct iio_demux_table {
1002 	unsigned int from;
1003 	unsigned int to;
1004 	unsigned int length;
1005 	struct list_head l;
1006 };
1007 
1008 static void iio_buffer_demux_free(struct iio_buffer *buffer)
1009 {
1010 	struct iio_demux_table *p, *q;
1011 
1012 	list_for_each_entry_safe(p, q, &buffer->demux_list, l) {
1013 		list_del(&p->l);
1014 		kfree(p);
1015 	}
1016 }
1017 
1018 static int iio_buffer_add_demux(struct iio_buffer *buffer,
1019 				struct iio_demux_table **p, unsigned int in_loc,
1020 				unsigned int out_loc,
1021 				unsigned int length)
1022 {
1023 	if (*p && (*p)->from + (*p)->length == in_loc &&
1024 	    (*p)->to + (*p)->length == out_loc) {
1025 		(*p)->length += length;
1026 	} else {
1027 		*p = kmalloc(sizeof(**p), GFP_KERNEL);
1028 		if (!(*p))
1029 			return -ENOMEM;
1030 		(*p)->from = in_loc;
1031 		(*p)->to = out_loc;
1032 		(*p)->length = length;
1033 		list_add_tail(&(*p)->l, &buffer->demux_list);
1034 	}
1035 
1036 	return 0;
1037 }
1038 
1039 static int iio_buffer_update_demux(struct iio_dev *indio_dev,
1040 				   struct iio_buffer *buffer)
1041 {
1042 	unsigned int masklength = iio_get_masklength(indio_dev);
1043 	int ret, in_ind = -1, out_ind, length;
1044 	unsigned int in_loc = 0, out_loc = 0;
1045 	struct iio_demux_table *p = NULL;
1046 
1047 	/* Clear out any old demux */
1048 	iio_buffer_demux_free(buffer);
1049 	kfree(buffer->demux_bounce);
1050 	buffer->demux_bounce = NULL;
1051 
1052 	/* First work out which scan mode we will actually have */
1053 	if (bitmap_equal(indio_dev->active_scan_mask,
1054 			 buffer->scan_mask, masklength))
1055 		return 0;
1056 
1057 	/* Now we have the two masks, work from least sig and build up sizes */
1058 	for_each_set_bit(out_ind, buffer->scan_mask, masklength) {
1059 		in_ind = find_next_bit(indio_dev->active_scan_mask,
1060 				       masklength, in_ind + 1);
1061 		while (in_ind != out_ind) {
1062 			ret = iio_storage_bytes_for_si(indio_dev, in_ind);
1063 			if (ret < 0)
1064 				goto error_clear_mux_table;
1065 
1066 			length = ret;
1067 			/* Make sure we are aligned */
1068 			in_loc = roundup(in_loc, length) + length;
1069 			in_ind = find_next_bit(indio_dev->active_scan_mask,
1070 					       masklength, in_ind + 1);
1071 		}
1072 		ret = iio_storage_bytes_for_si(indio_dev, in_ind);
1073 		if (ret < 0)
1074 			goto error_clear_mux_table;
1075 
1076 		length = ret;
1077 		out_loc = roundup(out_loc, length);
1078 		in_loc = roundup(in_loc, length);
1079 		ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1080 		if (ret)
1081 			goto error_clear_mux_table;
1082 		out_loc += length;
1083 		in_loc += length;
1084 	}
1085 	/* Relies on scan_timestamp being last */
1086 	if (buffer->scan_timestamp) {
1087 		ret = iio_storage_bytes_for_timestamp(indio_dev);
1088 		if (ret < 0)
1089 			goto error_clear_mux_table;
1090 
1091 		length = ret;
1092 		out_loc = roundup(out_loc, length);
1093 		in_loc = roundup(in_loc, length);
1094 		ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length);
1095 		if (ret)
1096 			goto error_clear_mux_table;
1097 		out_loc += length;
1098 	}
1099 	buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL);
1100 	if (!buffer->demux_bounce) {
1101 		ret = -ENOMEM;
1102 		goto error_clear_mux_table;
1103 	}
1104 	return 0;
1105 
1106 error_clear_mux_table:
1107 	iio_buffer_demux_free(buffer);
1108 
1109 	return ret;
1110 }
1111 
1112 static int iio_update_demux(struct iio_dev *indio_dev)
1113 {
1114 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1115 	struct iio_buffer *buffer;
1116 	int ret;
1117 
1118 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1119 		ret = iio_buffer_update_demux(indio_dev, buffer);
1120 		if (ret < 0)
1121 			goto error_clear_mux_table;
1122 	}
1123 	return 0;
1124 
1125 error_clear_mux_table:
1126 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list)
1127 		iio_buffer_demux_free(buffer);
1128 
1129 	return ret;
1130 }
1131 
1132 static int iio_enable_buffers(struct iio_dev *indio_dev,
1133 			      struct iio_device_config *config)
1134 {
1135 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1136 	struct iio_buffer *buffer, *tmp = NULL;
1137 	int ret;
1138 
1139 	indio_dev->active_scan_mask = config->scan_mask;
1140 	indio_dev->scan_timestamp = config->scan_timestamp;
1141 	indio_dev->scan_bytes = config->scan_bytes;
1142 	iio_dev_opaque->currentmode = config->mode;
1143 
1144 	iio_update_demux(indio_dev);
1145 
1146 	/* Wind up again */
1147 	if (indio_dev->setup_ops->preenable) {
1148 		ret = indio_dev->setup_ops->preenable(indio_dev);
1149 		if (ret) {
1150 			dev_dbg(&indio_dev->dev,
1151 				"Buffer not started: buffer preenable failed (%d)\n", ret);
1152 			goto err_undo_config;
1153 		}
1154 	}
1155 
1156 	if (indio_dev->info->update_scan_mode) {
1157 		ret = indio_dev->info
1158 			->update_scan_mode(indio_dev,
1159 					   indio_dev->active_scan_mask);
1160 		if (ret < 0) {
1161 			dev_dbg(&indio_dev->dev,
1162 				"Buffer not started: update scan mode failed (%d)\n",
1163 				ret);
1164 			goto err_run_postdisable;
1165 		}
1166 	}
1167 
1168 	if (indio_dev->info->hwfifo_set_watermark)
1169 		indio_dev->info->hwfifo_set_watermark(indio_dev,
1170 			config->watermark);
1171 
1172 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1173 		ret = iio_buffer_enable(buffer, indio_dev);
1174 		if (ret) {
1175 			tmp = buffer;
1176 			goto err_disable_buffers;
1177 		}
1178 	}
1179 
1180 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1181 		ret = iio_trigger_attach_poll_func(indio_dev->trig,
1182 						   indio_dev->pollfunc);
1183 		if (ret)
1184 			goto err_disable_buffers;
1185 	}
1186 
1187 	if (indio_dev->setup_ops->postenable) {
1188 		ret = indio_dev->setup_ops->postenable(indio_dev);
1189 		if (ret) {
1190 			dev_dbg(&indio_dev->dev,
1191 				"Buffer not started: postenable failed (%d)\n", ret);
1192 			goto err_detach_pollfunc;
1193 		}
1194 	}
1195 
1196 	return 0;
1197 
1198 err_detach_pollfunc:
1199 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1200 		iio_trigger_detach_poll_func(indio_dev->trig,
1201 					     indio_dev->pollfunc);
1202 	}
1203 err_disable_buffers:
1204 	buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list);
1205 	list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list,
1206 					     buffer_list)
1207 		iio_buffer_disable(buffer, indio_dev);
1208 err_run_postdisable:
1209 	if (indio_dev->setup_ops->postdisable)
1210 		indio_dev->setup_ops->postdisable(indio_dev);
1211 err_undo_config:
1212 	iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1213 	indio_dev->active_scan_mask = NULL;
1214 
1215 	return ret;
1216 }
1217 
1218 static int iio_disable_buffers(struct iio_dev *indio_dev)
1219 {
1220 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1221 	struct iio_buffer *buffer;
1222 	int ret = 0;
1223 	int ret2;
1224 
1225 	/* Wind down existing buffers - iff there are any */
1226 	if (list_empty(&iio_dev_opaque->buffer_list))
1227 		return 0;
1228 
1229 	/*
1230 	 * If things go wrong at some step in disable we still need to continue
1231 	 * to perform the other steps, otherwise we leave the device in a
1232 	 * inconsistent state. We return the error code for the first error we
1233 	 * encountered.
