xref: /linux/drivers/iio/imu/st_lsm6dsx/st_lsm6dsx_buffer.c (revision 47b60ec7ba22a6359379bce9643bfff7a1ffe9ed)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * STMicroelectronics st_lsm6dsx FIFO buffer library driver
4  *
5  * LSM6DS3/LSM6DS3H/LSM6DSL/LSM6DSM/ISM330DLC/LSM6DS3TR-C:
6  * The FIFO buffer can be configured to store data from gyroscope and
7  * accelerometer. Samples are queued without any tag according to a
8  * specific pattern based on 'FIFO data sets' (6 bytes each):
9  *  - 1st data set is reserved for gyroscope data
10  *  - 2nd data set is reserved for accelerometer data
11  * The FIFO pattern changes depending on the ODRs and decimation factors
12  * assigned to the FIFO data sets. The first sequence of data stored in FIFO
13  * buffer contains the data of all the enabled FIFO data sets
14  * (e.g. Gx, Gy, Gz, Ax, Ay, Az), then data are repeated depending on the
15  * value of the decimation factor and ODR set for each FIFO data set.
16  *
17  * LSM6DSO/LSM6DSOX/ASM330LHH/ASM330LHHX/LSM6DSR/LSM6DSRX/ISM330DHCX/
18  * LSM6DST/LSM6DSOP/LSM6DSTX/LSM6DSV/ASM330LHB:
19  * The FIFO buffer can be configured to store data from gyroscope and
20  * accelerometer. Each sample is queued with a tag (1B) indicating data
21  * source (gyroscope, accelerometer, hw timer).
22  *
23  * FIFO supported modes:
24  *  - BYPASS: FIFO disabled
25  *  - CONTINUOUS: FIFO enabled. When the buffer is full, the FIFO index
26  *    restarts from the beginning and the oldest sample is overwritten
27  *
28  * Copyright 2016 STMicroelectronics Inc.
29  *
30  * Lorenzo Bianconi <lorenzo.bianconi@st.com>
31  * Denis Ciocca <denis.ciocca@st.com>
32  */
33 #include <linux/module.h>
34 #include <linux/iio/kfifo_buf.h>
35 #include <linux/iio/iio.h>
36 #include <linux/iio/buffer.h>
37 #include <linux/regmap.h>
38 #include <linux/bitfield.h>
39 
40 #include <linux/platform_data/st_sensors_pdata.h>
41 
42 #include "st_lsm6dsx.h"
43 
44 #define ST_LSM6DSX_REG_FIFO_MODE_ADDR		0x0a
45 #define ST_LSM6DSX_FIFO_MODE_MASK		GENMASK(2, 0)
46 #define ST_LSM6DSX_FIFO_ODR_MASK		GENMASK(6, 3)
47 #define ST_LSM6DSX_FIFO_EMPTY_MASK		BIT(12)
48 #define ST_LSM6DSX_REG_FIFO_OUTL_ADDR		0x3e
49 #define ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR	0x78
50 #define ST_LSM6DSX_REG_TS_RESET_ADDR		0x42
51 
52 #define ST_LSM6DSX_MAX_FIFO_ODR_VAL		0x08
53 
54 #define ST_LSM6DSX_TS_RESET_VAL			0xaa
55 
56 struct st_lsm6dsx_decimator_entry {
57 	u8 decimator;
58 	u8 val;
59 };
60 
61 enum st_lsm6dsx_fifo_tag {
62 	ST_LSM6DSX_GYRO_TAG = 0x01,
63 	ST_LSM6DSX_ACC_TAG = 0x02,
64 	ST_LSM6DSX_TS_TAG = 0x04,
65 	ST_LSM6DSX_EXT0_TAG = 0x0f,
66 	ST_LSM6DSX_EXT1_TAG = 0x10,
67 	ST_LSM6DSX_EXT2_TAG = 0x11,
68 };
69 
70 static const
71 struct st_lsm6dsx_decimator_entry st_lsm6dsx_decimator_table[] = {
72 	{  0, 0x0 },
73 	{  1, 0x1 },
74 	{  2, 0x2 },
75 	{  3, 0x3 },
76 	{  4, 0x4 },
77 	{  8, 0x5 },
78 	{ 16, 0x6 },
79 	{ 32, 0x7 },
80 };
81 
82 static int
83 st_lsm6dsx_get_decimator_val(struct st_lsm6dsx_sensor *sensor, u32 max_odr)
84 {
85 	const int max_size = ARRAY_SIZE(st_lsm6dsx_decimator_table);
86 	u32 decimator =  max_odr / sensor->odr;
