xref: /linux/drivers/iio/imu/bmi160/bmi160_core.c (revision 62597edf6340191511bdf9a7f64fa315ddc58805)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
4  *
5  * Copyright (c) 2016, Intel Corporation.
6  * Copyright (c) 2019, Martin Kelly.
7  *
8  * IIO core driver for BMI160, with support for I2C/SPI busses
9  *
10  * TODO: magnetometer, hardware FIFO
11  */
12 #include <linux/module.h>
13 #include <linux/regmap.h>
14 #include <linux/delay.h>
15 #include <linux/irq.h>
16 #include <linux/property.h>
17 #include <linux/regulator/consumer.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/iio/trigger_consumer.h>
22 #include <linux/iio/buffer.h>
23 #include <linux/iio/sysfs.h>
24 #include <linux/iio/trigger.h>
25 
26 #include "bmi160.h"
27 
28 #define BMI160_REG_CHIP_ID	0x00
29 #define BMI120_CHIP_ID_VAL	0xD3
30 #define BMI160_CHIP_ID_VAL	0xD1
31 
32 #define BMI160_REG_PMU_STATUS	0x03
33 
34 /* X axis data low byte address, the rest can be obtained using axis offset */
35 #define BMI160_REG_DATA_MAGN_XOUT_L	0x04
36 #define BMI160_REG_DATA_GYRO_XOUT_L	0x0C
37 #define BMI160_REG_DATA_ACCEL_XOUT_L	0x12
38 
39 #define BMI160_REG_ACCEL_CONFIG		0x40
40 #define BMI160_ACCEL_CONFIG_ODR_MASK	GENMASK(3, 0)
41 #define BMI160_ACCEL_CONFIG_BWP_MASK	GENMASK(6, 4)
42 
43 #define BMI160_REG_ACCEL_RANGE		0x41
44 #define BMI160_ACCEL_RANGE_2G		0x03
45 #define BMI160_ACCEL_RANGE_4G		0x05
46 #define BMI160_ACCEL_RANGE_8G		0x08
47 #define BMI160_ACCEL_RANGE_16G		0x0C
48 
49 #define BMI160_REG_GYRO_CONFIG		0x42
50 #define BMI160_GYRO_CONFIG_ODR_MASK	GENMASK(3, 0)
51 #define BMI160_GYRO_CONFIG_BWP_MASK	GENMASK(5, 4)
52 
53 #define BMI160_REG_GYRO_RANGE		0x43
54 #define BMI160_GYRO_RANGE_2000DPS	0x00
55 #define BMI160_GYRO_RANGE_1000DPS	0x01
56 #define BMI160_GYRO_RANGE_500DPS	0x02
57 #define BMI160_GYRO_RANGE_250DPS	0x03
58 #define BMI160_GYRO_RANGE_125DPS	0x04
59 
60 #define BMI160_REG_CMD			0x7E
61 #define BMI160_CMD_ACCEL_PM_SUSPEND	0x10
62 #define BMI160_CMD_ACCEL_PM_NORMAL	0x11
63 #define BMI160_CMD_ACCEL_PM_LOW_POWER	0x12
64 #define BMI160_CMD_GYRO_PM_SUSPEND	0x14
65 #define BMI160_CMD_GYRO_PM_NORMAL	0x15
66 #define BMI160_CMD_GYRO_PM_FAST_STARTUP	0x17
67 #define BMI160_CMD_SOFTRESET		0xB6
68 
69 #define BMI160_REG_INT_EN		0x51
70 #define BMI160_DRDY_INT_EN		BIT(4)
71 
72 #define BMI160_REG_INT_OUT_CTRL		0x53
73 #define BMI160_INT_OUT_CTRL_MASK	0x0f
74 #define BMI160_INT1_OUT_CTRL_SHIFT	0
75 #define BMI160_INT2_OUT_CTRL_SHIFT	4
76 #define BMI160_EDGE_TRIGGERED		BIT(0)
77 #define BMI160_ACTIVE_HIGH		BIT(1)
78 #define BMI160_OPEN_DRAIN		BIT(2)
79 #define BMI160_OUTPUT_EN		BIT(3)
80 
81 #define BMI160_REG_INT_LATCH		0x54
82 #define BMI160_INT1_LATCH_MASK		BIT(4)
83 #define BMI160_INT2_LATCH_MASK		BIT(5)
84 
85 /* INT1 and INT2 are in the opposite order as in INT_OUT_CTRL! */
86 #define BMI160_REG_INT_MAP		0x56
87 #define BMI160_INT1_MAP_DRDY_EN		0x80
88 #define BMI160_INT2_MAP_DRDY_EN		0x08
89 
90 #define BMI160_REG_DUMMY		0x7F
91 
92 #define BMI160_NORMAL_WRITE_USLEEP	2
93 #define BMI160_SUSPENDED_WRITE_USLEEP	450
94 
95 #define BMI160_ACCEL_PMU_MIN_USLEEP	3800
96 #define BMI160_GYRO_PMU_MIN_USLEEP	80000
97 #define BMI160_SOFTRESET_USLEEP		1000
98 
99 #define BMI160_CHANNEL(_type, _axis, _index) {			\
100 	.type = _type,						\
101 	.modified = 1,						\
102 	.channel2 = IIO_MOD_##_axis,				\
103 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
104 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
105 		BIT(IIO_CHAN_INFO_SAMP_FREQ),			\
