1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2012 Invensense, Inc. 4 */ 5 6 #include <linux/pm_runtime.h> 7 8 #include <linux/iio/common/inv_sensors_timestamp.h> 9 #include <linux/iio/events.h> 10 11 #include "inv_mpu_iio.h" 12 13 static unsigned int inv_scan_query_mpu6050(struct iio_dev *indio_dev) 14 { 15 struct inv_mpu6050_state *st = iio_priv(indio_dev); 16 unsigned int mask; 17 18 /* 19 * If the MPU6050 is just used as a trigger, then the scan mask 20 * is not allocated so we simply enable the temperature channel 21 * as a dummy and bail out. 22 */ 23 if (!indio_dev->active_scan_mask) { 24 st->chip_config.temp_fifo_enable = true; 25 return INV_MPU6050_SENSOR_TEMP; 26 } 27 28 st->chip_config.gyro_fifo_enable = 29 test_bit(INV_MPU6050_SCAN_GYRO_X, 30 indio_dev->active_scan_mask) || 31 test_bit(INV_MPU6050_SCAN_GYRO_Y, 32 indio_dev->active_scan_mask) || 33 test_bit(INV_MPU6050_SCAN_GYRO_Z, 34 indio_dev->active_scan_mask); 35 36 st->chip_config.accl_fifo_enable = 37 test_bit(INV_MPU6050_SCAN_ACCL_X, 38 indio_dev->active_scan_mask) || 39 test_bit(INV_MPU6050_SCAN_ACCL_Y, 40 indio_dev->active_scan_mask) || 41 test_bit(INV_MPU6050_SCAN_ACCL_Z, 42 indio_dev->active_scan_mask); 43 44 st->chip_config.temp_fifo_enable = 45 test_bit(INV_MPU6050_SCAN_TEMP, indio_dev->active_scan_mask); 46 47 mask = 0; 48 if (st->chip_config.gyro_fifo_enable) 49 mask |= INV_MPU6050_SENSOR_GYRO; 50 if (st->chip_config.accl_fifo_enable) 51 mask |= INV_MPU6050_SENSOR_ACCL; 52 if (st->chip_config.temp_fifo_enable) 53 mask |= INV_MPU6050_SENSOR_TEMP; 54 55 return mask; 56 } 57 58 static unsigned int inv_scan_query_mpu9x50(struct iio_dev *indio_dev) 59 { 60 struct inv_mpu6050_state *st = iio_priv(indio_dev); 61 unsigned int mask; 62 63 mask = inv_scan_query_mpu6050(indio_dev); 64 65 /* no magnetometer if i2c auxiliary bus is used */ 66 if (st->magn_disabled) 67 return mask; 68 69 st->chip_config.magn_fifo_enable = 70 test_bit(INV_MPU9X50_SCAN_MAGN_X, 71 indio_dev->active_scan_mask) || 72 test_bit(INV_MPU9X50_SCAN_MAGN_Y, 73 indio_dev->active_scan_mask) || 74 test_bit(INV_MPU9X50_SCAN_MAGN_Z, 75 indio_dev->active_scan_mask); 76 if (st->chip_config.magn_fifo_enable) 77 mask |= INV_MPU6050_SENSOR_MAGN; 78 79 return mask; 80 } 81 82 static unsigned int inv_scan_query(struct iio_dev *indio_dev) 83 { 84 struct inv_mpu6050_state *st = iio_priv(indio_dev); 85 86 switch (st->chip_type) { 87 case INV_MPU9150: 88 case INV_MPU9250: 89 case INV_MPU9255: 90 return inv_scan_query_mpu9x50(indio_dev); 91 default: 92 return inv_scan_query_mpu6050(indio_dev); 93 } 94 } 95 96 static unsigned int inv_compute_skip_samples(const struct inv_mpu6050_state *st) 97 { 98 unsigned int skip_samples = 0; 99 100 /* mag first sample is always not ready, skip it */ 101 if (st->chip_config.magn_fifo_enable) 102 skip_samples = 1; 103 104 return skip_samples; 105 } 106 107 int inv_mpu6050_prepare_fifo(struct inv_mpu6050_state *st, bool enable) 108 { 109 uint8_t d; 110 int ret; 111 112 if (enable) { 113 /* reset timestamping */ 114 inv_sensors_timestamp_reset(&st->timestamp); 115 /* reset FIFO */ 116 