1234 	 */
1235 
1236 	if (indio_dev->setup_ops->predisable) {
1237 		ret2 = indio_dev->setup_ops->predisable(indio_dev);
1238 		if (ret2 && !ret)
1239 			ret = ret2;
1240 	}
1241 
1242 	if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) {
1243 		iio_trigger_detach_poll_func(indio_dev->trig,
1244 					     indio_dev->pollfunc);
1245 	}
1246 
1247 	list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) {
1248 		ret2 = iio_buffer_disable(buffer, indio_dev);
1249 		if (ret2 && !ret)
1250 			ret = ret2;
1251 	}
1252 
1253 	if (indio_dev->setup_ops->postdisable) {
1254 		ret2 = indio_dev->setup_ops->postdisable(indio_dev);
1255 		if (ret2 && !ret)
1256 			ret = ret2;
1257 	}
1258 
1259 	iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask);
1260 	indio_dev->active_scan_mask = NULL;
1261 	iio_dev_opaque->currentmode = INDIO_DIRECT_MODE;
1262 
1263 	return ret;
1264 }
1265 
1266 static int __iio_update_buffers(struct iio_dev *indio_dev,
1267 				struct iio_buffer *insert_buffer,
1268 				struct iio_buffer *remove_buffer)
1269 {
1270 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1271 	struct iio_device_config new_config;
1272 	int ret;
1273 
1274 	ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer,
1275 				&new_config);
1276 	if (ret)
1277 		return ret;
1278 
1279 	if (insert_buffer) {
1280 		ret = iio_buffer_request_update(indio_dev, insert_buffer);
1281 		if (ret)
1282 			goto err_free_config;
1283 	}
1284 
1285 	ret = iio_disable_buffers(indio_dev);
1286 	if (ret)
1287 		goto err_deactivate_all;
1288 
1289 	if (remove_buffer)
1290 		iio_buffer_deactivate(remove_buffer);
1291 	if (insert_buffer)
1292 		iio_buffer_activate(indio_dev, insert_buffer);
1293 
1294 	/* If no buffers in list, we are done */
1295 	if (list_empty(&iio_dev_opaque->buffer_list))
1296 		return 0;
1297 
1298 	ret = iio_enable_buffers(indio_dev, &new_config);
1299 	if (ret)
1300 		goto err_deactivate_all;
1301 
1302 	return 0;
1303 
1304 err_deactivate_all:
1305 	/*
1306 	 * We've already verified that the config is valid earlier. If things go
1307 	 * wrong in either enable or disable the most likely reason is an IO
1308 	 * error from the device. In this case there is no good recovery
1309 	 * strategy. Just make sure to disable everything and leave the device
1310 	 * in a sane state.  With a bit of luck the device might come back to
1311 	 * life again later and userspace can try again.
1312 	 */
1313 	iio_buffer_deactivate_all(indio_dev);
1314 
1315 err_free_config:
1316 	iio_free_scan_mask(indio_dev, new_config.scan_mask);
1317 	return ret;
1318 }
1319 
1320 int iio_update_buffers(struct iio_dev *indio_dev,
1321 		       struct iio_buffer *insert_buffer,
1322 		       struct iio_buffer *remove_buffer)
1323 {
1324 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1325 
1326 	if (insert_buffer == remove_buffer)
1327 		return 0;
1328 
1329 	if (insert_buffer &&
1330 	    insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT)
1331 		return -EINVAL;
1332 
1333 	guard(mutex)(&iio_dev_opaque->info_exist_lock);
1334 	guard(mutex)(&iio_dev_opaque->mlock);
1335 
1336 	if (insert_buffer && iio_buffer_is_active(insert_buffer))
1337 		insert_buffer = NULL;
1338 
1339 	if (remove_buffer && !iio_buffer_is_active(remove_buffer))
1340 		remove_buffer = NULL;
1341 
1342 	if (!insert_buffer && !remove_buffer)
1343 		return 0;
1344 
1345 	if (!indio_dev->info)
1346 		return -ENODEV;
1347 
1348 	return __iio_update_buffers(indio_dev, insert_buffer, remove_buffer);
1349 }
1350 EXPORT_SYMBOL_GPL(iio_update_buffers);
1351 
1352 void iio_disable_all_buffers(struct iio_dev *indio_dev)
1353 {
1354 	iio_disable_buffers(indio_dev);
1355 	iio_buffer_deactivate_all(indio_dev);
1356 }
1357 
1358 static ssize_t enable_store(struct device *dev, struct device_attribute *attr,
1359 			    const char *buf, size_t len)
1360 {
1361 	int ret;
1362 	bool requested_state;
1363 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1364 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1365 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1366 	bool inlist;
1367 
1368 	ret = kstrtobool(buf, &requested_state);
1369 	if (ret < 0)
1370 		return ret;
1371 
1372 	guard(mutex)(&iio_dev_opaque->mlock);
1373 
1374 	/* Find out if it is in the list */
1375 	inlist = iio_buffer_is_active(buffer);
1376 	/* Already in desired state */
1377 	if (inlist == requested_state)
1378 		return len;
1379 
1380 	if (requested_state)
1381 		ret = __iio_update_buffers(indio_dev, buffer, NULL);
1382 	else
1383 		ret = __iio_update_buffers(indio_dev, NULL, buffer);
1384 	if (ret)
1385 		return ret;
1386 
1387 	return len;
1388 }
1389 
1390 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr,
1391 			      char *buf)
1392 {
1393 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1394 
1395 	return sysfs_emit(buf, "%u\n", buffer->watermark);
1396 }
1397 
1398 static ssize_t watermark_store(struct device *dev,
1399 			       struct device_attribute *attr,
1400 			       const char *buf, size_t len)
1401 {
1402 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1403 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1404 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1405 	unsigned int val;
1406 	int ret;
1407 
1408 	ret = kstrtouint(buf, 10, &val);
1409 	if (ret)
1410 		return ret;
1411 	if (!val)
1412 		return -EINVAL;
1413 
1414 	guard(mutex)(&iio_dev_opaque->mlock);
1415 
1416 	if (val > buffer->length)
1417 		return -EINVAL;
1418 
1419 	if (iio_buffer_is_active(buffer))
1420 		return -EBUSY;
1421 
1422 	buffer->watermark = val;
1423 
1424 	return len;
1425 }
1426 
1427 static ssize_t data_available_show(struct device *dev,
1428 				   struct device_attribute *attr, char *buf)
1429 {
1430 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1431 
1432 	return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer));
1433 }
1434 
1435 static ssize_t direction_show(struct device *dev,
1436 			      struct device_attribute *attr,
1437 			      char *buf)
1438 {
1439 	struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer;
1440 
1441 	switch (buffer->direction) {
1442 	case IIO_BUFFER_DIRECTION_IN:
1443 		return sysfs_emit(buf, "in\n");
1444 	case IIO_BUFFER_DIRECTION_OUT:
1445 		return sysfs_emit(buf, "out\n");
1446 	default:
1447 		return -EINVAL;
1448 	}
1449 }
1450 
1451 static DEVICE_ATTR_RW(length);
1452 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length);
1453 static DEVICE_ATTR_RW(enable);
1454 static DEVICE_ATTR_RW(watermark);
1455 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark);
1456 static DEVICE_ATTR_RO(data_available);
1457 static DEVICE_ATTR_RO(direction);
1458 
1459 /*
1460  * When adding new attributes here, put the at the end, at least until
1461  * the code that handles the length/length_ro & watermark/watermark_ro
1462  * assignments gets cleaned up. Otherwise these can create some weird
1463  * duplicate attributes errors under some setups.
