1 // SPDX-License-Identifier: GPL-2.0-only 2 /* The industrial I/O core 3 * 4 * Copyright (c) 2008 Jonathan Cameron 5 * 6 * Handling of buffer allocation / resizing. 7 * 8 * Things to look at here. 9 * - Better memory allocation techniques? 10 * - Alternative access techniques? 11 */ 12 #include <linux/anon_inodes.h> 13 #include <linux/cleanup.h> 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/device.h> 17 #include <linux/file.h> 18 #include <linux/fs.h> 19 #include <linux/cdev.h> 20 #include <linux/slab.h> 21 #include <linux/poll.h> 22 #include <linux/sched/signal.h> 23 24 #include <linux/iio/iio.h> 25 #include <linux/iio/iio-opaque.h> 26 #include "iio_core.h" 27 #include "iio_core_trigger.h" 28 #include <linux/iio/sysfs.h> 29 #include <linux/iio/buffer.h> 30 #include <linux/iio/buffer_impl.h> 31 32 static const char * const iio_endian_prefix[] = { 33 [IIO_BE] = "be", 34 [IIO_LE] = "le", 35 }; 36 37 static bool iio_buffer_is_active(struct iio_buffer *buf) 38 { 39 return !list_empty(&buf->buffer_list); 40 } 41 42 static size_t iio_buffer_data_available(struct iio_buffer *buf) 43 { 44 return buf->access->data_available(buf); 45 } 46 47 static int iio_buffer_flush_hwfifo(struct iio_dev *indio_dev, 48 struct iio_buffer *buf, size_t required) 49 { 50 if (!indio_dev->info->hwfifo_flush_to_buffer) 51 return -ENODEV; 52 53 return indio_dev->info->hwfifo_flush_to_buffer(indio_dev, required); 54 } 55 56 static bool iio_buffer_ready(struct iio_dev *indio_dev, struct iio_buffer *buf, 57 size_t to_wait, int to_flush) 58 { 59 size_t avail; 60 int flushed = 0; 61 62 /* wakeup if the device was unregistered */ 63 if (!indio_dev->info) 64 return true; 65 66 /* drain the buffer if it was disabled */ 67 if (!iio_buffer_is_active(buf)) { 68 to_wait = min_t(size_t, to_wait, 1); 69 to_flush = 0; 70 } 71 72 avail = iio_buffer_data_available(buf); 73 74 if (avail >= to_wait) { 75 /* force a flush for non-blocking reads */ 76 if (!to_wait && avail < to_flush) 77 iio_buffer_flush_hwfifo(indio_dev, buf, 78 to_flush - avail); 79 return true; 80 } 81 82 if (to_flush) 83 flushed = iio_buffer_flush_hwfifo(indio_dev, buf, 84 to_wait - avail); 85 if (flushed <= 0) 86 return false; 87 88 if (avail + flushed >= to_wait) 89 return true; 90 91 return false; 92 } 93 94 /** 95 * iio_buffer_read() - chrdev read for buffer access 96 * @filp: File structure pointer for the char device 97 * @buf: Destination buffer for iio buffer read 98 * @n: First n bytes to read 99 * @f_ps: Long offset provided by the user as a seek position 100 * 101 * This function relies on all buffer implementations having an 102 * iio_buffer as their first element. 103 * 104 * Return: negative values corresponding to error codes or ret != 0 105 * for ending the reading activity 106 **/ 107 static ssize_t iio_buffer_read(struct file *filp, char __user *buf, 108 size_t n, loff_t *f_ps) 109 { 110 struct iio_dev_buffer_pair *ib = filp->private_data; 111 struct iio_buffer *rb = ib->buffer; 112 struct iio_dev *indio_dev = ib->indio_dev; 113 DEFINE_WAIT_FUNC(wait, woken_wake_function); 114 size_t datum_size; 115 size_t to_wait; 116 int ret = 0; 117 118 if (!indio_dev->info) 119 return -ENODEV; 120 121 if (!rb || !rb->access->read) 122 return -EINVAL; 123 124 if (rb->direction != IIO_BUFFER_DIRECTION_IN) 125 return -EPERM; 126 127 datum_size = rb->bytes_per_datum; 128 129 /* 130 * If datum_size is 0 there will never be anything to read from the 131 * buffer, so signal end of file now. 132 */ 133 if (!datum_size) 134 return 0; 135 136 if (filp->f_flags & O_NONBLOCK) 137 to_wait = 0; 138 else 139 to_wait = min_t(size_t, n / datum_size, rb->watermark); 140 141 add_wait_queue(&rb->pollq, &wait); 142 do { 143 if (!indio_dev->info) { 144 ret = -ENODEV; 145 break; 146 } 147 148 if (!iio_buffer_ready(indio_dev, rb, to_wait, n / datum_size)) { 149 if (signal_pending(current)) { 150 ret = -ERESTARTSYS; 151 break; 152 } 153 154 wait_woken(&wait, TASK_INTERRUPTIBLE, 155 MAX_SCHEDULE_TIMEOUT); 156 continue; 157 } 158 159 ret = rb->access->read(rb, n, buf); 160 if (ret == 0 && (filp->f_flags & O_NONBLOCK)) 161 ret = -EAGAIN; 162 } while (ret == 0); 163 remove_wait_queue(&rb->pollq, &wait); 164 165 return ret; 166 } 167 168 static size_t iio_buffer_space_available(struct iio_buffer *buf) 169 { 170 if (buf->access->space_available) 171 return buf->access->space_available(buf); 172 173 return SIZE_MAX; 174 } 175 176 static ssize_t iio_buffer_write(struct file *filp, const char __user *buf, 177 size_t n, loff_t *f_ps) 178 { 179 struct iio_dev_buffer_pair *ib = filp->private_data; 180 struct iio_buffer *rb = ib->buffer; 181 struct iio_dev *indio_dev = ib->indio_dev; 182 DEFINE_WAIT_FUNC(wait, woken_wake_function); 183 int ret = 0; 184 size_t written; 185 186 if (!indio_dev->info) 187 return -ENODEV; 188 189 if (!rb || !rb->access->write) 190 return -EINVAL; 191 192 if (rb->direction != IIO_BUFFER_DIRECTION_OUT) 193 return -EPERM; 194 195 written = 0; 196 add_wait_queue(&rb->pollq, &wait); 197 do { 198 if (!indio_dev->info) 199 return -ENODEV; 200 201 if (!iio_buffer_space_available(rb)) { 202 if (signal_pending(current)) { 203 ret = -ERESTARTSYS; 204 break; 205 } 206 207 if (filp->f_flags & O_NONBLOCK) { 208 if (!written) 209 ret = -EAGAIN; 210 break; 211 } 212 213 wait_woken(&wait, TASK_INTERRUPTIBLE, 214 MAX_SCHEDULE_TIMEOUT); 215 continue; 216 } 217 218 ret = rb->access->write(rb, n - written, buf + written); 219 if (ret < 0) 220 break; 221 222 written += ret; 223 224 } while (written != n); 225 remove_wait_queue(&rb->pollq, &wait); 226 227 return ret < 0 ? ret : written; 228 } 229 230 /** 231 * iio_buffer_poll() - poll the buffer to find out if it has data 232 * @filp: File structure pointer for device access 233 * @wait: Poll table structure pointer for which the driver adds 234 * a wait queue 235 * 236 * Return: (EPOLLIN | EPOLLRDNORM) if data is available for reading 237 * or 0 for other cases 238 */ 239 static __poll_t iio_buffer_poll(struct file *filp, 240 struct poll_table_struct *wait) 241 { 242 struct iio_dev_buffer_pair *ib = filp->private_data; 243 struct iio_buffer *rb = ib->buffer; 244 struct iio_dev *indio_dev = ib->indio_dev; 245 246 if (!indio_dev->info || !rb) 247 return 0; 248 249 poll_wait(filp, &rb->pollq, wait); 250 251 switch (rb->direction) { 252 case IIO_BUFFER_DIRECTION_IN: 253 if (iio_buffer_ready(indio_dev, rb, rb->watermark, 0)) 254 return EPOLLIN | EPOLLRDNORM; 255 break; 256 case IIO_BUFFER_DIRECTION_OUT: 257 if (iio_buffer_space_available(rb)) 258 return EPOLLOUT | EPOLLWRNORM; 259 break; 260 } 261 262 return 0; 263 } 264 265 ssize_t iio_buffer_read_wrapper(struct file *filp, char __user *buf, 266 size_t n, loff_t *f_ps) 267 { 268 struct iio_dev_buffer_pair *ib = filp->private_data; 269 struct iio_buffer *rb = ib->buffer; 270 271 /* check if buffer was opened through new API */ 272 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 273 return -EBUSY; 274 275 return iio_buffer_read(filp, buf, n, f_ps); 276 } 277 278 ssize_t iio_buffer_write_wrapper(struct file *filp, const char __user *buf, 279 size_t n, loff_t *f_ps) 280 { 281 struct iio_dev_buffer_pair *ib = filp->private_data; 282 struct iio_buffer *rb = ib->buffer; 283 284 /* check if buffer was opened through new API */ 285 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 286 return -EBUSY; 287 288 return iio_buffer_write(filp, buf, n, f_ps); 289 } 290 291 __poll_t iio_buffer_poll_wrapper(struct file *filp, 292 struct poll_table_struct *wait) 293 { 294 struct iio_dev_buffer_pair *ib = filp->private_data; 295 struct iio_buffer *rb = ib->buffer; 296 297 /* check if buffer was opened through new API */ 298 if (test_bit(IIO_BUSY_BIT_POS, &rb->flags)) 299 return 0; 300 301 return iio_buffer_poll(filp, wait); 302 } 303 304 /** 305 * iio_buffer_wakeup_poll - Wakes up the buffer waitqueue 306 * @indio_dev: The IIO device 307 * 308 * Wakes up the event waitqueue used for poll(). Should usually 309 * be called when the device is unregistered. 