xref: /linux/drivers/iio/imu/kmx61.c (revision 260f6f4fda93c8485c8037865c941b42b9cba5d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * KMX61 - Kionix 6-axis Accelerometer/Magnetometer
4  *
5  * Copyright (c) 2014, Intel Corporation.
6  *
7  * IIO driver for KMX61 (7-bit I2C slave address 0x0E or 0x0F).
8  */
9 
10 #include <linux/i2c.h>
11 #include <linux/interrupt.h>
12 #include <linux/mod_devicetable.h>
13 #include <linux/module.h>
14 #include <linux/pm.h>
15 #include <linux/pm_runtime.h>
16 
17 #include <linux/iio/iio.h>
18 #include <linux/iio/sysfs.h>
19 #include <linux/iio/events.h>
20 #include <linux/iio/trigger.h>
21 #include <linux/iio/buffer.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
24 
25 #define KMX61_REG_WHO_AM_I	0x00
26 #define KMX61_REG_INS1		0x01
27 #define KMX61_REG_INS2		0x02
28 
29 /*
30  * three 16-bit accelerometer output registers for X/Y/Z axis
31  * we use only XOUT_L as a base register, all other addresses
32  * can be obtained by applying an offset and are provided here
33  * only for clarity.
34  */
35 #define KMX61_ACC_XOUT_L	0x0A
36 #define KMX61_ACC_XOUT_H	0x0B
37 #define KMX61_ACC_YOUT_L	0x0C
38 #define KMX61_ACC_YOUT_H	0x0D
39 #define KMX61_ACC_ZOUT_L	0x0E
40 #define KMX61_ACC_ZOUT_H	0x0F
41 
42 /*
43  * one 16-bit temperature output register
44  */
45 #define KMX61_TEMP_L		0x10
46 #define KMX61_TEMP_H		0x11
47 
48 /*
49  * three 16-bit magnetometer output registers for X/Y/Z axis
50  */
51 #define KMX61_MAG_XOUT_L	0x12
52 #define KMX61_MAG_XOUT_H	0x13
53 #define KMX61_MAG_YOUT_L	0x14
54 #define KMX61_MAG_YOUT_H	0x15
55 #define KMX61_MAG_ZOUT_L	0x16
56 #define KMX61_MAG_ZOUT_H	0x17
57 
58 #define KMX61_REG_INL		0x28
59 #define KMX61_REG_STBY		0x29
60 #define KMX61_REG_CTRL1		0x2A
61 #define KMX61_REG_CTRL2		0x2B
62 #define KMX61_REG_ODCNTL	0x2C
63 #define KMX61_REG_INC1		0x2D
64 
65 #define KMX61_REG_WUF_THRESH	0x3D
66 #define KMX61_REG_WUF_TIMER	0x3E
67 
68 #define KMX61_ACC_STBY_BIT	BIT(0)
69 #define KMX61_MAG_STBY_BIT	BIT(1)
70 #define KMX61_ACT_STBY_BIT	BIT(7)
71 
72 #define KMX61_ALL_STBY		(KMX61_ACC_STBY_BIT | KMX61_MAG_STBY_BIT)
73 
74 #define KMX61_REG_INS1_BIT_WUFS		BIT(1)
75 
76 #define KMX61_REG_INS2_BIT_ZP		BIT(0)
77 #define KMX61_REG_INS2_BIT_ZN		BIT(1)
78 #define KMX61_REG_INS2_BIT_YP		BIT(2)
79 #define KMX61_REG_INS2_BIT_YN		BIT(3)
80 #define KMX61_REG_INS2_BIT_XP		BIT(4)
81 #define KMX61_REG_INS2_BIT_XN		BIT(5)
82 
83 #define KMX61_REG_CTRL1_GSEL_MASK	0x03
84 
85 #define KMX61_REG_CTRL1_BIT_RES		BIT(4)
86 #define KMX61_REG_CTRL1_BIT_DRDYE	BIT(5)
87 #define KMX61_REG_CTRL1_BIT_WUFE	BIT(6)
88 #define KMX61_REG_CTRL1_BIT_BTSE	BIT(7)
89 
90 #define KMX61_REG_INC1_BIT_WUFS		BIT(0)
91 #define KMX61_REG_INC1_BIT_DRDYM	BIT(1)
92 #define KMX61_REG_INC1_BIT_DRDYA	BIT(2)
93 #define KMX61_REG_INC1_BIT_IEN		BIT(5)
94 
95 #define KMX61_ACC_ODR_SHIFT	0
96 #define KMX61_MAG_ODR_SHIFT	4
97 #define KMX61_ACC_ODR_MASK	0x0F
98 #define KMX61_MAG_ODR_MASK	0xF0
99 
100 #define KMX61_OWUF_MASK		0x7
101 
102 #define KMX61_DEFAULT_WAKE_THRESH	1
103 #define KMX61_DEFAULT_WAKE_DURATION	1
104 
105 #define KMX61_SLEEP_DELAY_MS	2000
106 
107 #define KMX61_CHIP_ID		0x12
108 
109 /* KMX61 devices */
110 #define KMX61_ACC	0x01
111 #define KMX61_MAG	0x02
112 
113 struct kmx61_data {
114 	struct i2c_client *client;
115 
116 	/* serialize access to non-atomic ops, e.g set_mode */
117 	struct mutex lock;
118 
119 	/* standby state */
120 	bool acc_stby;
121 	bool mag_stby;
122 
123 	/* power state */
124 	bool acc_ps;
125 	bool mag_ps;
126 
127 	/* config bits */
128 	u8 range;
129 	u8 odr_bits;
130 	u8 wake_thresh;
131 	u8 wake_duration;
132 
133 	/* accelerometer specific data */
134 	struct iio_dev *acc_indio_dev;
135 	struct iio_trigger *acc_dready_trig;
136 	struct iio_trigger *motion_trig;
137 	bool acc_dready_trig_on;
138 	bool motion_trig_on;
139 	bool ev_enable_state;
140 
141 	/* magnetometer specific data */
142 	struct iio_dev *mag_indio_dev;
143 	struct iio_trigger *mag_dready_trig;
144 	bool mag_dready_trig_on;
145 };
146 
147 enum kmx61_range {
148 	KMX61_RANGE_2G,
149 	KMX61_RANGE_4G,
150 	KMX61_RANGE_8G,
151 };
152 
153 enum kmx61_axis {
154 	KMX61_AXIS_X,
155 	KMX61_AXIS_Y,
156 	KMX61_AXIS_Z,
157 };
158 
159 static const u16 kmx61_uscale_table[] = {9582, 19163, 38326};
160 
161 static const struct {
162 	int val;
163 	int val2;
164 } kmx61_samp_freq_table[] = { {12, 500000},
165 			{25, 0},
166 			{50, 0},
167 			{100, 0},
168 			{200, 0},
169 			{400, 0},
170 			{800, 0},
171 			{1600, 0},
172 			{0, 781000},
173 			{1, 563000},
174 			{3, 125000},