1464  */
1465 static struct attribute *iio_buffer_attrs[] = {
1466 	&dev_attr_length.attr,
1467 	&dev_attr_enable.attr,
1468 	&dev_attr_watermark.attr,
1469 	&dev_attr_data_available.attr,
1470 	&dev_attr_direction.attr,
1471 };
1472 
1473 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1474 
1475 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer,
1476 					      struct attribute *attr)
1477 {
1478 	struct device_attribute *dattr = to_dev_attr(attr);
1479 	struct iio_dev_attr *iio_attr;
1480 
1481 	iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1482 	if (!iio_attr)
1483 		return NULL;
1484 
1485 	iio_attr->buffer = buffer;
1486 	memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr));
1487 	iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL);
1488 	if (!iio_attr->dev_attr.attr.name) {
1489 		kfree(iio_attr);
1490 		return NULL;
1491 	}
1492 
1493 	sysfs_attr_init(&iio_attr->dev_attr.attr);
1494 
1495 	list_add(&iio_attr->l, &buffer->buffer_attr_list);
1496 
1497 	return &iio_attr->dev_attr.attr;
1498 }
1499 
1500 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev,
1501 						   struct attribute **buffer_attrs,
1502 						   int buffer_attrcount,
1503 						   int scan_el_attrcount)
1504 {
1505 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1506 	struct attribute_group *group;
1507 	struct attribute **attrs;
1508 	int ret;
1509 
1510 	attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1511 	if (!attrs)
1512 		return -ENOMEM;
1513 
1514 	memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs));
1515 
1516 	group = &iio_dev_opaque->legacy_buffer_group;
1517 	group->attrs = attrs;
1518 	group->name = "buffer";
1519 
1520 	ret = iio_device_register_sysfs_group(indio_dev, group);
1521 	if (ret)
1522 		goto error_free_buffer_attrs;
1523 
1524 	attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL);
1525 	if (!attrs) {
1526 		ret = -ENOMEM;
1527 		goto error_free_buffer_attrs;
1528 	}
1529 
1530 	memcpy(attrs, &buffer_attrs[buffer_attrcount],
1531 	       scan_el_attrcount * sizeof(*attrs));
1532 
1533 	group = &iio_dev_opaque->legacy_scan_el_group;
1534 	group->attrs = attrs;
1535 	group->name = "scan_elements";
1536 
1537 	ret = iio_device_register_sysfs_group(indio_dev, group);
1538 	if (ret)
1539 		goto error_free_scan_el_attrs;
1540 
1541 	return 0;
1542 
1543 error_free_scan_el_attrs:
1544 	kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1545 error_free_buffer_attrs:
1546 	kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1547 
1548 	return ret;
1549 }
1550 
1551 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev)
1552 {
1553 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1554 
1555 	kfree(iio_dev_opaque->legacy_buffer_group.attrs);
1556 	kfree(iio_dev_opaque->legacy_scan_el_group.attrs);
1557 }
1558 
1559 static void iio_buffer_dmabuf_release(struct kref *ref)
1560 {
1561 	struct iio_dmabuf_priv *priv = container_of(ref, struct iio_dmabuf_priv, ref);
1562 	struct dma_buf_attachment *attach = priv->attach;
1563 	struct iio_buffer *buffer = priv->buffer;
1564 	struct dma_buf *dmabuf = attach->dmabuf;
1565 
1566 	dma_resv_lock(dmabuf->resv, NULL);
1567 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1568 	dma_resv_unlock(dmabuf->resv);
1569 
1570 	buffer->access->detach_dmabuf(buffer, priv->block);
1571 
1572 	dma_buf_detach(attach->dmabuf, attach);
1573 	dma_buf_put(dmabuf);
1574 	kfree(priv);
1575 }
1576 
1577 static void iio_buffer_dmabuf_get(struct dma_buf_attachment *attach)
1578 {
1579 	struct iio_dmabuf_priv *priv = attach->importer_priv;
1580 
1581 	kref_get(&priv->ref);
1582 }
1583 
1584 static void iio_buffer_dmabuf_put(struct dma_buf_attachment *attach)
1585 {
1586 	struct iio_dmabuf_priv *priv = attach->importer_priv;
1587 
1588 	kref_put(&priv->ref, iio_buffer_dmabuf_release);
1589 }
1590 
1591 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep)
1592 {
1593 	struct iio_dev_buffer_pair *ib = filep->private_data;
1594 	struct iio_dev *indio_dev = ib->indio_dev;
