xref: /linux/drivers/iio/imu/kmx61.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KMX61 - Kionix 6-axis Accelerometer/Magnetometer
4  *
5  * Copyright (c) 2014, Intel Corporation.
6  *
7  * IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F).
8  */
9 
10 #include <linux/i2c.h>
11 #include <linux/interrupt.h>
12 #include <linux/mod_devicetable.h>
13 #include <linux/module.h>
14 #include <linux/pm.h>
15 #include <linux/pm_runtime.h>
16 
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
24 
25 #define KMX61_REG_WHO_AM_I	0x00
26 #define KMX61_REG_INS1		0x01
27 #define KMX61_REG_INS2		0x02
28 
29 /*
30  * three 16-bit accelerometer output registers for X/Y/Z axis
31  * we use only XOUT_L as a base register, all other addresses
32  * can be obtained by applying an offset and are provided here
33  * only for clarity.
34  */
35 #define KMX61_ACC_XOUT_L	0x0A
36 #define KMX61_ACC_XOUT_H	0x0B
37 #define KMX61_ACC_YOUT_L	0x0C
38 #define KMX61_ACC_YOUT_H	0x0D
39 #define KMX61_ACC_ZOUT_L	0x0E
40 #define KMX61_ACC_ZOUT_H	0x0F
41 
42 /*
43  * one 16-bit temperature output register
44  */
45 #define KMX61_TEMP_L		0x10
46 #define KMX61_TEMP_H		0x11
47 
48 /*
49  * three 16-bit magnetometer output registers for X/Y/Z axis
50  */
51 #define KMX61_MAG_XOUT_L	0x12
52 #define KMX61_MAG_XOUT_H	0x13
53 #define KMX61_MAG_YOUT_L	0x14
54 #define KMX61_MAG_YOUT_H	0x15
55 #define KMX61_MAG_ZOUT_L	0x16
56 #define KMX61_MAG_ZOUT_H	0x17
57 
58 #define KMX61_REG_INL		0x28
59 #define KMX61_REG_STBY		0x29
60 #define KMX61_REG_CTRL1		0x2A
61 #define KMX61_REG_CTRL2		0x2B
62 #define KMX61_REG_ODCNTL	0x2C
63 #define KMX61_REG_INC1		0x2D
64 
65 #define KMX61_REG_WUF_THRESH	0x3D
66 #define KMX61_REG_WUF_TIMER	0x3E
67 
68 #define KMX61_ACC_STBY_BIT	BIT(0)
69 #define KMX61_MAG_STBY_BIT	BIT(1)
70 #define KMX61_ACT_STBY_BIT	BIT(7)
71 
72 #define KMX61_ALL_STBY		(KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT)
73 
74 #define KMX61_REG_INS1_BIT_WUFS		BIT(1)
75 
76 #define KMX61_REG_INS2_BIT_ZP		BIT(0)
77 #define KMX61_REG_INS2_BIT_ZN		BIT(1)
78 #define KMX61_REG_INS2_BIT_YP		BIT(2)
79 #define KMX61_REG_INS2_BIT_YN		BIT(3)
80 #define KMX61_REG_INS2_BIT_XP		BIT(4)
81 #define KMX61_REG_INS2_BIT_XN		BIT(5)
82 
83 #define KMX61_REG_CTRL1_GSEL_MASK	0x03
84 
85 #define KMX61_REG_CTRL1_BIT_RES		BIT(4)
86 #define KMX61_REG_CTRL1_BIT_DRDYE	BIT(5)
87 #define KMX61_REG_CTRL1_BIT_WUFE	BIT(6)
88 #define KMX61_REG_CTRL1_BIT_BTSE	BIT(7)
89 
90 #define KMX61_REG_INC1_BIT_WUFS		BIT(0)
91 #define KMX61_REG_INC1_BIT_DRDYM	BIT(1)
92 #define KMX61_REG_INC1_BIT_DRDYA	BIT(2)
93 #define KMX61_REG_INC1_BIT_IEN		BIT(5)
94 
95 #define KMX61_ACC_ODR_SHIFT	0
96 #define KMX61_MAG_ODR_SHIFT	4
97 #define KMX61_ACC_ODR_MASK	0x0F
98 #define KMX61_MAG_ODR_MASK	0xF0
99 
100 #define KMX61_OWUF_MASK		0x7
101 
102 #define KMX61_DEFAULT_WAKE_THRESH	1
103 #define KMX61_DEFAULT_WAKE_DURATION	1
104 
105 #define KMX61_SLEEP_DELAY_MS	2000
106 
107 #define KMX61_CHIP_ID		0x12
108 
109 /* KMX61 devices */
110 #define KMX61_ACC	0x01
111 #define KMX61_MAG	0x02
112 
113 struct kmx61_data {
114 	struct i2c_client *client;
115 
116 	/* serialize access to non-atomic ops, e.g set_mode */
117 	struct mutex lock;
118 
119 	/* standby state */
120 	bool acc_stby;
121 	bool mag_stby;
122 
123 	/* power state */
124 	bool acc_ps;
125 	bool mag_ps;
126 
127 	/* config bits */
128 	u8 range;
129 	u8 odr_bits;
130 	u8 wake_thresh;
131 	u8 wake_duration;
132 
133 	/* accelerometer specific data */
134 	struct iio_dev *acc_indio_dev;
135 	struct iio_trigger *acc_dready_trig;
136 	struct iio_trigger *motion_trig;
137 	bool acc_dready_trig_on;
138 	bool motion_trig_on;
139 	bool ev_enable_state;
140 
141 	/* magnetometer specific data */
142 	struct iio_dev *mag_indio_dev;
143 	struct iio_trigger *mag_dready_trig;
144 	bool mag_dready_trig_on;
145 };
146 
147 enum kmx61_range {
148 	KMX61_RANGE_2G,
149 	KMX61_RANGE_4G,
150 	KMX61_RANGE_8G,
151 };
152 
153 enum kmx61_axis {
154 	KMX61_AXIS_X,
155 	KMX61_AXIS_Y,
156 	KMX61_AXIS_Z,
157 };
158 
159 static const u16 kmx61_uscale_table[] = {9582, 19163, 38326};
160 
161 static const struct {
162 	int val;
163 	int val2;
164 } kmx61_samp_freq_table[] = { {12, 500000},
165 			{25, 0},
166 			{50, 0},
167 			{100, 0},
168 			{200, 0},
169 			{400, 0},
170 			{800, 0},
171 			{1600, 0},
172 			{0, 781000},
173 			{1, 563000},
174 			{3, 125000},
175 			{6, 250000} };
176 
177 static const struct {
178 	int val;
179 	int val2;