87 	int i;
88 
89 	if (decimator > 1)
90 		decimator = round_down(decimator, 2);
91 
92 	for (i = 0; i < max_size; i++) {
93 		if (st_lsm6dsx_decimator_table[i].decimator == decimator)
94 			break;
95 	}
96 
97 	sensor->decimator = decimator;
98 	return i == max_size ? 0 : st_lsm6dsx_decimator_table[i].val;
99 }
100 
101 static void st_lsm6dsx_get_max_min_odr(struct st_lsm6dsx_hw *hw,
102 				       u32 *max_odr, u32 *min_odr)
103 {
104 	struct st_lsm6dsx_sensor *sensor;
105 	int i;
106 
107 	*max_odr = 0, *min_odr = ~0;
108 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
109 		if (!hw->iio_devs[i])
110 			continue;
111 
112 		sensor = iio_priv(hw->iio_devs[i]);
113 
114 		if (!(hw->enable_mask & BIT(sensor->id)))
115 			continue;
116 
117 		*max_odr = max_t(u32, *max_odr, sensor->odr);
118 		*min_odr = min_t(u32, *min_odr, sensor->odr);
119 	}
120 }
121 
122 static u8 st_lsm6dsx_get_sip(struct st_lsm6dsx_sensor *sensor, u32 min_odr)
123 {
124 	u8 sip = sensor->odr / min_odr;
125 
126 	return sip > 1 ? round_down(sip, 2) : sip;
127 }
128 
129 static int st_lsm6dsx_update_decimators(struct st_lsm6dsx_hw *hw)
130 {
131 	const struct st_lsm6dsx_reg *ts_dec_reg;
132 	struct st_lsm6dsx_sensor *sensor;
133 	u16 sip = 0, ts_sip = 0;
134 	u32 max_odr, min_odr;
135 	int err = 0, i;
136 	u8 data;
137 
138 	st_lsm6dsx_get_max_min_odr(hw, &max_odr, &min_odr);
139 
140 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
141 		const struct st_lsm6dsx_reg *dec_reg;
142 
143 		if (!hw->iio_devs[i])
144 			continue;
145 
146 		sensor = iio_priv(hw->iio_devs[i]);
147 		/* update fifo decimators and sample in pattern */
148 		if (hw->enable_mask & BIT(sensor->id)) {
149 			sensor->sip = st_lsm6dsx_get_sip(sensor, min_odr);
150 			data = st_lsm6dsx_get_decimator_val(sensor, max_odr);
151 		} else {
152 			sensor->sip = 0;
153 			data = 0;
154 		}
155 		ts_sip = max_t(u16, ts_sip, sensor->sip);
156 
157 		dec_reg = &hw->settings->decimator[sensor->id];
158 		if (dec_reg->addr) {
159 			int val = ST_LSM6DSX_SHIFT_VAL(data, dec_reg->mask);
160 
161 			err = st_lsm6dsx_update_bits_locked(hw, dec_reg->addr,
162 							    dec_reg->mask,
163 							    val);
164 			if (err < 0)
165 				return err;
166 		}
167 		sip += sensor->sip;
168 	}
169 	hw->sip = sip + ts_sip;
170 	hw->ts_sip = ts_sip;
171 
172 	/*
173 	 * update hw ts decimator if necessary. Decimator for hw timestamp
174 	 * is always 1 or 0 in order to have a ts sample for each data
175 	 * sample in FIFO
176 	 */
177 	ts_dec_reg = &hw->settings->ts_settings.decimator;
178 	if (ts_dec_reg->addr) {
179 		int val, ts_dec = !!hw->ts_sip;
180 
181 		val = ST_LSM6DSX_SHIFT_VAL(ts_dec, ts_dec_reg->mask);
182 		err = st_lsm6dsx_update_bits_locked(hw, ts_dec_reg->addr,
183 						    ts_dec_reg->mask, val);
184 	}
185 	return err;
186 }
187 
188 static int st_lsm6dsx_set_fifo_mode(struct st_lsm6dsx_hw *hw,
189 				    enum st_lsm6dsx_fifo_mode fifo_mode)
190 {
191 	unsigned int data;
192 
193 	data = FIELD_PREP(ST_LSM6DSX_FIFO_MODE_MASK, fifo_mode);
194 	return st_lsm6dsx_update_bits_locked(hw, ST_LSM6DSX_REG_FIFO_MODE_ADDR,
195 					     ST_LSM6DSX_FIFO_MODE_MASK, data);