1595 	struct iio_buffer *buffer = ib->buffer;
1596 	struct iio_dmabuf_priv *priv, *tmp;
1597 
1598 	wake_up(&buffer->pollq);
1599 
1600 	guard(mutex)(&buffer->dmabufs_mutex);
1601 
1602 	/* Close all attached DMABUFs */
1603 	list_for_each_entry_safe(priv, tmp, &buffer->dmabufs, entry) {
1604 		list_del_init(&priv->entry);
1605 		iio_buffer_dmabuf_put(priv->attach);
1606 	}
1607 
1608 	kfree(ib);
1609 	clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
1610 	iio_device_put(indio_dev);
1611 
1612 	return 0;
1613 }
1614 
1615 static int iio_dma_resv_lock(struct dma_buf *dmabuf, bool nonblock)
1616 {
1617 	if (!nonblock)
1618 		return dma_resv_lock_interruptible(dmabuf->resv, NULL);
1619 
1620 	if (!dma_resv_trylock(dmabuf->resv))
1621 		return -EBUSY;
1622 
1623 	return 0;
1624 }
1625 
1626 static struct dma_buf_attachment *
1627 iio_buffer_find_attachment(struct iio_dev_buffer_pair *ib,
1628 			   struct dma_buf *dmabuf, bool nonblock)
1629 {
1630 	struct device *dev = ib->indio_dev->dev.parent;
1631 	struct iio_buffer *buffer = ib->buffer;
1632 	struct dma_buf_attachment *attach = NULL;
1633 	struct iio_dmabuf_priv *priv;
1634 
1635 	guard(mutex)(&buffer->dmabufs_mutex);
1636 
1637 	list_for_each_entry(priv, &buffer->dmabufs, entry) {
1638 		if (priv->attach->dev == dev
1639 		    && priv->attach->dmabuf == dmabuf) {
1640 			attach = priv->attach;
1641 			break;
1642 		}
1643 	}
1644 
1645 	if (attach)
1646 		iio_buffer_dmabuf_get(attach);
1647 
1648 	return attach ?: ERR_PTR(-EPERM);
1649 }
1650 
1651 static int iio_buffer_attach_dmabuf(struct iio_dev_buffer_pair *ib,
1652 				    int __user *user_fd, bool nonblock)
1653 {
1654 	struct iio_dev *indio_dev = ib->indio_dev;
1655 	struct iio_buffer *buffer = ib->buffer;
1656 	struct dma_buf_attachment *attach;
1657 	struct iio_dmabuf_priv *priv, *each;
1658 	struct dma_buf *dmabuf;
1659 	int err, fd;
1660 
1661 	if (!buffer->access->attach_dmabuf
1662 	    || !buffer->access->detach_dmabuf
1663 	    || !buffer->access->enqueue_dmabuf)
1664 		return -EPERM;
1665 
1666 	if (copy_from_user(&fd, user_fd, sizeof(fd)))
1667 		return -EFAULT;
1668 
1669 	priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1670 	if (!priv)
1671 		return -ENOMEM;
1672 
1673 	spin_lock_init(&priv->lock);
1674 	priv->context = dma_fence_context_alloc(1);
1675 
1676 	dmabuf = dma_buf_get(fd);
1677 	if (IS_ERR(dmabuf)) {
1678 		err = PTR_ERR(dmabuf);
1679 		goto err_free_priv;
1680 	}
1681 
1682 	attach = dma_buf_attach(dmabuf, indio_dev->dev.parent);
1683 	if (IS_ERR(attach)) {
1684 		err = PTR_ERR(attach);
1685 		goto err_dmabuf_put;
1686 	}
1687 
1688 	err = iio_dma_resv_lock(dmabuf, nonblock);
1689 	if (err)
1690 		goto err_dmabuf_detach;
1691 
1692 	priv->dir = buffer->direction == IIO_BUFFER_DIRECTION_IN
1693 		? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1694 
1695 	priv->sgt = dma_buf_map_attachment(attach, priv->dir);
1696 	if (IS_ERR(priv->sgt)) {
1697 		err = PTR_ERR(priv->sgt);
1698 		dev_err(&indio_dev->dev, "Unable to map attachment: %d\n", err);
1699 		goto err_resv_unlock;
1700 	}
1701 
1702 	kref_init(&priv->ref);
1703 	priv->buffer = buffer;
1704 	priv->attach = attach;
1705 	attach->importer_priv = priv;
1706 
1707 	priv->block = buffer->access->attach_dmabuf(buffer, attach);
1708 	if (IS_ERR(priv->block)) {
1709 		err = PTR_ERR(priv->block);
1710 		goto err_dmabuf_unmap_attachment;
1711 	}
1712 
1713 	dma_resv_unlock(dmabuf->resv);
1714 
1715 	mutex_lock(&buffer->dmabufs_mutex);
1716 
1717 	/*
1718 	 * Check whether we already have an attachment for this driver/DMABUF
1719 	 * combo. If we do, refuse to attach.
1720 	 */
1721 	list_for_each_entry(each, &buffer->dmabufs, entry) {
1722 		if (each->attach->dev == indio_dev->dev.parent
1723 		    && each->attach->dmabuf == dmabuf) {
1724 			/*
1725 			 * We unlocked the reservation object, so going through
1726 			 * the cleanup code would mean re-locking it first.
1727 			 * At this stage it is simpler to free the attachment
1728 			 * using iio_buffer_dma_put().