310 */ 311 void iio_buffer_wakeup_poll(struct iio_dev *indio_dev) 312 { 313 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 314 struct iio_buffer *buffer; 315 unsigned int i; 316 317 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) { 318 buffer = iio_dev_opaque->attached_buffers[i]; 319 wake_up(&buffer->pollq); 320 } 321 } 322 323 int iio_pop_from_buffer(struct iio_buffer *buffer, void *data) 324 { 325 if (!buffer || !buffer->access || !buffer->access->remove_from) 326 return -EINVAL; 327 328 return buffer->access->remove_from(buffer, data); 329 } 330 EXPORT_SYMBOL_GPL(iio_pop_from_buffer); 331 332 void iio_buffer_init(struct iio_buffer *buffer) 333 { 334 INIT_LIST_HEAD(&buffer->demux_list); 335 INIT_LIST_HEAD(&buffer->buffer_list); 336 init_waitqueue_head(&buffer->pollq); 337 kref_init(&buffer->ref); 338 if (!buffer->watermark) 339 buffer->watermark = 1; 340 } 341 EXPORT_SYMBOL(iio_buffer_init); 342 343 void iio_device_detach_buffers(struct iio_dev *indio_dev) 344 { 345 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 346 struct iio_buffer *buffer; 347 unsigned int i; 348 349 for (i = 0; i < iio_dev_opaque->attached_buffers_cnt; i++) { 350 buffer = iio_dev_opaque->attached_buffers[i]; 351 iio_buffer_put(buffer); 352 } 353 354 kfree(iio_dev_opaque->attached_buffers); 355 } 356 357 static ssize_t iio_show_scan_index(struct device *dev, 358 struct device_attribute *attr, 359 char *buf) 360 { 361 return sysfs_emit(buf, "%u\n", to_iio_dev_attr(attr)->c->scan_index); 362 } 363 364 static ssize_t iio_show_fixed_type(struct device *dev, 365 struct device_attribute *attr, 366 char *buf) 367 { 368 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 369 u8 type = this_attr->c->scan_type.endianness; 370 371 if (type == IIO_CPU) { 372 #ifdef __LITTLE_ENDIAN 373 type = IIO_LE; 374 #else 375 type = IIO_BE; 376 #endif 377 } 378 if (this_attr->c->scan_type.repeat > 1) 379 return sysfs_emit(buf, "%s:%c%d/%dX%d>>%u\n", 380 iio_endian_prefix[type], 381 this_attr->c->scan_type.sign, 382 this_attr->c->scan_type.realbits, 383 this_attr->c->scan_type.storagebits, 384 this_attr->c->scan_type.repeat, 385 this_attr->c->scan_type.shift); 386 else 387 return sysfs_emit(buf, "%s:%c%d/%d>>%u\n", 388 iio_endian_prefix[type], 389 this_attr->c->scan_type.sign, 390 this_attr->c->scan_type.realbits, 391 this_attr->c->scan_type.storagebits, 392 this_attr->c->scan_type.shift); 393 } 394 395 static ssize_t iio_scan_el_show(struct device *dev, 396 struct device_attribute *attr, 397 char *buf) 398 { 399 int ret; 400 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 401 402 /* Ensure ret is 0 or 1. */ 403 ret = !!test_bit(to_iio_dev_attr(attr)->address, 404 buffer->scan_mask); 405 406 return sysfs_emit(buf, "%d\n", ret); 407 } 408 409 /* Note NULL used as error indicator as it doesn't make sense. */ 410 static const unsigned long *iio_scan_mask_match(const unsigned long *av_masks, 411 unsigned int masklength, 412 const unsigned long *mask, 413 bool strict) 414 { 415 if (bitmap_empty(mask, masklength)) 416 return NULL; 417 /* 418 * The condition here do not handle multi-long masks correctly. 419 * It only checks the first long to be zero, and will use such mask 420 * as a terminator even if there was bits set after the first long. 421 * 422 * Correct check would require using: 423 * while (!bitmap_empty(av_masks, masklength)) 424 * instead. This is potentially hazardous because the 425 * avaliable_scan_masks is a zero terminated array of longs - and 426 * using the proper bitmap_empty() check for multi-long wide masks 427 * would require the array to be terminated with multiple zero longs - 428 * which is not such an usual pattern. 429 * 430 * As writing of this no multi-long wide masks were found in-tree, so 431 * the simple while (*av_masks) check is working. 432 */ 433 while (*av_masks) { 434 if (strict) { 435 if (bitmap_equal(mask, av_masks, masklength)) 436 return av_masks; 437 } else { 438 if (bitmap_subset(mask, av_masks, masklength)) 439 return av_masks; 440 } 441 av_masks += BITS_TO_LONGS(masklength); 442 } 443 return NULL; 444 } 445 446 static bool iio_validate_scan_mask(struct iio_dev *indio_dev, 447 const unsigned long *mask) 448 { 449 if (!indio_dev->setup_ops->validate_scan_mask) 450 return true; 451 452 return indio_dev->setup_ops->validate_scan_mask(indio_dev, mask); 453 } 454 455 /** 456 * iio_scan_mask_set() - set particular bit in the scan mask 457 * @indio_dev: the iio device 458 * @buffer: the buffer whose scan mask we are interested in 459 * @bit: the bit to be set. 460 * 461 * Note that at this point we have no way of knowing what other 462 * buffers might request, hence this code only verifies that the 463 * individual buffers request is plausible. 464 */ 465 static int iio_scan_mask_set(struct iio_dev *indio_dev, 466 struct iio_buffer *buffer, int bit) 467 { 468 const unsigned long *mask; 469 unsigned long *trialmask; 470 471 if (!indio_dev->masklength) { 472 WARN(1, "Trying to set scanmask prior to registering buffer\n"); 473 return -EINVAL; 474 } 475 476 trialmask = bitmap_alloc(indio_dev->masklength, GFP_KERNEL); 477 if (!trialmask) 478 return -ENOMEM; 479 bitmap_copy(trialmask, buffer->scan_mask, indio_dev->masklength); 480 set_bit(bit, trialmask); 481 482 if (!iio_validate_scan_mask(indio_dev, trialmask)) 483 goto err_invalid_mask; 484 485 if (indio_dev->available_scan_masks) { 486 mask = iio_scan_mask_match(indio_dev->available_scan_masks, 487 indio_dev->masklength, 488 trialmask, false); 489 if (!mask) 490 goto err_invalid_mask; 491 } 492 bitmap_copy(buffer->scan_mask, trialmask, indio_dev->masklength); 493 494 bitmap_free(trialmask); 495 496 return 0; 497 498 err_invalid_mask: 499 bitmap_free(trialmask); 500 return -EINVAL; 501 } 502 503 static int iio_scan_mask_clear(struct iio_buffer *buffer, int bit) 504 { 505 clear_bit(bit, buffer->scan_mask); 506 return 0; 507 } 508 509 static int iio_scan_mask_query(struct iio_dev *indio_dev, 510 struct iio_buffer *buffer, int bit) 511 { 512 if (bit > indio_dev->masklength) 513 return -EINVAL; 514 515 if (!buffer->scan_mask) 516 return 0; 517 518 /* Ensure return value is 0 or 1. */ 519 return !!test_bit(bit, buffer->scan_mask); 520 }; 521 522 static ssize_t iio_scan_el_store(struct device *dev, 523 struct device_attribute *attr, 524 const char *buf, 525 size_t len) 526 { 527 int ret; 528 bool state; 