180 	int odr_bits;
181 } kmx61_wake_up_odr_table[] = { {0, 781000, 0x00},
182 				 {1, 563000, 0x01},
183 				 {3, 125000, 0x02},
184 				 {6, 250000, 0x03},
185 				 {12, 500000, 0x04},
186 				 {25, 0, 0x05},
187 				 {50, 0, 0x06},
188 				 {100, 0, 0x06},
189 				 {200, 0, 0x06},
190 				 {400, 0, 0x06},
191 				 {800, 0, 0x06},
192 				 {1600, 0, 0x06} };
193 
194 static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326");
195 static IIO_CONST_ATTR(magn_scale_available, "0.001465");
196 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
197 	"0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800");
198 
199 static struct attribute *kmx61_acc_attributes[] = {
200 	&iio_const_attr_accel_scale_available.dev_attr.attr,
201 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
202 	NULL,
203 };
204 
205 static struct attribute *kmx61_mag_attributes[] = {
206 	&iio_const_attr_magn_scale_available.dev_attr.attr,
207 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
208 	NULL,
209 };
210 
211 static const struct attribute_group kmx61_acc_attribute_group = {
212 	.attrs = kmx61_acc_attributes,
213 };
214 
215 static const struct attribute_group kmx61_mag_attribute_group = {
216 	.attrs = kmx61_mag_attributes,
217 };
218 
219 static const struct iio_event_spec kmx61_event = {
220 	.type = IIO_EV_TYPE_THRESH,
221 	.dir = IIO_EV_DIR_EITHER,
222 	.mask_separate = BIT(IIO_EV_INFO_VALUE) |
223 			 BIT(IIO_EV_INFO_ENABLE) |
224 			 BIT(IIO_EV_INFO_PERIOD),
225 };
226 
227 #define KMX61_ACC_CHAN(_axis) { \
228 	.type = IIO_ACCEL, \
229 	.modified = 1, \
230 	.channel2 = IIO_MOD_ ## _axis, \
231 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
232 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
233 				BIT(IIO_CHAN_INFO_SAMP_FREQ), \
234 	.address = KMX61_ACC, \
235 	.scan_index = KMX61_AXIS_ ## _axis, \
236 	.scan_type = { \
237 		.sign = 's', \
238 		.realbits = 12, \
239 		.storagebits = 16, \
240 		.shift = 4, \
241 		.endianness = IIO_LE, \
242 	}, \
243 	.event_spec = &kmx61_event, \
244 	.num_event_specs = 1 \
245 }
246 
247 #define KMX61_MAG_CHAN(_axis) { \
248 	.type = IIO_MAGN, \
249 	.modified = 1, \
250 	.channel2 = IIO_MOD_ ## _axis, \
251 	.address = KMX61_MAG, \
252 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
253 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
254 				BIT(IIO_CHAN_INFO_SAMP_FREQ), \
255 	.scan_index = KMX61_AXIS_ ## _axis, \
256 	.scan_type = { \
257 		.sign = 's', \
258 		.realbits = 14, \
259 		.storagebits = 16, \
260 		.shift = 2, \
261 		.endianness = IIO_LE, \
262 	}, \
263 }
264 
265 static const struct iio_chan_spec kmx61_acc_channels[] = {
266 	KMX61_ACC_CHAN(X),
267 	KMX61_ACC_CHAN(Y),
268 	KMX61_ACC_CHAN(Z),
269 };
270 
271 static const struct iio_chan_spec kmx61_mag_channels[] = {
272 	KMX61_MAG_CHAN(X),
273 	KMX61_MAG_CHAN(Y),
274 	KMX61_MAG_CHAN(Z),
275 };
276 
277 static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data)
278 {
279 	struct kmx61_data **priv = iio_priv(indio_dev);
280 
281 	*priv = data;
282 }
283 
284 static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev)
285 {
286 	return *(struct kmx61_data **)iio_priv(indio_dev);
287 }
288 
289 static int kmx61_convert_freq_to_bit(int val, int val2)
290 {
291 	int i;
292 
293 	for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
294 		if (val == kmx61_samp_freq_table[i].val &&
295 		    val2 == kmx61_samp_freq_table[i].val2)
296 			return i;
297 	return -EINVAL;
298 }
299 
300 static int kmx61_convert_wake_up_odr_to_bit(int val, int val2)
301 {
302 	int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(kmx61_wake_up_odr_table); ++i)
305 		if (kmx61_wake_up_odr_table[i].val == val &&
306 			kmx61_wake_up_odr_table[i].val2 == val2)
307 				return kmx61_wake_up_odr_table[i].odr_bits;
308 	return -EINVAL;
309 }
310 
311 /**
312  * kmx61_set_mode() - set KMX61 device operating mode
313  * @data: kmx61 device private data pointer
314  * @mode: bitmask, indicating operating mode for @device
315  * @device: bitmask, indicating device for which @mode needs to be set
316  * @update: update stby bits stored in device's private  @data
317  *
318  * For each sensor (accelerometer/magnetometer) there are two operating modes
319  * STANDBY and OPERATION. Neither accel nor magn can be disabled independently
320  * if they are both enabled. Internal sensors state is saved in acc_stby and
321  * mag_stby members of driver's private @data.