175 			{6, 250000} };
176 
177 static const struct {
178 	int val;
179 	int val2;
180 	int odr_bits;
181 } kmx61_wake_up_odr_table[] = { {0, 781000, 0x00},
182 				 {1, 563000, 0x01},
183 				 {3, 125000, 0x02},
184 				 {6, 250000, 0x03},
185 				 {12, 500000, 0x04},
186 				 {25, 0, 0x05},
187 				 {50, 0, 0x06},
188 				 {100, 0, 0x06},
189 				 {200, 0, 0x06},
190 				 {400, 0, 0x06},
191 				 {800, 0, 0x06},
192 				 {1600, 0, 0x06} };
193 
194 static IIO_CONST_ATTR(accel_scale_available, "0.009582 0.019163 0.038326");
195 static IIO_CONST_ATTR(magn_scale_available, "0.001465");
196 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
197 	"0.781000 1.563000 3.125000 6.250000 12.500000 25 50 100 200 400 800");
198 
199 static struct attribute *kmx61_acc_attributes[] = {
200 	&iio_const_attr_accel_scale_available.dev_attr.attr,
201 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
202 	NULL,
203 };
204 
205 static struct attribute *kmx61_mag_attributes[] = {
206 	&iio_const_attr_magn_scale_available.dev_attr.attr,
207 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
208 	NULL,
209 };
210 
211 static const struct attribute_group kmx61_acc_attribute_group = {
212 	.attrs = kmx61_acc_attributes,
213 };
214 
215 static const struct attribute_group kmx61_mag_attribute_group = {
216 	.attrs = kmx61_mag_attributes,
217 };
218 
219 static const struct iio_event_spec kmx61_event = {
220 	.type = IIO_EV_TYPE_THRESH,
221 	.dir = IIO_EV_DIR_EITHER,
222 	.mask_separate = BIT(IIO_EV_INFO_VALUE) |
223 			 BIT(IIO_EV_INFO_ENABLE) |
224 			 BIT(IIO_EV_INFO_PERIOD),
225 };
226 
227 #define KMX61_ACC_CHAN(_axis) { \
228 	.type = IIO_ACCEL, \
229 	.modified = 1, \
230 	.channel2 = IIO_MOD_ ## _axis, \
231 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
232 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
233 				BIT(IIO_CHAN_INFO_SAMP_FREQ), \
234 	.address = KMX61_ACC, \
235 	.scan_index = KMX61_AXIS_ ## _axis, \
236 	.scan_type = { \
237 		.sign = 's', \
238 		.realbits = 12, \
239 		.storagebits = 16, \
240 		.shift = 4, \
241 		.endianness = IIO_LE, \
242 	}, \
243 	.event_spec = &kmx61_event, \
244 	.num_event_specs = 1 \
245 }
246 
247 #define KMX61_MAG_CHAN(_axis) { \
248 	.type = IIO_MAGN, \
249 	.modified = 1, \
250 	.channel2 = IIO_MOD_ ## _axis, \
251 	.address = KMX61_MAG, \
252 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
253 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
254 				BIT(IIO_CHAN_INFO_SAMP_FREQ), \
255 	.scan_index = KMX61_AXIS_ ## _axis, \
256 	.scan_type = { \
257 		.sign = 's', \
258 		.realbits = 14, \
259 		.storagebits = 16, \
260 		.shift = 2, \
261 		.endianness = IIO_LE, \
262 	}, \
263 }
264 
265 static const struct iio_chan_spec kmx61_acc_channels[] = {
266 	KMX61_ACC_CHAN(X),
267 	KMX61_ACC_CHAN(Y),
268 	KMX61_ACC_CHAN(Z),
269 };
270 
271 static const struct iio_chan_spec kmx61_mag_channels[] = {
272 	KMX61_MAG_CHAN(X),
273 	KMX61_MAG_CHAN(Y),
274 	KMX61_MAG_CHAN(Z),
275 };
276 
277 static void kmx61_set_data(struct iio_dev *indio_dev, struct kmx61_data *data)
278 {
279 	struct kmx61_data **priv = iio_priv(indio_dev);
280 
281 	*priv = data;
282 }
283 
284 static struct kmx61_data *kmx61_get_data(struct iio_dev *indio_dev)
285 {
286 	return *(struct kmx61_data **)iio_priv(indio_dev);
287 }
288 
289 static int kmx61_convert_freq_to_bit(int val, int val2)
290 {
291 	int i;
292 
293 	for (i = 0; i < ARRAY_SIZE(kmx61_samp_freq_table); i++)
294 		if (val == kmx61_samp_freq_table[i].val &&
295 		    val2 == kmx61_samp_freq_table[i].val2)
296 			return i;
297 	return -EINVAL;
298 }
299 
300 static int kmx61_convert_wake_up_odr_to_bit(int val, int val2)
301 {
302 	int i;
303 
304 	for (i = 0; i < ARRAY_SIZE(kmx61_wake_up_odr_table); ++i)
305 		if (kmx61_wake_up_odr_table[i].val == val &&
306 			kmx61_wake_up_odr_table[i].val2 == val2)
307 				return kmx61_wake_up_odr_table[i].odr_bits;
308 	return -EINVAL;
309 }
310 
311 /**
312  * kmx61_set_mode() - set KMX61 device operating mode
313  * @data: kmx61 device private data pointer
314  * @mode: bitmask, indicating operating mode for @device
315  * @device: bitmask, indicating device for which @mode needs to be set
316  * @update: update stby bits stored in device's private  @data
317  *
318  * For each sensor (accelerometer/magnetometer) there are two operating modes
319  * STANDBY and OPERATION. Neither accel nor magn can be disabled independently
320  * if they are both enabled. Internal sensors state is saved in acc_stby and
321  * mag_stby members of driver's private @data.