529 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 530 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 531 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); 532 struct iio_buffer *buffer = this_attr->buffer; 533 534 ret = kstrtobool(buf, &state); 535 if (ret < 0) 536 return ret; 537 538 guard(mutex)(&iio_dev_opaque->mlock); 539 if (iio_buffer_is_active(buffer)) 540 return -EBUSY; 541 542 ret = iio_scan_mask_query(indio_dev, buffer, this_attr->address); 543 if (ret < 0) 544 return ret; 545 546 if (state && ret) 547 return len; 548 549 if (state) 550 ret = iio_scan_mask_set(indio_dev, buffer, this_attr->address); 551 else 552 ret = iio_scan_mask_clear(buffer, this_attr->address); 553 if (ret) 554 return ret; 555 556 return len; 557 } 558 559 static ssize_t iio_scan_el_ts_show(struct device *dev, 560 struct device_attribute *attr, 561 char *buf) 562 { 563 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 564 565 return sysfs_emit(buf, "%d\n", buffer->scan_timestamp); 566 } 567 568 static ssize_t iio_scan_el_ts_store(struct device *dev, 569 struct device_attribute *attr, 570 const char *buf, 571 size_t len) 572 { 573 int ret; 574 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 575 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 576 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 577 bool state; 578 579 ret = kstrtobool(buf, &state); 580 if (ret < 0) 581 return ret; 582 583 guard(mutex)(&iio_dev_opaque->mlock); 584 if (iio_buffer_is_active(buffer)) 585 return -EBUSY; 586 587 buffer->scan_timestamp = state; 588 589 return len; 590 } 591 592 static int iio_buffer_add_channel_sysfs(struct iio_dev *indio_dev, 593 struct iio_buffer *buffer, 594 const struct iio_chan_spec *chan) 595 { 596 int ret, attrcount = 0; 597 598 ret = __iio_add_chan_devattr("index", 599 chan, 600 &iio_show_scan_index, 601 NULL, 602 0, 603 IIO_SEPARATE, 604 &indio_dev->dev, 605 buffer, 606 &buffer->buffer_attr_list); 607 if (ret) 608 return ret; 609 attrcount++; 610 ret = __iio_add_chan_devattr("type", 611 chan, 612 &iio_show_fixed_type, 613 NULL, 614 0, 615 IIO_SEPARATE, 616 &indio_dev->dev, 617 buffer, 618 &buffer->buffer_attr_list); 619 if (ret) 620 return ret; 621 attrcount++; 622 if (chan->type != IIO_TIMESTAMP) 623 ret = __iio_add_chan_devattr("en", 624 chan, 625 &iio_scan_el_show, 626 &iio_scan_el_store, 627 chan->scan_index, 628 IIO_SEPARATE, 629 &indio_dev->dev, 630 buffer, 631 &buffer->buffer_attr_list); 632 else 633 ret = __iio_add_chan_devattr("en", 634 chan, 635 &iio_scan_el_ts_show, 636 &iio_scan_el_ts_store, 637 chan->scan_index, 638 IIO_SEPARATE, 639 &indio_dev->dev, 640 buffer, 641 &buffer->buffer_attr_list); 642 if (ret) 643 return ret; 644 attrcount++; 645 ret = attrcount; 646 return ret; 647 } 648 649 static ssize_t length_show(struct device *dev, struct device_attribute *attr, 650 char *buf) 651 { 652 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 653 654 return sysfs_emit(buf, "%d\n", buffer->length); 655 } 656 657 static ssize_t length_store(struct device *dev, struct device_attribute *attr, 658 const char *buf, size_t len) 659 { 660 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 661 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 662 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 663 unsigned int val; 664 int ret; 665 666 ret = kstrtouint(buf, 10, &val); 667 if (ret) 668 return ret; 669 670 if (val == buffer->length) 671 return len; 672 673 guard(mutex)(&iio_dev_opaque->mlock); 674 if (iio_buffer_is_active(buffer)) 675 return -EBUSY; 676 677 buffer->access->set_length(buffer, val); 678 679 if (buffer->length && buffer->length < buffer->watermark) 680 buffer->watermark = buffer->length; 681 682 return len; 683 } 684 685 static ssize_t enable_show(struct device *dev, struct device_attribute *attr, 686 char *buf) 687 { 688 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 689 690 return sysfs_emit(buf, "%d\n", iio_buffer_is_active(buffer)); 691 } 692 693 static unsigned int iio_storage_bytes_for_si(struct iio_dev *indio_dev, 694 unsigned int scan_index) 695 { 696 const struct iio_chan_spec *ch; 697 unsigned int bytes; 698 699 ch = iio_find_channel_from_si(indio_dev, scan_index); 700 bytes = ch->scan_type.storagebits / 8; 701 if (ch->scan_type.repeat > 1) 702 bytes *= ch->scan_type.repeat; 703 return bytes; 704 } 705 706 static unsigned int iio_storage_bytes_for_timestamp(struct iio_dev *indio_dev) 707 { 708 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 709 710 return iio_storage_bytes_for_si(indio_dev, 711 iio_dev_opaque->scan_index_timestamp); 712 } 713 714 static int iio_compute_scan_bytes(struct iio_dev *indio_dev, 715 const unsigned long *mask, bool timestamp) 716 { 717 unsigned int bytes = 0; 718 int length, i, largest = 0; 719 720 /* How much space will the demuxed element take? */ 721 for_each_set_bit(i, mask, 722 indio_dev->masklength) { 723 length = iio_storage_bytes_for_si(indio_dev, i); 724 bytes = ALIGN(bytes, length); 725 bytes += length; 726 largest = max(largest, length); 727 } 728 729 if (timestamp) { 730 length = iio_storage_bytes_for_timestamp(indio_dev); 731 bytes = ALIGN(bytes, length); 732 bytes += length; 733 largest = max(largest, length); 734 } 735 736 bytes = ALIGN(bytes, largest); 737 return bytes; 738 } 739 740 static void iio_buffer_activate(struct iio_dev *indio_dev, 741 struct iio_buffer *buffer) 742 { 743 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 744 745 iio_buffer_get(buffer); 746 list_add(&buffer->buffer_list, &iio_dev_opaque->buffer_list); 747 } 748 749 static void iio_buffer_deactivate(struct iio_buffer *buffer) 750 { 751 list_del_init(&buffer->buffer_list); 752 wake_up_interruptible(&buffer->pollq); 753 iio_buffer_put(buffer); 754 } 755 756 static void iio_buffer_deactivate_all(struct iio_dev *indio_dev) 757 { 758 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 759 struct iio_buffer *buffer, *_buffer; 760 761 list_for_each_entry_safe(buffer, _buffer, 762 &iio_dev_opaque->buffer_list, buffer_list) 763 iio_buffer_deactivate(buffer); 764 } 765 766 static int iio_buffer_enable(struct iio_buffer *buffer, 767 struct iio_dev *indio_dev) 768 { 769 if (!buffer->access->enable) 770 return 0; 771 return buffer->access->enable(buffer, indio_dev); 772 } 773 774 static int iio_buffer_disable(struct iio_buffer *buffer, 775 struct iio_dev *indio_dev) 776 { 777 if (!buffer->access->disable) 778 return 0; 779 return buffer->access->disable(buffer, indio_dev); 780 } 781 782 static void iio_buffer_update_bytes_per_datum(struct iio_dev *indio_dev, 783 struct iio_buffer *buffer) 784 { 785 unsigned int bytes; 786 787 if (!buffer->access->set_bytes_per_datum) 788 return; 789 790 bytes = iio_compute_scan_bytes(indio_dev, buffer->scan_mask, 791 buffer->scan_timestamp); 792 793 buffer->access->set_bytes_per_datum(buffer, bytes); 794 } 795 796 static int iio_buffer_request_update(struct iio_dev *indio_dev, 797 struct iio_buffer *buffer) 798 { 799 int ret; 800 801 iio_buffer_update_bytes_per_datum(indio_dev, buffer); 802 if (buffer->access->request_update) { 803 ret = buffer->access->request_update(buffer); 804 if (ret) { 805 dev_dbg(&indio_dev->dev, 806 "Buffer