322  */
323 static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device,
324 			  bool update)
325 {
326 	int ret;
327 	int acc_stby = -1, mag_stby = -1;
328 
329 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
330 	if (ret < 0) {
331 		dev_err(&data->client->dev, "Error reading reg_stby\n");
332 		return ret;
333 	}
334 	if (device & KMX61_ACC) {
335 		if (mode & KMX61_ACC_STBY_BIT) {
336 			ret |= KMX61_ACC_STBY_BIT;
337 			acc_stby = 1;
338 		} else {
339 			ret &= ~KMX61_ACC_STBY_BIT;
340 			acc_stby = 0;
341 		}
342 	}
343 
344 	if (device & KMX61_MAG) {
345 		if (mode & KMX61_MAG_STBY_BIT) {
346 			ret |= KMX61_MAG_STBY_BIT;
347 			mag_stby = 1;
348 		} else {
349 			ret &= ~KMX61_MAG_STBY_BIT;
350 			mag_stby = 0;
351 		}
352 	}
353 
354 	if (mode & KMX61_ACT_STBY_BIT)
355 		ret |= KMX61_ACT_STBY_BIT;
356 
357 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret);
358 	if (ret < 0) {
359 		dev_err(&data->client->dev, "Error writing reg_stby\n");
360 		return ret;
361 	}
362 
363 	if (acc_stby != -1 && update)
364 		data->acc_stby = acc_stby;
365 	if (mag_stby != -1 && update)
366 		data->mag_stby = mag_stby;
367 
368 	return 0;
369 }
370 
371 static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device)
372 {
373 	int ret;
374 
375 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
376 	if (ret < 0) {
377 		dev_err(&data->client->dev, "Error reading reg_stby\n");
378 		return ret;
379 	}
380 	*mode = 0;
381 
382 	if (device & KMX61_ACC) {
383 		if (ret & KMX61_ACC_STBY_BIT)
384 			*mode |= KMX61_ACC_STBY_BIT;
385 		else
386 			*mode &= ~KMX61_ACC_STBY_BIT;
387 	}
388 
389 	if (device & KMX61_MAG) {
390 		if (ret & KMX61_MAG_STBY_BIT)
391 			*mode |= KMX61_MAG_STBY_BIT;
392 		else
393 			*mode &= ~KMX61_MAG_STBY_BIT;
394 	}
395 
396 	return 0;
397 }
398 
399 static int kmx61_set_wake_up_odr(struct kmx61_data *data, int val, int val2)
400 {
401 	int ret, odr_bits;
402 
403 	odr_bits = kmx61_convert_wake_up_odr_to_bit(val, val2);
404 	if (odr_bits < 0)
405 		return odr_bits;
406 
407 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL2,
408 					odr_bits);
409 	if (ret < 0)
410 		dev_err(&data->client->dev, "Error writing reg_ctrl2\n");
411 	return ret;
412 }
413 
414 static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device)
415 {
416 	int ret;
417 	u8 mode;
418 	int lodr_bits, odr_bits;
419 
420 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
421 	if (ret < 0)
422 		return ret;
423 
424 	lodr_bits = kmx61_convert_freq_to_bit(val, val2);
425 	if (lodr_bits < 0)
426 		return lodr_bits;
427 
428 	/* To change ODR, accel and magn must be in STDBY */
429 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
430 			     true);
431 	if (ret < 0)
432 		return ret;
433 
434 	odr_bits = 0;
435 	if (device & KMX61_ACC)
436 		odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT;
437 	if (device & KMX61_MAG)
438 		odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT;
439 
440 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL,
441 					odr_bits);
442 	if (ret < 0)
443 		return ret;
444 
445 	data->odr_bits = odr_bits;
446 
447 	if (device & KMX61_ACC) {
448 		ret = kmx61_set_wake_up_odr(data, val, val2);
449 		if (ret)
450 			return ret;
451 	}
452 
453 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
454 }
455 
456 static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2,
457 			 u8 device)
458 {
459 	u8 lodr_bits;
460 
461 	if (device & KMX61_ACC)
462 		lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) &
463 			     KMX61_ACC_ODR_MASK;
464 	else if (device & KMX61_MAG)
465 		lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) &
466 			     KMX61_MAG_ODR_MASK;
467 	else
468 		return -EINVAL;
469 
470 	if (lodr_bits >= ARRAY_SIZE(kmx61_samp_freq_table))
471 		return -EINVAL;
472 
473 	*val = kmx61_samp_freq_table[lodr_bits].val;
474 	*val2 = kmx61_samp_freq_table[lodr_bits].val2;
475 
476 	return 0;
477 }
478 
479 static int kmx61_set_range(struct kmx61_data *data, u8 range)
480 {
481 	int ret;
482 
483 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
484 	if (ret < 0) {
485 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
486 		return ret;
487 	}
488 
489 	ret &= ~KMX61_REG_CTRL1_GSEL_MASK;
490 	ret |= range & KMX61_REG_CTRL1_GSEL_MASK;
491 
492 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
493 	if (ret < 0) {
494 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
495 		return ret;
496 	}
497 
498 	data->range = range;
499 
500 	return 0;
501 }
502 
503 static int kmx61_set_scale(struct kmx61_data *data, u16 uscale)
504 {
505 	int ret, i;
506 	u8  mode;
507 
508 	for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) {
509 		if (kmx61_uscale_table[i] == uscale) {
510 			ret = kmx61_get_mode(data, &mode,
511 					     KMX61_ACC | KMX61_MAG);
512 			if (ret < 0)
513 				return ret;
514 
515 			ret = kmx61_set_mode(data, KMX61_ALL_STBY,
516 					     KMX61_ACC | KMX61_MAG, true);
517 			if (ret < 0)
518 				return ret;
519 
520 			ret = kmx61_set_range(data, i);
521 			if (ret < 0)
522 				return ret;
523 
524 			return  kmx61_set_mode(data, mode,
525 					       KMX61_ACC | KMX61_MAG, true);
526 		}
527 	}
528 	return -EINVAL;
529 }
530 
531 static int kmx61_chip_init(struct kmx61_data *data)
532 {
533 	int ret, val, val2;
534 
535 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I);
536 	if (ret < 0) {