196 }
197 
198 static int st_lsm6dsx_set_fifo_odr(struct st_lsm6dsx_sensor *sensor,
199 				   bool enable)
200 {
201 	struct st_lsm6dsx_hw *hw = sensor->hw;
202 	const struct st_lsm6dsx_reg *batch_reg;
203 	u8 data;
204 
205 	batch_reg = &hw->settings->batch[sensor->id];
206 	if (batch_reg->addr) {
207 		int val;
208 
209 		if (enable) {
210 			int err;
211 
212 			err = st_lsm6dsx_check_odr(sensor, sensor->odr,
213 						   &data);
214 			if (err < 0)
215 				return err;
216 		} else {
217 			data = 0;
218 		}
219 		val = ST_LSM6DSX_SHIFT_VAL(data, batch_reg->mask);
220 		return st_lsm6dsx_update_bits_locked(hw, batch_reg->addr,
221 						     batch_reg->mask, val);
222 	} else {
223 		data = hw->enable_mask ? ST_LSM6DSX_MAX_FIFO_ODR_VAL : 0;
224 		return st_lsm6dsx_update_bits_locked(hw,
225 					ST_LSM6DSX_REG_FIFO_MODE_ADDR,
226 					ST_LSM6DSX_FIFO_ODR_MASK,
227 					FIELD_PREP(ST_LSM6DSX_FIFO_ODR_MASK,
228 						   data));
229 	}
230 }
231 
232 int st_lsm6dsx_update_watermark(struct st_lsm6dsx_sensor *sensor, u16 watermark)
233 {
234 	u16 fifo_watermark = ~0, cur_watermark, fifo_th_mask;
235 	struct st_lsm6dsx_hw *hw = sensor->hw;
236 	struct st_lsm6dsx_sensor *cur_sensor;
237 	int i, err, data;
238 	__le16 wdata;
239 
240 	if (!hw->sip)
241 		return 0;
242 
243 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
244 		if (!hw->iio_devs[i])
245 			continue;
246 
247 		cur_sensor = iio_priv(hw->iio_devs[i]);
248 
249 		if (!(hw->enable_mask & BIT(cur_sensor->id)))
250 			continue;
251 
252 		cur_watermark = (cur_sensor == sensor) ? watermark
253 						       : cur_sensor->watermark;
254 
255 		fifo_watermark = min_t(u16, fifo_watermark, cur_watermark);
256 	}
257 
258 	fifo_watermark = max_t(u16, fifo_watermark, hw->sip);
259 	fifo_watermark = (fifo_watermark / hw->sip) * hw->sip;
260 	fifo_watermark = fifo_watermark * hw->settings->fifo_ops.th_wl;
261 
262 	mutex_lock(&hw->page_lock);
263 	err = regmap_read(hw->regmap, hw->settings->fifo_ops.fifo_th.addr + 1,
264 			  &data);
265 	if (err < 0)
266 		goto out;
267 
268 	fifo_th_mask = hw->settings->fifo_ops.fifo_th.mask;
269 	fifo_watermark = ((data << 8) & ~fifo_th_mask) |
270 			 (fifo_watermark & fifo_th_mask);
271 
272 	wdata = cpu_to_le16(fifo_watermark);
273 	err = regmap_bulk_write(hw->regmap,
274 				hw->settings->fifo_ops.fifo_th.addr,
275 				&wdata, sizeof(wdata));
276 out:
277 	mutex_unlock(&hw->page_lock);
278 	return err;
279 }
280 
281 static int st_lsm6dsx_reset_hw_ts(struct st_lsm6dsx_hw *hw)
282 {
283 	struct st_lsm6dsx_sensor *sensor;
284 	int i, err;
285 
286 	/* reset hw ts counter */
287 	err = st_lsm6dsx_write_locked(hw, ST_LSM6DSX_REG_TS_RESET_ADDR,
288 				      ST_LSM6DSX_TS_RESET_VAL);
289 	if (err < 0)
290 		return err;
291 
292 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
293 		if (!hw->iio_devs[i])
294 			continue;
295 
296 		sensor = iio_priv(hw->iio_devs[i]);
297 		/*
298 		 * store enable buffer timestamp as reference for
299 		 * hw timestamp
300 		 */
301 		sensor->ts_ref = iio_get_time_ns(hw->iio_devs[i]);
302 	}
303 	return 0;
304 }
305 
306 int st_lsm6dsx_resume_fifo(struct st_lsm6dsx_hw *hw)