not started: buffer parameter update failed (%d)\n", 807 ret); 808 return ret; 809 } 810 } 811 812 return 0; 813 } 814 815 static void iio_free_scan_mask(struct iio_dev *indio_dev, 816 const unsigned long *mask) 817 { 818 /* If the mask is dynamically allocated free it, otherwise do nothing */ 819 if (!indio_dev->available_scan_masks) 820 bitmap_free(mask); 821 } 822 823 struct iio_device_config { 824 unsigned int mode; 825 unsigned int watermark; 826 const unsigned long *scan_mask; 827 unsigned int scan_bytes; 828 bool scan_timestamp; 829 }; 830 831 static int iio_verify_update(struct iio_dev *indio_dev, 832 struct iio_buffer *insert_buffer, 833 struct iio_buffer *remove_buffer, 834 struct iio_device_config *config) 835 { 836 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 837 unsigned long *compound_mask; 838 const unsigned long *scan_mask; 839 bool strict_scanmask = false; 840 struct iio_buffer *buffer; 841 bool scan_timestamp; 842 unsigned int modes; 843 844 if (insert_buffer && 845 bitmap_empty(insert_buffer->scan_mask, indio_dev->masklength)) { 846 dev_dbg(&indio_dev->dev, 847 "At least one scan element must be enabled first\n"); 848 return -EINVAL; 849 } 850 851 memset(config, 0, sizeof(*config)); 852 config->watermark = ~0; 853 854 /* 855 * If there is just one buffer and we are removing it there is nothing 856 * to verify. 857 */ 858 if (remove_buffer && !insert_buffer && 859 list_is_singular(&iio_dev_opaque->buffer_list)) 860 return 0; 861 862 modes = indio_dev->modes; 863 864 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 865 if (buffer == remove_buffer) 866 continue; 867 modes &= buffer->access->modes; 868 config->watermark = min(config->watermark, buffer->watermark); 869 } 870 871 if (insert_buffer) { 872 modes &= insert_buffer->access->modes; 873 config->watermark = min(config->watermark, 874 insert_buffer->watermark); 875 } 876 877 /* Definitely possible for devices to support both of these. */ 878 if ((modes & INDIO_BUFFER_TRIGGERED) && indio_dev->trig) { 879 config->mode = INDIO_BUFFER_TRIGGERED; 880 } else if (modes & INDIO_BUFFER_HARDWARE) { 881 /* 882 * Keep things simple for now and only allow a single buffer to 883 * be connected in hardware mode. 884 */ 885 if (insert_buffer && !list_empty(&iio_dev_opaque->buffer_list)) 886 return -EINVAL; 887 config->mode = INDIO_BUFFER_HARDWARE; 888 strict_scanmask = true; 889 } else if (modes & INDIO_BUFFER_SOFTWARE) { 890 config->mode = INDIO_BUFFER_SOFTWARE; 891 } else { 892 /* Can only occur on first buffer */ 893 if (indio_dev->modes & INDIO_BUFFER_TRIGGERED) 894 dev_dbg(&indio_dev->dev, "Buffer not started: no trigger\n"); 895 return -EINVAL; 896 } 897 898 /* What scan mask do we actually have? */ 899 compound_mask = bitmap_zalloc(indio_dev->masklength, GFP_KERNEL); 900 if (!compound_mask) 901 return -ENOMEM; 902 903 scan_timestamp = false; 904 905 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 906 if (buffer == remove_buffer) 907 continue; 908 bitmap_or(compound_mask, compound_mask, buffer->scan_mask, 909 indio_dev->masklength); 910 scan_timestamp |= buffer->scan_timestamp; 911 } 912 913 if (insert_buffer) { 914 bitmap_or(compound_mask, compound_mask, 915 insert_buffer->scan_mask, indio_dev->masklength); 916 scan_timestamp |= insert_buffer->scan_timestamp; 917 } 918 919 if (indio_dev->available_scan_masks) { 920 scan_mask = iio_scan_mask_match(indio_dev->available_scan_masks, 921 indio_dev->masklength, 922 compound_mask, 923 strict_scanmask); 924 bitmap_free(compound_mask); 925 if (!scan_mask) 926 return -EINVAL; 927 } else { 928 scan_mask = compound_mask; 929 } 930 931 config->scan_bytes = iio_compute_scan_bytes(indio_dev, 932 scan_mask, scan_timestamp); 933 config->scan_mask = scan_mask; 934 config->scan_timestamp = scan_timestamp; 935 936 return 0; 937 } 938 939 /** 940 * struct iio_demux_table - table describing demux memcpy ops 941 * @from: index to copy from 942 * @to: index to copy to 943 * @length: how many bytes to copy 944 * @l: list head used for management 945 */ 946 struct iio_demux_table { 947 unsigned int from; 948 unsigned int to; 949 unsigned int length; 950 struct list_head l; 951 }; 952 953 static void iio_buffer_demux_free(struct iio_buffer *buffer) 954 { 955 struct iio_demux_table *p, *q; 956 957 list_for_each_entry_safe(p, q, &buffer->demux_list, l) { 958 list_del(&p->l); 959 kfree(p); 960 } 961 } 962 963 static int iio_buffer_add_demux(struct iio_buffer *buffer, 964 struct iio_demux_table **p, unsigned int in_loc, 965 unsigned int out_loc, 966 unsigned int length) 967 { 968 if (*p && (*p)->from + (*p)->length == in_loc && 969 (*p)->to + (*p)->length == out_loc) { 970 (*p)->length += length; 971 } else { 972 *p = kmalloc(sizeof(**p), GFP_KERNEL); 973 if (!(*p)) 974 return -ENOMEM; 975 (*p)->from = in_loc; 976 (*p)->to = out_loc; 977 (*p)->length = length; 978 list_add_tail(&(*p)->l, &buffer->demux_list); 979 } 980 981 return 0; 982 } 983 984 static int iio_buffer_update_demux(struct iio_dev *indio_dev, 985 struct iio_buffer *buffer) 986 { 987 int ret, in_ind = -1, out_ind, length; 988 unsigned int in_loc = 0, out_loc = 0; 989 struct iio_demux_table *p = NULL; 990 991 /* Clear out any old demux */ 992 iio_buffer_demux_free(buffer); 993 kfree(buffer->demux_bounce); 994 buffer->demux_bounce = NULL; 995 996 /* First work out which scan mode we will actually have */ 997 if (bitmap_equal(indio_dev->active_scan_mask, 998 buffer->scan_mask, 999 indio_dev->masklength)) 1000 return 0; 1001 1002 /* Now we have the two masks, work from least sig and build up sizes */ 1003 for_each_set_bit(out_ind, 1004 buffer->scan_mask, 1005 indio_dev->masklength) { 1006 in_ind = find_next_bit(indio_dev->active_scan_mask, 1007 indio_dev->masklength, 1008 in_ind + 1); 1009 while (in_ind != out_ind) { 1010 length = iio_storage_bytes_for_si(indio_dev, in_ind); 1011 /* Make sure we are aligned */ 1012 in_loc = roundup(in_loc, length) + length; 1013 in_ind = find_next_bit(indio_dev->active_scan_mask, 1014 indio_dev->masklength, 1015 in_ind + 1); 1016 } 1017 length = iio_storage_bytes_for_si(indio_dev, in_ind); 1018 out_loc = roundup(out_loc, length); 1019 in_loc = roundup(in_loc, length); 1020 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length); 1021 if (ret) 1022 goto error_clear_mux_table; 1023 out_loc += length; 1024 in_loc += length; 1025 } 1026 /* Relies on scan_timestamp being last */ 1027 if (buffer->scan_timestamp) { 1028 length = iio_storage_bytes_for_timestamp(indio_dev); 1029 out_loc = roundup(out_loc, length); 1030 in_loc = roundup(in_loc, length); 1031 ret = iio_buffer_add_demux(buffer, &p, in_loc, out_loc, length); 1032 if (ret) 1033 goto error_clear_mux_table; 1034 out_loc += length; 1035 } 1036 buffer->demux_bounce = kzalloc(out_loc, GFP_KERNEL); 1037 if (!buffer->demux_bounce) { 1038 ret = -ENOMEM; 1039 goto error_clear_mux_table; 1040 } 1041 return 0; 1042 1043 error_clear_mux_table: 1044 iio_buffer_demux_free(buffer); 1045 1046 return ret; 1047 } 1048 1049 static int iio_update_demux(struct iio_dev *indio_dev) 1050 { 1051 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1052 struct iio_buffer *buffer; 1053 int ret; 1054 1055 