537 		dev_err(&data->client->dev, "Error reading who_am_i\n");
538 		return ret;
539 	}
540 
541 	if (ret != KMX61_CHIP_ID) {
542 		dev_err(&data->client->dev,
543 			"Wrong chip id, got %x expected %x\n",
544 			 ret, KMX61_CHIP_ID);
545 		return -EINVAL;
546 	}
547 
548 	/* set accel 12bit, 4g range */
549 	ret = kmx61_set_range(data, KMX61_RANGE_4G);
550 	if (ret < 0)
551 		return ret;
552 
553 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL);
554 	if (ret < 0) {
555 		dev_err(&data->client->dev, "Error reading reg_odcntl\n");
556 		return ret;
557 	}
558 	data->odr_bits = ret;
559 
560 	/*
561 	 * set output data rate for wake up (motion detection) function
562 	 * to match data rate for accelerometer sampling
563 	 */
564 	ret = kmx61_get_odr(data, &val, &val2, KMX61_ACC);
565 	if (ret < 0)
566 		return ret;
567 
568 	ret = kmx61_set_wake_up_odr(data, val, val2);
569 	if (ret < 0)
570 		return ret;
571 
572 	/* set acc/magn to OPERATION mode */
573 	ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true);
574 	if (ret < 0)
575 		return ret;
576 
577 	data->wake_thresh = KMX61_DEFAULT_WAKE_THRESH;
578 	data->wake_duration = KMX61_DEFAULT_WAKE_DURATION;
579 
580 	return 0;
581 }
582 
583 static int kmx61_setup_new_data_interrupt(struct kmx61_data *data,
584 					  bool status, u8 device)
585 {
586 	u8 mode;
587 	int ret;
588 
589 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
590 	if (ret < 0)
591 		return ret;
592 
593 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
594 	if (ret < 0)
595 		return ret;
596 
597 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
598 	if (ret < 0) {
599 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
600 		return ret;
601 	}
602 
603 	if (status) {
604 		ret |= KMX61_REG_INC1_BIT_IEN;
605 		if (device & KMX61_ACC)
606 			ret |= KMX61_REG_INC1_BIT_DRDYA;
607 		if (device & KMX61_MAG)
608 			ret |=  KMX61_REG_INC1_BIT_DRDYM;
609 	} else {
610 		ret &= ~KMX61_REG_INC1_BIT_IEN;
611 		if (device & KMX61_ACC)
612 			ret &= ~KMX61_REG_INC1_BIT_DRDYA;
613 		if (device & KMX61_MAG)
614 			ret &= ~KMX61_REG_INC1_BIT_DRDYM;
615 	}
616 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
617 	if (ret < 0) {
618 		dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
619 		return ret;
620 	}
621 
622 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
623 	if (ret < 0) {
624 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
625 		return ret;
626 	}
627 
628 	if (status)
629 		ret |= KMX61_REG_CTRL1_BIT_DRDYE;
630 	else
631 		ret &= ~KMX61_REG_CTRL1_BIT_DRDYE;
632 
633 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
634 	if (ret < 0) {
635 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
636 		return ret;
637 	}
638 
639 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
640 }
641 
642 static int kmx61_chip_update_thresholds(struct kmx61_data *data)
643 {
644 	int ret;
645 
646 	ret = i2c_smbus_write_byte_data(data->client,
647 					KMX61_REG_WUF_TIMER,
648 					data->wake_duration);
649 	if (ret < 0) {
650 		dev_err(&data->client->dev, "Error writing reg_wuf_timer\n");
651 		return ret;
652 	}
653 
654 	ret = i2c_smbus_write_byte_data(data->client,
655 					KMX61_REG_WUF_THRESH,
656 					data->wake_thresh);
657 	if (ret < 0)
658 		dev_err(&data->client->dev, "Error writing reg_wuf_thresh\n");
659 
660 	return ret;
661 }
662 
663 static int kmx61_setup_any_motion_interrupt(struct kmx61_data *data,
664 					    bool status)
665 {
666 	u8 mode;
667 	int ret;
668 
669 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
670 	if (ret < 0)
671 		return ret;
672 
673 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
674 	if (ret < 0)
675 		return ret;
676 
677 	ret = kmx61_chip_update_thresholds(data);
678 	if (ret < 0)
679 		return ret;
680 
681 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
682 	if (ret < 0) {
683 		dev_err(&data->client->dev, "Error reading reg_inc1\n");
684 		return ret;
685 	}
686 	if (status)
687 		ret |= (KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
688 	else
689 		ret &= ~(KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
690 
691 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
692 	if (ret < 0) {
693 		dev_err(&data->client->dev, "Error writing reg_inc1\n");
694 		return ret;
695 	}
696 
697 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
698 	if (ret < 0) {
699 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
700 		return ret;
701 	}
702 
703 	if (status)
704 		ret |= KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE;
705 	else
706 		ret &= ~(KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE);
707 
708 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
709 	if (ret < 0) {
710 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
711 		return ret;
712 	}
713 	mode |= KMX61_ACT_STBY_BIT;
714 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
715 }
716 
717 /**
718  * kmx61_set_power_state() - set power state for kmx61 @device
719  * @data: kmx61 device private pointer
720  * @on: power state to be set for @device
721  * @device: bitmask indicating device for which @on state needs to be set
722  *
723  * Notice that when ACC power state needs to be set to ON and MAG is in
724  * OPERATION then we know that kmx61_runtime_resume was already called
725  * so we must set ACC OPERATION mode here. The same happens when MAG power
726  * state needs to be set to ON and ACC is in OPERATION.