307 {
308 	int err;
309 
310 	/* reset hw ts counter */
311 	err = st_lsm6dsx_reset_hw_ts(hw);
312 	if (err < 0)
313 		return err;
314 
315 	return st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_CONT);
316 }
317 
318 /*
319  * Set max bulk read to ST_LSM6DSX_MAX_WORD_LEN/ST_LSM6DSX_MAX_TAGGED_WORD_LEN
320  * in order to avoid a kmalloc for each bus access
321  */
322 static inline int st_lsm6dsx_read_block(struct st_lsm6dsx_hw *hw, u8 addr,
323 					u8 *data, unsigned int data_len,
324 					unsigned int max_word_len)
325 {
326 	unsigned int word_len, read_len = 0;
327 	int err;
328 
329 	while (read_len < data_len) {
330 		word_len = min_t(unsigned int, data_len - read_len,
331 				 max_word_len);
332 		err = st_lsm6dsx_read_locked(hw, addr, data + read_len,
333 					     word_len);
334 		if (err < 0)
335 			return err;
336 		read_len += word_len;
337 	}
338 	return 0;
339 }
340 
341 #define ST_LSM6DSX_IIO_BUFF_SIZE	(ALIGN(ST_LSM6DSX_SAMPLE_SIZE, \
342 					       sizeof(s64)) + sizeof(s64))
343 /**
344  * st_lsm6dsx_read_fifo() - hw FIFO read routine
345  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
346  *
347  * Read samples from the hw FIFO and push them to IIO buffers.
348  *
349  * Return: Number of bytes read from the FIFO
350  */
351 int st_lsm6dsx_read_fifo(struct st_lsm6dsx_hw *hw)
352 {
353 	struct st_lsm6dsx_sensor *acc_sensor, *gyro_sensor, *ext_sensor = NULL;
354 	int err, sip, acc_sip, gyro_sip, ts_sip, ext_sip, read_len, offset;
355 	u16 fifo_len, pattern_len = hw->sip * ST_LSM6DSX_SAMPLE_SIZE;
356 	u16 fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
357 	bool reset_ts = false;
358 	__le16 fifo_status;
359 	s64 ts = 0;
360 
361 	err = st_lsm6dsx_read_locked(hw,
362 				     hw->settings->fifo_ops.fifo_diff.addr,
363 				     &fifo_status, sizeof(fifo_status));
364 	if (err < 0) {
365 		dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
366 			err);
367 		return err;
368 	}
369 
370 	if (fifo_status & cpu_to_le16(ST_LSM6DSX_FIFO_EMPTY_MASK))
371 		return 0;
372 
373 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
374 		   ST_LSM6DSX_CHAN_SIZE;
375 	fifo_len = (fifo_len / pattern_len) * pattern_len;
376 
377 	acc_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_ACC]);
378 	gyro_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_GYRO]);
379 	if (hw->iio_devs[ST_LSM6DSX_ID_EXT0])
380 		ext_sensor = iio_priv(hw->iio_devs[ST_LSM6DSX_ID_EXT0]);
381 
382 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
383 		err = st_lsm6dsx_read_block(hw, ST_LSM6DSX_REG_FIFO_OUTL_ADDR,
384 					    hw->buff, pattern_len,
385 					    ST_LSM6DSX_MAX_WORD_LEN);
386 		if (err < 0) {
387 			dev_err(hw->dev,
388 				"failed to read pattern from fifo (err=%d)\n",
389 				err);
390 			return err;
391 		}
392 
393 		/*
394 		 * Data are written to the FIFO with a specific pattern
395 		 * depending on the configured ODRs. The first sequence of data
396 		 * stored in FIFO contains the data of all enabled sensors
397 		 * (e.g. Gx, Gy, Gz, Ax, Ay, Az, Ts), then data are repeated
398 		 * depending on the value of the decimation factor set for each
399 		 * sensor.