322  */
323 static int kmx61_set_mode(struct kmx61_data *data, u8 mode, u8 device,
324 			  bool update)
325 {
326 	int ret;
327 	int acc_stby = -1, mag_stby = -1;
328 
329 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
330 	if (ret < 0) {
331 		dev_err(&data->client->dev, "Error reading reg_stby\n");
332 		return ret;
333 	}
334 	if (device & KMX61_ACC) {
335 		if (mode & KMX61_ACC_STBY_BIT) {
336 			ret |= KMX61_ACC_STBY_BIT;
337 			acc_stby = 1;
338 		} else {
339 			ret &= ~KMX61_ACC_STBY_BIT;
340 			acc_stby = 0;
341 		}
342 	}
343 
344 	if (device & KMX61_MAG) {
345 		if (mode & KMX61_MAG_STBY_BIT) {
346 			ret |= KMX61_MAG_STBY_BIT;
347 			mag_stby = 1;
348 		} else {
349 			ret &= ~KMX61_MAG_STBY_BIT;
350 			mag_stby = 0;
351 		}
352 	}
353 
354 	if (mode & KMX61_ACT_STBY_BIT)
355 		ret |= KMX61_ACT_STBY_BIT;
356 
357 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_STBY, ret);
358 	if (ret < 0) {
359 		dev_err(&data->client->dev, "Error writing reg_stby\n");
360 		return ret;
361 	}
362 
363 	if (acc_stby != -1 && update)
364 		data->acc_stby = acc_stby;
365 	if (mag_stby != -1 && update)
366 		data->mag_stby = mag_stby;
367 
368 	return 0;
369 }
370 
371 static int kmx61_get_mode(struct kmx61_data *data, u8 *mode, u8 device)
372 {
373 	int ret;
374 
375 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_STBY);
376 	if (ret < 0) {
377 		dev_err(&data->client->dev, "Error reading reg_stby\n");
378 		return ret;
379 	}
380 	*mode = 0;
381 
382 	if (device & KMX61_ACC) {
383 		if (ret & KMX61_ACC_STBY_BIT)
384 			*mode |= KMX61_ACC_STBY_BIT;
385 		else
386 			*mode &= ~KMX61_ACC_STBY_BIT;
387 	}
388 
389 	if (device & KMX61_MAG) {
390 		if (ret & KMX61_MAG_STBY_BIT)
391 			*mode |= KMX61_MAG_STBY_BIT;
392 		else
393 			*mode &= ~KMX61_MAG_STBY_BIT;
394 	}
395 
396 	return 0;
397 }
398 
399 static int kmx61_set_wake_up_odr(struct kmx61_data *data, int val, int val2)
400 {
401 	int ret, odr_bits;
402 
403 	odr_bits = kmx61_convert_wake_up_odr_to_bit(val, val2);
404 	if (odr_bits < 0)
405 		return odr_bits;
406 
407 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL2,
408 					odr_bits);
409 	if (ret < 0)
410 		dev_err(&data->client->dev, "Error writing reg_ctrl2\n");
411 	return ret;
412 }
413 
414 static int kmx61_set_odr(struct kmx61_data *data, int val, int val2, u8 device)
415 {
416 	int ret;
417 	u8 mode;
418 	int lodr_bits, odr_bits;
419 
420 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
421 	if (ret < 0)
422 		return ret;
423 
424 	lodr_bits = kmx61_convert_freq_to_bit(val, val2);
425 	if (lodr_bits < 0)
426 		return lodr_bits;
427 
428 	/* To change ODR, accel and magn must be in STDBY */
429 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
430 			     true);
431 	if (ret < 0)
432 		return ret;
433 
434 	odr_bits = 0;
435 	if (device & KMX61_ACC)
436 		odr_bits |= lodr_bits << KMX61_ACC_ODR_SHIFT;
437 	if (device & KMX61_MAG)
438 		odr_bits |= lodr_bits << KMX61_MAG_ODR_SHIFT;
439 
440 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_ODCNTL,
441 					odr_bits);
442 	if (ret < 0)
443 		return ret;
444 
445 	data->odr_bits = odr_bits;
446 
447 	if (device & KMX61_ACC) {
448 		ret = kmx61_set_wake_up_odr(data, val, val2);
449 		if (ret)
450 			return ret;
451 	}
452 
453 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
454 }
455 
456 static int kmx61_get_odr(struct kmx61_data *data, int *val, int *val2,
457 			 u8 device)
458 {
459 	u8 lodr_bits;
460 
461 	if (device & KMX61_ACC)
462 		lodr_bits = (data->odr_bits >> KMX61_ACC_ODR_SHIFT) &
463 			     KMX61_ACC_ODR_MASK;
464 	else if (device & KMX61_MAG)
465 		lodr_bits = (data->odr_bits >> KMX61_MAG_ODR_SHIFT) &
466 			     KMX61_MAG_ODR_MASK;
467 	else
468 		return -EINVAL;
469 
470 	if (lodr_bits >= ARRAY_SIZE(kmx61_samp_freq_table))
471 		return -EINVAL;
472 
473 	*val = kmx61_samp_freq_table[lodr_bits].val;
474 	*val2 = kmx61_samp_freq_table[lodr_bits].val2;
475 
476 	return 0;
477 }
478 
479 static int kmx61_set_range(struct kmx61_data *data, u8 range)
480 {
481 	int ret;
482 
483 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
484 	if (ret < 0) {
485 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
486 		return ret;
487 	}
488 
489 	ret &= ~KMX61_REG_CTRL1_GSEL_MASK;
490 	ret |= range & KMX61_REG_CTRL1_GSEL_MASK;
491 
492 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
493 	if (ret < 0) {
494 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
495 		return ret;
496 	}
497 
498 	data->range = range;
499 
500 	return 0;
501 }
502 
503 static int kmx61_set_scale(struct kmx61_data *data, u16 uscale)
504 {
505 	int ret, i;
506 	u8  mode;
507 
508 	for (i = 0; i < ARRAY_SIZE(kmx61_uscale_table); i++) {
509 		if (kmx61_uscale_table[i] == uscale) {
510 			ret = kmx61_get_mode(data, &mode,
511 					     KMX61_ACC | KMX61_MAG);
512 			if (ret < 0)
513 				return ret;
514 
515 			ret = kmx61_set_mode(data, KMX61_ALL_STBY,
516 					     KMX61_ACC | KMX61_MAG, true);
517 			if (ret < 0)
518 				return ret;
519 
520 			ret = kmx61_set_range(data, i);
521 			if (ret < 0)
522 				return ret;
523 
524 			return  kmx61_set_mode(data, mode,
525 					       KMX61_ACC | KMX61_MAG, true);
526 		}
527 	}
528 	return -EINVAL;
529 }
530 
531 static int kmx61_chip_init(struct kmx61_data *data)
532 {
533 	int ret, val, val2;
534 
535 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_WHO_AM_I);
536 	if (ret < 0) {