d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_RST; 117 ret = regmap_write(st->map, st->reg->user_ctrl, d); 118 if (ret) 119 return ret; 120 /* enable sensor output to FIFO */ 121 d = 0; 122 if (st->chip_config.gyro_fifo_enable) 123 d |= INV_MPU6050_BITS_GYRO_OUT; 124 if (st->chip_config.accl_fifo_enable) 125 d |= INV_MPU6050_BIT_ACCEL_OUT; 126 if (st->chip_config.temp_fifo_enable) 127 d |= INV_MPU6050_BIT_TEMP_OUT; 128 if (st->chip_config.magn_fifo_enable) 129 d |= INV_MPU6050_BIT_SLAVE_0; 130 ret = regmap_write(st->map, st->reg->fifo_en, d); 131 if (ret) 132 return ret; 133 /* enable FIFO reading */ 134 d = st->chip_config.user_ctrl | INV_MPU6050_BIT_FIFO_EN; 135 ret = regmap_write(st->map, st->reg->user_ctrl, d); 136 if (ret) 137 return ret; 138 /* enable data interrupt */ 139 ret = regmap_update_bits(st->map, st->reg->int_enable, 140 INV_MPU6050_BIT_DATA_RDY_EN, INV_MPU6050_BIT_DATA_RDY_EN); 141 } else { 142 /* disable data interrupt */ 143 ret = regmap_update_bits(st->map, st->reg->int_enable, 144 INV_MPU6050_BIT_DATA_RDY_EN, 0); 145 if (ret) 146 return ret; 147 ret = regmap_write(st->map, st->reg->fifo_en, 0); 148 if (ret) 149 return ret; 150 /* restore user_ctrl for disabling FIFO reading */ 151 ret = regmap_write(st->map, st->reg->user_ctrl, 152 st->chip_config.user_ctrl); 153 } 154 155 return ret; 156 } 157 158 /** 159 * inv_mpu6050_set_enable() - enable chip functions. 160 * @indio_dev: Device driver instance. 161 * @enable: enable/disable 162 */ 163 static int inv_mpu6050_set_enable(struct iio_dev *indio_dev, bool enable) 164 { 165 struct inv_mpu6050_state *st = iio_priv(indio_dev); 166 struct device *pdev = regmap_get_device(st->map); 167 unsigned int scan; 168 int result; 169 170 if (enable) { 171 scan = inv_scan_query(indio_dev); 172 result = pm_runtime_resume_and_get(pdev); 173 if (result) 174 return result; 175 /* 176 * In case autosuspend didn't trigger, turn off first not 177 * required sensors excepted WoM 178 */ 179 result = inv_mpu6050_switch_engine(st, false, ~scan & ~INV_MPU6050_SENSOR_WOM); 180 if (result) 181 goto error_power_off; 182 result = inv_mpu6050_switch_engine(st, true, scan); 183 if (result) 184 goto error_power_off; 185 st->skip_samples = inv_compute_skip_samples(st); 186 result = inv_mpu6050_prepare_fifo(st, true); 187 if (result) 188 goto error_power_off; 189 } else { 190 st->chip_config.gyro_fifo_enable = 0; 191 st->chip_config.accl_fifo_enable = 0; 192 st->chip_config.temp_fifo_enable = 0; 193 st->chip_config.magn_fifo_enable = 0; 194 result = inv_mpu6050_prepare_fifo(st, false); 195 if (result) 196 goto error_power_off; 197 pm_runtime_put_autosuspend(pdev); 198 } 199 200 return 0; 201 202 error_power_off: 203 pm_runtime_put_autosuspend(pdev); 204 return result; 205 } 206 207 /** 208 * inv_mpu_data_rdy_trigger_set_state() - set data ready interrupt state 209 * @trig: Trigger instance 210 * @state: Desired trigger state 211 */ 212 static int inv_mpu_data_rdy_trigger_set_state(struct iio_trigger *trig, 213 bool state) 214 { 215 struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); 216 struct inv_mpu6050_state *st = iio_priv(indio_dev); 217 int