727  */
728 static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device)
729 {
730 #ifdef CONFIG_PM
731 	int ret;
732 
733 	if (device & KMX61_ACC) {
734 		if (on && !data->acc_ps && !data->mag_stby) {
735 			ret = kmx61_set_mode(data, 0, KMX61_ACC, true);
736 			if (ret < 0)
737 				return ret;
738 		}
739 		data->acc_ps = on;
740 	}
741 	if (device & KMX61_MAG) {
742 		if (on && !data->mag_ps && !data->acc_stby) {
743 			ret = kmx61_set_mode(data, 0, KMX61_MAG, true);
744 			if (ret < 0)
745 				return ret;
746 		}
747 		data->mag_ps = on;
748 	}
749 
750 	if (on)
751 		ret = pm_runtime_resume_and_get(&data->client->dev);
752 	else
753 		ret = pm_runtime_put_autosuspend(&data->client->dev);
754 	if (ret < 0) {
755 		dev_err(&data->client->dev,
756 			"Failed: kmx61_set_power_state for %d, ret %d\n",
757 			on, ret);
758 
759 		return ret;
760 	}
761 #endif
762 	return 0;
763 }
764 
765 static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset)
766 {
767 	int ret;
768 	u8 reg = base + offset * 2;
769 
770 	ret = i2c_smbus_read_word_data(data->client, reg);
771 	if (ret < 0)
772 		dev_err(&data->client->dev, "failed to read reg at %x\n", reg);
773 
774 	return ret;
775 }
776 
777 static int kmx61_read_raw(struct iio_dev *indio_dev,
778 			  struct iio_chan_spec const *chan, int *val,
779 			  int *val2, long mask)
780 {
781 	int ret;
782 	u8 base_reg;
783 	struct kmx61_data *data = kmx61_get_data(indio_dev);
784 
785 	switch (mask) {
786 	case IIO_CHAN_INFO_RAW:
787 		switch (chan->type) {
788 		case IIO_ACCEL:
789 			base_reg = KMX61_ACC_XOUT_L;
790 			break;
791 		case IIO_MAGN:
792 			base_reg = KMX61_MAG_XOUT_L;
793 			break;
794 		default:
795 			return -EINVAL;
796 		}
797 		mutex_lock(&data->lock);
798 
799 		ret = kmx61_set_power_state(data, true, chan->address);
800 		if (ret) {
801 			mutex_unlock(&data->lock);
802 			return ret;
803 		}
804 
805 		ret = kmx61_read_measurement(data, base_reg, chan->scan_index);
806 		if (ret < 0) {
807 			kmx61_set_power_state(data, false, chan->address);
808 			mutex_unlock(&data->lock);
809 			return ret;
810 		}
811 		*val = sign_extend32(ret >> chan->scan_type.shift,
812 				     chan->scan_type.realbits - 1);
813 		ret = kmx61_set_power_state(data, false, chan->address);
814 
815 		mutex_unlock(&data->lock);
816 		if (ret)
817 			return ret;
818 		return IIO_VAL_INT;
819 	case IIO_CHAN_INFO_SCALE:
820 		switch (chan->type) {
821 		case IIO_ACCEL:
822 			*val = 0;
823 			*val2 = kmx61_uscale_table[data->range];
824 			return IIO_VAL_INT_PLUS_MICRO;
825 		case IIO_MAGN:
826 			/* 14 bits res, 1465 microGauss per magn count */
827 			*val = 0;
828 			*val2 = 1465;
829 			return IIO_VAL_INT_PLUS_MICRO;
830 		default:
831 			return -EINVAL;
832 		}
833 	case IIO_CHAN_INFO_SAMP_FREQ:
834 		if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
835 			return -EINVAL;
836 
837 		mutex_lock(&data->lock);
838 		ret = kmx61_get_odr(data, val, val2, chan->address);
839 		mutex_unlock(&data->lock);
840 		if (ret)
841 			return -EINVAL;
842 		return IIO_VAL_INT_PLUS_MICRO;
843 	}
844 	return -EINVAL;
845 }
846 
847 static int kmx61_write_raw(struct iio_dev *indio_dev,
848 			   struct iio_chan_spec const *chan, int val,
849 			   int val2, long mask)
850 {
851 	int ret;
852 	struct kmx61_data *data = kmx61_get_data(indio_dev);
853 
854 	switch (mask) {
855 	case IIO_CHAN_INFO_SAMP_FREQ:
856 		if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
857 			return -EINVAL;
858 
859 		mutex_lock(&data->lock);
860 		ret = kmx61_set_odr(data, val, val2, chan->address);
861 		mutex_unlock(&data->lock);
862 		return ret;
863 	case IIO_CHAN_INFO_SCALE:
864 		switch (chan->type) {
865 		case IIO_ACCEL:
866 			if (val != 0)
867 				return -EINVAL;
868 			mutex_lock(&data->lock);
869 			ret = kmx61_set_scale(data, val2);
870 			mutex_unlock(&data->lock);
871 			return ret;
872 		default:
873 			return -EINVAL;
874 		}
875 	default:
876 		return -EINVAL;
877 	}
878 }
879 
880 static int kmx61_read_event(struct iio_dev *indio_dev,
881 			    const struct iio_chan_spec *chan,
882 			    enum iio_event_type type,
883 			    enum iio_event_direction dir,
884 			    enum iio_event_info info,
885 			    int *val, int *val2)
886 {
887 	struct kmx61_data *data = kmx61_get_data(indio_dev);
888 
889 	*val2 = 0;
890 	switch (info) {
891 	case IIO_EV_INFO_VALUE:
892 		*val = data->wake_thresh;
893 		return IIO_VAL_INT;
894 	case IIO_EV_INFO_PERIOD:
895 		*val = data->wake_duration;
896 		return IIO_VAL_INT;
897 	default:
898 		return -EINVAL;
899 	}
900 }
901 
902 static int kmx61_write_event(struct iio_dev *indio_dev,
903 			     const struct iio_chan_spec *chan,
904 			     enum iio_event_type type,
905 			     enum iio_event_direction dir,
906 			     enum iio_event_info info,
907 			     int val, int val2)
908 {
909 	struct kmx61_data *data = kmx61_get_data(indio_dev);
910 
911 	if (data->ev_enable_state)
912 		return -EBUSY;
913 
914 	switch (info) {
915 	case IIO_EV_INFO_VALUE:
916 		data->wake_thresh = val;
917 		return IIO_VAL_INT;
918 	case IIO_EV_INFO_PERIOD:
919 		data->wake_duration = val;
920 		return IIO_VAL_INT;
921 	default:
922 		return -EINVAL;
923 	}
924 }
925 
926 static int kmx61_read_event_config(struct iio_dev *indio_dev,
927 				   const struct iio_chan_spec *chan,
928 				   enum iio_event_type type,
929 				   enum iio_event_direction dir)
930 {
931 	struct kmx61_data *data = kmx61_get_data(indio_dev);
932 
933 	return data->ev_enable_state;
934 }
935 
936 static int kmx61_write_event_config(struct iio_dev *indio_dev,