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1056 ret = iio_buffer_update_demux(indio_dev, buffer); 1057 if (ret < 0) 1058 goto error_clear_mux_table; 1059 } 1060 return 0; 1061 1062 error_clear_mux_table: 1063 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) 1064 iio_buffer_demux_free(buffer); 1065 1066 return ret; 1067 } 1068 1069 static int iio_enable_buffers(struct iio_dev *indio_dev, 1070 struct iio_device_config *config) 1071 { 1072 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1073 struct iio_buffer *buffer, *tmp = NULL; 1074 int ret; 1075 1076 indio_dev->active_scan_mask = config->scan_mask; 1077 indio_dev->scan_timestamp = config->scan_timestamp; 1078 indio_dev->scan_bytes = config->scan_bytes; 1079 iio_dev_opaque->currentmode = config->mode; 1080 1081 iio_update_demux(indio_dev); 1082 1083 /* Wind up again */ 1084 if (indio_dev->setup_ops->preenable) { 1085 ret = indio_dev->setup_ops->preenable(indio_dev); 1086 if (ret) { 1087 dev_dbg(&indio_dev->dev, 1088 "Buffer not started: buffer preenable failed (%d)\n", ret); 1089 goto err_undo_config; 1090 } 1091 } 1092 1093 if (indio_dev->info->update_scan_mode) { 1094 ret = indio_dev->info 1095 ->update_scan_mode(indio_dev, 1096 indio_dev->active_scan_mask); 1097 if (ret < 0) { 1098 dev_dbg(&indio_dev->dev, 1099 "Buffer not started: update scan mode failed (%d)\n", 1100 ret); 1101 goto err_run_postdisable; 1102 } 1103 } 1104 1105 if (indio_dev->info->hwfifo_set_watermark) 1106 indio_dev->info->hwfifo_set_watermark(indio_dev, 1107 config->watermark); 1108 1109 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1110 ret = iio_buffer_enable(buffer, indio_dev); 1111 if (ret) { 1112 tmp = buffer; 1113 goto err_disable_buffers; 1114 } 1115 } 1116 1117 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1118 ret = iio_trigger_attach_poll_func(indio_dev->trig, 1119 indio_dev->pollfunc); 1120 if (ret) 1121 goto err_disable_buffers; 1122 } 1123 1124 if (indio_dev->setup_ops->postenable) { 1125 ret = indio_dev->setup_ops->postenable(indio_dev); 1126 if (ret) { 1127 dev_dbg(&indio_dev->dev, 1128 "Buffer not started: postenable failed (%d)\n", ret); 1129 goto err_detach_pollfunc; 1130 } 1131 } 1132 1133 return 0; 1134 1135 err_detach_pollfunc: 1136 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1137 iio_trigger_detach_poll_func(indio_dev->trig, 1138 indio_dev->pollfunc); 1139 } 1140 err_disable_buffers: 1141 buffer = list_prepare_entry(tmp, &iio_dev_opaque->buffer_list, buffer_list); 1142 list_for_each_entry_continue_reverse(buffer, &iio_dev_opaque->buffer_list, 1143 buffer_list) 1144 iio_buffer_disable(buffer, indio_dev); 1145 err_run_postdisable: 1146 if (indio_dev->setup_ops->postdisable) 1147 indio_dev->setup_ops->postdisable(indio_dev); 1148 err_undo_config: 1149 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE; 1150 indio_dev->active_scan_mask = NULL; 1151 1152 return ret; 1153 } 1154 1155 static int iio_disable_buffers(struct iio_dev *indio_dev) 1156 { 1157 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1158 struct iio_buffer *buffer; 1159 int ret = 0; 1160 int ret2; 1161 1162 /* Wind down existing buffers - iff there are any */ 1163 if (list_empty(&iio_dev_opaque->buffer_list)) 1164 return 0; 1165 1166 /* 1167 * If things go wrong at some step in disable we still need to continue 1168 * to perform the other steps, otherwise we leave the device in a 1169 * inconsistent state. We return the error code for the first error we 1170 * encountered. 1171 */ 1172 1173 if (indio_dev->setup_ops->predisable) { 1174 ret2 = indio_dev->setup_ops->predisable(indio_dev); 1175 if (ret2 && !ret) 1176 ret = ret2; 1177 } 1178 1179 if (iio_dev_opaque->currentmode == INDIO_BUFFER_TRIGGERED) { 1180 iio_trigger_detach_poll_func(indio_dev->trig, 1181 indio_dev->pollfunc); 1182 } 1183 1184 list_for_each_entry(buffer, &iio_dev_opaque->buffer_list, buffer_list) { 1185 ret2 = iio_buffer_disable(buffer, indio_dev); 1186 if (ret2 && !ret) 1187 ret = ret2; 1188 } 1189 1190 if (indio_dev->setup_ops->postdisable) { 1191 ret2 = indio_dev->setup_ops->postdisable(indio_dev); 1192 if (ret2 && !ret) 1193 ret = ret2; 1194 } 1195 1196 iio_free_scan_mask(indio_dev, indio_dev->active_scan_mask); 1197 indio_dev->active_scan_mask = NULL; 1198 iio_dev_opaque->currentmode = INDIO_DIRECT_MODE; 1199 1200 return ret; 1201 } 1202 1203 static int __iio_update_buffers(struct iio_dev *indio_dev, 1204 struct iio_buffer *insert_buffer, 1205 struct iio_buffer *remove_buffer) 1206 { 1207 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1208 struct iio_device_config new_config; 1209 int ret; 1210 1211 ret = iio_verify_update(indio_dev, insert_buffer, remove_buffer, 1212 &new_config); 1213 if (ret) 1214 return ret; 1215 1216 if (insert_buffer) { 1217 ret = iio_buffer_request_update(indio_dev, insert_buffer); 1218 if (ret) 1219 goto err_free_config; 1220 } 1221 1222 ret = iio_disable_buffers(indio_dev); 1223 if (ret) 1224 goto err_deactivate_all; 1225 1226 if (remove_buffer) 1227 iio_buffer_deactivate(remove_buffer); 1228 if (insert_buffer) 1229 iio_buffer_activate(indio_dev, insert_buffer); 1230 1231 /* If no buffers in list, we are done */ 1232 if (list_empty(&iio_dev_opaque->buffer_list)) 1233 return 0; 1234 1235 ret = iio_enable_buffers(indio_dev, &new_config); 1236 if (ret) 1237 goto err_deactivate_all; 1238 1239 return 0; 1240 1241 err_deactivate_all: 1242 /* 1243 * We've already verified that the config is valid earlier. If things go 1244 * wrong in either enable or disable the most likely reason is an IO 1245 * error from the device. In this case there is no good recovery 1246 * strategy. Just make sure to disable everything and leave the device 1247 * in a sane state. With a bit of luck the device might come back to 1248 * life again later and userspace can try again. 1249 */ 1250 iio_buffer_deactivate_all(indio_dev); 1251 1252 err_free_config: 1253 iio_free_scan_mask(indio_dev, new_config.scan_mask); 1254 return ret; 1255 } 1256 1257 int iio_update_buffers(struct iio_dev *indio_dev, 1258 struct iio_buffer *insert_buffer, 1259 struct iio_buffer *remove_buffer) 1260 { 1261 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1262 1263 if (insert_buffer == remove_buffer) 1264 return 0; 1265 1266 if (insert_buffer && 1267 insert_buffer->direction == IIO_BUFFER_DIRECTION_OUT) 1268 return -EINVAL; 1269 1270 guard(mutex)(&iio_dev_opaque->info_exist_lock); 1271 guard(mutex)(&iio_dev_opaque->mlock); 1272 1273 if (insert_buffer && iio_buffer_is_active(insert_buffer)) 1274 insert_buffer = NULL; 1275 1276 if (remove_buffer && !iio_buffer_is_active(remove_buffer)) 1277 remove_buffer = NULL; 1278 1279 if (!insert_buffer && !remove_buffer) 1280 return 0; 1281 1282 if (!indio_dev->info) 1283 return -ENODEV; 1284 1285 return __iio_update_buffers(indio_dev, insert_buffer, remove_buffer); 1286 } 1287 EXPORT_SYMBOL_GPL(iio_update_buffers); 1288 1289 void iio_disable_all_buffers(struct iio_dev *indio_dev) 1290 { 1291 iio_disable_buffers(indio_dev); 1292 iio_buffer_deactivate_all(indio_dev); 1293 } 1294 1295 static ssize_t enable_store(struct device *dev, struct device_attribute *attr, 1296 const char *buf, size_t len) 1297 { 1298 int ret; 1299 