result; 218 219 mutex_lock(&st->lock); 220 result = inv_mpu6050_set_enable(indio_dev, state); 221 mutex_unlock(&st->lock); 222 223 return result; 224 } 225 226 static const struct iio_trigger_ops inv_mpu_trigger_ops = { 227 .set_trigger_state = &inv_mpu_data_rdy_trigger_set_state, 228 }; 229 230 static irqreturn_t inv_mpu6050_interrupt_timestamp(int irq, void *p) 231 { 232 struct iio_dev *indio_dev = p; 233 struct inv_mpu6050_state *st = iio_priv(indio_dev); 234 235 st->it_timestamp = iio_get_time_ns(indio_dev); 236 237 return IRQ_WAKE_THREAD; 238 } 239 240 static irqreturn_t inv_mpu6050_interrupt_handle(int irq, void *p) 241 { 242 struct iio_dev *indio_dev = p; 243 struct inv_mpu6050_state *st = iio_priv(indio_dev); 244 unsigned int int_status, wom_bits; 245 u64 ev_code; 246 int result; 247 248 switch (st->chip_type) { 249 case INV_MPU6000: 250 case INV_MPU6050: 251 case INV_MPU9150: 252 /* 253 * WoM is not supported and interrupt status read seems to be broken for 254 * some chips. Since data ready is the only interrupt, bypass interrupt 255 * status read and always assert data ready bit. 256 */ 257 wom_bits = 0; 258 int_status = INV_MPU6050_BIT_RAW_DATA_RDY_INT; 259 goto data_ready_interrupt; 260 case INV_MPU6500: 261 case INV_MPU6515: 262 case INV_MPU6880: 263 case INV_MPU9250: 264 case INV_MPU9255: 265 wom_bits = INV_MPU6500_BIT_WOM_INT; 266 break; 267 default: 268 wom_bits = INV_ICM20608_BIT_WOM_INT; 269 break; 270 } 271 272 scoped_guard(mutex, &st->lock) { 273 /* ack interrupt and check status */ 274 result = regmap_read(st->map, st->reg->int_status, &int_status); 275 if (result) { 276 dev_err(regmap_get_device(st->map), "failed to ack interrupt\n"); 277 return IRQ_HANDLED; 278 } 279 280 /* handle WoM event */ 281 if (st->chip_config.wom_en && (int_status & wom_bits)) { 282 ev_code = IIO_MOD_EVENT_CODE(IIO_ACCEL, 0, IIO_MOD_X_OR_Y_OR_Z, 283 IIO_EV_TYPE_ROC, IIO_EV_DIR_RISING); 284 iio_push_event(indio_dev, ev_code, st->it_timestamp); 285 } 286 } 287 288 data_ready_interrupt: 289 /* handle raw data interrupt */ 290 if (int_status & INV_MPU6050_BIT_RAW_DATA_RDY_INT) { 291 indio_dev->pollfunc->timestamp = st->it_timestamp; 292 iio_trigger_poll_nested(st->trig); 293 } 294 295 return IRQ_HANDLED; 296 } 297 298 int inv_mpu6050_probe_trigger(struct iio_dev *indio_dev, int irq_type) 299 { 300 int ret; 301 struct inv_mpu6050_state *st = iio_priv(indio_dev); 302 303 st->trig = devm_iio_trigger_alloc(&indio_dev->dev, 304 "%s-dev%d", 305 indio_dev->name, 306 iio_device_id(indio_dev)); 307 if (!st->trig) 308 return -ENOMEM; 309 310 irq_type |= IRQF_ONESHOT; 311 ret = devm_request_threaded_irq(&indio_dev->dev, st->irq, 312 &inv_mpu6050_interrupt_timestamp, 313 &inv_mpu6050_interrupt_handle, 314 irq_type, "inv_mpu", indio_dev); 315 if (ret) 316 return ret; 317 318 st->trig->dev.parent = regmap_get_device(st->map); 319 st->trig->ops = &inv_mpu_trigger_ops; 320 iio_trigger_set_drvdata(st->trig, indio_dev); 321 322 ret = devm_iio_trigger_register(&indio_dev->dev, st->trig); 323 if (ret) 324 return ret; 325 326 indio_dev->trig = iio_trigger_get(st->trig); 327 328 return 0; 329 } 330