537 		dev_err(&data->client->dev, "Error reading who_am_i\n");
538 		return ret;
539 	}
540 
541 	if (ret != KMX61_CHIP_ID) {
542 		dev_err(&data->client->dev,
543 			"Wrong chip id, got %x expected %x\n",
544 			 ret, KMX61_CHIP_ID);
545 		return -EINVAL;
546 	}
547 
548 	/* set accel 12bit, 4g range */
549 	ret = kmx61_set_range(data, KMX61_RANGE_4G);
550 	if (ret < 0)
551 		return ret;
552 
553 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_ODCNTL);
554 	if (ret < 0) {
555 		dev_err(&data->client->dev, "Error reading reg_odcntl\n");
556 		return ret;
557 	}
558 	data->odr_bits = ret;
559 
560 	/*
561 	 * set output data rate for wake up (motion detection) function
562 	 * to match data rate for accelerometer sampling
563 	 */
564 	ret = kmx61_get_odr(data, &val, &val2, KMX61_ACC);
565 	if (ret < 0)
566 		return ret;
567 
568 	ret = kmx61_set_wake_up_odr(data, val, val2);
569 	if (ret < 0)
570 		return ret;
571 
572 	/* set acc/magn to OPERATION mode */
573 	ret = kmx61_set_mode(data, 0, KMX61_ACC | KMX61_MAG, true);
574 	if (ret < 0)
575 		return ret;
576 
577 	data->wake_thresh = KMX61_DEFAULT_WAKE_THRESH;
578 	data->wake_duration = KMX61_DEFAULT_WAKE_DURATION;
579 
580 	return 0;
581 }
582 
583 static int kmx61_setup_new_data_interrupt(struct kmx61_data *data,
584 					  bool status, u8 device)
585 {
586 	u8 mode;
587 	int ret;
588 
589 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
590 	if (ret < 0)
591 		return ret;
592 
593 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
594 	if (ret < 0)
595 		return ret;
596 
597 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
598 	if (ret < 0) {
599 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
600 		return ret;
601 	}
602 
603 	if (status) {
604 		ret |= KMX61_REG_INC1_BIT_IEN;
605 		if (device & KMX61_ACC)
606 			ret |= KMX61_REG_INC1_BIT_DRDYA;
607 		if (device & KMX61_MAG)
608 			ret |=  KMX61_REG_INC1_BIT_DRDYM;
609 	} else {
610 		ret &= ~KMX61_REG_INC1_BIT_IEN;
611 		if (device & KMX61_ACC)
612 			ret &= ~KMX61_REG_INC1_BIT_DRDYA;
613 		if (device & KMX61_MAG)
614 			ret &= ~KMX61_REG_INC1_BIT_DRDYM;
615 	}
616 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
617 	if (ret < 0) {
618 		dev_err(&data->client->dev, "Error writing reg_int_ctrl1\n");
619 		return ret;
620 	}
621 
622 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
623 	if (ret < 0) {
624 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
625 		return ret;
626 	}
627 
628 	if (status)
629 		ret |= KMX61_REG_CTRL1_BIT_DRDYE;
630 	else
631 		ret &= ~KMX61_REG_CTRL1_BIT_DRDYE;
632 
633 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
634 	if (ret < 0) {
635 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
636 		return ret;
637 	}
638 
639 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
640 }
641 
642 static int kmx61_chip_update_thresholds(struct kmx61_data *data)
643 {
644 	int ret;
645 
646 	ret = i2c_smbus_write_byte_data(data->client,
647 					KMX61_REG_WUF_TIMER,
648 					data->wake_duration);
649 	if (ret < 0) {
650 		dev_err(&data->client->dev, "Error writing reg_wuf_timer\n");
651 		return ret;
652 	}
653 
654 	ret = i2c_smbus_write_byte_data(data->client,
655 					KMX61_REG_WUF_THRESH,
656 					data->wake_thresh);
657 	if (ret < 0)
658 		dev_err(&data->client->dev, "Error writing reg_wuf_thresh\n");
659 
660 	return ret;
661 }
662 
663 static int kmx61_setup_any_motion_interrupt(struct kmx61_data *data,
664 					    bool status)
665 {
666 	u8 mode;
667 	int ret;
668 
669 	ret = kmx61_get_mode(data, &mode, KMX61_ACC | KMX61_MAG);
670 	if (ret < 0)
671 		return ret;
672 
673 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
674 	if (ret < 0)
675 		return ret;
676 
677 	ret = kmx61_chip_update_thresholds(data);
678 	if (ret < 0)
679 		return ret;
680 
681 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INC1);
682 	if (ret < 0) {
683 		dev_err(&data->client->dev, "Error reading reg_inc1\n");
684 		return ret;
685 	}
686 	if (status)
687 		ret |= (KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
688 	else
689 		ret &= ~(KMX61_REG_INC1_BIT_IEN | KMX61_REG_INC1_BIT_WUFS);
690 
691 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_INC1, ret);
692 	if (ret < 0) {
693 		dev_err(&data->client->dev, "Error writing reg_inc1\n");
694 		return ret;
695 	}
696 
697 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
698 	if (ret < 0) {
699 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
700 		return ret;
701 	}
702 
703 	if (status)
704 		ret |= KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE;
705 	else
706 		ret &= ~(KMX61_REG_CTRL1_BIT_WUFE | KMX61_REG_CTRL1_BIT_BTSE);
707 
708 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
709 	if (ret < 0) {
710 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
711 		return ret;
712 	}
713 	mode |= KMX61_ACT_STBY_BIT;
714 	return kmx61_set_mode(data, mode, KMX61_ACC | KMX61_MAG, true);
715 }
716 
717 /**
718  * kmx61_set_power_state() - set power state for kmx61 @device
719  * @data: kmx61 device private pointer
720  * @on: power state to be set for @device
721  * @device: bitmask indicating device for which @on state needs to be set
722  *
723  * Notice that when ACC power state needs to be set to ON and MAG is in
724  * OPERATION then we know that kmx61_runtime_resume was already called
725  * so we must set ACC OPERATION mode here. The same happens when MAG power
726  * state needs to be set to ON and ACC is in OPERATION.