400 		 *
401 		 * Supposing the FIFO is storing data from gyroscope and
402 		 * accelerometer at different ODRs:
403 		 *   - gyroscope ODR = 208Hz, accelerometer ODR = 104Hz
404 		 * Since the gyroscope ODR is twice the accelerometer one, the
405 		 * following pattern is repeated every 9 samples:
406 		 *   - Gx, Gy, Gz, Ax, Ay, Az, Ts, Gx, Gy, Gz, Ts, Gx, ..
407 		 */
408 		ext_sip = ext_sensor ? ext_sensor->sip : 0;
409 		gyro_sip = gyro_sensor->sip;
410 		acc_sip = acc_sensor->sip;
411 		ts_sip = hw->ts_sip;
412 		offset = 0;
413 		sip = 0;
414 
415 		while (acc_sip > 0 || gyro_sip > 0 || ext_sip > 0) {
416 			if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
417 				memcpy(hw->scan[ST_LSM6DSX_ID_GYRO].channels,
418 				       &hw->buff[offset],
419 				       sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels));
420 				offset += sizeof(hw->scan[ST_LSM6DSX_ID_GYRO].channels);
421 			}
422 			if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
423 				memcpy(hw->scan[ST_LSM6DSX_ID_ACC].channels,
424 				       &hw->buff[offset],
425 				       sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels));
426 				offset += sizeof(hw->scan[ST_LSM6DSX_ID_ACC].channels);
427 			}
428 			if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
429 				memcpy(hw->scan[ST_LSM6DSX_ID_EXT0].channels,
430 				       &hw->buff[offset],
431 				       sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels));
432 				offset += sizeof(hw->scan[ST_LSM6DSX_ID_EXT0].channels);
433 			}
434 
435 			if (ts_sip-- > 0) {
436 				u8 data[ST_LSM6DSX_SAMPLE_SIZE];
437 
438 				memcpy(data, &hw->buff[offset], sizeof(data));
439 				/*
440 				 * hw timestamp is 3B long and it is stored
441 				 * in FIFO using 6B as 4th FIFO data set
442 				 * according to this schema:
443 				 * B0 = ts[15:8], B1 = ts[23:16], B3 = ts[7:0]
444 				 */
445 				ts = data[1] << 16 | data[0] << 8 | data[3];
446 				/*
447 				 * check if hw timestamp engine is going to
448 				 * reset (the sensor generates an interrupt
449 				 * to signal the hw timestamp will reset in
450 				 * 1.638s)
451 				 */
452 				if (!reset_ts && ts >= 0xff0000)
453 					reset_ts = true;
454 				ts *= hw->ts_gain;
455 
456 				offset += ST_LSM6DSX_SAMPLE_SIZE;
457 			}
458 
459 			if (gyro_sip > 0 && !(sip % gyro_sensor->decimator)) {
460 				/*
461 				 * We need to discards gyro samples during
462 				 * filters settling time
463 				 */
464 				if (gyro_sensor->samples_to_discard > 0)
465 					gyro_sensor->samples_to_discard--;
466 				else
467 					iio_push_to_buffers_with_timestamp(
468 						hw->iio_devs[ST_LSM6DSX_ID_GYRO],
469 						&hw->scan[ST_LSM6DSX_ID_GYRO],
470 						gyro_sensor->ts_ref + ts);
471 				gyro_sip--;
472 			}
473 			if (acc_sip > 0 && !(sip % acc_sensor->decimator)) {
474 				/*
475 				 * We need to discards accel samples during
