xref: /linux/drivers/iio/imu/smi240.c (revision 9facce84f4062f782ebde18daa7006a23d40b607)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0
2 /*
3  * Copyright (c) 2024 Robert Bosch GmbH.
4  */
5 #include <linux/bitfield.h>
6 #include <linux/bits.h>
7 #include <linux/delay.h>
8 #include <linux/device.h>
9 #include <linux/module.h>
10 #include <linux/regmap.h>
11 #include <linux/spi/spi.h>
12 #include <linux/unaligned.h>
13 #include <linux/units.h>
14 
15 #include <linux/iio/buffer.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 
21 #define SMI240_CHIP_ID 0x0024
22 
23 #define SMI240_SOFT_CONFIG_EOC_MASK BIT(0)
24 #define SMI240_SOFT_CONFIG_GYR_BW_MASK BIT(1)
25 #define SMI240_SOFT_CONFIG_ACC_BW_MASK BIT(2)
26 #define SMI240_SOFT_CONFIG_BITE_AUTO_MASK BIT(3)
27 #define SMI240_SOFT_CONFIG_BITE_REP_MASK GENMASK(6, 4)
28 
29 #define SMI240_CHIP_ID_REG 0x00
30 #define SMI240_SOFT_CONFIG_REG 0x0A
31 #define SMI240_TEMP_CUR_REG 0x10
32 #define SMI240_ACCEL_X_CUR_REG 0x11
33 #define SMI240_GYRO_X_CUR_REG 0x14
34 #define SMI240_DATA_CAP_FIRST_REG 0x17
35 #define SMI240_CMD_REG 0x2F
36 
37 #define SMI240_SOFT_RESET_CMD 0xB6
38 
39 #define SMI240_BITE_SEQUENCE_DELAY_US 140000
40 #define SMI240_FILTER_FLUSH_DELAY_US 60000
41 #define SMI240_DIGITAL_STARTUP_DELAY_US 120000
42 #define SMI240_MECH_STARTUP_DELAY_US 100000
43 
44 #define SMI240_BUS_ID 0x00
45 #define SMI240_CRC_INIT 0x05
46 #define SMI240_CRC_POLY 0x0B
47 #define SMI240_CRC_MASK GENMASK(2, 0)
48 
49 #define SMI240_READ_SD_BIT_MASK BIT(31)
50 #define SMI240_READ_DATA_MASK GENMASK(19, 4)
51 #define SMI240_READ_CS_BIT_MASK BIT(3)
52 
53 #define SMI240_WRITE_BUS_ID_MASK GENMASK(31, 30)
54 #define SMI240_WRITE_ADDR_MASK GENMASK(29, 22)
55 #define SMI240_WRITE_BIT_MASK BIT(21)
56 #define SMI240_WRITE_CAP_BIT_MASK BIT(20)
57 #define SMI240_WRITE_DATA_MASK GENMASK(18, 3)
58 
59 /* T°C = (temp / 256) + 25 */
60 #define SMI240_TEMP_OFFSET 6400   /* 25 * 256 */
61 #define SMI240_TEMP_SCALE 3906250 /* (1 / 256) * 1e9 */
62 
63 #define SMI240_ACCEL_SCALE 500  /* (1 / 2000) * 1e6 */
64 #define SMI240_GYRO_SCALE 10000 /* (1 /  100) * 1e6 */
65 
66 #define SMI240_LOW_BANDWIDTH_HZ 50
67 #define SMI240_HIGH_BANDWIDTH_HZ 400
68 
69 #define SMI240_BUILT_IN_SELF_TEST_COUNT 3
70 
71 #define SMI240_DATA_CHANNEL(_type, _axis, _index) {			\
72 	.type = _type,							\
73 	.modified = 1,							\
74 	.channel2 = IIO_MOD_##_axis,					\
75 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
76 	.info_mask_shared_by_type =					\
77 		BIT(IIO_CHAN_INFO_SCALE) |				\
78 		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),	\
79 	.info_mask_shared_by_type_available =				\
80 		BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY),	\
81 	.scan_index = _index,						\
82 	.scan_type = {							\
83 		.sign = 's',						\
84 		.realbits = 16,						\
85 		.storagebits = 16,					\
86 		.endianness = IIO_CPU,					\
87 	},								\
88 }
89 
90 #define SMI240_TEMP_CHANNEL(_index) {			\
91 	.type = IIO_TEMP,				\
92 	.modified = 1,					\
93 	.channel2 = IIO_MOD_TEMP_OBJECT,		\
94 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |	\
95 		BIT(IIO_CHAN_INFO_OFFSET) |		\
96 		BIT(IIO_CHAN_INFO_SCALE),		\
97 	.scan_index = _index,				\
98 	.scan_type = {					\
99 		.sign = 's',				\
100 		.realbits = 16,				\
101 		.storagebits = 16,			\
102 		.endianness = IIO_CPU,			\
103 	},						\
104 }
105 
106 enum capture_mode { SMI240_CAPTURE_OFF = 0, SMI240_CAPTURE_ON = 1 };
107 
108 struct smi240_data {
109 	struct regmap *regmap;
110 	u16 accel_filter_freq;
111 	u16 anglvel_filter_freq;
112 	u8 built_in_self_test_count;
113 	enum capture_mode capture;
114 	/*
115 	 * Ensure natural alignment for timestamp if present.