727  */
728 static int kmx61_set_power_state(struct kmx61_data *data, bool on, u8 device)
729 {
730 #ifdef CONFIG_PM
731 	int ret;
732 
733 	if (device & KMX61_ACC) {
734 		if (on && !data->acc_ps && !data->mag_stby) {
735 			ret = kmx61_set_mode(data, 0, KMX61_ACC, true);
736 			if (ret < 0)
737 				return ret;
738 		}
739 		data->acc_ps = on;
740 	}
741 	if (device & KMX61_MAG) {
742 		if (on && !data->mag_ps && !data->acc_stby) {
743 			ret = kmx61_set_mode(data, 0, KMX61_MAG, true);
744 			if (ret < 0)
745 				return ret;
746 		}
747 		data->mag_ps = on;
748 	}
749 
750 	if (on) {
751 		ret = pm_runtime_resume_and_get(&data->client->dev);
752 	} else {
753 		pm_runtime_mark_last_busy(&data->client->dev);
754 		ret = pm_runtime_put_autosuspend(&data->client->dev);
755 	}
756 	if (ret < 0) {
757 		dev_err(&data->client->dev,
758 			"Failed: kmx61_set_power_state for %d, ret %d\n",
759 			on, ret);
760 
761 		return ret;
762 	}
763 #endif
764 	return 0;
765 }
766 
767 static int kmx61_read_measurement(struct kmx61_data *data, u8 base, u8 offset)
768 {
769 	int ret;
770 	u8 reg = base + offset * 2;
771 
772 	ret = i2c_smbus_read_word_data(data->client, reg);
773 	if (ret < 0)
774 		dev_err(&data->client->dev, "failed to read reg at %x\n", reg);
775 
776 	return ret;
777 }
778 
779 static int kmx61_read_raw(struct iio_dev *indio_dev,
780 			  struct iio_chan_spec const *chan, int *val,
781 			  int *val2, long mask)
782 {
783 	int ret;
784 	u8 base_reg;
785 	struct kmx61_data *data = kmx61_get_data(indio_dev);
786 
787 	switch (mask) {
788 	case IIO_CHAN_INFO_RAW:
789 		switch (chan->type) {
790 		case IIO_ACCEL:
791 			base_reg = KMX61_ACC_XOUT_L;
792 			break;
793 		case IIO_MAGN:
794 			base_reg = KMX61_MAG_XOUT_L;
795 			break;
796 		default:
797 			return -EINVAL;
798 		}
799 		mutex_lock(&data->lock);
800 
801 		ret = kmx61_set_power_state(data, true, chan->address);
802 		if (ret) {
803 			mutex_unlock(&data->lock);
804 			return ret;
805 		}
806 
807 		ret = kmx61_read_measurement(data, base_reg, chan->scan_index);
808 		if (ret < 0) {
809 			kmx61_set_power_state(data, false, chan->address);
810 			mutex_unlock(&data->lock);
811 			return ret;
812 		}
813 		*val = sign_extend32(ret >> chan->scan_type.shift,
814 				     chan->scan_type.realbits - 1);
815 		ret = kmx61_set_power_state(data, false, chan->address);
816 
817 		mutex_unlock(&data->lock);
818 		if (ret)
819 			return ret;
820 		return IIO_VAL_INT;
821 	case IIO_CHAN_INFO_SCALE:
822 		switch (chan->type) {
823 		case IIO_ACCEL:
824 			*val = 0;
825 			*val2 = kmx61_uscale_table[data->range];
826 			return IIO_VAL_INT_PLUS_MICRO;
827 		case IIO_MAGN:
828 			/* 14 bits res, 1465 microGauss per magn count */
829 			*val = 0;
830 			*val2 = 1465;
831 			return IIO_VAL_INT_PLUS_MICRO;
832 		default:
833 			return -EINVAL;
834 		}
835 	case IIO_CHAN_INFO_SAMP_FREQ:
836 		if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
837 			return -EINVAL;
838 
839 		mutex_lock(&data->lock);
840 		ret = kmx61_get_odr(data, val, val2, chan->address);
841 		mutex_unlock(&data->lock);
842 		if (ret)
843 			return -EINVAL;
844 		return IIO_VAL_INT_PLUS_MICRO;
845 	}
846 	return -EINVAL;
847 }
848 
849 static int kmx61_write_raw(struct iio_dev *indio_dev,
850 			   struct iio_chan_spec const *chan, int val,
851 			   int val2, long mask)
852 {
853 	int ret;
854 	struct kmx61_data *data = kmx61_get_data(indio_dev);
855 
856 	switch (mask) {
857 	case IIO_CHAN_INFO_SAMP_FREQ:
858 		if (chan->type != IIO_ACCEL && chan->type != IIO_MAGN)
859 			return -EINVAL;
860 
861 		mutex_lock(&data->lock);
862 		ret = kmx61_set_odr(data, val, val2, chan->address);
863 		mutex_unlock(&data->lock);
864 		return ret;
865 	case IIO_CHAN_INFO_SCALE:
866 		switch (chan->type) {
867 		case IIO_ACCEL:
868 			if (val != 0)
869 				return -EINVAL;
870 			mutex_lock(&data->lock);
871 			ret = kmx61_set_scale(data, val2);
872 			mutex_unlock(&data->lock);
873 			return ret;
874 		default:
875 			return -EINVAL;
876 		}
877 	default:
878 		return -EINVAL;
879 	}
880 }
881 
882 static int kmx61_read_event(struct iio_dev *indio_dev,
883 			    const struct iio_chan_spec *chan,
884 			    enum iio_event_type type,
885 			    enum iio_event_direction dir,
886 			    enum iio_event_info info,
887 			    int *val, int *val2)
888 {
889 	struct kmx61_data *data = kmx61_get_data(indio_dev);
890 
891 	*val2 = 0;
892 	switch (info) {
893 	case IIO_EV_INFO_VALUE:
894 		*val = data->wake_thresh;
895 		return IIO_VAL_INT;
896 	case IIO_EV_INFO_PERIOD:
897 		*val = data->wake_duration;
898 		return IIO_VAL_INT;
899 	default:
900 		return -EINVAL;
901 	}
902 }
903 
904 static int kmx61_write_event(struct iio_dev *indio_dev,
905 			     const struct iio_chan_spec *chan,
906 			     enum iio_event_type type,
907 			     enum iio_event_direction dir,
908 			     enum iio_event_info info,
909 			     int val, int val2)
910 {
911 	struct kmx61_data *data = kmx61_get_data(indio_dev);
912 
913 	if (data->ev_enable_state)
914 		return -EBUSY;
915 
916 	switch (info) {
917 	case IIO_EV_INFO_VALUE:
918 		data->wake_thresh = val;
919 		return IIO_VAL_INT;
920 	case IIO_EV_INFO_PERIOD:
921 		data->wake_duration = val;
922 		return IIO_VAL_INT;
923 	default:
924 		return -EINVAL;
925 	}
926 }
927 
928 static int kmx61_read_event_config(struct iio_dev *indio_dev,
929 				   const struct iio_chan_spec *chan,
930 				   enum iio_event_type type,
931 				   enum iio_event_direction dir)
932 {
933 	struct kmx61_data *data = kmx61_get_data(indio_dev);
934 
935 	return data->ev_enable_state;
936 }
937 