476 				 * filters settling time
477 				 */
478 				if (acc_sensor->samples_to_discard > 0)
479 					acc_sensor->samples_to_discard--;
480 				else
481 					iio_push_to_buffers_with_timestamp(
482 						hw->iio_devs[ST_LSM6DSX_ID_ACC],
483 						&hw->scan[ST_LSM6DSX_ID_ACC],
484 						acc_sensor->ts_ref + ts);
485 				acc_sip--;
486 			}
487 			if (ext_sip > 0 && !(sip % ext_sensor->decimator)) {
488 				iio_push_to_buffers_with_timestamp(
489 					hw->iio_devs[ST_LSM6DSX_ID_EXT0],
490 					&hw->scan[ST_LSM6DSX_ID_EXT0],
491 					ext_sensor->ts_ref + ts);
492 				ext_sip--;
493 			}
494 			sip++;
495 		}
496 	}
497 
498 	if (unlikely(reset_ts)) {
499 		err = st_lsm6dsx_reset_hw_ts(hw);
500 		if (err < 0) {
501 			dev_err(hw->dev, "failed to reset hw ts (err=%d)\n",
502 				err);
503 			return err;
504 		}
505 	}
506 	return read_len;
507 }
508 
509 #define ST_LSM6DSX_INVALID_SAMPLE	0x7ffd
510 static int
511 st_lsm6dsx_push_tagged_data(struct st_lsm6dsx_hw *hw, u8 tag,
512 			    u8 *data, s64 ts)
513 {
514 	s16 val = le16_to_cpu(*(__le16 *)data);
515 	struct st_lsm6dsx_sensor *sensor;
516 	struct iio_dev *iio_dev;
517 
518 	/* invalid sample during bootstrap phase */
519 	if (val >= ST_LSM6DSX_INVALID_SAMPLE)
520 		return -EINVAL;
521 
522 	/*
523 	 * EXT_TAG are managed in FIFO fashion so ST_LSM6DSX_EXT0_TAG
524 	 * corresponds to the first enabled channel, ST_LSM6DSX_EXT1_TAG
525 	 * to the second one and ST_LSM6DSX_EXT2_TAG to the last enabled
526 	 * channel
527 	 */
528 	switch (tag) {
529 	case ST_LSM6DSX_GYRO_TAG:
530 		iio_dev = hw->iio_devs[ST_LSM6DSX_ID_GYRO];
531 		break;
532 	case ST_LSM6DSX_ACC_TAG:
533 		iio_dev = hw->iio_devs[ST_LSM6DSX_ID_ACC];
534 		break;
535 	case ST_LSM6DSX_EXT0_TAG:
536 		if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0))
537 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT0];
538 		else if (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1))
539 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
540 		else
541 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
542 		break;
543 	case ST_LSM6DSX_EXT1_TAG:
544 		if ((hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT0)) &&
545 		    (hw->enable_mask & BIT(ST_LSM6DSX_ID_EXT1)))
546 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT1];
547 		else
548 			iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
549 		break;
550 	case ST_LSM6DSX_EXT2_TAG:
551 		iio_dev = hw->iio_devs[ST_LSM6DSX_ID_EXT2];
552 		break;
553 	default:
554 		return -EINVAL;
555 	}
556 
557 	sensor = iio_priv(iio_dev);
558 	iio_push_to_buffers_with_timestamp(iio_dev, data,
559 					   ts + sensor->ts_ref);
560 
561 	return 0;
562 }
563 
564 /**
565  * st_lsm6dsx_read_tagged_fifo() - tagged hw FIFO read routine
566  * @hw: Pointer to instance of struct st_lsm6dsx_hw.
567  *
568  * Read samples from the hw FIFO and push them to IIO buffers.