116 	 * Channel size: 2 bytes.
117 	 * Max length needed: 2 * 3 channels + temp channel + 2 bytes padding + 8 byte ts.
118 	 * If fewer channels are enabled, less space may be needed, as
119 	 * long as the timestamp is still aligned to 8 bytes.
120 	 */
121 	s16 buf[12] __aligned(8);
122 
123 	__be32 spi_buf __aligned(IIO_DMA_MINALIGN);
124 };
125 
126 enum {
127 	SMI240_TEMP_OBJECT,
128 	SMI240_SCAN_ACCEL_X,
129 	SMI240_SCAN_ACCEL_Y,
130 	SMI240_SCAN_ACCEL_Z,
131 	SMI240_SCAN_GYRO_X,
132 	SMI240_SCAN_GYRO_Y,
133 	SMI240_SCAN_GYRO_Z,
134 	SMI240_SCAN_TIMESTAMP,
135 };
136 
137 static const struct iio_chan_spec smi240_channels[] = {
138 	SMI240_TEMP_CHANNEL(SMI240_TEMP_OBJECT),
139 	SMI240_DATA_CHANNEL(IIO_ACCEL, X, SMI240_SCAN_ACCEL_X),
140 	SMI240_DATA_CHANNEL(IIO_ACCEL, Y, SMI240_SCAN_ACCEL_Y),
141 	SMI240_DATA_CHANNEL(IIO_ACCEL, Z, SMI240_SCAN_ACCEL_Z),
142 	SMI240_DATA_CHANNEL(IIO_ANGL_VEL, X, SMI240_SCAN_GYRO_X),
143 	SMI240_DATA_CHANNEL(IIO_ANGL_VEL, Y, SMI240_SCAN_GYRO_Y),
144 	SMI240_DATA_CHANNEL(IIO_ANGL_VEL, Z, SMI240_SCAN_GYRO_Z),
145 	IIO_CHAN_SOFT_TIMESTAMP(SMI240_SCAN_TIMESTAMP),
146 };
147 
148 static const int smi240_low_pass_freqs[] = { SMI240_LOW_BANDWIDTH_HZ,
149 					     SMI240_HIGH_BANDWIDTH_HZ };
150 
151 static u8 smi240_crc3(u32 data, u8 init, u8 poly)
152 {
153 	u8 crc = init;
154 	u8 do_xor;
155 	s8 i = 31;
156 
157 	do {
158 		do_xor = crc & 0x04;
159 		crc <<= 1;
160 		crc |= 0x01 & (data >> i);
161 		if (do_xor)
162 			crc ^= poly;
163 
164 		crc &= SMI240_CRC_MASK;
165 	} while (--i >= 0);
166 
167 	return crc;
168 }
169 
170 static bool smi240_sensor_data_is_valid(u32 data)
171 {
172 	if (smi240_crc3(data, SMI240_CRC_INIT, SMI240_CRC_POLY) != 0)
173 		return false;
174 
175 	if (FIELD_GET(SMI240_READ_SD_BIT_MASK, data) &
176 	    FIELD_GET(SMI240_READ_CS_BIT_MASK, data))
177 		return false;
178 
179 	return true;
180 }
181 
182 static int smi240_regmap_spi_read(void *context, const void *reg_buf,
183 				  size_t reg_size, void *val_buf,
184 				  size_t val_size)
185 {
186 	int ret;
187 	u32 request, response;
188 	u16 *val = val_buf;
189 	struct spi_device *spi = context;
190 	struct iio_dev *indio_dev = dev_get_drvdata(&spi->dev);
191 	struct smi240_data *iio_priv_data = iio_priv(indio_dev);
192 
193 	if (reg_size != 1 || val_size != 2)
194 		return -EINVAL;
195 
196 	request = FIELD_PREP(SMI240_WRITE_BUS_ID_MASK, SMI240_BUS_ID);
197 	request |= FIELD_PREP(SMI240_WRITE_CAP_BIT_MASK, iio_priv_data->capture);
198 	request |= FIELD_PREP(SMI240_WRITE_ADDR_MASK, *(u8 *)reg_buf);
199 	request |= smi240_crc3(request, SMI240_CRC_INIT, SMI240_CRC_POLY);
200 
201 	iio_priv_data->spi_buf = cpu_to_be32(request);
202 
203 	/*
204 	 * SMI240 module consists of a 32Bit Out Of Frame (OOF)
205 	 * SPI protocol, where the slave interface responds to
206 	 * the Master request in the next frame.