938 static int kmx61_write_event_config(struct iio_dev *indio_dev,
939 				    const struct iio_chan_spec *chan,
940 				    enum iio_event_type type,
941 				    enum iio_event_direction dir,
942 				    bool state)
943 {
944 	struct kmx61_data *data = kmx61_get_data(indio_dev);
945 	int ret = 0;
946 
947 	if (state && data->ev_enable_state)
948 		return 0;
949 
950 	mutex_lock(&data->lock);
951 
952 	if (!state && data->motion_trig_on) {
953 		data->ev_enable_state = false;
954 		goto err_unlock;
955 	}
956 
957 	ret = kmx61_set_power_state(data, state, KMX61_ACC);
958 	if (ret < 0)
959 		goto err_unlock;
960 
961 	ret = kmx61_setup_any_motion_interrupt(data, state);
962 	if (ret < 0) {
963 		kmx61_set_power_state(data, false, KMX61_ACC);
964 		goto err_unlock;
965 	}
966 
967 	data->ev_enable_state = state;
968 
969 err_unlock:
970 	mutex_unlock(&data->lock);
971 
972 	return ret;
973 }
974 
975 static int kmx61_acc_validate_trigger(struct iio_dev *indio_dev,
976 				      struct iio_trigger *trig)
977 {
978 	struct kmx61_data *data = kmx61_get_data(indio_dev);
979 
980 	if (data->acc_dready_trig != trig && data->motion_trig != trig)
981 		return -EINVAL;
982 
983 	return 0;
984 }
985 
986 static int kmx61_mag_validate_trigger(struct iio_dev *indio_dev,
987 				      struct iio_trigger *trig)
988 {
989 	struct kmx61_data *data = kmx61_get_data(indio_dev);
990 
991 	if (data->mag_dready_trig != trig)
992 		return -EINVAL;
993 
994 	return 0;
995 }
996 
997 static const struct iio_info kmx61_acc_info = {
998 	.read_raw		= kmx61_read_raw,
999 	.write_raw		= kmx61_write_raw,
1000 	.attrs			= &kmx61_acc_attribute_group,
1001 	.read_event_value	= kmx61_read_event,
1002 	.write_event_value	= kmx61_write_event,
1003 	.read_event_config	= kmx61_read_event_config,
1004 	.write_event_config	= kmx61_write_event_config,
1005 	.validate_trigger	= kmx61_acc_validate_trigger,
1006 };
1007 
1008 static const struct iio_info kmx61_mag_info = {
1009 	.read_raw		= kmx61_read_raw,
1010 	.write_raw		= kmx61_write_raw,
1011 	.attrs			= &kmx61_mag_attribute_group,
1012 	.validate_trigger	= kmx61_mag_validate_trigger,
1013 };
1014 
1015 
1016 static int kmx61_data_rdy_trigger_set_state(struct iio_trigger *trig,
1017 					    bool state)
1018 {
1019 	int ret = 0;
1020 	u8 device;
1021 
1022 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1023 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1024 
1025 	mutex_lock(&data->lock);
1026 
1027 	if (!state && data->ev_enable_state && data->motion_trig_on) {
1028 		data->motion_trig_on = false;
1029 		goto err_unlock;
1030 	}
1031 
1032 	if (data->acc_dready_trig == trig || data->motion_trig == trig)
1033 		device = KMX61_ACC;
1034 	else
1035 		device = KMX61_MAG;
1036 
1037 	ret = kmx61_set_power_state(data, state, device);
1038 	if (ret < 0)
1039 		goto err_unlock;
1040 
1041 	if (data->acc_dready_trig == trig || data->mag_dready_trig == trig)
1042 		ret = kmx61_setup_new_data_interrupt(data, state, device);
1043 	else
1044 		ret = kmx61_setup_any_motion_interrupt(data, state);
1045 	if (ret < 0) {
1046 		kmx61_set_power_state(data, false, device);
1047 		goto err_unlock;
1048 	}
1049 
1050 	if (data->acc_dready_trig == trig)
1051 		data->acc_dready_trig_on = state;
1052 	else if (data->mag_dready_trig == trig)
1053 		data->mag_dready_trig_on = state;
1054 	else
1055 		data->motion_trig_on = state;
1056 err_unlock:
1057 	mutex_unlock(&data->lock);
1058 
1059 	return ret;
1060 }
1061 
1062 static void kmx61_trig_reenable(struct iio_trigger *trig)
1063 {
1064 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
1065 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1066 	int ret;
1067 
1068 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1069 	if (ret < 0)
1070 		dev_err(&data->client->dev, "Error reading reg_inl\n");
1071 }
1072 
1073 static const struct iio_trigger_ops kmx61_trigger_ops = {
1074 	.set_trigger_state = kmx61_data_rdy_trigger_set_state,
1075 	.reenable = kmx61_trig_reenable,
1076 };
1077 
1078 static irqreturn_t kmx61_event_handler(int irq, void *private)
1079 {
1080 	struct kmx61_data *data = private;
1081 	struct iio_dev *indio_dev = data->acc_indio_dev;
1082 	int ret;
1083 
1084 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS1);
1085 	if (ret < 0) {
1086 		dev_err(&data->client->dev, "Error reading reg_ins1\n");
1087 		goto ack_intr;
1088 	}
1089 
1090 	if (ret & KMX61_REG_INS1_BIT_WUFS) {
1091 		ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INS2);
1092 		if (ret < 0) {
1093 			dev_err(&data->client->dev, "Error reading reg_ins2\n");
1094 			goto ack_intr;
1095 		}
1096 
1097 		if (ret & KMX61_REG_INS2_BIT_XN)
1098 			iio_push_event(indio_dev,
1099 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1100 				       0,
1101 				       IIO_MOD_X,
1102 				       IIO_EV_TYPE_THRESH,
1103 				       IIO_EV_DIR_FALLING),
1104 				       0);
1105 
1106 		if (ret & KMX61_REG_INS2_BIT_XP)
1107 			iio_push_event(indio_dev,
1108 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1109 				       0,
1110 				       IIO_MOD_X,
1111 				       IIO_EV_TYPE_THRESH,
1112 				       IIO_EV_DIR_RISING),
1113 				       0);
1114 
1115 		if (ret & KMX61_REG_INS2_BIT_YN)
1116 			iio_push_event(indio_dev,
1117 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1118 				       0,
1119 				       IIO_MOD_Y,
1120 				       IIO_EV_TYPE_THRESH,
1121 				       IIO_EV_DIR_FALLING),
1122 				       0);
1123 
1124 		if (ret & KMX61_REG_INS2_BIT_YP)
1125 			iio_push_event(indio_dev,
1126 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1127 				       0,