1729 			 */
1730 			mutex_unlock(&buffer->dmabufs_mutex);
1731 			iio_buffer_dmabuf_put(attach);
1732 			return -EBUSY;
1733 		}
1734 	}
1735 
1736 	/* Otherwise, add the new attachment to our dmabufs list. */
1737 	list_add(&priv->entry, &buffer->dmabufs);
1738 	mutex_unlock(&buffer->dmabufs_mutex);
1739 
1740 	return 0;
1741 
1742 err_dmabuf_unmap_attachment:
1743 	dma_buf_unmap_attachment(attach, priv->sgt, priv->dir);
1744 err_resv_unlock:
1745 	dma_resv_unlock(dmabuf->resv);
1746 err_dmabuf_detach:
1747 	dma_buf_detach(dmabuf, attach);
1748 err_dmabuf_put:
1749 	dma_buf_put(dmabuf);
1750 err_free_priv:
1751 	kfree(priv);
1752 
1753 	return err;
1754 }
1755 
1756 static int iio_buffer_detach_dmabuf(struct iio_dev_buffer_pair *ib,
1757 				    int __user *user_req, bool nonblock)
1758 {
1759 	struct iio_buffer *buffer = ib->buffer;
1760 	struct iio_dev *indio_dev = ib->indio_dev;
1761 	struct iio_dmabuf_priv *priv;
1762 	struct dma_buf *dmabuf;
1763 	int dmabuf_fd, ret = -EPERM;
1764 
1765 	if (copy_from_user(&dmabuf_fd, user_req, sizeof(dmabuf_fd)))
1766 		return -EFAULT;
1767 
1768 	dmabuf = dma_buf_get(dmabuf_fd);
1769 	if (IS_ERR(dmabuf))
1770 		return PTR_ERR(dmabuf);
1771 
1772 	guard(mutex)(&buffer->dmabufs_mutex);
1773 
1774 	list_for_each_entry(priv, &buffer->dmabufs, entry) {
1775 		if (priv->attach->dev == indio_dev->dev.parent
1776 		    && priv->attach->dmabuf == dmabuf) {
1777 			list_del(&priv->entry);
1778 
1779 			/* Unref the reference from iio_buffer_attach_dmabuf() */
1780 			iio_buffer_dmabuf_put(priv->attach);
1781 			ret = 0;
1782 			break;
1783 		}
1784 	}
1785 
1786 	dma_buf_put(dmabuf);
1787 
1788 	return ret;
1789 }
1790 
1791 static const char *
1792 iio_buffer_dma_fence_get_driver_name(struct dma_fence *fence)
1793 {
1794 	return "iio";
1795 }
1796 
1797 static void iio_buffer_dma_fence_release(struct dma_fence *fence)
1798 {
1799 	struct iio_dma_fence *iio_fence =
1800 		container_of(fence, struct iio_dma_fence, base);
1801 
1802 	kfree(iio_fence);
1803 }
1804 
1805 static const struct dma_fence_ops iio_buffer_dma_fence_ops = {
1806 	.get_driver_name	= iio_buffer_dma_fence_get_driver_name,
1807 	.get_timeline_name	= iio_buffer_dma_fence_get_driver_name,
1808 	.release		= iio_buffer_dma_fence_release,
1809 };
1810 
1811 static int iio_buffer_enqueue_dmabuf(struct iio_dev_buffer_pair *ib,
1812 				     struct iio_dmabuf __user *iio_dmabuf_req,
1813 				     bool nonblock)
1814 {
1815 	struct iio_buffer *buffer = ib->buffer;
1816 	struct iio_dmabuf iio_dmabuf;
1817 	struct dma_buf_attachment *attach;
1818 	struct iio_dmabuf_priv *priv;
1819 	struct iio_dma_fence *fence;
1820 	struct dma_buf *dmabuf;
1821 	unsigned long timeout;
1822 	bool cookie, cyclic, dma_to_ram;
1823 	long retl;
1824 	u32 seqno;
1825 	int ret;
1826 
1827 	if (copy_from_user(&iio_dmabuf, iio_dmabuf_req, sizeof(iio_dmabuf)))
1828 		return -EFAULT;
1829 
1830 	if (iio_dmabuf.flags & ~IIO_BUFFER_DMABUF_SUPPORTED_FLAGS)
1831 		return -EINVAL;
1832 
1833 	cyclic = iio_dmabuf.flags & IIO_BUFFER_DMABUF_CYCLIC;
1834 
1835 	/* Cyclic flag is only supported on output buffers */
1836 	if (cyclic && buffer->direction != IIO_BUFFER_DIRECTION_OUT)
1837 		return -EINVAL;
1838 
1839 	dmabuf = dma_buf_get(iio_dmabuf.fd);
1840 	if (IS_ERR(dmabuf))
1841 		return PTR_ERR(dmabuf);
1842 
1843 	if (!iio_dmabuf.bytes_used || iio_dmabuf.bytes_used > dmabuf->size) {
1844 		ret = -EINVAL;
1845 		goto err_dmabuf_put;
1846 	}
1847 
1848 	attach = iio_buffer_find_attachment(ib, dmabuf, nonblock);
1849 	if (IS_ERR(attach)) {
1850 		ret = PTR_ERR(attach);
1851 		goto err_dmabuf_put;
1852 	}
1853 
1854 	priv = attach->importer_priv;
1855 
1856 	fence = kmalloc(sizeof(*fence), GFP_KERNEL);
1857 	if (!fence) {
1858 		ret = -ENOMEM;
1859 		goto err_attachment_put;
1860 	}
1861 
1862 	fence->priv = priv;
1863 
1864 	seqno = atomic_add_return(1, &priv->seqno);
1865 
1866 	/*
1867 	 * The transfers are guaranteed to be processed in the order they are
1868 	 * enqueued, so we can use a simple incrementing sequence number for
1869 	 * the dma_fence.
1870 	 */
1871 	dma_fence_init(&fence->base, &iio_buffer_dma_fence_ops,
1872 		       &priv->lock, priv->context, seqno);
1873 
1874 	ret = iio_dma_resv_lock(dmabuf, nonblock);
1875 	if (ret)
1876 		goto err_fence_put;
1877 
1878 	timeout = nonblock ? 0 : msecs_to_jiffies(DMABUF_ENQUEUE_TIMEOUT_MS);
1879 	dma_to_ram = buffer->direction == IIO_BUFFER_DIRECTION_IN;
1880 
1881 	/* Make sure we don't have writers */
1882 	retl = dma_resv_wait_timeout(dmabuf->resv,
1883 				     dma_resv_usage_rw(dma_to_ram),
1884 				     true, timeout);
1885 	if (retl == 0)
1886 		retl = -EBUSY;
1887 	if (retl < 0) {
1888 		ret = (int)retl;
1889 		goto err_resv_unlock;
1890 	}
1891 
1892 	if (buffer->access->lock_queue)
1893 		buffer->access->lock_queue(buffer);
1894 
1895 	ret = dma_resv_reserve_fences(dmabuf->resv, 1);
1896 	if (ret)
1897 		goto err_queue_unlock;
1898 
1899 	dma_resv_add_fence(dmabuf->resv, &fence->base,
1900 			   dma_to_ram ? DMA_RESV_USAGE_WRITE : DMA_RESV_USAGE_READ);
1901 	dma_resv_unlock(dmabuf->resv);
1902 
1903 	cookie = dma_fence_begin_signalling();
1904 
1905 	ret = buffer->access->enqueue_dmabuf(buffer, priv->block, &fence->base,
1906 					     priv->sgt, iio_dmabuf.bytes_used,
1907 					     cyclic);
1908 	if (ret) {
1909 		/*
1910 		 * DMABUF enqueue failed, but we already added the fence.
1911 		 * Signal the error through the fence completion mechanism.
1912 		 */
1913 		iio_buffer_signal_dmabuf_done(&fence->base, ret);
1914 	}
1915 
1916 	if (buffer->access->unlock_queue)
1917 		buffer->access->unlock_queue(buffer);
1918 
1919 	dma_fence_end_signalling(cookie);
1920 	dma_buf_put(dmabuf);
1921 
1922 	return ret;
1923 
1924 err_queue_unlock:
1925 	if (buffer->access->unlock_queue)
1926 		buffer->access->unlock_queue(buffer);
1927 err_resv_unlock:
1928 	dma_resv_unlock(dmabuf->resv);
1929 err_fence_put:
1930 	dma_fence_put(&fence->base);
1931 err_attachment_put:
1932 	iio_buffer_dmabuf_put(attach);
1933 err_dmabuf_put:
1934 	dma_buf_put(dmabuf);
1935 
1936 	return ret;
1937 }
1938 
1939 static void iio_buffer_cleanup(struct work_struct *work)
1940 {
1941 	struct iio_dma_fence *fence =
1942 		container_of(work, struct iio_dma_fence, work);
1943 	struct iio_dmabuf_priv *priv = fence->priv;
1944 	struct dma_buf_attachment *attach = priv->attach;
1945 
1946 	dma_fence_put(&fence->base);
1947 	iio_buffer_dmabuf_put(attach);
1948 }
1949 
1950 void iio_buffer_signal_dmabuf_done(struct dma_fence *fence, int ret)
1951 {
1952 	struct iio_dma_fence *iio_fence =
1953 		container_of(fence, struct iio_dma_fence, base);
1954 	bool cookie = dma_fence_begin_signalling();
1955 
1956 	/*
1957 	 * Get a reference to the fence, so that it's not freed as soon as
1958 	 * it's signaled.