bool requested_state; 1300 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1301 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1302 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1303 bool inlist; 1304 1305 ret = kstrtobool(buf, &requested_state); 1306 if (ret < 0) 1307 return ret; 1308 1309 guard(mutex)(&iio_dev_opaque->mlock); 1310 1311 /* Find out if it is in the list */ 1312 inlist = iio_buffer_is_active(buffer); 1313 /* Already in desired state */ 1314 if (inlist == requested_state) 1315 return len; 1316 1317 if (requested_state) 1318 ret = __iio_update_buffers(indio_dev, buffer, NULL); 1319 else 1320 ret = __iio_update_buffers(indio_dev, NULL, buffer); 1321 if (ret) 1322 return ret; 1323 1324 return len; 1325 } 1326 1327 static ssize_t watermark_show(struct device *dev, struct device_attribute *attr, 1328 char *buf) 1329 { 1330 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1331 1332 return sysfs_emit(buf, "%u\n", buffer->watermark); 1333 } 1334 1335 static ssize_t watermark_store(struct device *dev, 1336 struct device_attribute *attr, 1337 const char *buf, size_t len) 1338 { 1339 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 1340 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1341 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1342 unsigned int val; 1343 int ret; 1344 1345 ret = kstrtouint(buf, 10, &val); 1346 if (ret) 1347 return ret; 1348 if (!val) 1349 return -EINVAL; 1350 1351 guard(mutex)(&iio_dev_opaque->mlock); 1352 1353 if (val > buffer->length) 1354 return -EINVAL; 1355 1356 if (iio_buffer_is_active(buffer)) 1357 return -EBUSY; 1358 1359 buffer->watermark = val; 1360 1361 return len; 1362 } 1363 1364 static ssize_t data_available_show(struct device *dev, 1365 struct device_attribute *attr, char *buf) 1366 { 1367 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1368 1369 return sysfs_emit(buf, "%zu\n", iio_buffer_data_available(buffer)); 1370 } 1371 1372 static ssize_t direction_show(struct device *dev, 1373 struct device_attribute *attr, 1374 char *buf) 1375 { 1376 struct iio_buffer *buffer = to_iio_dev_attr(attr)->buffer; 1377 1378 switch (buffer->direction) { 1379 case IIO_BUFFER_DIRECTION_IN: 1380 return sysfs_emit(buf, "in\n"); 1381 case IIO_BUFFER_DIRECTION_OUT: 1382 return sysfs_emit(buf, "out\n"); 1383 default: 1384 return -EINVAL; 1385 } 1386 } 1387 1388 static DEVICE_ATTR_RW(length); 1389 static struct device_attribute dev_attr_length_ro = __ATTR_RO(length); 1390 static DEVICE_ATTR_RW(enable); 1391 static DEVICE_ATTR_RW(watermark); 1392 static struct device_attribute dev_attr_watermark_ro = __ATTR_RO(watermark); 1393 static DEVICE_ATTR_RO(data_available); 1394 static DEVICE_ATTR_RO(direction); 1395 1396 /* 1397 * When adding new attributes here, put the at the end, at least until 1398 * the code that handles the length/length_ro & watermark/watermark_ro 1399 * assignments gets cleaned up. Otherwise these can create some weird 1400 * duplicate attributes errors under some setups. 1401 */ 1402 static struct attribute *iio_buffer_attrs[] = { 1403 &dev_attr_length.attr, 1404 &dev_attr_enable.attr, 1405 &dev_attr_watermark.attr, 1406 &dev_attr_data_available.attr, 1407 &dev_attr_direction.attr, 1408 }; 1409 1410 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1411 1412 static struct attribute *iio_buffer_wrap_attr(struct iio_buffer *buffer, 1413 struct attribute *attr) 1414 { 1415 struct device_attribute *dattr = to_dev_attr(attr); 1416 struct iio_dev_attr *iio_attr; 1417 1418 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL); 1419 if (!iio_attr) 1420 return NULL; 1421 1422 iio_attr->buffer = buffer; 1423 memcpy(&iio_attr->dev_attr, dattr, sizeof(iio_attr->dev_attr)); 1424 iio_attr->dev_attr.attr.name = kstrdup_const(attr->name, GFP_KERNEL); 1425 if (!iio_attr->dev_attr.attr.name) { 1426 kfree(iio_attr); 1427 return NULL; 1428 } 1429 1430 sysfs_attr_init(&iio_attr->dev_attr.attr); 1431 1432 list_add(&iio_attr->l, &buffer->buffer_attr_list); 1433 1434 return &iio_attr->dev_attr.attr; 1435 } 1436 1437 static int iio_buffer_register_legacy_sysfs_groups(struct iio_dev *indio_dev, 1438 struct attribute **buffer_attrs, 1439 int buffer_attrcount, 1440 int scan_el_attrcount) 1441 { 1442 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1443 struct attribute_group *group; 1444 struct attribute **attrs; 1445 int ret; 1446 1447 attrs = kcalloc(buffer_attrcount + 1, sizeof(*attrs), GFP_KERNEL); 1448 if (!attrs) 1449 return -ENOMEM; 1450 1451 memcpy(attrs, buffer_attrs, buffer_attrcount * sizeof(*attrs)); 1452 1453 group = &iio_dev_opaque->legacy_buffer_group; 1454 group->attrs = attrs; 1455 group->name = "buffer"; 1456 1457 ret = iio_device_register_sysfs_group(indio_dev, group); 1458 if (ret) 1459 goto error_free_buffer_attrs; 1460 1461 attrs = kcalloc(scan_el_attrcount + 1, sizeof(*attrs), GFP_KERNEL); 1462 if (!attrs) { 1463 ret = -ENOMEM; 1464 goto error_free_buffer_attrs; 1465 } 1466 1467 memcpy(attrs, &buffer_attrs[buffer_attrcount], 1468 scan_el_attrcount * sizeof(*attrs)); 1469 1470 group = &iio_dev_opaque->legacy_scan_el_group; 1471 group->attrs = attrs; 1472 group->name = "scan_elements"; 1473 1474 ret = iio_device_register_sysfs_group(indio_dev, group); 1475 if (ret) 1476 goto error_free_scan_el_attrs; 1477 1478 return 0; 1479 1480 error_free_scan_el_attrs: 1481 kfree(iio_dev_opaque->legacy_scan_el_group.attrs); 1482 error_free_buffer_attrs: 1483 kfree(iio_dev_opaque->legacy_buffer_group.attrs); 1484 1485 return ret; 1486 } 1487 1488 static void iio_buffer_unregister_legacy_sysfs_groups(struct iio_dev *indio_dev) 1489 { 1490 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1491 1492 kfree(iio_dev_opaque->legacy_buffer_group.attrs); 1493 kfree(iio_dev_opaque->legacy_scan_el_group.attrs); 1494 } 1495 1496 static int iio_buffer_chrdev_release(struct inode *inode, struct file *filep) 1497 { 1498 struct iio_dev_buffer_pair *ib = filep->private_data; 1499 struct iio_dev *indio_dev = ib->indio_dev; 1500 struct iio_buffer *buffer = ib->buffer; 1501 1502 wake_up(&buffer->pollq); 1503 1504 kfree(ib); 1505 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags); 1506 iio_device_put(indio_dev); 1507 1508 return 0; 1509 } 1510 1511 static const struct file_operations iio_buffer_chrdev_fileops = { 1512 .owner = THIS_MODULE, 1513 .llseek = noop_llseek, 1514 .read = iio_buffer_read, 1515 .write = iio_buffer_write, 1516 .poll = iio_buffer_poll, 1517 .release = iio_buffer_chrdev_release, 1518 }; 1519 1520 static long iio_device_buffer_getfd(struct iio_dev *indio_dev, unsigned long arg) 1521 { 1522 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1523 int __user *ival = (int __user *)arg; 1524 struct iio_dev_buffer_pair *ib; 1525 struct iio_buffer *buffer; 1526 int fd, idx, ret; 1527 1528 if (copy_from_user(&idx, ival, sizeof(idx))) 1529 return -EFAULT; 1530 1531 if (idx >= iio_dev_opaque->attached_buffers_cnt) 1532 return -ENODEV; 1533 1534 iio_device_get(indio_dev); 1535 1536 buffer = iio_dev_opaque->attached_buffers[idx]; 1537 1538 if (test_and_set_bit(IIO_BUSY_BIT_POS, &buffer->flags)) { 1539 ret = -EBUSY; 1540 goto error_iio_dev_put; 1541 } 1542 1543 ib = kzalloc(sizeof(*ib), GFP_KERNEL); 1544 if (!ib) { 1545 ret = -ENOMEM; 1546 goto error_clear_busy_bit; 1547 } 1548 1549 ib->indio_dev = indio_dev; 1550 ib->buffer = buffer; 1551 1552 fd = anon_inode_getfd("iio:buffer", &iio_buffer_chrdev_fileops, 1553 ib, O_RDWR | O_CLOEXEC); 1554 if (fd < 0) { 1555 ret = fd; 1556 goto error_free_ib; 1557 } 1558 1559 if (copy_to_user(ival, &fd, sizeof(fd))) { 1560 /* 1561 * "Leak" the fd, as there's not much we can do about this 1562 * anyway. 