937 				    const struct iio_chan_spec *chan,
938 				    enum iio_event_type type,
939 				    enum iio_event_direction dir,
940 				    bool state)
941 {
942 	struct kmx61_data *data = kmx61_get_data(indio_dev);
943 	int ret = 0;
944 
945 	if (state && data->ev_enable_state)
946 		return 0;
947 
948 	mutex_lock(&data->lock);
949 
950 	if (!state && data->motion_trig_on) {
951 		data->ev_enable_state = false;
952 		goto err_unlock;
953 	}
954 
955 	ret = kmx61_set_power_state(data, state, KMX61_ACC);
956 	if (ret < 0)
957 		goto err_unlock;
958 
959 	ret = kmx61_setup_any_motion_interrupt(data, state);
960 	if (ret < 0) {
961 		kmx61_set_power_state(data, false, KMX61_ACC);
962 		goto err_unlock;
963 	}
964 
965 	data->ev_enable_state = state;
966 
967 err_unlock:
968 	mutex_unlock(&data->lock);
969 
970 	return ret;
971 }
972 
973 static int kmx61_acc_validate_trigger(struct iio_dev *indio_dev,
974 				      struct iio_trigger *trig)
975 {
976 	struct kmx61_data *data = kmx61_get_data(indio_dev);
977 
978 	if (data->acc_dready_trig != trig && data->motion_trig != trig)
979 		return -EINVAL;
980 
981 	return 0;
982 }
983 
984 static int kmx61_mag_validate_trigger(struct iio_dev *indio_dev,
985 				      struct iio_trigger *trig)
986 {
987 	struct kmx61_data *data = kmx61_get_data(indio_dev);
988 
989 	if (data->mag_dready_trig != trig)
990 		return -EINVAL;
991 
992 	return 0;
993 }
994 
995 static const struct iio_info kmx61_acc_info = {
996 	.read_raw		= kmx61_read_raw,
997 	.write_raw		= kmx61_write_raw,
998 	.attrs			= &kmx61_acc_attribute_group,
999 	.read_event_value	= kmx61_read_event,
1000 	.write_event_value	= kmx61_write_event,
1001 	.read_event_config	= kmx61_read_event_config,
1002 	.write_event_config	= kmx61_write_event_config,
1003 	.validate_trigger	= kmx61_acc_validate_trigger,
1004 };
1005 
1006 static const struct iio_info kmx61_mag_info = {
1007 	.read_raw		= kmx61_read_raw,
1008 	.write_raw		= kmx61_write_raw,
1009 	.attrs			= &kmx61_mag_attribute_group,
1010 	.validate_trigger	= kmx61_mag_validate_trigger,
1011 };
1012 
1013 
1014 static int kmx61_data_rdy_trigger_set_state(struct iio_trigger *trig,
1015 					    bool state)
1016 {
1017 	int ret = 0;
1018 	u8 device;
1019 
1020 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1021 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1022 
1023 	mutex_lock(&data->lock);
1024 
1025 	if (!state && data->ev_enable_state && data->motion_trig_on) {
1026 		data->motion_trig_on = false;
1027 		goto err_unlock;
1028 	}
1029 
1030 	if (data->acc_dready_trig == trig || data->motion_trig == trig)
1031 		device = KMX61_ACC;
1032 	else
1033 		device = KMX61_MAG;
1034 
1035 	ret = kmx61_set_power_state(data, state, device);
1036 	if (ret < 0)
1037 		goto err_unlock;
1038 
1039 	if (data->acc_dready_trig == trig || data->mag_dready_trig == trig)
1040 		ret = kmx61_setup_new_data_interrupt(data, state, device);
1041 	else
1042 		ret = kmx61_setup_any_motion_interrupt(data, state);
1043 	if (ret < 0) {
1044 		kmx61_set_power_state(data, false, device);
1045 		goto err_unlock;
1046 	}
1047 
1048 	if (data->acc_dready_trig == trig)
1049 		data->acc_dready_trig_on = state;
1050 	else if (data->mag_dready_trig == trig)
1051 		data->mag_dready_trig_on = state;
1052 	else
1053 		data->motion_trig_on = state;
1054 err_unlock:
1055 	mutex_unlock(&data->lock);
1056 
1057 	return ret;
1058 }
1059 
1060 static void kmx61_trig_reenable(struct iio_trigger *trig)
1061 {
1062 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1063 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1064 	int ret;
1065 
1066 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1067 	if (ret < 0)
1068 		dev_err(&data->client->dev, "Error reading reg_inl\n");
1069 }
1070 
1071 static const struct iio_trigger_ops kmx61_trigger_ops = {
1072 	.set_trigger_state = kmx61_data_rdy_trigger_set_state,
1073 	.reenable = kmx61_trig_reenable,
1074 };
1075 
1076 static irqreturn_t kmx61_event_handler(int irq, void *private)
1077 {
1078 	struct kmx61_data *data = private;
1079 	struct iio_dev *indio_dev = data->acc_indio_dev;
1080 	int ret;
1081 
1082 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1);
1083 	if (ret < 0) {
1084 		dev_err(&data->client->dev, "Error reading reg_ins1\n");
1085 		goto ack_intr;
1086 	}
1087 
1088 	if (ret & KMX61_REG_INS1_BIT_WUFS) {
1089 		ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS2);
1090 		if (ret < 0) {
1091 			dev_err(&data->client->dev, "Error reading reg_ins2\n");
1092 			goto ack_intr;
1093 		}
1094 
1095 		if (ret & KMX61_REG_INS2_BIT_XN)
1096 			iio_push_event(indio_dev,
1097 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1098 				       0,
1099 				       IIO_MOD_X,
1100 				       IIO_EV_TYPE_THRESH,
1101 				       IIO_EV_DIR_FALLING),
1102 				       0);
1103 
1104 		if (ret & KMX61_REG_INS2_BIT_XP)
1105 			iio_push_event(indio_dev,
1106 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1107 				       0,
1108 				       IIO_MOD_X,
1109 				       IIO_EV_TYPE_THRESH,
1110 				       IIO_EV_DIR_RISING),
1111 				       0);
1112 
1113 		if (ret & KMX61_REG_INS2_BIT_YN)
1114 			iio_push_event(indio_dev,
1115 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1116 				       0,
1117 				       IIO_MOD_Y,
1118 				       IIO_EV_TYPE_THRESH,
1119 				       IIO_EV_DIR_FALLING),
1120 				       0);
1121 
1122 		if (ret & KMX61_REG_INS2_BIT_YP)
1123 			iio_push_event(indio_dev,
1124 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1125 				       0,