1128 				       IIO_MOD_Y,
1129 				       IIO_EV_TYPE_THRESH,
1130 				       IIO_EV_DIR_RISING),
1131 				       0);
1132 
1133 		if (ret & KMX61_REG_INS2_BIT_ZN)
1134 			iio_push_event(indio_dev,
1135 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1136 				       0,
1137 				       IIO_MOD_Z,
1138 				       IIO_EV_TYPE_THRESH,
1139 				       IIO_EV_DIR_FALLING),
1140 				       0);
1141 
1142 		if (ret & KMX61_REG_INS2_BIT_ZP)
1143 			iio_push_event(indio_dev,
1144 				       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1145 				       0,
1146 				       IIO_MOD_Z,
1147 				       IIO_EV_TYPE_THRESH,
1148 				       IIO_EV_DIR_RISING),
1149 				       0);
1150 	}
1151 
1152 ack_intr:
1153 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_CTRL1);
1154 	if (ret < 0)
1155 		dev_err(&data->client->dev, "Error reading reg_ctrl1\n");
1156 
1157 	ret |= KMX61_REG_CTRL1_BIT_RES;
1158 	ret = i2c_smbus_write_byte_data(data->client, KMX61_REG_CTRL1, ret);
1159 	if (ret < 0)
1160 		dev_err(&data->client->dev, "Error writing reg_ctrl1\n");
1161 
1162 	ret = i2c_smbus_read_byte_data(data->client, KMX61_REG_INL);
1163 	if (ret < 0)
1164 		dev_err(&data->client->dev, "Error reading reg_inl\n");
1165 
1166 	return IRQ_HANDLED;
1167 }
1168 
1169 static irqreturn_t kmx61_data_rdy_trig_poll(int irq, void *private)
1170 {
1171 	struct kmx61_data *data = private;
1172 
1173 	if (data->acc_dready_trig_on)
1174 		iio_trigger_poll(data->acc_dready_trig);
1175 	if (data->mag_dready_trig_on)
1176 		iio_trigger_poll(data->mag_dready_trig);
1177 
1178 	if (data->motion_trig_on)
1179 		iio_trigger_poll(data->motion_trig);
1180 
1181 	if (data->ev_enable_state)
1182 		return IRQ_WAKE_THREAD;
1183 	return IRQ_HANDLED;
1184 }
1185 
1186 static irqreturn_t kmx61_trigger_handler(int irq, void *p)
1187 {
1188 	struct iio_poll_func *pf = p;
1189 	struct iio_dev *indio_dev = pf->indio_dev;
1190 	struct kmx61_data *data = kmx61_get_data(indio_dev);
1191 	int bit, ret, i = 0;
1192 	u8 base;
1193 	s16 buffer[8] = { };
1194 
1195 	if (indio_dev == data->acc_indio_dev)
1196 		base = KMX61_ACC_XOUT_L;
1197 	else
1198 		base = KMX61_MAG_XOUT_L;
1199 
1200 	mutex_lock(&data->lock);
1201 	iio_for_each_active_channel(indio_dev, bit) {
1202 		ret = kmx61_read_measurement(data, base, bit);
1203 		if (ret < 0) {
1204 			mutex_unlock(&data->lock);
1205 			goto err;
1206 		}
1207 		buffer[i++] = ret;
1208 	}
1209 	mutex_unlock(&data->lock);
1210 
1211 	iio_push_to_buffers(indio_dev, buffer);
1212 err:
1213 	iio_trigger_notify_done(indio_dev->trig);
1214 
1215 	return IRQ_HANDLED;
1216 }
1217 
1218 static struct iio_dev *kmx61_indiodev_setup(struct kmx61_data *data,
1219 					    const struct iio_info *info,
1220 					    const struct iio_chan_spec *chan,
1221 					    int num_channels,
1222 					    const char *name)
1223 {
1224 	struct iio_dev *indio_dev;
1225 
1226 	indio_dev = devm_iio_device_alloc(&data->client->dev, sizeof(data));
1227 	if (!indio_dev)
1228 		return ERR_PTR(-ENOMEM);
1229 
1230 	kmx61_set_data(indio_dev, data);
1231 
1232 	indio_dev->channels = chan;
1233 	indio_dev->num_channels = num_channels;
1234 	indio_dev->name = name;
1235 	indio_dev->modes = INDIO_DIRECT_MODE;
1236 	indio_dev->info = info;
1237 
1238 	return indio_dev;
1239 }
1240 
1241 static struct iio_trigger *kmx61_trigger_setup(struct kmx61_data *data,
1242 					       struct iio_dev *indio_dev,
1243 					       const char *tag)
1244 {
1245 	struct iio_trigger *trig;
1246 	int ret;
1247 
1248 	trig = devm_iio_trigger_alloc(&data->client->dev,
1249 				      "%s-%s-dev%d",
1250 				      indio_dev->name,
1251 				      tag,
1252 				      iio_device_id(indio_dev));
1253 	if (!trig)
1254 		return ERR_PTR(-ENOMEM);
1255 
1256 	trig->ops = &kmx61_trigger_ops;
1257 	iio_trigger_set_drvdata(trig, indio_dev);
1258 
1259 	ret = iio_trigger_register(trig);
1260 	if (ret)
1261 		return ERR_PTR(ret);
1262 
1263 	return trig;
1264 }
1265 
1266 static int kmx61_probe(struct i2c_client *client)
1267 {
1268 	const struct i2c_device_id *id = i2c_client_get_device_id(client);
1269 	int ret;
1270 	struct kmx61_data *data;
1271 	const char *name = NULL;
1272 
1273 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
1274 	if (!data)
1275 		return -ENOMEM;
1276 
1277 	i2c_set_clientdata(client, data);
1278 	data->client = client;
1279 
1280 	mutex_init(&data->lock);
1281 
1282 	if (id)
1283 		name = id->name;
1284 	else
1285 		return -ENODEV;
1286 
1287 	data->acc_indio_dev =
1288 		kmx61_indiodev_setup(data, &kmx61_acc_info,
1289 				     kmx61_acc_channels,
1290 				     ARRAY_SIZE(kmx61_acc_channels),
1291 				     name);
1292 	if (IS_ERR(data->acc_indio_dev))
1293 		return PTR_ERR(data->acc_indio_dev);
1294 
1295 	data->mag_indio_dev =
1296 		kmx61_indiodev_setup(data, &kmx61_mag_info,
1297 				     kmx61_mag_channels,
1298 				     ARRAY_SIZE(kmx61_mag_channels),
1299 				     name);
1300 	if (IS_ERR(data->mag_indio_dev))
1301 		return PTR_ERR(data->mag_indio_dev);
1302 
1303 	ret = kmx61_chip_init(data);
1304 	if (ret < 0)
1305 		return ret;
1306 
1307 	if (client->irq > 0) {
1308 		ret = devm_request_threaded_irq(&client->dev, client->irq,
1309 						kmx61_data_rdy_trig_poll,
1310 						kmx61_event_handler,
1311 						IRQF_TRIGGER_RISING,
1312 						"kmx61_event",
1313 						data);
1314 		if (ret)
1315 			goto err_chip_uninit;
1316 
1317 		data->acc_dready_trig =
1318 			kmx61_trigger_setup(data, data->acc_indio_dev,
1319 					    "dready");
1320 		if (IS_ERR(data->acc_dready_trig)) {
1321 			ret = PTR_ERR(data->acc_dready_trig);
1322 			goto err_chip_uninit;