207 	 * CS signal must toggle (> 700 ns) between the frames.
208 	 */
209 	ret = spi_write(spi, &iio_priv_data->spi_buf, sizeof(request));
210 	if (ret)
211 		return ret;
212 
213 	ret = spi_read(spi, &iio_priv_data->spi_buf, sizeof(response));
214 	if (ret)
215 		return ret;
216 
217 	response = be32_to_cpu(iio_priv_data->spi_buf);
218 
219 	if (!smi240_sensor_data_is_valid(response))
220 		return -EIO;
221 
222 	*val = FIELD_GET(SMI240_READ_DATA_MASK, response);
223 
224 	return 0;
225 }
226 
227 static int smi240_regmap_spi_write(void *context, const void *data,
228 				   size_t count)
229 {
230 	u8 reg_addr;
231 	u16 reg_data;
232 	u32 request;
233 	const u8 *data_ptr = data;
234 	struct spi_device *spi = context;
235 	struct iio_dev *indio_dev = dev_get_drvdata(&spi->dev);
236 	struct smi240_data *iio_priv_data = iio_priv(indio_dev);
237 
238 	if (count < 2)
239 		return -EINVAL;
240 
241 	reg_addr = data_ptr[0];
242 	memcpy(&reg_data, &data_ptr[1], sizeof(reg_data));
243 
244 	request = FIELD_PREP(SMI240_WRITE_BUS_ID_MASK, SMI240_BUS_ID);
245 	request |= FIELD_PREP(SMI240_WRITE_BIT_MASK, 1);
246 	request |= FIELD_PREP(SMI240_WRITE_ADDR_MASK, reg_addr);
247 	request |= FIELD_PREP(SMI240_WRITE_DATA_MASK, reg_data);
248 	request |= smi240_crc3(request, SMI240_CRC_INIT, SMI240_CRC_POLY);
249 
250 	iio_priv_data->spi_buf = cpu_to_be32(request);
251 
252 	return spi_write(spi, &iio_priv_data->spi_buf, sizeof(request));
253 }
254 
255 static const struct regmap_bus smi240_regmap_bus = {
256 	.read = smi240_regmap_spi_read,
257 	.write = smi240_regmap_spi_write,
258 };
259 
260 static const struct regmap_config smi240_regmap_config = {
261 	.reg_bits = 8,
262 	.val_bits = 16,
263 	.val_format_endian = REGMAP_ENDIAN_NATIVE,
264 };
265 
266 static int smi240_soft_reset(struct smi240_data *data)
267 {
268 	int ret;
269 
270 	ret = regmap_write(data->regmap, SMI240_CMD_REG, SMI240_SOFT_RESET_CMD);
271 	if (ret)
272 		return ret;
273 	fsleep(SMI240_DIGITAL_STARTUP_DELAY_US);
274 
275 	return 0;
276 }
277 
278 static int smi240_soft_config(struct smi240_data *data)
279 {
280 	int ret;
281 	u8 acc_bw, gyr_bw;
282 	u16 request;
283 
284 	switch (data->accel_filter_freq) {
285 	case SMI240_LOW_BANDWIDTH_HZ:
286 		acc_bw = 0x1;
287 		break;
288 	case SMI240_HIGH_BANDWIDTH_HZ:
289 		acc_bw = 0x0;
290 		break;
291 	default:
292 		return -EINVAL;
293 	}
294 
295 	switch (data->anglvel_filter_freq) {
296 	case SMI240_LOW_BANDWIDTH_HZ:
297 		gyr_bw = 0x1;
298 		break;
299 	case SMI240_HIGH_BANDWIDTH_HZ:
300 		gyr_bw = 0x0;
301 		break;
302 	default:
303 		return -EINVAL;
304 	}
305 
306 	request = FIELD_PREP(SMI240_SOFT_CONFIG_EOC_MASK, 1);
307 	request |= FIELD_PREP(SMI240_SOFT_CONFIG_GYR_BW_MASK, gyr_bw);
308 	request |= FIELD_PREP(SMI240_SOFT_CONFIG_ACC_BW_MASK, acc_bw);
309 	request |= FIELD_PREP(SMI240_SOFT_CONFIG_BITE_AUTO_MASK, 1);