'fd' might have been closed already, as 1563 * anon_inode_getfd() called fd_install() on it, which made 1564 * it reachable by userland. 1565 * 1566 * Instead of allowing a malicious user to play tricks with 1567 * us, rely on the process exit path to do any necessary 1568 * cleanup, as in releasing the file, if still needed. 1569 */ 1570 return -EFAULT; 1571 } 1572 1573 return 0; 1574 1575 error_free_ib: 1576 kfree(ib); 1577 error_clear_busy_bit: 1578 clear_bit(IIO_BUSY_BIT_POS, &buffer->flags); 1579 error_iio_dev_put: 1580 iio_device_put(indio_dev); 1581 return ret; 1582 } 1583 1584 static long iio_device_buffer_ioctl(struct iio_dev *indio_dev, struct file *filp, 1585 unsigned int cmd, unsigned long arg) 1586 { 1587 switch (cmd) { 1588 case IIO_BUFFER_GET_FD_IOCTL: 1589 return iio_device_buffer_getfd(indio_dev, arg); 1590 default: 1591 return IIO_IOCTL_UNHANDLED; 1592 } 1593 } 1594 1595 static int __iio_buffer_alloc_sysfs_and_mask(struct iio_buffer *buffer, 1596 struct iio_dev *indio_dev, 1597 int index) 1598 { 1599 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1600 struct iio_dev_attr *p; 1601 const struct iio_dev_attr *id_attr; 1602 struct attribute **attr; 1603 int ret, i, attrn, scan_el_attrcount, buffer_attrcount; 1604 const struct iio_chan_spec *channels; 1605 1606 buffer_attrcount = 0; 1607 if (buffer->attrs) { 1608 while (buffer->attrs[buffer_attrcount]) 1609 buffer_attrcount++; 1610 } 1611 buffer_attrcount += ARRAY_SIZE(iio_buffer_attrs); 1612 1613 scan_el_attrcount = 0; 1614 INIT_LIST_HEAD(&buffer->buffer_attr_list); 1615 channels = indio_dev->channels; 1616 if (channels) { 1617 /* new magic */ 1618 for (i = 0; i < indio_dev->num_channels; i++) { 1619 if (channels[i].scan_index < 0) 1620 continue; 1621 1622 /* Verify that sample bits fit into storage */ 1623 if (channels[i].scan_type.storagebits < 1624 channels[i].scan_type.realbits + 1625 channels[i].scan_type.shift) { 1626 dev_err(&indio_dev->dev, 1627 "Channel %d storagebits (%d) < shifted realbits (%d + %d)\n", 1628 i, channels[i].scan_type.storagebits, 1629 channels[i].scan_type.realbits, 1630 channels[i].scan_type.shift); 1631 ret = -EINVAL; 1632 goto error_cleanup_dynamic; 1633 } 1634 1635 ret = iio_buffer_add_channel_sysfs(indio_dev, buffer, 1636 &channels[i]); 1637 if (ret < 0) 1638 goto error_cleanup_dynamic; 1639 scan_el_attrcount += ret; 1640 if (channels[i].type == IIO_TIMESTAMP) 1641 iio_dev_opaque->scan_index_timestamp = 1642 channels[i].scan_index; 1643 } 1644 if (indio_dev->masklength && !buffer->scan_mask) { 1645 buffer->scan_mask = bitmap_zalloc(indio_dev->masklength, 1646 GFP_KERNEL); 1647 if (!buffer->scan_mask) { 1648 ret = -ENOMEM; 1649 goto error_cleanup_dynamic; 1650 } 1651 } 1652 } 1653 1654 attrn = buffer_attrcount + scan_el_attrcount; 1655 attr = kcalloc(attrn + 1, sizeof(*attr), GFP_KERNEL); 1656 if (!attr) { 1657 ret = -ENOMEM; 1658 goto error_free_scan_mask; 1659 } 1660 1661 memcpy(attr, iio_buffer_attrs, sizeof(iio_buffer_attrs)); 1662 if (!buffer->access->set_length) 1663 attr[0] = &dev_attr_length_ro.attr; 1664 1665 if (buffer->access->flags & INDIO_BUFFER_FLAG_FIXED_WATERMARK) 1666 attr[2] = &dev_attr_watermark_ro.attr; 1667 1668 if (buffer->attrs) 1669 for (i = 0, id_attr = buffer->attrs[i]; 1670 (id_attr = buffer->attrs[i]); i++) 1671 attr[ARRAY_SIZE(iio_buffer_attrs) + i] = 1672 (struct attribute *)&id_attr->dev_attr.attr; 1673 1674 buffer->buffer_group.attrs = attr; 1675 1676 for (i = 0; i < buffer_attrcount; i++) { 1677 struct attribute *wrapped; 1678 1679 wrapped = iio_buffer_wrap_attr(buffer, attr[i]); 1680 if (!wrapped) { 1681 ret = -ENOMEM; 1682 goto error_free_buffer_attrs; 1683 } 1684 attr[i] = wrapped; 1685 } 1686 1687 attrn = 0; 1688 list_for_each_entry(p, &buffer->buffer_attr_list, l) 1689 attr[attrn++] = &p->dev_attr.attr; 1690 1691 buffer->buffer_group.name = kasprintf(GFP_KERNEL, "buffer%d", index); 1692 if (!buffer->buffer_group.name) { 1693 ret = -ENOMEM; 1694 goto error_free_buffer_attrs; 1695 } 1696 1697 ret = iio_device_register_sysfs_group(indio_dev, &buffer->buffer_group); 1698 if (ret) 1699 goto error_free_buffer_attr_group_name; 1700 1701 /* we only need to register the legacy groups for the first buffer */ 1702 if (index > 0) 1703 return 0; 1704 1705 ret = iio_buffer_register_legacy_sysfs_groups(indio_dev, attr, 1706 buffer_attrcount, 1707 scan_el_attrcount); 1708 if (ret) 1709 goto error_free_buffer_attr_group_name; 1710 1711 return 0; 1712 1713 error_free_buffer_attr_group_name: 1714 kfree(buffer->buffer_group.name); 1715 error_free_buffer_attrs: 1716 kfree(buffer->buffer_group.attrs); 1717 error_free_scan_mask: 1718 bitmap_free(buffer->scan_mask); 1719 error_cleanup_dynamic: 1720 iio_free_chan_devattr_list(&buffer->buffer_attr_list); 1721 1722 return ret; 1723 } 1724 1725 static void __iio_buffer_free_sysfs_and_mask(struct iio_buffer *buffer, 1726 struct iio_dev *indio_dev, 1727 int index) 1728 { 1729 if (index == 0) 1730 iio_buffer_unregister_legacy_sysfs_groups(indio_dev); 1731 bitmap_free(buffer->scan_mask); 1732 kfree(buffer->buffer_group.name); 1733 kfree(buffer->buffer_group.attrs); 1734 iio_free_chan_devattr_list(&buffer->buffer_attr_list); 1735 } 1736 1737 int iio_buffers_alloc_sysfs_and_mask(struct iio_dev *indio_dev) 1738 { 1739 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1740 const struct iio_chan_spec *channels; 1741 struct iio_buffer *buffer; 1742 int ret, i, idx; 1743 size_t sz; 1744 1745 channels = indio_dev->channels; 1746 if (channels) { 1747 int ml = 0; 1748 1749 for (i = 0; i < indio_dev->num_channels; i++) 1750 ml = max(ml, channels[i].scan_index + 1); 1751 indio_dev->masklength = ml; 1752 } 1753 1754 if (!iio_dev_opaque->attached_buffers_cnt) 1755 return 0; 1756 1757 for (idx = 0; idx < iio_dev_opaque->attached_buffers_cnt; idx++) { 1758 buffer = iio_dev_opaque->attached_buffers[idx]; 1759 ret = __iio_buffer_alloc_sysfs_and_mask(buffer, indio_dev, idx); 1760 if (ret) 1761 goto error_unwind_sysfs_and_mask; 1762 } 1763 1764 sz = sizeof(*iio_dev_opaque->buffer_ioctl_handler); 1765 iio_dev_opaque->buffer_ioctl_handler = kzalloc(sz, GFP_KERNEL); 1766 if (!iio_dev_opaque->buffer_ioctl_handler) { 1767 ret = -ENOMEM; 1768 goto error_unwind_sysfs_and_mask; 1769 } 1770 1771 iio_dev_opaque->buffer_ioctl_handler->ioctl = iio_device_buffer_ioctl; 1772 iio_device_ioctl_handler_register(indio_dev, 1773 iio_dev_opaque->buffer_ioctl_handler); 1774 1775 return 0; 1776 1777 error_unwind_sysfs_and_mask: 1778 while (idx--) { 1779 buffer = iio_dev_opaque->attached_buffers[idx]; 1780 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, idx); 1781 } 1782 return ret; 1783 } 1784 1785 void iio_buffers_free_sysfs_and_mask(struct iio_dev *indio_dev) 1786 { 