1959 	 */
1960 	dma_fence_get(fence);
1961 
1962 	fence->error = ret;
1963 	dma_fence_signal(fence);
1964 	dma_fence_end_signalling(cookie);
1965 
1966 	/*
1967 	 * The fence will be unref'd in iio_buffer_cleanup.
1968 	 * It can't be done here, as the unref functions might try to lock the
1969 	 * resv object, which can deadlock.
1970 	 */
1971 	INIT_WORK(&iio_fence->work, iio_buffer_cleanup);
1972 	schedule_work(&iio_fence->work);
1973 }
1974 EXPORT_SYMBOL_GPL(iio_buffer_signal_dmabuf_done);
1975 
1976 static long iio_buffer_chrdev_ioctl(struct file *filp,
1977 				    unsigned int cmd, unsigned long arg)
1978 {
1979 	struct iio_dev_buffer_pair *ib = filp->private_data;
1980 	void __user *_arg = (void __user *)arg;
1981 	bool nonblock = filp->f_flags & O_NONBLOCK;
1982 
1983 	switch (cmd) {
1984 	case IIO_BUFFER_DMABUF_ATTACH_IOCTL:
1985 		return iio_buffer_attach_dmabuf(ib, _arg, nonblock);
1986 	case IIO_BUFFER_DMABUF_DETACH_IOCTL:
1987 		return iio_buffer_detach_dmabuf(ib, _arg, nonblock);
1988 	case IIO_BUFFER_DMABUF_ENQUEUE_IOCTL:
1989 		return iio_buffer_enqueue_dmabuf(ib, _arg, nonblock);
1990 	default:
1991 		return -EINVAL;
1992 	}
1993 }
1994 
1995 static const struct file_operations iio_buffer_chrdev_fileops = {
1996 	.owner = THIS_MODULE,
1997 	.llseek = noop_llseek,
1998 	.read = iio_buffer_read,
1999 	.write = iio_buffer_write,
2000 	.unlocked_ioctl = iio_buffer_chrdev_ioctl,
2001 	.compat_ioctl = compat_ptr_ioctl,
2002 	.poll = iio_buffer_poll,
2003 	.release = iio_buffer_chrdev_release,
2004 };
2005 
2006 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg)
2007 {
2008 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2009 	int __user *ival = (int __user *)arg;
2010 	struct iio_dev_buffer_pair *ib;
2011 	struct iio_buffer *buffer;
2012 	int fd, idx, ret;
2013 
2014 	if (copy_from_user(&idx, ival, sizeof(idx)))
2015 		return -EFAULT;
2016 
2017 	if (idx >= iio_dev_opaque->attached_buffers_cnt)
2018 		return -ENODEV;
2019 
2020 	iio_device_get(indio_dev);
2021 
2022 	buffer = iio_dev_opaque->attached_buffers[idx];
2023 
2024 	if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) {
2025 		ret = -EBUSY;
2026 		goto error_iio_dev_put;
2027 	}
2028 
2029 	ib = kzalloc(sizeof(*ib), GFP_KERNEL);
2030 	if (!ib) {
2031 		ret = -ENOMEM;
2032 		goto error_clear_busy_bit;
2033 	}
2034 
2035 	ib->indio_dev = indio_dev;
2036 	ib->buffer = buffer;
2037 
2038 	fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops,
2039 			      ib, O_RDWR | O_CLOEXEC);
2040 	if (fd < 0) {
2041 		ret = fd;
2042 		goto error_free_ib;
2043 	}
2044 
2045 	if (copy_to_user(ival, &fd, sizeof(fd))) {
2046 		/*
2047 		 * "Leak" the fd, as there's not much we can do about this
2048 		 * anyway. 'fd' might have been closed already, as
2049 		 * anon_inode_getfd() called fd_install() on it, which made
2050 		 * it reachable by userland.
2051 		 *
2052 		 * Instead of allowing a malicious user to play tricks with
2053 		 * us, rely on the process exit path to do any necessary
2054 		 * cleanup, as in releasing the file, if still needed.
2055 		 */
2056 		return -EFAULT;
2057 	}
2058 
2059 	return 0;
2060 
2061 error_free_ib:
2062 	kfree(ib);
2063 error_clear_busy_bit:
2064 	clear_bit(IIO_BUSY_BIT_POS, &buffer->flags);
2065 error_iio_dev_put:
2066 	iio_device_put(indio_dev);
2067 	return ret;
2068 }
2069 
2070 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp,
2071 				    unsigned int cmd, unsigned long arg)
2072 {
2073 	switch (cmd) {
2074 	case IIO_BUFFER_GET_FD_IOCTL:
2075 		return iio_device_buffer_getfd(indio_dev, arg);
2076 	default:
2077 		return IIO_IOCTL_UNHANDLED;
2078 	}
2079 }
2080 
2081 static int iio_channel_validate_scan_type(struct device *dev, int ch,
2082 					  const struct iio_scan_type *scan_type)
2083 {
2084 	/* Verify that sample bits fit into storage */
2085 	if (scan_type->storagebits < scan_type->realbits + scan_type->shift) {
2086 		dev_err(dev,
2087 			"Channel %d storagebits (%d) < shifted realbits (%d + %d)\n",
2088 			ch, scan_type->storagebits,
2089 			scan_type->realbits,
2090 			scan_type->shift);
2091 		return -EINVAL;
2092 	}
2093 
2094 	return 0;
2095 }
2096 
2097 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer,
2098 					     struct iio_dev *indio_dev,
2099 					     int index)
2100 {
2101 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2102 	unsigned int masklength = iio_get_masklength(indio_dev);
2103 	struct iio_dev_attr *p;
2104 	const struct iio_dev_attr *id_attr;
2105 	struct attribute **attr;
2106 	int ret, i, attrn, scan_el_attrcount, buffer_attrcount;
2107 	const struct iio_chan_spec *channels;
2108 
2109 	buffer_attrcount = 0;
2110 	if (buffer->attrs) {
2111 		while (buffer->attrs[buffer_attrcount])
2112 			buffer_attrcount++;
2113 	}
2114 	buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs);
2115 
2116 	scan_el_attrcount = 0;
2117 	INIT_LIST_HEAD(&buffer->buffer_attr_list);
2118 	channels = indio_dev->channels;
2119 	if (channels) {
2120 		/* new magic */
2121 		for (i = 0; i < indio_dev->num_channels; i++) {
2122 			const struct iio_scan_type *scan_type;
2123 
2124 			if (channels[i].scan_index < 0)
2125 				continue;
2126 
2127 			if (channels[i].has_ext_scan_type) {
2128 				int j;
2129 
2130 				/*
2131 				 * get_current_scan_type is required when using
2132 				 * extended scan types.
