1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * KMX61 - Kionix 6-axis Accelerometer/Magnetometer 4 * 5 * Copyright (c) 2014, Intel Corporation. 6 * 7 * IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F). 8 */ 9 10 #include <linux/module.h> 11 #include <linux/i2c.h> 12 #include <linux/acpi.h> 13 #include <linux/interrupt.h> 14 #include <linux/pm.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/iio/iio.h> 17 #include <linux/iio/sysfs.h> 18 #include <linux/iio/events.h> 19 #include <linux/iio/trigger.h> 20 #include <linux/iio/buffer.h> 21 #include <linux/iio/triggered_buffer.h> 22 #include <linux/iio/trigger_consumer.h> 23 24 #define KMX61_DRV_NAME "kmx61" 25 #define KMX61_IRQ_NAME "kmx61_event" 26 27 #define KMX61_REG_WHO_AM_I 0x00 28 #define KMX61_REG_INS1 0x01 29 #define KMX61_REG_INS2 0x02 30 31 /* 32 * three 16-bit accelerometer output registers for X/Y/Z axis 33 * we use only XOUT_L as a base register, all other addresses 34 * can be obtained by applying an offset and are provided here 35 * only for clarity. 36 */ 37 #define KMX61_ACC_XOUT_L 0x0A 38 #define KMX61_ACC_XOUT_H 0x0B 39 #define KMX61_ACC_YOUT_L 0x0C 40 #define KMX61_ACC_YOUT_H 0x0D 41 #define KMX61_ACC_ZOUT_L 0x0E 42 #define KMX61_ACC_ZOUT_H 0x0F 43 44 /* 45 * one 16-bit temperature output register 46 */ 47 #define KMX61_TEMP_L 0x10 48 #define KMX61_TEMP_H 0x11 49 50 /* 51 * three 16-bit magnetometer output registers for X/Y/Z axis 52 */ 53 #define KMX61_MAG_XOUT_L 0x12 54 #define KMX61_MAG_XOUT_H 0x13 55 #define KMX61_MAG_YOUT_L 0x14 56 #define KMX61_MAG_YOUT_H 0x15 57 #define KMX61_MAG_ZOUT_L 0x16 58 #define KMX61_MAG_ZOUT_H 0x17 59 60 #define KMX61_REG_INL 0x28 61 #define KMX61_REG_STBY 0x29 62 #define KMX61_REG_CTRL1 0x2A 63 #define KMX61_REG_CTRL2 0x2B 64 #define KMX61_REG_ODCNTL 0x2C 65 #define KMX61_REG_INC1 0x2D 66 67 #define KMX61_REG_WUF_THRESH 0x3D 68 #define KMX61_REG_WUF_TIMER 0x3E 69 70 #define KMX61_ACC_STBY_BIT BIT(0) 71 #define KMX61_MAG_STBY_BIT BIT(1) 72 #define KMX61_ACT_STBY_BIT BIT(7) 73 74 #define KMX61_ALL_STBY (KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT) 75 76 #define KMX61_REG_INS1_BIT_WUFS BIT(1) 77 78 #define KMX61_REG_INS2_BIT_ZP BIT(0) 79 #define KMX61_REG_INS2_BIT_ZN BIT(1) 80 #define KMX61_REG_INS2_BIT_YP BIT(2) 81 #define KMX61_REG_INS2_BIT_YN BIT(3) 82 #define KMX61_REG_INS2_BIT_XP BIT(4) 83 #define KMX61_REG_INS2_BIT_XN BIT(5) 84 85 #define KMX61_REG_CTRL1_GSEL_MASK 0x03 86 87 #define KMX61_REG_CTRL1_BIT_RES BIT(4) 88 #define KMX61_REG_CTRL1_BIT_DRDYE BIT(5) 89 #define KMX61_REG_CTRL1_BIT_WUFE BIT(6) 90 #define KMX61_REG_CTRL1_BIT_BTSE BIT(7) 91 92 #define KMX61_REG_INC1_BIT_WUFS BIT(0) 93 #define KMX61_REG_INC1_BIT_DRDYM BIT(1) 94 #define KMX61_REG_INC1_BIT_DRDYA BIT(2) 95 #define KMX61_REG_INC1_BIT_IEN BIT(5) 96 97 #define KMX61_ACC_ODR_SHIFT 0 98 #define KMX61_MAG_ODR_SHIFT 4 99 #define KMX61_ACC_ODR_MASK 0x0F 100 #define KMX61_MAG_ODR_MASK 0xF0 101 102 #define KMX61_OWUF_MASK 0x7 103 104 #define KMX61_DEFAULT_WAKE_THRESH 1 105 #define KMX61_DEFAULT_WAKE_DURATION 1 106 107 #define KMX61_SLEEP_DELAY_MS 2000 108 109 #define KMX61_CHIP_ID 0x12 110 111 /* KMX61 devices */ 112 #define KMX61_ACC 0x01 113 #define KMX61_MAG 0x02 114 115 struct kmx61_data { 116 struct i2c_client *client; 117 118 /* serialize access to non-atomic ops, e.g set_mode */ 119 struct mutex lock; 120 121 /* standby state */ 122 bool acc_stby; 123 bool mag_stby; 124 125 /* power state */ 126 bool acc_ps; 127 bool mag_ps; 128 129 /* config bits */ 130 u8 range; 131 u8 odr_bits; 132 u8 wake_thresh; 133 u8 wake_duration; 134 135 /* accelerometer specific data */ 136 struct iio_dev *acc_indio_dev; 137 struct iio_trigger *acc_dready_trig; 138 struct iio_trigger *motion_trig; 139 bool acc_dready_trig_on; 140 bool motion_trig_on; 141 bool ev_enable_state; 142 143 /* magnetometer specific data */ 144 struct iio_dev *mag_indio_dev; 145 struct iio_trigger *mag_dready_trig; 146 bool mag_dready_trig_on; 147 }; 148 149 enum kmx61_range { 150 KMX61_RANGE_2G, 151 KMX61_RANGE_4G, 152 KMX61_RANGE_8G, 153 }; 154 155 enum kmx61_axis { 156 KMX61_AXIS_X, 157 KMX61_AXIS_Y, 158 KMX61_AXIS_Z, 159 }; 160 161 static const u16 kmx61_uscale_table[] = {9582, 19163, 38326}; 162 163 static const struct { 164 int val; 165 int val2; 166 } kmx61_samp_freq_table[] = { {12, 500000}, 167 {25, 0}, 168 {50, 0}, 169 {100, 0}, 170 {200, 0}, 171 {400, 0}, 172 {800, 0}, 173 {1600, 0}, 174 {0, 781000}, 175 {1, 563000}, 176 {3, 125000}, 177 {6, 250000} }; 178 179 static const struct { 180 int val; 181 int val2; 182 int odr_bits; 183 } kmx61_wake_up_odr_table[] = { {0, 781000, 0x00}, 184 {1, 563000, 0x01}, 185 {3, 125000, 0x02}, 186 {6, 250000, 0x03}, 187 {12, 500000, 0x04}, 188 {25, 0, 0x05}, 189 {50, 0, 0x06}, 190 {100, 0, 0x06}, 191 {200, 0, 0x06}, 192 {400, 0, 0x06}, 193 {800, 0, 0x06}, 194 {1600, 0, 0x06} }; 195 196 static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326"); 197 static IIO_CONST_ATTR(magn_scale_available, "0.001465"); 198 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL( 199 "0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800"); 200 201 static struct attribute *kmx61_acc_attributes[] = { 202 &iio_const_attr_accel_scale_available.dev_attr.attr, 203 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 204 NULL, 205 }; 206 207 static struct attribute *kmx61_mag_attributes[] = { 208 &iio_const_attr_magn_scale_available.dev_attr.attr, 209 &iio_const_attr_sampling_frequency_available.dev_attr.attr, 210 NULL, 211 }; 212 213 static const struct attribute_group kmx61_acc_attribute_group = { 214 .attrs = kmx61_acc_attributes, 215 }; 216 217 static const struct attribute_group kmx61_mag_attribute_group = { 218 .attrs = kmx61_mag_attributes, 219 }; 220 221 static const struct iio_event_spec kmx61_event = { 222 .type = IIO_EV_TYPE_THRESH, 223 .dir = IIO_EV_DIR_EITHER, 224 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 225 BIT(IIO_EV_INFO_ENABLE) | 226 BIT(IIO_EV_INFO_PERIOD), 227 }; 228 229 #define KMX61_ACC_CHAN(_axis) { \ 230 .type = IIO_ACCEL, \ 231 .modified = 1, \ 232 .channel2 = IIO_MOD_ ## _axis, \ 233 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 234 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 235 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 236 .address = KMX61_ACC, \ 237 .scan_index = KMX61_AXIS_ ## _axis, \ 238 .scan_type = { \ 239 .sign = 's', \ 240 .realbits = 12, \ 241 .storagebits = 16, \ 242 .shift = 4, \ 243 .endianness = IIO_LE, \ 244 }, \ 245 .event_spec = &kmx61_event, \ 246 .num_event_specs = 1 \ 247 } 248 249 #define KMX61_MAG_CHAN(_axis) { \ 250 .type = IIO_MAGN, \ 251 .modified = 1, \ 252 .channel2 = IIO_MOD_ ## _axis, \ 253 .address = KMX61_MAG, \ 254 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ 255 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ 256 BIT(IIO_CHAN_INFO_SAMP_FREQ), \ 257 .scan_index = KMX61_AXIS_ ## _axis, \ 258 .scan_type = { \ 259 .sign = 's', \ 260 .realbits = 14, \ 261 .storagebits = 16, \ 262 .shift = 2, \ 263 .endianness = IIO_LE, \ 264 }, \ 265 } 266 267 static const struct iio_chan_spec kmx61_acc_channels[] = { 268 KMX61_ACC_CHAN(X), 269 KMX61_ACC_CHAN(Y), 270 KMX61_ACC_CHAN(Z), 271 }; 272 273 static const struct iio_chan_spec kmx61_mag_channels[] = { 274 KMX61_MAG_CHAN(X), 275 KMX61_MAG_CHAN(Y), 276 KMX61_MAG_CHAN(Z), 277 }; 278 279 static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data) 280 { 281 struct kmx61_data **priv = iio_priv(indio_dev); 282 283 *priv = data; 284 } 285 286 static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev) 287 { 288 return *(struct kmx61_data **)iio_priv(indio_dev); 289 } 290 291 static int kmx61_convert_freq_to_bit(int val, int val2) 292 { 293 int i; 294 295 for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++) 296 if (val == kmx61_samp_freq_table[i].val && 297 val2 == kmx61_samp_freq_table[i].val2) 298 return i; 299 return -EINVAL; 300 } 301 302 static int kmx61_convert_wake_up_odr_to_bit(int val, int val2) 303 { 304 int i; 305 306 for (i = 0; i < ARRAY_SIZE(kmx61_wake_up_odr_table); ++i) 307 if (kmx61_wake_up_odr_table[i].val == val && 308 kmx61_wake_up_odr_table[i].val2 == val2) 309 return kmx61_wake_up_odr_table[i].odr_bits; 310 return -EINVAL; 311 } 312 313 /** 314 * kmx61_set_mode() - set KMX61 device operating mode 315 * @data: kmx61 device private data pointer 316 * @mode: bitmask, indicating operating mode for @device 317 * @device: bitmask, indicating device for which @mode needs to be set 318 * @update: update stby bits stored in device's private @data 319 * 320 * For each sensor (accelerometer/magnetometer) there are two operating modes 321 * STANDBY and OPERATION. Neither accel nor magn can be disabled independently 322 * if they are both enabled. Internal sensors state is saved in acc_stby and 323 * mag_stby members of driver's private @data. 324 */ 325 static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device, 326 bool update) 327 { 328 int ret; 329 int acc_stby = -1, mag_stby = -1; 330 331 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY); 332 if (ret < 0) { 333 dev_err(&data->client->dev, "Error reading reg_stby\n"); 334 return ret; 335 } 336 if (device & KMX61_ACC) { 337 if (mode & KMX61_ACC_STBY_BIT) { 338 ret |= KMX61_ACC_STBY_BIT; 339 acc_stby = 1; 340 } else { 341 ret &= ~KMX61_ACC_STBY_BIT; 342 acc_stby = 0; 343 } 344 } 345 346 if (device & KMX61_MAG) { 347 if (mode & KMX61_MAG_STBY_BIT) { 348 ret |= KMX61_MAG_STBY_BIT; 349 mag_stby = 1; 350 } else { 351 ret &= ~KMX61_MAG_STBY_BIT; 352 mag_stby = 0; 353 } 354 } 355 356 if (mode & KMX61_ACT_STBY_BIT) 357 ret |= KMX61_ACT_STBY_BIT; 358 359 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret); 360 if (ret < 0) { 361 dev_err(&data->client->dev, "Error writing reg_stby\n"); 362 return ret; 363 } 364 365 if (acc_stby != -1 && update) 366 data->acc_stby = acc_stby; 367 if (mag_stby != -1 && update) 368 data->mag_stby = mag_stby; 369 370 return 0; 371 } 372 373 static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device) 374 { 375 int ret; 376 377 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY); 378 if (ret < 0) { 379 dev_err(&data->client->dev, "Error reading reg_stby\n"); 380 return ret; 381 } 382 *mode = 0; 383 384 if (device & KMX61_ACC) { 385 if (ret & KMX61_ACC_STBY_BIT) 386 *mode |= KMX61_ACC_STBY_BIT; 387 else 388 *mode &= ~KMX61_ACC_STBY_BIT; 389 } 390 391 if (device & KMX61_MAG) { 392 if (ret & KMX61_MAG_STBY_BIT) 393 *mode |= KMX61_MAG_STBY_BIT; 394 else 395 *mode &= ~KMX61_MAG_STBY_BIT; 396 } 397 398 return 0; 399 } 400 401 static int kmx61_set_wake_up_odr(struct kmx61_data *data, int val, int val2) 402 { 403 int ret, odr_bits; 404 405 odr_bits = kmx61_convert_wake_up_odr_to_bit(val, val2); 406 if (odr_bits < 0) 407 return odr_bits; 408 409 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL2, 410 odr_bits); 411 if (ret < 0) 412 dev_err(&data->client->dev, "Error writing reg_ctrl2\n"); 413 return ret; 414 } 415 416 static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device) 417 { 418 int ret; 419 u8 mode; 420 int lodr_bits, odr_bits; 421 422 ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); 423 if (ret < 0) 424 return ret; 425 426 lodr_bits = kmx61_convert_freq_to_bit(val, val2); 427 if (lodr_bits < 0) 428 return lodr_bits; 429 430 /* To change ODR, accel and magn must be in STDBY */ 431 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, 432 true); 433 if (ret < 0) 434 return ret; 435 436 odr_bits = 0; 437 if (device & KMX61_ACC) 438 odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT; 439 if (device & KMX61_MAG) 440 odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT; 441 442 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL, 443 odr_bits); 444 if (ret < 0) 445 return ret; 446 447 data->odr_bits = odr_bits; 448 449 if (device & KMX61_ACC) { 450 ret = kmx61_set_wake_up_odr(data, val, val2); 451 if (ret) 452 return ret; 453 } 454 455 return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); 456 } 457 458 static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2, 459 u8 device) 460 { 461 u8 lodr_bits; 462 463 if (device & KMX61_ACC) 464 lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) & 465 KMX61_ACC_ODR_MASK; 466 else if (device & KMX61_MAG) 467 lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) & 468 KMX61_MAG_ODR_MASK; 469 else 470 return -EINVAL; 471 472 if (lodr_bits >= ARRAY_SIZE(kmx61_samp_freq_table)) 473 return -EINVAL; 474 475 *val = kmx61_samp_freq_table[lodr_bits].val; 476 *val2 = kmx61_samp_freq_table[lodr_bits].val2; 477 478 return 0; 479 } 480 481 static int kmx61_set_range(struct kmx61_data *data, u8 range) 482 { 483 int ret; 484 485 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); 486 if (ret < 0) { 487 dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); 488 return ret; 489 } 490 491 ret &= ~KMX61_REG_CTRL1_GSEL_MASK; 492 ret |= range & KMX61_REG_CTRL1_GSEL_MASK; 493 494 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); 495 if (ret < 0) { 496 dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); 497 return ret; 498 } 499 500 data->range = range; 501 502 return 0; 503 } 504 505 static int kmx61_set_scale(struct kmx61_data *data, u16 uscale) 506 { 507 int ret, i; 508 u8 mode; 509 510 for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) { 511 if (kmx61_uscale_table[i] == uscale) { 512 ret = kmx61_get_mode(data, &mode, 513 KMX61_ACC | KMX61_MAG); 514 if (ret < 0) 515 return ret; 516 517 ret = kmx61_set_mode(data, KMX61_ALL_STBY, 518 KMX61_ACC | KMX61_MAG, true); 519 if (ret < 0) 520 return ret; 521 522 ret = kmx61_set_range(data, i); 523 if (ret < 0) 524 return ret; 525 526 return kmx61_set_mode(data, mode, 527 KMX61_ACC | KMX61_MAG, true); 528 } 529 } 530 return -EINVAL; 531 } 532 533 static int kmx61_chip_init(struct kmx61_data *data) 534 { 535 int ret, val, val2; 536 537 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I); 538 if (ret < 0) { 539 dev_err(&data->client->dev, "Error reading who_am_i\n"); 540 return ret; 541 } 542 543 if (ret != KMX61_CHIP_ID) { 544 dev_err(&data->client->dev, 545 "Wrong chip id, got %x expected %x\n", 546 ret, KMX61_CHIP_ID); 547 return -EINVAL; 548 } 549 550 /* set accel 12bit, 4g range */ 551 ret = kmx61_set_range(data, KMX61_RANGE_4G); 552 if (ret < 0) 553 return ret; 554 555 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL); 556 if (ret < 0) { 557 dev_err(&data->client->dev, "Error reading reg_odcntl\n"); 558 return ret; 559 } 560 data->odr_bits = ret; 561 562 /* 563 * set output data rate for wake up (motion detection) function 564 * to match data rate for accelerometer sampling 565 */ 566 ret = kmx61_get_odr(data, &val, &val2, KMX61_ACC); 567 if (ret < 0) 568 return ret; 569 570 ret = kmx61_set_wake_up_odr(data, val, val2); 571 if (ret < 0) 572 return ret; 573 574 /* set acc/magn to OPERATION mode */ 575 ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true); 576 if (ret < 0) 577 return ret; 578 579 data->wake_thresh = KMX61_DEFAULT_WAKE_THRESH; 580 data->wake_duration = KMX61_DEFAULT_WAKE_DURATION; 581 582 return 0; 583 } 584 585 static int kmx61_setup_new_data_interrupt(struct kmx61_data *data, 586 bool