1787 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1788 struct iio_buffer *buffer; 1789 int i; 1790 1791 if (!iio_dev_opaque->attached_buffers_cnt) 1792 return; 1793 1794 iio_device_ioctl_handler_unregister(iio_dev_opaque->buffer_ioctl_handler); 1795 kfree(iio_dev_opaque->buffer_ioctl_handler); 1796 1797 for (i = iio_dev_opaque->attached_buffers_cnt - 1; i >= 0; i--) { 1798 buffer = iio_dev_opaque->attached_buffers[i]; 1799 __iio_buffer_free_sysfs_and_mask(buffer, indio_dev, i); 1800 } 1801 } 1802 1803 /** 1804 * iio_validate_scan_mask_onehot() - Validates that exactly one channel is selected 1805 * @indio_dev: the iio device 1806 * @mask: scan mask to be checked 1807 * 1808 * Return true if exactly one bit is set in the scan mask, false otherwise. It 1809 * can be used for devices where only one channel can be active for sampling at 1810 * a time. 1811 */ 1812 bool iio_validate_scan_mask_onehot(struct iio_dev *indio_dev, 1813 const unsigned long *mask) 1814 { 1815 return bitmap_weight(mask, indio_dev->masklength) == 1; 1816 } 1817 EXPORT_SYMBOL_GPL(iio_validate_scan_mask_onehot); 1818 1819 static const void *iio_demux(struct iio_buffer *buffer, 1820 const void *datain) 1821 { 1822 struct iio_demux_table *t; 1823 1824 if (list_empty(&buffer->demux_list)) 1825 return datain; 1826 list_for_each_entry(t, &buffer->demux_list, l) 1827 memcpy(buffer->demux_bounce + t->to, 1828 datain + t->from, t->length); 1829 1830 return buffer->demux_bounce; 1831 } 1832 1833 static int iio_push_to_buffer(struct iio_buffer *buffer, const void *data) 1834 { 1835 const void *dataout = iio_demux(buffer, data); 1836 int ret; 1837 1838 ret = buffer->access->store_to(buffer, dataout); 1839 if (ret) 1840 return ret; 1841 1842 /* 1843 * We can't just test for watermark to decide if we wake the poll queue 1844 * because read may request less samples than the watermark. 1845 */ 1846 wake_up_interruptible_poll(&buffer->pollq, EPOLLIN | EPOLLRDNORM); 1847 return 0; 1848 } 1849 1850 /** 1851 * iio_push_to_buffers() - push to a registered buffer. 1852 * @indio_dev: iio_dev structure for device. 1853 * @data: Full scan. 1854 */ 1855 int iio_push_to_buffers(struct iio_dev *indio_dev, const void *data) 1856 { 1857 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1858 int ret; 1859 struct iio_buffer *buf; 1860 1861 list_for_each_entry(buf, &iio_dev_opaque->buffer_list, buffer_list) { 1862 ret = iio_push_to_buffer(buf, data); 1863 if (ret < 0) 1864 return ret; 1865 } 1866 1867 return 0; 1868 } 1869 EXPORT_SYMBOL_GPL(iio_push_to_buffers); 1870 1871 /** 1872 * iio_push_to_buffers_with_ts_unaligned() - push to registered buffer, 1873 * no alignment or space requirements. 1874 * @indio_dev: iio_dev structure for device. 1875 * @data: channel data excluding the timestamp. 1876 * @data_sz: size of data. 1877 * @timestamp: timestamp for the sample data. 1878 * 1879 * This special variant of iio_push_to_buffers_with_timestamp() does 1880 * not require space for the timestamp, or 8 byte alignment of data. 1881 * It does however require an allocation on first call and additional 1882 * copies on all calls, so should be avoided if possible. 1883 */ 1884 int iio_push_to_buffers_with_ts_unaligned(struct iio_dev *indio_dev, 1885 const void *data, 1886 size_t data_sz, 1887 int64_t timestamp) 1888 { 1889 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1890 1891 /* 1892 * Conservative estimate - we can always safely copy the minimum 1893 * of either the data provided or the length of the destination buffer. 1894 * This relaxed limit allows the calling drivers to be lax about 1895 * tracking the size of the data they are pushing, at the cost of 1896 * unnecessary copying of padding. 1897 */ 1898 data_sz = min_t(size_t, indio_dev->scan_bytes, data_sz); 1899 if (iio_dev_opaque->bounce_buffer_size != indio_dev->scan_bytes) { 1900 void *bb; 1901 1902 bb = devm_krealloc(&indio_dev->dev, 1903 iio_dev_opaque->bounce_buffer, 1904 indio_dev->scan_bytes, GFP_KERNEL); 1905 if (!bb) 1906 return -ENOMEM; 1907 iio_dev_opaque->bounce_buffer = bb; 1908 iio_dev_opaque->bounce_buffer_size = indio_dev->scan_bytes; 1909 } 1910 memcpy(iio_dev_opaque->bounce_buffer, data, data_sz); 1911 return iio_push_to_buffers_with_timestamp(indio_dev, 1912 iio_dev_opaque->bounce_buffer, 1913 timestamp); 1914 } 1915 EXPORT_SYMBOL_GPL(iio_push_to_buffers_with_ts_unaligned); 1916 1917 /** 1918 * iio_buffer_release() - Free a buffer's resources 1919 * @ref: Pointer to the kref embedded in the iio_buffer struct 1920 * 1921 * This function is called when the last reference to the buffer has been 1922 * dropped. It will typically free all resources allocated by the buffer. Do not 1923 * call this function manually, always use iio_buffer_put() when done using a 1924 * buffer. 1925 */ 1926 static void iio_buffer_release(struct kref *ref) 1927 { 1928 struct iio_buffer *buffer = container_of(ref, struct iio_buffer, ref); 1929 1930 buffer->access->release(buffer); 1931 } 1932 1933 /** 1934 * iio_buffer_get() - Grab a reference to the buffer 1935 * @buffer: The buffer to grab a reference for, may be NULL 1936 * 1937 * Returns the pointer to the buffer that was passed into the function. 1938 */ 1939 struct iio_buffer *iio_buffer_get(struct iio_buffer *buffer) 1940 { 1941 if (buffer) 1942 kref_get(&buffer->ref); 1943 1944 return buffer; 1945 } 1946 EXPORT_SYMBOL_GPL(iio_buffer_get); 1947 1948 /** 1949 * iio_buffer_put() - Release the reference to the buffer 1950 * @buffer: The buffer to release the reference for, may be NULL 1951 */ 1952 void iio_buffer_put(struct iio_buffer *buffer) 1953 { 1954 if (buffer) 1955 kref_put(&buffer->ref, iio_buffer_release); 1956 } 1957 EXPORT_SYMBOL_GPL(iio_buffer_put); 1958 1959 /** 1960 * iio_device_attach_buffer - Attach a buffer to a IIO device 1961 * @indio_dev: The device the buffer should be attached to 1962 * @buffer: The buffer to attach to the device 1963 * 1964 * Return 0 if successful, negative if error. 1965 * 1966 * This function attaches a buffer to a IIO device. The buffer stays attached to 1967 * the device until the device is freed. For legacy reasons, the first attached 1968 * buffer will also be assigned to 'indio_dev->buffer'. 1969 * The array allocated here, will be free'd via the iio_device_detach_buffers() 1970 * call which is handled by the iio_device_free(). 1971 */ 1972 int iio_device_attach_buffer(struct iio_dev *indio_dev, 1973 struct iio_buffer *buffer) 1974 { 1975 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev); 1976 struct iio_buffer **new, **old = iio_dev_opaque->attached_buffers; 1977 unsigned int cnt = iio_dev_opaque->attached_buffers_cnt; 1978 1979 cnt++; 1980 1981 new = krealloc(old, sizeof(*new) * cnt, GFP_KERNEL); 1982 if (!new) 1983 return -ENOMEM; 1984 iio_dev_opaque->attached_buffers = new; 1985 1986 buffer = iio_buffer_get(buffer); 1987 1988 /* first buffer is legacy; attach it to the IIO device directly */ 1989 if (!indio_dev->buffer) 1990 indio_dev->buffer = buffer; 1991 1992 iio_dev_opaque->attached_buffers[cnt - 1] = buffer; 1993 iio_dev_opaque->attached_buffers_cnt = cnt; 1994 1995 return 0; 1996 } 1997 EXPORT_SYMBOL_GPL(iio_device_attach_buffer); 1998