1126 				       IIO_MOD_Y,
1127 				       IIO_EV_TYPE_THRESH,
1128 				       IIO_EV_DIR_RISING),
1129 				       0);
1130 
1131 		if (ret & KMX61_REG_INS2_BIT_ZN)
1132 			iio_push_event(indio_dev,
1133 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1134 				       0,
1135 				       IIO_MOD_Z,
1136 				       IIO_EV_TYPE_THRESH,
1137 				       IIO_EV_DIR_FALLING),
1138 				       0);
1139 
1140 		if (ret & KMX61_REG_INS2_BIT_ZP)
1141 			iio_push_event(indio_dev,
1142 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1143 				       0,
1144 				       IIO_MOD_Z,
1145 				       IIO_EV_TYPE_THRESH,
1146 				       IIO_EV_DIR_RISING),
1147 				       0);
1148 	}
1149 
1150 ack_intr:
1151 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
1152 	if (ret < 0)
1153 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
1154 
1155 	ret |= KMX61_REG_CTRL1_BIT_RES;
1156 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
1157 	if (ret < 0)
1158 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
1159 
1160 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1161 	if (ret < 0)
1162 		dev_err(&data->client->dev, "Error reading reg_inl\n");
1163 
1164 	return IRQ_HANDLED;
1165 }
1166 
1167 static irqreturn_t kmx61_data_rdy_trig_poll(int irq, void *private)
1168 {
1169 	struct kmx61_data *data = private;
1170 
1171 	if (data->acc_dready_trig_on)
1172 		iio_trigger_poll(data->acc_dready_trig);
1173 	if (data->mag_dready_trig_on)
1174 		iio_trigger_poll(data->mag_dready_trig);
1175 
1176 	if (data->motion_trig_on)
1177 		iio_trigger_poll(data->motion_trig);
1178 
1179 	if (data->ev_enable_state)
1180 		return IRQ_WAKE_THREAD;
1181 	return IRQ_HANDLED;
1182 }
1183 
1184 static irqreturn_t kmx61_trigger_handler(int irq, void *p)
1185 {
1186 	struct iio_poll_func *pf = p;
1187 	struct iio_dev *indio_dev = pf->indio_dev;
1188 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1189 	int bit, ret, i = 0;
1190 	u8 base;
1191 	s16 buffer[8] = { };
1192 
1193 	if (indio_dev == data->acc_indio_dev)
1194 		base = KMX61_ACC_XOUT_L;
1195 	else
1196 		base = KMX61_MAG_XOUT_L;
1197 
1198 	mutex_lock(&data->lock);
1199 	iio_for_each_active_channel(indio_dev, bit) {
1200 		ret = kmx61_read_measurement(data, base, bit);
1201 		if (ret < 0) {
1202 			mutex_unlock(&data->lock);
1203 			goto err;
1204 		}
1205 		buffer[i++] = ret;
1206 	}
1207 	mutex_unlock(&data->lock);
1208 
1209 	iio_push_to_buffers(indio_dev, buffer);
1210 err:
1211 	iio_trigger_notify_done(indio_dev->trig);
1212 
1213 	return IRQ_HANDLED;
1214 }
1215 
1216 static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data,
1217 					    const struct iio_info *info,
1218 					    const struct iio_chan_spec *chan,
1219 					    int num_channels,
1220 					    const char *name)
1221 {
1222 	struct iio_dev *indio_dev;
1223 
1224 	indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data));
1225 	if (!indio_dev)
1226 		return ERR_PTR(-ENOMEM);
1227 
1228 	kmx61_set_data(indio_dev, data);
1229 
1230 	indio_dev->channels = chan;
1231 	indio_dev->num_channels = num_channels;
1232 	indio_dev->name = name;
1233 	indio_dev->modes = INDIO_DIRECT_MODE;
1234 	indio_dev->info = info;
1235 
1236 	return indio_dev;
1237 }
1238 
1239 static struct iio_trigger *kmx61_trigger_setup(struct kmx61_data *data,
1240 					       struct iio_dev *indio_dev,
1241 					       const char *tag)
1242 {
1243 	struct iio_trigger *trig;
1244 	int ret;
1245 
1246 	trig = devm_iio_trigger_alloc(&data->client->dev,
1247 				      "%s-%s-dev%d",
1248 				      indio_dev->name,
1249 				      tag,
1250 				      iio_device_id(indio_dev));
1251 	if (!trig)
1252 		return ERR_PTR(-ENOMEM);
1253 
1254 	trig->ops = &kmx61_trigger_ops;
1255 	iio_trigger_set_drvdata(trig, indio_dev);
1256 
1257 	ret = iio_trigger_register(trig);
1258 	if (ret)
1259 		return ERR_PTR(ret);
1260 
1261 	return trig;
1262 }
1263 
1264 static int kmx61_probe(struct i2c_client *client)
1265 {
1266 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
1267 	int ret;
1268 	struct kmx61_data *data;
1269 	const char *name = NULL;
1270 
1271 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1272 	if (!data)
1273 		return -ENOMEM;
1274 
1275 	i2c_set_clientdata(client, data);
1276 	data->client = client;
1277 
1278 	mutex_init(&data->lock);
1279 
1280 	if (id)
1281 		name = id->name;
1282 	else
1283 		return -ENODEV;
1284 
1285 	data->acc_indio_dev =
1286 		kmx61_indiodev_setup(data, &kmx61_acc_info,
1287 				     kmx61_acc_channels,
1288 				     ARRAY_SIZE(kmx61_acc_channels),
1289 				     name);
1290 	if (IS_ERR(data->acc_indio_dev))
1291 		return PTR_ERR(data->acc_indio_dev);
1292 
1293 	data->mag_indio_dev =
1294 		kmx61_indiodev_setup(data, &kmx61_mag_info,
1295 				     kmx61_mag_channels,
1296 				     ARRAY_SIZE(kmx61_mag_channels),
1297 				     name);
1298 	if (IS_ERR(data->mag_indio_dev))
1299 		return PTR_ERR(data->mag_indio_dev);
1300 
1301 	ret = kmx61_chip_init(data);
1302 	if (ret < 0)
1303 		return ret;
1304 
1305 	if (client->irq > 0) {
1306 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1307 						kmx61_data_rdy_trig_poll,
1308 						kmx61_event_handler,
1309 						IRQF_TRIGGER_RISING,
1310 						"kmx61_event",
1311 						data);
1312 		if (ret)
1313 			goto err_chip_uninit;
1314 
1315 		data->acc_dready_trig =
1316 			kmx61_trigger_setup(data, data->acc_indio_dev,
1317 					    "dready");
1318 		if (IS_ERR(data->acc_dready_trig)) {
1319 			ret = PTR_ERR(data->acc_dready_trig);
1320 			goto err_chip_uninit;