569  *
570  * Return: Number of bytes read from the FIFO
571  */
572 int st_lsm6dsx_read_tagged_fifo(struct st_lsm6dsx_hw *hw)
573 {
574 	u16 pattern_len = hw->sip * ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
575 	u16 fifo_len, fifo_diff_mask;
576 	/*
577 	 * Alignment needed as this can ultimately be passed to a
578 	 * call to iio_push_to_buffers_with_timestamp() which
579 	 * must be passed a buffer that is aligned to 8 bytes so
580 	 * as to allow insertion of a naturally aligned timestamp.
581 	 */
582 	u8 iio_buff[ST_LSM6DSX_IIO_BUFF_SIZE] __aligned(8);
583 	u8 tag;
584 	bool reset_ts = false;
585 	int i, err, read_len;
586 	__le16 fifo_status;
587 	s64 ts = 0;
588 
589 	err = st_lsm6dsx_read_locked(hw,
590 				     hw->settings->fifo_ops.fifo_diff.addr,
591 				     &fifo_status, sizeof(fifo_status));
592 	if (err < 0) {
593 		dev_err(hw->dev, "failed to read fifo status (err=%d)\n",
594 			err);
595 		return err;
596 	}
597 
598 	fifo_diff_mask = hw->settings->fifo_ops.fifo_diff.mask;
599 	fifo_len = (le16_to_cpu(fifo_status) & fifo_diff_mask) *
600 		   ST_LSM6DSX_TAGGED_SAMPLE_SIZE;
601 	if (!fifo_len)
602 		return 0;
603 
604 	for (read_len = 0; read_len < fifo_len; read_len += pattern_len) {
605 		err = st_lsm6dsx_read_block(hw,
606 					    ST_LSM6DSX_REG_FIFO_OUT_TAG_ADDR,
607 					    hw->buff, pattern_len,
608 					    ST_LSM6DSX_MAX_TAGGED_WORD_LEN);
609 		if (err < 0) {
610 			dev_err(hw->dev,
611 				"failed to read pattern from fifo (err=%d)\n",
612 				err);
613 			return err;
614 		}
615 
616 		for (i = 0; i < pattern_len;
617 		     i += ST_LSM6DSX_TAGGED_SAMPLE_SIZE) {
618 			memcpy(iio_buff, &hw->buff[i + ST_LSM6DSX_TAG_SIZE],
619 			       ST_LSM6DSX_SAMPLE_SIZE);
620 
621 			tag = hw->buff[i] >> 3;
622 			if (tag == ST_LSM6DSX_TS_TAG) {
623 				/*
624 				 * hw timestamp is 4B long and it is stored
625 				 * in FIFO according to this schema:
626 				 * B0 = ts[7:0], B1 = ts[15:8], B2 = ts[23:16],
627 				 * B3 = ts[31:24]
628 				 */
629 				ts = le32_to_cpu(*((__le32 *)iio_buff));
630 				/*
631 				 * check if hw timestamp engine is going to
632 				 * reset (the sensor generates an interrupt
633 				 * to signal the hw timestamp will reset in
634 				 * 1.638s)
635 				 */
636 				if (!reset_ts && ts >= 0xffff0000)
637 					reset_ts = true;
638 				ts *= hw->ts_gain;
639 			} else {
640 				st_lsm6dsx_push_tagged_data(hw, tag, iio_buff,
641 							    ts);
642 			}
643 		}
644 	}
645 
646 	if (unlikely(reset_ts)) {
647 		err = st_lsm6dsx_reset_hw_ts(hw);
648 		if (err < 0)
649 			return err;
650 	}
651 	return read_len;
652 }
653 
654 int st_lsm6dsx_flush_fifo(struct st_lsm6dsx_hw *hw)
655 {
656 	int err;
657 
658 	if (!hw->settings->fifo_ops.read_fifo)
659 		return -ENOTSUPP;
660 
661 	mutex_lock(&hw->fifo_lock);
662 
663 	hw->settings->fifo_ops.read_fifo(hw);
664 	err = st_lsm6dsx_set_fifo_mode(hw, ST_LSM6DSX_FIFO_BYPASS);
665 
666 	mutex_unlock(&hw->fifo_lock);
667 
668 	return err;
669 }
670 
671 static void