status, u8 device) 587 { 588 u8 mode; 589 int ret; 590 591 ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); 592 if (ret < 0) 593 return ret; 594 595 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); 596 if (ret < 0) 597 return ret; 598 599 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1); 600 if (ret < 0) { 601 dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); 602 return ret; 603 } 604 605 if (status) { 606 ret |= KMX61_REG_INC1_BIT_IEN; 607 if (device & KMX61_ACC) 608 ret |= KMX61_REG_INC1_BIT_DRDYA; 609 if (device & KMX61_MAG) 610 ret |= KMX61_REG_INC1_BIT_DRDYM; 611 } else { 612 ret &= ~KMX61_REG_INC1_BIT_IEN; 613 if (device & KMX61_ACC) 614 ret &= ~KMX61_REG_INC1_BIT_DRDYA; 615 if (device & KMX61_MAG) 616 ret &= ~KMX61_REG_INC1_BIT_DRDYM; 617 } 618 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret); 619 if (ret < 0) { 620 dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n"); 621 return ret; 622 } 623 624 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); 625 if (ret < 0) { 626 dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); 627 return ret; 628 } 629 630 if (status) 631 ret |= KMX61_REG_CTRL1_BIT_DRDYE; 632 else 633 ret &= ~KMX61_REG_CTRL1_BIT_DRDYE; 634 635 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); 636 if (ret < 0) { 637 dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); 638 return ret; 639 } 640 641 return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); 642 } 643 644 static int kmx61_chip_update_thresholds(struct kmx61_data *data) 645 { 646 int ret; 647 648 ret = i2c_smbus_write_byte_data(data->client, 649 KMX61_REG_WUF_TIMER, 650 data->wake_duration); 651 if (ret < 0) { 652 dev_err(&data->client->dev, "Errow writing reg_wuf_timer\n"); 653 return ret; 654 } 655 656 ret = i2c_smbus_write_byte_data(data->client, 657 KMX61_REG_WUF_THRESH, 658 data->wake_thresh); 659 if (ret < 0) 660 dev_err(&data->client->dev, "Error writing reg_wuf_thresh\n"); 661 662 return ret; 663 } 664 665 static int kmx61_setup_any_motion_interrupt(struct kmx61_data *data, 666 bool status) 667 { 668 u8 mode; 669 int ret; 670 671 ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG); 672 if (ret < 0) 673 return ret; 674 675 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); 676 if (ret < 0) 677 return ret; 678 679 ret = kmx61_chip_update_thresholds(data); 680 if (ret < 0) 681 return ret; 682 683 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1); 684 if (ret < 0) { 685 dev_err(&data->client->dev, "Error reading reg_inc1\n"); 686 return ret; 687 } 688 if (status) 689 ret |= (KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS); 690 else 691 ret &= ~(KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS); 692 693 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret); 694 if (ret < 0) { 695 dev_err(&data->client->dev, "Error writing reg_inc1\n"); 696 return ret; 697 } 698 699 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); 700 if (ret < 0) { 701 dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); 702 return ret; 703 } 704 705 if (status) 706 ret |= KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE; 707 else 708 ret &= ~(KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE); 709 710 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); 711 if (ret < 0) { 712 dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); 713 return ret; 714 } 715 mode |= KMX61_ACT_STBY_BIT; 716 return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true); 717 } 718 719 /** 720 * kmx61_set_power_state() - set power state for kmx61 @device 721 * @data: kmx61 device private pointer 722 * @on: power state to be set for @device 723 * @device: bitmask indicating device for which @on state needs to be set 724 * 725 * Notice that when ACC power state needs to be set to ON and MAG is in 726 * OPERATION then we know that kmx61_runtime_resume was already called 727 * so we must set ACC OPERATION mode here. The same happens when MAG power 728 * state needs to be set to ON and ACC is in OPERATION. 729 */ 730 static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device) 731 { 732 #ifdef CONFIG_PM 733 int ret; 734 735 if (device & KMX61_ACC) { 736 if (on && !data->acc_ps && !data->mag_stby) { 737 ret = kmx61_set_mode(data, 0, KMX61_ACC, true); 738 if (ret < 0) 739 return ret; 740 } 741 data->acc_ps = on; 742 } 743 if (device & KMX61_MAG) { 744 if (on && !data->mag_ps && !data->acc_stby) { 745 ret = kmx61_set_mode(data, 0, KMX61_MAG, true); 746 if (ret < 0) 747 return ret; 748 } 749 data->mag_ps = on; 750 } 751 752 if (on) { 753 ret = pm_runtime_resume_and_get(&data->client->dev); 754 } else { 755 pm_runtime_mark_last_busy(&data->client->dev); 756 ret = pm_runtime_put_autosuspend(&data->client->dev); 757 } 758 if (ret < 0) { 759 dev_err(&data->client->dev, 760 "Failed: kmx61_set_power_state for %d, ret %d\n", 761 on, ret); 762 763 return ret; 764 } 765 #endif 766 return 0; 767 } 768 769 static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset) 770 { 771 int ret; 772 u8 reg = base + offset * 2; 773 774 