2133 				 */
2134 				if (!indio_dev->info->get_current_scan_type) {
2135 					ret = -EINVAL;
2136 					goto error_cleanup_dynamic;
2137 				}
2138 
2139 				for (j = 0; j < channels[i].num_ext_scan_type; j++) {
2140 					scan_type = &channels[i].ext_scan_type[j];
2141 
2142 					ret = iio_channel_validate_scan_type(
2143 						&indio_dev->dev, i, scan_type);
2144 					if (ret)
2145 						goto error_cleanup_dynamic;
2146 				}
2147 			} else {
2148 				scan_type = &channels[i].scan_type;
2149 
2150 				ret = iio_channel_validate_scan_type(
2151 						&indio_dev->dev, i, scan_type);
2152 				if (ret)
2153 					goto error_cleanup_dynamic;
2154 			}
2155 
2156 			ret = iio_buffer_add_channel_sysfs(indio_dev, buffer,
2157 							   &channels[i]);
2158 			if (ret < 0)
2159 				goto error_cleanup_dynamic;
2160 			scan_el_attrcount += ret;
2161 			if (channels[i].type == IIO_TIMESTAMP)
2162 				iio_dev_opaque->scan_index_timestamp =
2163 					channels[i].scan_index;
2164 		}
2165 		if (masklength && !buffer->scan_mask) {
2166 			buffer->scan_mask = bitmap_zalloc(masklength,
2167 							  GFP_KERNEL);
2168 			if (!buffer->scan_mask) {
2169 				ret = -ENOMEM;
2170 				goto error_cleanup_dynamic;
2171 			}
2172 		}
2173 	}
2174 
2175 	attrn = buffer_attrcount + scan_el_attrcount;
2176 	attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL);
2177 	if (!attr) {
2178 		ret = -ENOMEM;
2179 		goto error_free_scan_mask;
2180 	}
2181 
2182 	memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs));
2183 	if (!buffer->access->set_length)
2184 		attr[0] = &dev_attr_length_ro.attr;
2185 
2186 	if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK)
2187 		attr[2] = &dev_attr_watermark_ro.attr;
2188 
2189 	if (buffer->attrs)
2190 		for (i = 0, id_attr = buffer->attrs[i];
2191 		     (id_attr = buffer->attrs[i]); i++)
2192 			attr[ARRAY_SIZE(iio_buffer_attrs) + i] =
2193 				(struct attribute *)&id_attr->dev_attr.attr;
2194 
2195 	buffer->buffer_group.attrs = attr;
2196 
2197 	for (i = 0; i < buffer_attrcount; i++) {
2198 		struct attribute *wrapped;
2199 
2200 		wrapped = iio_buffer_wrap_attr(buffer, attr[i]);
2201 		if (!wrapped) {
2202 			ret = -ENOMEM;
2203 			goto error_free_buffer_attrs;
2204 		}
2205 		attr[i] = wrapped;
2206 	}
2207 
2208 	attrn = 0;
2209 	list_for_each_entry(p, &buffer->buffer_attr_list, l)
2210 		attr[attrn++] = &p->dev_attr.attr;
2211 
2212 	buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index);
2213 	if (!buffer->buffer_group.name) {
2214 		ret = -ENOMEM;
2215 		goto error_free_buffer_attrs;
2216 	}
2217 
2218 	ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group);
2219 	if (ret)
2220 		goto error_free_buffer_attr_group_name;
2221 
2222 	/* we only need to register the legacy groups for the first buffer */
2223 	if (index > 0)
2224 		return 0;
2225 
2226 	ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr,
2227 						      buffer_attrcount,
2228 						      scan_el_attrcount);
2229 	if (ret)
2230 		goto error_free_buffer_attr_group_name;
2231 
2232 	return 0;
2233 
2234 error_free_buffer_attr_group_name:
2235 	kfree(buffer->buffer_group.name);
2236 error_free_buffer_attrs:
2237 	kfree(buffer->buffer_group.attrs);
2238 error_free_scan_mask:
2239 	bitmap_free(buffer->scan_mask);
2240 error_cleanup_dynamic:
2241 	iio_free_chan_devattr_list(&buffer->buffer_attr_list);
2242 
2243 	return ret;
2244 }
2245 
2246 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer,
2247 					     struct iio_dev *indio_dev,
2248 					     int index)
2249 {
2250 	if (index == 0)
2251 		iio_buffer_unregister_legacy_sysfs_groups(indio_dev);
2252 	bitmap_free(buffer->scan_mask);
2253 	kfree(buffer->buffer_group.name);
2254 	kfree(buffer->buffer_group.attrs);
2255 	iio_free_chan_devattr_list(&buffer->buffer_attr_list);
2256 }
2257 
2258 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev)
2259 {
2260 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2261 	const struct iio_chan_spec *channels;
2262 	struct iio_buffer *buffer;
2263 	int ret, i, idx;
2264 	size_t sz;
2265 
2266 	channels = indio_dev->channels;
2267 	if (channels) {
2268 		int ml = 0;
2269 
2270 		for (i = 0; i < indio_dev->num_channels; i++)
2271 			ml = max(ml, channels[i].scan_index + 1);
2272 		ACCESS_PRIVATE(indio_dev, masklength) = ml;
2273 	}
2274 
2275 	if (!iio_dev_opaque->attached_buffers_cnt)
2276 		return 0;
2277 
2278 	for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) {
2279 		buffer = iio_dev_opaque->attached_buffers[idx];
2280 		ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx);
2281 		if (ret)
2282 			goto error_unwind_sysfs_and_mask;
2283 	}
2284 
2285 	sz = sizeof(*iio_dev_opaque->buffer_ioctl_handler);
2286 	iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL);
2287 	if (!iio_dev_opaque->buffer_ioctl_handler) {
2288 		ret = -ENOMEM;
2289 		goto error_unwind_sysfs_and_mask;
2290 	}
2291 
2292 	iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl;
2293 	iio_device_ioctl_handler_register(indio_dev,
2294 					  iio_dev_opaque->buffer_ioctl_handler);
2295 
2296 	return 0;
2297 
2298 error_unwind_sysfs_and_mask:
2299 	while (idx--) {
2300 		buffer = iio_dev_opaque->attached_buffers[idx];
2301 		__iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx);
2302 	}
2303 	return ret;
2304 }
2305 
2306 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev)
2307 {
2308 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2309 	struct iio_buffer *buffer;
2310 	int i;
2311 
2312 	if (!iio_dev_opaque->attached_buffers_cnt)
2313 		return;
2314 
2315 	iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler);
2316 	kfree(iio_dev_opaque->buffer_ioctl_handler);
2317 
2318 	for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) {
2319 		buffer = iio_dev_opaque->attached_buffers[i];
2320 		__iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i);
2321 	}
2322 }
2323 
2324 /**
2325  * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected
2326  * @indio_dev: the iio device
2327  * @mask: scan mask to be checked
2328  *
2329  * Return true if exactly one bit is set in the scan mask, false otherwise. It
2330  * can be used for devices where only one channel can be active for sampling at
2331  * a time.