310 	request |= FIELD_PREP(SMI240_SOFT_CONFIG_BITE_REP_MASK,
311 			      data->built_in_self_test_count - 1);
312 
313 	ret = regmap_write(data->regmap, SMI240_SOFT_CONFIG_REG, request);
314 	if (ret)
315 		return ret;
316 
317 	fsleep(SMI240_MECH_STARTUP_DELAY_US +
318 	       data->built_in_self_test_count * SMI240_BITE_SEQUENCE_DELAY_US +
319 	       SMI240_FILTER_FLUSH_DELAY_US);
320 
321 	return 0;
322 }
323 
324 static int smi240_get_low_pass_filter_freq(struct smi240_data *data,
325 					   int chan_type, int *val)
326 {
327 	switch (chan_type) {
328 	case IIO_ACCEL:
329 		*val = data->accel_filter_freq;
330 		return 0;
331 	case IIO_ANGL_VEL:
332 		*val = data->anglvel_filter_freq;
333 		return 0;
334 	default:
335 		return -EINVAL;
336 	}
337 }
338 
339 static int smi240_get_data(struct smi240_data *data, int chan_type, int axis,
340 			   int *val)
341 {
342 	u8 reg;
343 	int ret, sample;
344 
345 	switch (chan_type) {
346 	case IIO_TEMP:
347 		reg = SMI240_TEMP_CUR_REG;
348 		break;
349 	case IIO_ACCEL:
350 		reg = SMI240_ACCEL_X_CUR_REG + (axis - IIO_MOD_X);
351 		break;
352 	case IIO_ANGL_VEL:
353 		reg = SMI240_GYRO_X_CUR_REG + (axis - IIO_MOD_X);
354 		break;
355 	default:
356 		return -EINVAL;
357 	}
358 
359 	ret = regmap_read(data->regmap, reg, &sample);
360 	if (ret)
361 		return ret;
362 
363 	*val = sign_extend32(sample, 15);
364 
365 	return 0;
366 }
367 
368 static irqreturn_t smi240_trigger_handler(int irq, void *p)
369 {
370 	struct iio_poll_func *pf = p;
371 	struct iio_dev *indio_dev = pf->indio_dev;
372 	struct smi240_data *data = iio_priv(indio_dev);
373 	int base = SMI240_DATA_CAP_FIRST_REG, i = 0;
374 	int ret, chan, sample;
375 
376 	data->capture = SMI240_CAPTURE_ON;
377 
378 	iio_for_each_active_channel(indio_dev, chan) {
379 		ret = regmap_read(data->regmap, base + chan, &sample);
380 		data->capture = SMI240_CAPTURE_OFF;
381 		if (ret)
382 			goto out;
383 		data->buf[i++] = sample;
384 	}
385 
386 	iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
387 
388 out:
389 	iio_trigger_notify_done(indio_dev->trig);
390 	return IRQ_HANDLED;
391 }
392 
393 static int smi240_read_avail(struct iio_dev *indio_dev,
394 			     struct iio_chan_spec const *chan, const int **vals,
395 			     int *type, int *length, long mask)
396 {
397 	switch (mask) {
398 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
399 		*vals = smi240_low_pass_freqs;
400 		*length = ARRAY_SIZE(smi240_low_pass_freqs);
401 		*type = IIO_VAL_INT;
402 		return IIO_AVAIL_LIST;
403 	default:
404 		return -EINVAL;
405 	}
406 }
407 
408 static int smi240_read_raw(struct iio_dev *indio_dev,
409 			   struct iio_chan_spec const *chan, int *val,
410 			   int *val2, long mask)
411 {
412 	int ret;
413 	struct smi240_data *data = iio_priv(indio_dev);
414 
415 	switch (mask) {