1321 		}
1322 
1323 		data->mag_dready_trig =
1324 			kmx61_trigger_setup(data, data->mag_indio_dev,
1325 					    "dready");
1326 		if (IS_ERR(data->mag_dready_trig)) {
1327 			ret = PTR_ERR(data->mag_dready_trig);
1328 			goto err_trigger_unregister_acc_dready;
1329 		}
1330 
1331 		data->motion_trig =
1332 			kmx61_trigger_setup(data, data->acc_indio_dev,
1333 					    "any-motion");
1334 		if (IS_ERR(data->motion_trig)) {
1335 			ret = PTR_ERR(data->motion_trig);
1336 			goto err_trigger_unregister_mag_dready;
1337 		}
1338 
1339 		ret = iio_triggered_buffer_setup(data->acc_indio_dev,
1340 						 &iio_pollfunc_store_time,
1341 						 kmx61_trigger_handler,
1342 						 NULL);
1343 		if (ret < 0) {
1344 			dev_err(&data->client->dev,
1345 				"Failed to setup acc triggered buffer\n");
1346 			goto err_trigger_unregister_motion;
1347 		}
1348 
1349 		ret = iio_triggered_buffer_setup(data->mag_indio_dev,
1350 						 &iio_pollfunc_store_time,
1351 						 kmx61_trigger_handler,
1352 						 NULL);
1353 		if (ret < 0) {
1354 			dev_err(&data->client->dev,
1355 				"Failed to setup mag triggered buffer\n");
1356 			goto err_buffer_cleanup_acc;
1357 		}
1358 	}
1359 
1360 	ret = pm_runtime_set_active(&client->dev);
1361 	if (ret < 0)
1362 		goto err_buffer_cleanup_mag;
1363 
1364 	pm_runtime_enable(&client->dev);
1365 	pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS);
1366 	pm_runtime_use_autosuspend(&client->dev);
1367 
1368 	ret = iio_device_register(data->acc_indio_dev);
1369 	if (ret < 0) {
1370 		dev_err(&client->dev, "Failed to register acc iio device\n");
1371 		goto err_pm_cleanup;
1372 	}
1373 
1374 	ret = iio_device_register(data->mag_indio_dev);
1375 	if (ret < 0) {
1376 		dev_err(&client->dev, "Failed to register mag iio device\n");
1377 		goto err_iio_unregister_acc;
1378 	}
1379 
1380 	return 0;
1381 
1382 err_iio_unregister_acc:
1383 	iio_device_unregister(data->acc_indio_dev);
1384 err_pm_cleanup:
1385 	pm_runtime_dont_use_autosuspend(&client->dev);
1386 	pm_runtime_disable(&client->dev);
1387 err_buffer_cleanup_mag:
1388 	if (client->irq > 0)
1389 		iio_triggered_buffer_cleanup(data->mag_indio_dev);
1390 err_buffer_cleanup_acc:
1391 	if (client->irq > 0)
1392 		iio_triggered_buffer_cleanup(data->acc_indio_dev);
1393 err_trigger_unregister_motion:
1394 	iio_trigger_unregister(data->motion_trig);
1395 err_trigger_unregister_mag_dready:
1396 	iio_trigger_unregister(data->mag_dready_trig);
1397 err_trigger_unregister_acc_dready:
1398 	iio_trigger_unregister(data->acc_dready_trig);
1399 err_chip_uninit:
1400 	kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1401 	return ret;
1402 }
1403 
1404 static void kmx61_remove(struct i2c_client *client)
1405 {
1406 	struct kmx61_data *data = i2c_get_clientdata(client);
1407 
1408 	iio_device_unregister(data->acc_indio_dev);
1409 	iio_device_unregister(data->mag_indio_dev);
1410 
1411 	pm_runtime_disable(&client->dev);
1412 	pm_runtime_set_suspended(&client->dev);
1413 
1414 	if (client->irq > 0) {
1415 		iio_triggered_buffer_cleanup(data->acc_indio_dev);
1416 		iio_triggered_buffer_cleanup(data->mag_indio_dev);
1417 		iio_trigger_unregister(data->acc_dready_trig);
1418 		iio_trigger_unregister(data->mag_dready_trig);
1419 		iio_trigger_unregister(data->motion_trig);
1420 	}
1421 
1422 	mutex_lock(&data->lock);
1423 	kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1424 	mutex_unlock(&data->lock);
1425 }
1426 
1427 static int kmx61_suspend(struct device *dev)
1428 {
1429 	int ret;
1430 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1431 
1432 	mutex_lock(&data->lock);
1433 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
1434 			     false);
1435 	mutex_unlock(&data->lock);
1436 
1437 	return ret;
1438 }
1439 
1440 static int kmx61_resume(struct device *dev)
1441 {
1442 	u8 stby = 0;
1443 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1444 
1445 	if (data->acc_stby)
1446 		stby |= KMX61_ACC_STBY_BIT;
1447 	if (data->mag_stby)
1448 		stby |= KMX61_MAG_STBY_BIT;
1449 
1450 	return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1451 }
1452 
1453 static int kmx61_runtime_suspend(struct device *dev)
1454 {
1455 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1456 	int ret;
1457 
1458 	mutex_lock(&data->lock);
1459 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1460 	mutex_unlock(&data->lock);
1461 
1462 	return ret;
1463 }
1464 
1465 static int kmx61_runtime_resume(struct device *dev)
1466 {
1467 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1468 	u8 stby = 0;
1469 
1470 	if (!data->acc_ps)
1471 		stby |= KMX61_ACC_STBY_BIT;
1472 	if (!data->mag_ps)
1473 		stby |= KMX61_MAG_STBY_BIT;
1474 
1475 	return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1476 }
1477 
1478 static const struct dev_pm_ops kmx61_pm_ops = {
1479 	SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume)
1480 	RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL)
1481 };
1482 
1483 static const struct i2c_device_id kmx61_id[] = {
1484 	{ "kmx611021" },
1485 	{ }
1486 };
1487 
1488 MODULE_DEVICE_TABLE(i2c, kmx61_id);
1489 
1490 static struct i2c_driver kmx61_driver = {
1491 	.driver = {
1492 		.name = "kmx61",
1493 		.pm = pm_ptr(&kmx61_pm_ops),
1494 	},
1495 	.probe		= kmx61_probe,
1496 	.remove		= kmx61_remove,
1497 	.id_table	= kmx61_id,
1498 };
1499 
1500 module_i2c_driver(kmx61_driver);
1501 
1502 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
1503 MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver");
1504 MODULE_LICENSE("GPL v2");
1505