ret = i2c_smbus_read_word_data(data->client, reg); 775 if (ret < 0) 776 dev_err(&data->client->dev, "failed to read reg at %x\n", reg); 777 778 return ret; 779 } 780 781 static int kmx61_read_raw(struct iio_dev *indio_dev, 782 struct iio_chan_spec const *chan, int *val, 783 int *val2, long mask) 784 { 785 int ret; 786 u8 base_reg; 787 struct kmx61_data *data = kmx61_get_data(indio_dev); 788 789 switch (mask) { 790 case IIO_CHAN_INFO_RAW: 791 switch (chan->type) { 792 case IIO_ACCEL: 793 base_reg = KMX61_ACC_XOUT_L; 794 break; 795 case IIO_MAGN: 796 base_reg = KMX61_MAG_XOUT_L; 797 break; 798 default: 799 return -EINVAL; 800 } 801 mutex_lock(&data->lock); 802 803 ret = kmx61_set_power_state(data, true, chan->address); 804 if (ret) { 805 mutex_unlock(&data->lock); 806 return ret; 807 } 808 809 ret = kmx61_read_measurement(data, base_reg, chan->scan_index); 810 if (ret < 0) { 811 kmx61_set_power_state(data, false, chan->address); 812 mutex_unlock(&data->lock); 813 return ret; 814 } 815 *val = sign_extend32(ret >> chan->scan_type.shift, 816 chan->scan_type.realbits - 1); 817 ret = kmx61_set_power_state(data, false, chan->address); 818 819 mutex_unlock(&data->lock); 820 if (ret) 821 return ret; 822 return IIO_VAL_INT; 823 case IIO_CHAN_INFO_SCALE: 824 switch (chan->type) { 825 case IIO_ACCEL: 826 *val = 0; 827 *val2 = kmx61_uscale_table[data->range]; 828 return IIO_VAL_INT_PLUS_MICRO; 829 case IIO_MAGN: 830 /* 14 bits res, 1465 microGauss per magn count */ 831 *val = 0; 832 *val2 = 1465; 833 return IIO_VAL_INT_PLUS_MICRO; 834 default: 835 return -EINVAL; 836 } 837 case IIO_CHAN_INFO_SAMP_FREQ: 838 if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN) 839 return -EINVAL; 840 841 mutex_lock(&data->lock); 842 ret = kmx61_get_odr(data, val, val2, chan->address); 843 mutex_unlock(&data->lock); 844 if (ret) 845 return -EINVAL; 846 return IIO_VAL_INT_PLUS_MICRO; 847 } 848 return -EINVAL; 849 } 850 851 static int kmx61_write_raw(struct iio_dev *indio_dev, 852 struct iio_chan_spec const *chan, int val, 853 int val2, long mask) 854 { 855 int ret; 856 struct kmx61_data *data = kmx61_get_data(indio_dev); 857 858 switch (mask) { 859 case IIO_CHAN_INFO_SAMP_FREQ: 860 if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN) 861 return -EINVAL; 862 863 mutex_lock(&data->lock); 864 ret = kmx61_set_odr(data, val, val2, chan->address); 865 mutex_unlock(&data->lock); 866 return ret; 867 case IIO_CHAN_INFO_SCALE: 868 switch (chan->type) { 869 case IIO_ACCEL: 870 if (val != 0) 871 return -EINVAL; 872 mutex_lock(&data->lock); 873 ret = kmx61_set_scale(data, val2); 874 mutex_unlock(&data->lock); 875 return ret; 876 default: 877 return -EINVAL; 878 } 879 default: 880 return -EINVAL; 881 } 882 } 883 884 static int kmx61_read_event(struct iio_dev *indio_dev, 885 const struct iio_chan_spec *chan, 886 enum iio_event_type type, 887 enum iio_event_direction dir, 888 enum iio_event_info info, 889 int *val, int *val2) 890 { 891 struct kmx61_data *data = kmx61_get_data(indio_dev); 892 893 *val2 = 0; 894 switch (info) { 895 case IIO_EV_INFO_VALUE: 896 *val = data->wake_thresh; 897 return IIO_VAL_INT; 898 case IIO_EV_INFO_PERIOD: 899 *val = data->wake_duration; 900 return IIO_VAL_INT; 901 default: 902 return -EINVAL; 903 } 904 } 905 906 static int kmx61_write_event(struct iio_dev *indio_dev, 907 const struct iio_chan_spec *chan, 908 enum iio_event_type type, 909 enum iio_event_direction dir, 910 enum iio_event_info info, 911 int val, int val2) 912 { 913 struct kmx61_data *data = kmx61_get_data(indio_dev); 914 915 if (data->ev_enable_state) 916 return -EBUSY; 917 918 switch (info) { 919 case IIO_EV_INFO_VALUE: 920 data->wake_thresh = val; 921 return IIO_VAL_INT; 922 case IIO_EV_INFO_PERIOD: 923 data->wake_duration = val; 924 return IIO_VAL_INT; 925 default: 926 return -EINVAL; 927 } 928 } 929 930 static int kmx61_read_event_config(struct iio_dev *indio_dev, 931 const struct iio_chan_spec *chan, 932 enum iio_event_type type, 933 enum iio_event_direction dir) 934 { 935 struct kmx61_data *data = kmx61_get_data(indio_dev); 936 937 return data->ev_enable_state; 938 } 939 940 static int kmx61_write_event_config(struct iio_dev *indio_dev, 941 const struct iio_chan_spec *chan, 942 enum iio_event_type type, 943 enum iio_event_direction dir, 944 int state) 945 { 946 struct kmx61_data *data = kmx61_get_data(indio_dev); 947 int ret = 0; 948 949 if (state && data->ev_enable_state) 950 return 0; 951 952 mutex_lock(&data->lock); 953 954 if (!state && data->motion_trig_on) { 955 data->ev_enable_state = false; 956 goto err_unlock; 957 } 958 959 ret = kmx61_set_power_state(data, state, KMX61_ACC); 960 if (ret < 0) 961 goto err_unlock; 962 963 ret = kmx61_setup_any_motion_interrupt(data, state); 964 if (ret < 0) { 965 kmx61_set_power_state(data, false, KMX61_ACC); 966 goto err_unlock; 967 } 968 969 data->ev_enable_state = state; 970 971 err_unlock: 972 mutex_unlock(&data->lock); 973 974 return ret; 975 } 976 977 static int kmx61_acc_validate_trigger(struct iio_dev *indio_dev, 978 struct iio_trigger *trig) 979 { 980 struct