672 st_lsm6dsx_update_samples_to_discard(struct st_lsm6dsx_sensor *sensor)
673 {
674 	const struct st_lsm6dsx_samples_to_discard *data;
675 	struct st_lsm6dsx_hw *hw = sensor->hw;
676 	int i;
677 
678 	if (sensor->id != ST_LSM6DSX_ID_GYRO &&
679 	    sensor->id != ST_LSM6DSX_ID_ACC)
680 		return;
681 
682 	/* check if drdy mask is supported in hw */
683 	if (hw->settings->drdy_mask.addr)
684 		return;
685 
686 	data = &hw->settings->samples_to_discard[sensor->id];
687 	for (i = 0; i < ST_LSM6DSX_ODR_LIST_SIZE; i++) {
688 		if (data->val[i].milli_hz == sensor->odr) {
689 			sensor->samples_to_discard = data->val[i].samples;
690 			return;
691 		}
692 	}
693 }
694 
695 int st_lsm6dsx_update_fifo(struct st_lsm6dsx_sensor *sensor, bool enable)
696 {
697 	struct st_lsm6dsx_hw *hw = sensor->hw;
698 	u8 fifo_mask;
699 	int err;
700 
701 	mutex_lock(&hw->conf_lock);
702 
703 	if (enable)
704 		fifo_mask = hw->fifo_mask | BIT(sensor->id);
705 	else
706 		fifo_mask = hw->fifo_mask & ~BIT(sensor->id);
707 
708 	if (hw->fifo_mask) {
709 		err = st_lsm6dsx_flush_fifo(hw);
710 		if (err < 0)
711 			goto out;
712 	}
713 
714 	if (enable)
715 		st_lsm6dsx_update_samples_to_discard(sensor);
716 
717 	err = st_lsm6dsx_device_set_enable(sensor, enable);
718 	if (err < 0)
719 		goto out;
720 
721 	err = st_lsm6dsx_set_fifo_odr(sensor, enable);
722 	if (err < 0)
723 		goto out;
724 
725 	err = st_lsm6dsx_update_decimators(hw);
726 	if (err < 0)
727 		goto out;
728 
729 	err = st_lsm6dsx_update_watermark(sensor, sensor->watermark);
730 	if (err < 0)
731 		goto out;
732 
733 	if (fifo_mask) {
734 		err = st_lsm6dsx_resume_fifo(hw);
735 		if (err < 0)
736 			goto out;
737 	}
738 
739 	hw->fifo_mask = fifo_mask;
740 
741 out:
742 	mutex_unlock(&hw->conf_lock);
743 
744 	return err;
745 }
746 
747 static int st_lsm6dsx_buffer_preenable(struct iio_dev *iio_dev)
748 {
749 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
750 	struct st_lsm6dsx_hw *hw = sensor->hw;
751 
752 	if (!hw->settings->fifo_ops.update_fifo)
753 		return -ENOTSUPP;
754 
755 	return hw->settings->fifo_ops.update_fifo(sensor, true);
756 }
757 
758 static int st_lsm6dsx_buffer_postdisable(struct iio_dev *iio_dev)
759 {
760 	struct st_lsm6dsx_sensor *sensor = iio_priv(iio_dev);
761 	struct st_lsm6dsx_hw *hw = sensor->hw;
762 
763 	if (!hw->settings->fifo_ops.update_fifo)
764 		return -ENOTSUPP;
765 
766 	return hw->settings->fifo_ops.update_fifo(sensor, false);
767 }
768 
769 static const struct iio_buffer_setup_ops st_lsm6dsx_buffer_ops = {
770 	.preenable = st_lsm6dsx_buffer_preenable,
771 	.postdisable = st_lsm6dsx_buffer_postdisable,
772 };
773 
774 int st_lsm6dsx_fifo_setup(struct st_lsm6dsx_hw *hw)
775 {
776 	int i, ret;
777 
778 	for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
779 		if (!hw->iio_devs[i])
780 			continue;
781 
782 		ret = devm_iio_kfifo_buffer_setup(hw->dev, hw->iio_devs[i],
783 						  &st_lsm6dsx_buffer_ops);
784 		if (ret)
785 			return ret;
786 	}
787 
788 	return 0;
789 }
790