416 	case IIO_CHAN_INFO_RAW:
417 		ret = iio_device_claim_direct_mode(indio_dev);
418 		if (ret)
419 			return ret;
420 		ret = smi240_get_data(data, chan->type, chan->channel2, val);
421 		iio_device_release_direct_mode(indio_dev);
422 		if (ret)
423 			return ret;
424 		return IIO_VAL_INT;
425 
426 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
427 		ret = smi240_get_low_pass_filter_freq(data, chan->type, val);
428 		if (ret)
429 			return ret;
430 		return IIO_VAL_INT;
431 
432 	case IIO_CHAN_INFO_SCALE:
433 		switch (chan->type) {
434 		case IIO_TEMP:
435 			*val = SMI240_TEMP_SCALE / GIGA;
436 			*val2 = SMI240_TEMP_SCALE % GIGA;
437 			return IIO_VAL_INT_PLUS_NANO;
438 		case IIO_ACCEL:
439 			*val = 0;
440 			*val2 = SMI240_ACCEL_SCALE;
441 			return IIO_VAL_INT_PLUS_MICRO;
442 		case IIO_ANGL_VEL:
443 			*val = 0;
444 			*val2 = SMI240_GYRO_SCALE;
445 			return IIO_VAL_INT_PLUS_MICRO;
446 		default:
447 			return -EINVAL;
448 		}
449 
450 	case IIO_CHAN_INFO_OFFSET:
451 		if (chan->type == IIO_TEMP) {
452 			*val = SMI240_TEMP_OFFSET;
453 			return IIO_VAL_INT;
454 		} else {
455 			return -EINVAL;
456 		}
457 
458 	default:
459 		return -EINVAL;
460 	}
461 }
462 
463 static int smi240_write_raw(struct iio_dev *indio_dev,
464 			    struct iio_chan_spec const *chan, int val, int val2,
465 			    long mask)
466 {
467 	int ret, i;
468 	struct smi240_data *data = iio_priv(indio_dev);
469 
470 	switch (mask) {
471 	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
472 		for (i = 0; i < ARRAY_SIZE(smi240_low_pass_freqs); i++) {
473 			if (val == smi240_low_pass_freqs[i])
474 				break;
475 		}
476 
477 		if (i == ARRAY_SIZE(smi240_low_pass_freqs))
478 			return -EINVAL;
479 
480 		switch (chan->type) {
481 		case IIO_ACCEL:
482 			data->accel_filter_freq = val;
483 			break;
484 		case IIO_ANGL_VEL:
485 			data->anglvel_filter_freq = val;
486 			break;
487 		default:
488 			return -EINVAL;
489 		}
490 		break;
491 	default:
492 		return -EINVAL;
493 	}
494 
495 	/* Write access to soft config is locked until hard/soft reset */
496 	ret = smi240_soft_reset(data);
497 	if (ret)
498 		return ret;
499 
500 	return smi240_soft_config(data);
501 }
502 
503 static int smi240_write_raw_get_fmt(struct iio_dev *indio_dev,
504 				    struct iio_chan_spec const *chan, long info)
505 {
506 	switch (info) {
507 	case IIO_CHAN_INFO_SCALE:
508 		switch (chan->type) {
509 		case IIO_TEMP:
510 			return IIO_VAL_INT_PLUS_NANO;
511 		default:
512 			return IIO_VAL_INT_PLUS_MICRO;
513 		}
514 	default:
515 		return IIO_VAL_INT_PLUS_MICRO;
516 	}
517 }
518 
519 static int smi240_init(struct smi240_data *data)
520 {
521 	int ret;
522 
523 	data->accel_filter_freq = SMI240_HIGH_BANDWIDTH_HZ;
524 	data->anglvel_filter_freq = SMI240_HIGH_BANDWIDTH_HZ;
525 	data->built_in_self_test_count = SMI240_BUILT_IN_SELF_TEST_COUNT;