kmx61_data *data = kmx61_get_data(indio_dev); 981 982 if (data->acc_dready_trig != trig && data->motion_trig != trig) 983 return -EINVAL; 984 985 return 0; 986 } 987 988 static int kmx61_mag_validate_trigger(struct iio_dev *indio_dev, 989 struct iio_trigger *trig) 990 { 991 struct kmx61_data *data = kmx61_get_data(indio_dev); 992 993 if (data->mag_dready_trig != trig) 994 return -EINVAL; 995 996 return 0; 997 } 998 999 static const struct iio_info kmx61_acc_info = { 1000 .read_raw = kmx61_read_raw, 1001 .write_raw = kmx61_write_raw, 1002 .attrs = &kmx61_acc_attribute_group, 1003 .read_event_value = kmx61_read_event, 1004 .write_event_value = kmx61_write_event, 1005 .read_event_config = kmx61_read_event_config, 1006 .write_event_config = kmx61_write_event_config, 1007 .validate_trigger = kmx61_acc_validate_trigger, 1008 }; 1009 1010 static const struct iio_info kmx61_mag_info = { 1011 .read_raw = kmx61_read_raw, 1012 .write_raw = kmx61_write_raw, 1013 .attrs = &kmx61_mag_attribute_group, 1014 .validate_trigger = kmx61_mag_validate_trigger, 1015 }; 1016 1017 1018 static int kmx61_data_rdy_trigger_set_state(struct iio_trigger *trig, 1019 bool state) 1020 { 1021 int ret = 0; 1022 u8 device; 1023 1024 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 1025 struct kmx61_data *data = kmx61_get_data(indio_dev); 1026 1027 mutex_lock(&data->lock); 1028 1029 if (!state && data->ev_enable_state && data->motion_trig_on) { 1030 data->motion_trig_on = false; 1031 goto err_unlock; 1032 } 1033 1034 if (data->acc_dready_trig == trig || data->motion_trig == trig) 1035 device = KMX61_ACC; 1036 else 1037 device = KMX61_MAG; 1038 1039 ret = kmx61_set_power_state(data, state, device); 1040 if (ret < 0) 1041 goto err_unlock; 1042 1043 if (data->acc_dready_trig == trig || data->mag_dready_trig == trig) 1044 ret = kmx61_setup_new_data_interrupt(data, state, device); 1045 else 1046 ret = kmx61_setup_any_motion_interrupt(data, state); 1047 if (ret < 0) { 1048 kmx61_set_power_state(data, false, device); 1049 goto err_unlock; 1050 } 1051 1052 if (data->acc_dready_trig == trig) 1053 data->acc_dready_trig_on = state; 1054 else if (data->mag_dready_trig == trig) 1055 data->mag_dready_trig_on = state; 1056 else 1057 data->motion_trig_on = state; 1058 err_unlock: 1059 mutex_unlock(&data->lock); 1060 1061 return ret; 1062 } 1063 1064 static void kmx61_trig_reenable(struct iio_trigger *trig) 1065 { 1066 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 1067 struct kmx61_data *data = kmx61_get_data(indio_dev); 1068 int ret; 1069 1070 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL); 1071 if (ret < 0) 1072 dev_err(&data->client->dev, "Error reading reg_inl\n"); 1073 } 1074 1075 static const struct iio_trigger_ops kmx61_trigger_ops = { 1076 .set_trigger_state = kmx61_data_rdy_trigger_set_state, 1077 .reenable = kmx61_trig_reenable, 1078 }; 1079 1080 static irqreturn_t kmx61_event_handler(int irq, void *private) 1081 { 1082 struct kmx61_data *data = private; 1083 struct iio_dev *indio_dev = data->acc_indio_dev; 1084 int ret; 1085 1086 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1); 1087 if (ret < 0) { 1088 dev_err(&data->client->dev, "Error reading reg_ins1\n"); 1089 goto ack_intr; 1090 } 1091 1092 if (ret & KMX61_REG_INS1_BIT_WUFS) { 1093 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS2); 1094 if (ret < 0) { 1095 dev_err(&data->client->dev, "Error reading reg_ins2\n"); 1096 goto ack_intr; 1097 } 1098 1099 if (ret & KMX61_REG_INS2_BIT_XN) 1100 iio_push_event(indio_dev, 1101 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1102 0, 1103 IIO_MOD_X, 1104 IIO_EV_TYPE_THRESH, 1105 IIO_EV_DIR_FALLING), 1106 0); 1107 1108 if (ret & KMX61_REG_INS2_BIT_XP) 1109 iio_push_event(indio_dev, 1110 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1111 0, 1112 IIO_MOD_X, 1113 IIO_EV_TYPE_THRESH, 1114 IIO_EV_DIR_RISING), 1115 0); 1116 1117 if (ret & KMX61_REG_INS2_BIT_YN) 1118 iio_push_event(indio_dev, 1119 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1120 0, 1121 IIO_MOD_Y, 1122 IIO_EV_TYPE_THRESH, 1123 IIO_EV_DIR_FALLING), 1124 0); 1125 1126 if (ret & KMX61_REG_INS2_BIT_YP) 1127 iio_push_event(indio_dev, 1128 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1129 0, 1130 IIO_MOD_Y, 1131 IIO_EV_TYPE_THRESH, 1132 IIO_EV_DIR_RISING), 1133 0); 1134 1135 if (ret & KMX61_REG_INS2_BIT_ZN) 1136 iio_push_event(indio_dev, 1137 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1138 0, 1139 IIO_MOD_Z, 1140 IIO_EV_TYPE_THRESH, 1141 IIO_EV_DIR_FALLING), 1142 0); 1143 1144 if (ret & KMX61_REG_INS2_BIT_ZP) 1145 iio_push_event(indio_dev, 1146 IIO_MOD_EVENT_CODE(IIO_ACCEL, 1147 0, 1148 IIO_MOD_Z, 1149 IIO_EV_TYPE_THRESH, 1150 IIO_EV_DIR_RISING), 1151 0); 1152 } 1153 1154 ack_intr: 1155 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1); 1156 if (ret < 0) 1157 dev_err(&data->client->dev, "Error reading reg_ctrl1\n"); 1158 1159 ret |= KMX61_REG_CTRL1_BIT_RES; 1160 ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret); 1161 if (ret < 0) 1162 dev_err(&data->client->dev, "Error writing