2332  */
2333 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev,
2334 				   const unsigned long *mask)
2335 {
2336 	return bitmap_weight(mask, iio_get_masklength(indio_dev)) == 1;
2337 }
2338 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot);
2339 
2340 static const void *iio_demux(struct iio_buffer *buffer,
2341 			     const void *datain)
2342 {
2343 	struct iio_demux_table *t;
2344 
2345 	if (list_empty(&buffer->demux_list))
2346 		return datain;
2347 	list_for_each_entry(t, &buffer->demux_list, l)
2348 		memcpy(buffer->demux_bounce + t->to,
2349 		       datain + t->from, t->length);
2350 
2351 	return buffer->demux_bounce;
2352 }
2353 
2354 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data)
2355 {
2356 	const void *dataout = iio_demux(buffer, data);
2357 	int ret;
2358 
2359 	ret = buffer->access->store_to(buffer, dataout);
2360 	if (ret)
2361 		return ret;
2362 
2363 	/*
2364 	 * We can't just test for watermark to decide if we wake the poll queue
2365 	 * because read may request less samples than the watermark.
2366 	 */
2367 	wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM);
2368 	return 0;
2369 }
2370 
2371 /**
2372  * iio_push_to_buffers() - push to a registered buffer.
2373  * @indio_dev:		iio_dev structure for device.
2374  * @data:		Full scan.
2375  */
2376 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data)
2377 {
2378 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2379 	int ret;
2380 	struct iio_buffer *buf;
2381 
2382 	list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) {
2383 		ret = iio_push_to_buffer(buf, data);
2384 		if (ret < 0)
2385 			return ret;
2386 	}
2387 
2388 	return 0;
2389 }
2390 EXPORT_SYMBOL_GPL(iio_push_to_buffers);
2391 
2392 /**
2393  * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer,
2394  *    no alignment or space requirements.
2395  * @indio_dev:		iio_dev structure for device.
2396  * @data:		channel data excluding the timestamp.
2397  * @data_sz:		size of data.
2398  * @timestamp:		timestamp for the sample data.
2399  *
2400  * This special variant of iio_push_to_buffers_with_timestamp() does
2401  * not require space for the timestamp, or 8 byte alignment of data.
2402  * It does however require an allocation on first call and additional
2403  * copies on all calls, so should be avoided if possible.
2404  */
2405 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev,
2406 					  const void *data,
2407 					  size_t data_sz,
2408 					  int64_t timestamp)
2409 {
2410 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2411 
2412 	/*
2413 	 * Conservative estimate - we can always safely copy the minimum
2414 	 * of either the data provided or the length of the destination buffer.
2415 	 * This relaxed limit allows the calling drivers to be lax about
2416 	 * tracking the size of the data they are pushing, at the cost of
2417 	 * unnecessary copying of padding.
2418 	 */
2419 	data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz);
2420 	if (iio_dev_opaque->bounce_buffer_size !=  indio_dev->scan_bytes) {
2421 		void *bb;
2422 
2423 		bb = devm_krealloc(&indio_dev->dev,
2424 				   iio_dev_opaque->bounce_buffer,
2425 				   indio_dev->scan_bytes, GFP_KERNEL);
2426 		if (!bb)
2427 			return -ENOMEM;
2428 		iio_dev_opaque->bounce_buffer = bb;
2429 		iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes;
2430 	}
2431 	memcpy(iio_dev_opaque->bounce_buffer, data, data_sz);
2432 	return iio_push_to_buffers_with_timestamp(indio_dev,
2433 						  iio_dev_opaque->bounce_buffer,
2434 						  timestamp);
2435 }
2436 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned);
2437 
2438 /**
2439  * iio_buffer_release() - Free a buffer's resources
2440  * @ref: Pointer to the kref embedded in the iio_buffer struct
2441  *
2442  * This function is called when the last reference to the buffer has been
2443  * dropped. It will typically free all resources allocated by the buffer. Do not
2444  * call this function manually, always use iio_buffer_put() when done using a
2445  * buffer.
2446  */
2447 static void iio_buffer_release(struct kref *ref)
2448 {
2449 	struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref);
2450 
2451 	mutex_destroy(&buffer->dmabufs_mutex);
2452 	buffer->access->release(buffer);
2453 }
2454 
2455 /**
2456  * iio_buffer_get() - Grab a reference to the buffer
2457  * @buffer: The buffer to grab a reference for, may be NULL
2458  *
2459  * Returns the pointer to the buffer that was passed into the function.
2460  */
2461 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer)
2462 {
2463 	if (buffer)
2464 		kref_get(&buffer->ref);
2465 
2466 	return buffer;
2467 }
2468 EXPORT_SYMBOL_GPL(iio_buffer_get);
2469 
2470 /**
2471  * iio_buffer_put() - Release the reference to the buffer
2472  * @buffer: The buffer to release the reference for, may be NULL
2473  */
2474 void iio_buffer_put(struct iio_buffer *buffer)
2475 {
2476 	if (buffer)
2477 		kref_put(&buffer->ref, iio_buffer_release);
2478 }
2479 EXPORT_SYMBOL_GPL(iio_buffer_put);
2480 
2481 /**
2482  * iio_device_attach_buffer - Attach a buffer to a IIO device
2483  * @indio_dev: The device the buffer should be attached to
2484  * @buffer: The buffer to attach to the device
2485  *
2486  * Return 0 if successful, negative if error.
2487  *
2488  * This function attaches a buffer to a IIO device. The buffer stays attached to
2489  * the device until the device is freed. For legacy reasons, the first attached
2490  * buffer will also be assigned to 'indio_dev->buffer'.
2491  * The array allocated here, will be free'd via the iio_device_detach_buffers()
2492  * call which is handled by the iio_device_free().
2493  */
2494 int iio_device_attach_buffer(struct iio_dev *indio_dev,
2495 			     struct iio_buffer *buffer)
2496 {
2497 	struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2498 	struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers;
2499 	unsigned int cnt = iio_dev_opaque->attached_buffers_cnt;
2500 
2501 	cnt++;
2502 
2503 	new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL);
2504 	if (!new)
2505 		return -ENOMEM;
2506 	iio_dev_opaque->attached_buffers = new;
2507 
2508 	buffer = iio_buffer_get(buffer);
2509 
2510 	/* first buffer is legacy; attach it to the IIO device directly */
2511 	if (!indio_dev->buffer)
2512 		indio_dev->buffer = buffer;
2513 
2514 	iio_dev_opaque->attached_buffers[cnt - 1] = buffer;
2515 	iio_dev_opaque->attached_buffers_cnt = cnt;
2516 
2517 	return 0;
2518 }
2519 EXPORT_SYMBOL_GPL(iio_device_attach_buffer);
2520