1323 		}
1324 
1325 		data->mag_dready_trig =
1326 			kmx61_trigger_setup(data, data->mag_indio_dev,
1327 					    "dready");
1328 		if (IS_ERR(data->mag_dready_trig)) {
1329 			ret = PTR_ERR(data->mag_dready_trig);
1330 			goto err_trigger_unregister_acc_dready;
1331 		}
1332 
1333 		data->motion_trig =
1334 			kmx61_trigger_setup(data, data->acc_indio_dev,
1335 					    "any-motion");
1336 		if (IS_ERR(data->motion_trig)) {
1337 			ret = PTR_ERR(data->motion_trig);
1338 			goto err_trigger_unregister_mag_dready;
1339 		}
1340 
1341 		ret = iio_triggered_buffer_setup(data->acc_indio_dev,
1342 						 &iio_pollfunc_store_time,
1343 						 kmx61_trigger_handler,
1344 						 NULL);
1345 		if (ret < 0) {
1346 			dev_err(&data->client->dev,
1347 				"Failed to setup acc triggered buffer\n");
1348 			goto err_trigger_unregister_motion;
1349 		}
1350 
1351 		ret = iio_triggered_buffer_setup(data->mag_indio_dev,
1352 						 &iio_pollfunc_store_time,
1353 						 kmx61_trigger_handler,
1354 						 NULL);
1355 		if (ret < 0) {
1356 			dev_err(&data->client->dev,
1357 				"Failed to setup mag triggered buffer\n");
1358 			goto err_buffer_cleanup_acc;
1359 		}
1360 	}
1361 
1362 	ret = pm_runtime_set_active(&client->dev);
1363 	if (ret < 0)
1364 		goto err_buffer_cleanup_mag;
1365 
1366 	pm_runtime_enable(&client->dev);
1367 	pm_runtime_set_autosuspend_delay(&client->dev, KMX61_SLEEP_DELAY_MS);
1368 	pm_runtime_use_autosuspend(&client->dev);
1369 
1370 	ret = iio_device_register(data->acc_indio_dev);
1371 	if (ret < 0) {
1372 		dev_err(&client->dev, "Failed to register acc iio device\n");
1373 		goto err_pm_cleanup;
1374 	}
1375 
1376 	ret = iio_device_register(data->mag_indio_dev);
1377 	if (ret < 0) {
1378 		dev_err(&client->dev, "Failed to register mag iio device\n");
1379 		goto err_iio_unregister_acc;
1380 	}
1381 
1382 	return 0;
1383 
1384 err_iio_unregister_acc:
1385 	iio_device_unregister(data->acc_indio_dev);
1386 err_pm_cleanup:
1387 	pm_runtime_dont_use_autosuspend(&client->dev);
1388 	pm_runtime_disable(&client->dev);
1389 err_buffer_cleanup_mag:
1390 	if (client->irq > 0)
1391 		iio_triggered_buffer_cleanup(data->mag_indio_dev);
1392 err_buffer_cleanup_acc:
1393 	if (client->irq > 0)
1394 		iio_triggered_buffer_cleanup(data->acc_indio_dev);
1395 err_trigger_unregister_motion:
1396 	iio_trigger_unregister(data->motion_trig);
1397 err_trigger_unregister_mag_dready:
1398 	iio_trigger_unregister(data->mag_dready_trig);
1399 err_trigger_unregister_acc_dready:
1400 	iio_trigger_unregister(data->acc_dready_trig);
1401 err_chip_uninit:
1402 	kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1403 	return ret;
1404 }
1405 
1406 static void kmx61_remove(struct i2c_client *client)
1407 {
1408 	struct kmx61_data *data = i2c_get_clientdata(client);
1409 
1410 	iio_device_unregister(data->acc_indio_dev);
1411 	iio_device_unregister(data->mag_indio_dev);
1412 
1413 	pm_runtime_disable(&client->dev);
1414 	pm_runtime_set_suspended(&client->dev);
1415 
1416 	if (client->irq > 0) {
1417 		iio_triggered_buffer_cleanup(data->acc_indio_dev);
1418 		iio_triggered_buffer_cleanup(data->mag_indio_dev);
1419 		iio_trigger_unregister(data->acc_dready_trig);
1420 		iio_trigger_unregister(data->mag_dready_trig);
1421 		iio_trigger_unregister(data->motion_trig);
1422 	}
1423 
1424 	mutex_lock(&data->lock);
1425 	kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1426 	mutex_unlock(&data->lock);
1427 }
1428 
1429 static int kmx61_suspend(struct device *dev)
1430 {
1431 	int ret;
1432 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1433 
1434 	mutex_lock(&data->lock);
1435 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG,
1436 			     false);
1437 	mutex_unlock(&data->lock);
1438 
1439 	return ret;
1440 }
1441 
1442 static int kmx61_resume(struct device *dev)
1443 {
1444 	u8 stby = 0;
1445 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1446 
1447 	if (data->acc_stby)
1448 		stby |= KMX61_ACC_STBY_BIT;
1449 	if (data->mag_stby)
1450 		stby |= KMX61_MAG_STBY_BIT;
1451 
1452 	return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1453 }
1454 
1455 static int kmx61_runtime_suspend(struct device *dev)
1456 {
1457 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1458 	int ret;
1459 
1460 	mutex_lock(&data->lock);
1461 	ret = kmx61_set_mode(data, KMX61_ALL_STBY, KMX61_ACC | KMX61_MAG, true);
1462 	mutex_unlock(&data->lock);
1463 
1464 	return ret;
1465 }
1466 
1467 static int kmx61_runtime_resume(struct device *dev)
1468 {
1469 	struct kmx61_data *data = i2c_get_clientdata(to_i2c_client(dev));
1470 	u8 stby = 0;
1471 
1472 	if (!data->acc_ps)
1473 		stby |= KMX61_ACC_STBY_BIT;
1474 	if (!data->mag_ps)
1475 		stby |= KMX61_MAG_STBY_BIT;
1476 
1477 	return kmx61_set_mode(data, stby, KMX61_ACC | KMX61_MAG, true);
1478 }
1479 
1480 static const struct dev_pm_ops kmx61_pm_ops = {
1481 	SYSTEM_SLEEP_PM_OPS(kmx61_suspend, kmx61_resume)
1482 	RUNTIME_PM_OPS(kmx61_runtime_suspend, kmx61_runtime_resume, NULL)
1483 };
1484 
1485 static const struct i2c_device_id kmx61_id[] = {
1486 	{ "kmx611021" },
1487 	{ }
1488 };
1489 
1490 MODULE_DEVICE_TABLE(i2c, kmx61_id);
1491 
1492 static struct i2c_driver kmx61_driver = {
1493 	.driver = {
1494 		.name = "kmx61",
1495 		.pm = pm_ptr(&kmx61_pm_ops),
1496 	},
1497 	.probe		= kmx61_probe,
1498 	.remove		= kmx61_remove,
1499 	.id_table	= kmx61_id,
1500 };
1501 
1502 module_i2c_driver(kmx61_driver);
1503 
1504 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
1505 MODULE_DESCRIPTION("KMX61 accelerometer/magnetometer driver");
1506 MODULE_LICENSE("GPL v2");
1507