reg_ctrl1\n"); 1163 1164 ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL); 1165 if (ret < 0) 1166 dev_err(&data->client->dev, "Error reading reg_inl\n"); 1167 1168 return IRQ_HANDLED; 1169 } 1170 1171 static irqreturn_t kmx61_data_rdy_trig_poll(int irq, void *private) 1172 { 1173 struct kmx61_data *data = private; 1174 1175 if (data->acc_dready_trig_on) 1176 iio_trigger_poll(data->acc_dready_trig); 1177 if (data->mag_dready_trig_on) 1178 iio_trigger_poll(data->mag_dready_trig); 1179 1180 if (data->motion_trig_on) 1181 iio_trigger_poll(data->motion_trig); 1182 1183 if (data->ev_enable_state) 1184 return IRQ_WAKE_THREAD; 1185 return IRQ_HANDLED; 1186 } 1187 1188 static irqreturn_t kmx61_trigger_handler(int irq, void *p) 1189 { 1190 struct iio_poll_func *pf = p; 1191 struct iio_dev *indio_dev = pf->indio_dev; 1192 struct kmx61_data *data = kmx61_get_data(indio_dev); 1193 int bit, ret, i = 0; 1194 u8 base; 1195 s16 buffer[8]; 1196 1197 if (indio_dev == data->acc_indio_dev) 1198 base = KMX61_ACC_XOUT_L; 1199 else 1200 base = KMX61_MAG_XOUT_L; 1201 1202 mutex_lock(&data->lock); 1203 for_each_set_bit(bit, indio_dev->active_scan_mask, 1204 indio_dev->masklength) { 1205 ret = kmx61_read_measurement(data, base, bit); 1206 if (ret < 0) { 1207 mutex_unlock(&data->lock); 1208 goto err; 1209 } 1210 buffer[i++] = ret; 1211 } 1212 mutex_unlock(&data->lock); 1213 1214 iio_push_to_buffers(indio_dev, buffer); 1215 err: 1216 iio_trigger_notify_done(indio_dev->trig); 1217 1218 return IRQ_HANDLED; 1219 } 1220 1221 static const char *kmx61_match_acpi_device(struct device *dev) 1222 { 1223 const struct acpi_device_id *id; 1224 1225 id = acpi_match_device(dev->driver->acpi_match_table, dev); 1226 if (!id) 1227 return NULL; 1228 return dev_name(dev); 1229 } 1230 1231 static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data, 1232 const struct iio_info *info, 1233 const struct iio_chan_spec *chan, 1234 int num_channels, 1235 const char *name) 1236 { 1237 struct iio_dev *indio_dev; 1238 1239 indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data)); 1240 if (!indio_dev) 1241 return ERR_PTR(-ENOMEM); 1242 1243 kmx61_set_data(indio_dev, data); 1244 1245 indio_dev->channels = chan; 1246 indio_dev->num_channels = num_channels; 1247 indio_dev->name = name; 1248 indio_dev->modes = INDIO_DIRECT_MODE; 1249 indio_dev->info = info; 1250 1251 return indio_dev; 1252 } 1253 1254 static struct iio_trigger *kmx61_trigger_setup(struct kmx61_data *data, 1255 struct iio_dev *indio_dev, 1256 const char *tag) 1257 { 1258 struct iio_trigger *trig; 1259 int ret; 1260 1261 trig = devm_iio_trigger_alloc(&data->client->dev, 1262 "%s-%s-dev%d", 1263 indio_dev->name, 1264 tag, 1265 iio_device_id(indio_dev)); 1266 if (!trig) 1267 return ERR_PTR(-ENOMEM); 1268 1269 trig->ops = &kmx61_trigger_ops; 1270 iio_trigger_set_drvdata(trig, indio_dev); 1271 1272 ret = iio_trigger_register(trig); 1273 if (ret) 1274 return ERR_PTR(ret); 1275 1276 return trig; 1277 } 1278 1279 static int kmx61_probe(struct i2c_client *client) 1280 { 1281 const struct i2c_device_id *id = i2c_client_get_device_id(client); 1282 int ret; 1283 struct kmx61_data *data; 1284 const char *name = NULL; 1285 1286 data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL); 1287 if (!data) 1288 return -ENOMEM; 1289 1290 i2c_set_clientdata(client, data); 1291 data->client = client; 1292 1293 mutex_init(&data->lock); 1294 1295 if (id) 1296 name = id->name; 1297 else if (ACPI_HANDLE(&client->dev)) 1298 name = kmx61_match_acpi_device(&client->dev); 1299 else 1300 return -ENODEV; 1301 1302 data->acc_indio_dev = 1303 kmx61_indiodev_setup(data, &kmx61_acc_info, 1304 kmx61_acc_channels, 1305 ARRAY_SIZE(kmx61_acc_channels), 1306 name); 1307 if (IS_ERR(data->acc_indio_dev)) 1308 return PTR_ERR(data->acc_indio_dev); 1309 1310 data->mag_indio_dev = 1311 kmx61_indiodev_setup(data, &kmx61_mag_info, 1312 kmx61_mag_channels, 1313 ARRAY_SIZE(kmx61_mag_channels), 1314 name); 1315 if (IS_ERR(data->mag_indio_dev)) 1316 return PTR_ERR(data->mag_indio_dev); 1317 1318 ret = kmx61_chip_init(data); 1319 if (ret < 0) 1320 return ret; 1321 1322 if (client->irq > 0) { 1323 ret = devm_request_threaded_irq(&client->dev, client->irq, 1324 kmx61_data_rdy_trig_poll, 1325 kmx61_event_handler, 1326 IRQF_TRIGGER_RISING, 1327 KMX61_IRQ_NAME, 1328 data); 1329 if (ret) 1330 goto err_chip_uninit; 1331 1332 data->acc_dready_trig = 1333 kmx61_trigger_setup(data, data->acc_indio_dev, 1334 "dready"); 1335 if (IS_ERR(data->acc_dready_trig)) { 1336 ret = PTR_ERR(data->acc_dready_trig); 1337 goto err_chip_uninit; 1338 } 1339 1340 data->mag_dready_trig = 1341 kmx61_trigger_setup(data, data->mag_indio_dev, 1342 "dready"); 1343 if (IS_ERR(data->mag_dready_trig)) { 1344 ret = PTR_ERR(data->mag_dready_trig); 1345 goto err_trigger_unregister_acc_dready; 1346 } 1347 1348 data->motion_trig = 1349 kmx61_trigger_setup(data, data->acc_indio_dev, 1350 "any-motion"); 1351 if (IS_ERR(data->motion_trig)) { 1352 ret = PTR_ERR(data->motion_trig); 1353 goto err_trigger_unregister_mag_dready; 1354 } 1355 1356 