526 
527 	ret = smi240_soft_reset(data);
528 	if (ret)
529 		return ret;
530 
531 	return smi240_soft_config(data);
532 }
533 
534 static const struct iio_info smi240_info = {
535 	.read_avail = smi240_read_avail,
536 	.read_raw = smi240_read_raw,
537 	.write_raw = smi240_write_raw,
538 	.write_raw_get_fmt = smi240_write_raw_get_fmt,
539 };
540 
541 static int smi240_probe(struct spi_device *spi)
542 {
543 	struct device *dev = &spi->dev;
544 	struct iio_dev *indio_dev;
545 	struct regmap *regmap;
546 	struct smi240_data *data;
547 	int ret, response;
548 
549 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
550 	if (!indio_dev)
551 		return -ENOMEM;
552 
553 	regmap = devm_regmap_init(dev, &smi240_regmap_bus, dev,
554 				  &smi240_regmap_config);
555 	if (IS_ERR(regmap))
556 		return dev_err_probe(dev, PTR_ERR(regmap),
557 				     "Failed to initialize SPI Regmap\n");
558 
559 	data = iio_priv(indio_dev);
560 	dev_set_drvdata(dev, indio_dev);
561 	data->regmap = regmap;
562 	data->capture = SMI240_CAPTURE_OFF;
563 
564 	ret = regmap_read(data->regmap, SMI240_CHIP_ID_REG, &response);
565 	if (ret)
566 		return dev_err_probe(dev, ret, "Read chip id failed\n");
567 
568 	if (response != SMI240_CHIP_ID)
569 		dev_info(dev, "Unknown chip id: 0x%04x\n", response);
570 
571 	ret = smi240_init(data);
572 	if (ret)
573 		return dev_err_probe(dev, ret,
574 				     "Device initialization failed\n");
575 
576 	indio_dev->channels = smi240_channels;
577 	indio_dev->num_channels = ARRAY_SIZE(smi240_channels);
578 	indio_dev->name = "smi240";
579 	indio_dev->modes = INDIO_DIRECT_MODE;
580 	indio_dev->info = &smi240_info;
581 
582 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
583 					      iio_pollfunc_store_time,
584 					      smi240_trigger_handler, NULL);
585 	if (ret)
586 		return dev_err_probe(dev, ret,
587 				     "Setup triggered buffer failed\n");
588 
589 	ret = devm_iio_device_register(dev, indio_dev);
590 	if (ret)
591 		return dev_err_probe(dev, ret, "Register IIO device failed\n");
592 
593 	return 0;
594 }
595 
596 static const struct spi_device_id smi240_spi_id[] = {
597 	{ "smi240" },
598 	{ }
599 };
600 MODULE_DEVICE_TABLE(spi, smi240_spi_id);
601 
602 static const struct of_device_id smi240_of_match[] = {
603 	{ .compatible = "bosch,smi240" },
604 	{ }
605 };
606 MODULE_DEVICE_TABLE(of, smi240_of_match);
607 
608 static struct spi_driver smi240_spi_driver = {
609 	.probe = smi240_probe,
610 	.id_table = smi240_spi_id,
611 	.driver = {
612 		.of_match_table = smi240_of_match,
613 		.name = "smi240",
614 	},
615 };
616 module_spi_driver(smi240_spi_driver);
617 
618 MODULE_AUTHOR("Markus Lochmann <markus.lochmann@de.bosch.com>");
619 MODULE_AUTHOR("Stefan Gutmann <stefan.gutmann@de.bosch.com>");
620 MODULE_DESCRIPTION("Bosch SMI240 SPI driver");
621 MODULE_LICENSE("Dual BSD/GPL");
622