ret = iio_triggered_buffer_setup(data->acc_indio_dev, 1357 &iio_pollfunc_store_time, 1358 kmx61_trigger_handler, 1359 NULL); 1360 if (ret < 0) { 1361 dev_err(&data->client->dev, 1362 "Failed to setup acc triggered buffer\n"); 1363 goto err_trigger_unregister_motion; 1364 } 1365 1366 ret = iio_triggered_buffer_setup(data->mag_indio_dev, 1367 &iio_pollfunc_store_time, 1368 kmx61_trigger_handler, 1369 NULL); 1370 if (ret < 0) { 1371 dev_err(&data->client->dev, 1372 "Failed to setup mag triggered buffer\n"); 1373 goto err_buffer_cleanup_acc; 1374 } 1375 } 1376 1377 ret = pm_runtime_set_active(&client->dev); 1378 if (ret < 0) 1379 goto err_buffer_cleanup_mag; 1380 1381 pm_runtime_enable(&client->dev); 1382 pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS); 1383 pm_runtime_use_autosuspend(&client->dev); 1384 1385 ret = iio_device_register(data->acc_indio_dev); 1386 if (ret < 0) { 1387 dev_err(&client->dev, "Failed to register acc iio device\n"); 1388 goto err_pm_cleanup; 1389 } 1390 1391 ret = iio_device_register(data->mag_indio_dev); 1392 if (ret < 0) { 1393 dev_err(&client->dev, "Failed to register mag iio device\n"); 1394 goto err_iio_unregister_acc; 1395 } 1396 1397 return 0; 1398 1399 err_iio_unregister_acc: 1400 iio_device_unregister(data->acc_indio_dev); 1401 err_pm_cleanup: 1402 pm_runtime_dont_use_autosuspend(&client->dev); 1403 pm_runtime_disable(&client->dev); 1404 err_buffer_cleanup_mag: 1405 if (client->irq > 0) 1406 iio_triggered_buffer_cleanup(data->mag_indio_dev); 1407 err_buffer_cleanup_acc: 1408 if (client->irq > 0) 1409 iio_triggered_buffer_cleanup(data->acc_indio_dev); 1410 err_trigger_unregister_motion: 1411 iio_trigger_unregister(data->motion_trig); 1412 err_trigger_unregister_mag_dready: 1413 iio_trigger_unregister(data->mag_dready_trig); 1414 err_trigger_unregister_acc_dready: 1415 iio_trigger_unregister(data->acc_dready_trig); 1416 err_chip_uninit: 1417 kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); 1418 return ret; 1419 } 1420 1421 static void kmx61_remove(struct i2c_client *client) 1422 { 1423 struct kmx61_data *data = i2c_get_clientdata(client); 1424 1425 iio_device_unregister(data->acc_indio_dev); 1426 iio_device_unregister(data->mag_indio_dev); 1427 1428 pm_runtime_disable(&client->dev); 1429 pm_runtime_set_suspended(&client->dev); 1430 1431 if (client->irq > 0) { 1432 iio_triggered_buffer_cleanup(data->acc_indio_dev); 1433 iio_triggered_buffer_cleanup(data->mag_indio_dev); 1434 iio_trigger_unregister(data->acc_dready_trig); 1435 iio_trigger_unregister(data->mag_dready_trig); 1436 iio_trigger_unregister(data->motion_trig); 1437 } 1438 1439 mutex_lock(&data->lock); 1440 kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); 1441 mutex_unlock(&data->lock); 1442 } 1443 1444 static int kmx61_suspend(struct device *dev) 1445 { 1446 int ret; 1447 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); 1448 1449 mutex_lock(&data->lock); 1450 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, 1451 false); 1452 mutex_unlock(&data->lock); 1453 1454 return ret; 1455 } 1456 1457 static int kmx61_resume(struct device *dev) 1458 { 1459 u8 stby = 0; 1460 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); 1461 1462 if (data->acc_stby) 1463 stby |= KMX61_ACC_STBY_BIT; 1464 if (data->mag_stby) 1465 stby |= KMX61_MAG_STBY_BIT; 1466 1467 return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true); 1468 } 1469 1470 static int kmx61_runtime_suspend(struct device *dev) 1471 { 1472 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); 1473 int ret; 1474 1475 mutex_lock(&data->lock); 1476 ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true); 1477 mutex_unlock(&data->lock); 1478 1479 return ret; 1480 } 1481 1482 static int kmx61_runtime_resume(struct device *dev) 1483 { 1484 struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev)); 1485 u8 stby = 0; 1486 1487 if (!data->acc_ps) 1488 stby |= KMX61_ACC_STBY_BIT; 1489 if (!data->mag_ps) 1490 stby |= KMX61_MAG_STBY_BIT; 1491 1492 return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true); 1493 } 1494 1495 static const struct dev_pm_ops kmx61_pm_ops = { 1496 SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume) 1497 RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL) 1498 }; 1499 1500 static const struct acpi_device_id kmx61_acpi_match[] = { 1501 {"KMX61021", 0}, 1502 {} 1503 }; 1504 1505 MODULE_DEVICE_TABLE(acpi, kmx61_acpi_match); 1506 1507 static const struct i2c_device_id kmx61_id[] = { 1508 {"kmx611021", 0}, 1509 {} 1510 }; 1511 1512 MODULE_DEVICE_TABLE(i2c, kmx61_id); 1513 1514 static struct i2c_driver kmx61_driver = { 1515 .driver = { 1516 .name = KMX61_DRV_NAME, 1517 .acpi_match_table = ACPI_PTR(kmx61_acpi_match), 1518 .pm = pm_ptr(&kmx61_pm_ops), 1519 }, 1520 .probe_new = kmx61_probe, 1521 .remove = kmx61_remove, 1522 .id_table = kmx61_id, 1523 }; 1524 1525 module_i2c_driver(kmx61_driver); 1526 1527 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>"); 1528 MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver"); 1529 MODULE_LICENSE("GPL v2"); 1530