106 	.scan_index = _index,					\
107 	.scan_type = {						\
108 		.sign = 's',					\
109 		.realbits = 16,					\
110 		.storagebits = 16,				\
111 		.endianness = IIO_LE,				\
112 	},							\
113 	.ext_info = bmi160_ext_info,				\
114 }
115 
116 static const u8 bmi_chip_ids[] = {
117 	BMI120_CHIP_ID_VAL,
118 	BMI160_CHIP_ID_VAL,
119 };
120 
121 /* scan indexes follow DATA register order */
122 enum bmi160_scan_axis {
123 	BMI160_SCAN_EXT_MAGN_X = 0,
124 	BMI160_SCAN_EXT_MAGN_Y,
125 	BMI160_SCAN_EXT_MAGN_Z,
126 	BMI160_SCAN_RHALL,
127 	BMI160_SCAN_GYRO_X,
128 	BMI160_SCAN_GYRO_Y,
129 	BMI160_SCAN_GYRO_Z,
130 	BMI160_SCAN_ACCEL_X,
131 	BMI160_SCAN_ACCEL_Y,
132 	BMI160_SCAN_ACCEL_Z,
133 	BMI160_SCAN_TIMESTAMP,
134 };
135 
136 enum bmi160_sensor_type {
137 	BMI160_ACCEL	= 0,
138 	BMI160_GYRO,
139 	BMI160_EXT_MAGN,
140 	BMI160_NUM_SENSORS /* must be last */
141 };
142 
143 enum bmi160_int_pin {
144 	BMI160_PIN_INT1,
145 	BMI160_PIN_INT2
146 };
147 
148 const struct regmap_config bmi160_regmap_config = {
149 	.reg_bits = 8,
150 	.val_bits = 8,
151 };
152 EXPORT_SYMBOL_NS(bmi160_regmap_config, IIO_BMI160);
153 
154 struct bmi160_regs {
155 	u8 data; /* LSB byte register for X-axis */
156 	u8 config;
157 	u8 config_odr_mask;
158 	u8 config_bwp_mask;
159 	u8 range;
160 	u8 pmu_cmd_normal;
161 	u8 pmu_cmd_suspend;
162 };
163 
164 static struct bmi160_regs bmi160_regs[] = {
165 	[BMI160_ACCEL] = {
166 		.data	= BMI160_REG_DATA_ACCEL_XOUT_L,
167 		.config	= BMI160_REG_ACCEL_CONFIG,
168 		.config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
169 		.config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
170 		.range	= BMI160_REG_ACCEL_RANGE,
171 		.pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
172 		.pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
173 	},
174 	[BMI160_GYRO] = {
175 		.data	= BMI160_REG_DATA_GYRO_XOUT_L,
176 		.config	= BMI160_REG_GYRO_CONFIG,
177 		.config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
178 		.config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
179 		.range	= BMI160_REG_GYRO_RANGE,
180 		.pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
181 		.pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
182 	},
183 };
184 
185 static unsigned long bmi160_pmu_time[] = {
186 	[BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP,
187 	[BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP,
188 };
189 
190 struct bmi160_scale {
191 	u8 bits;
192 	int uscale;
193 };
194 
195 struct bmi160_odr {
196 	u8 bits;
197 	int odr;
198 	int uodr;
199 };
200 
201 static const struct bmi160_scale bmi160_accel_scale[] = {
202 	{ BMI160_ACCEL_RANGE_2G, 598},
203 	{ BMI160_ACCEL_RANGE_4G, 1197},
204 	{ BMI160_ACCEL_RANGE_8G, 2394},
205 	{ BMI160_ACCEL_RANGE_16G, 4788},
206 };
207 
208 static const struct bmi160_scale bmi160_gyro_scale[] = {
209 	{ BMI160_GYRO_RANGE_2000DPS, 1065},
210 	{ BMI160_GYRO_RANGE_1000DPS, 532},
211 	{ BMI160_GYRO_RANGE_500DPS, 266},
212 	{ BMI160_GYRO_RANGE_250DPS, 133},
213 	{ BMI160_GYRO_RANGE_125DPS, 66},
214 };
215 
216 struct bmi160_scale_item {
217 	const struct bmi160_scale *tbl;
218 	int num;
219 };
220 
221 static const struct  bmi160_scale_item bmi160_scale_table[] = {
222 	[BMI160_ACCEL] = {
223 		.tbl	= bmi160_accel_scale,
224 		.num	= ARRAY_SIZE(bmi160_accel_scale),
225 	},
226 	[BMI160_GYRO] = {
227 		.tbl	= bmi160_gyro_scale,
228 		.num	= ARRAY_SIZE(bmi160_gyro_scale),
229 	},
230 };
231 
232 static const struct bmi160_odr bmi160_accel_odr[] = {
233 	{0x01, 0, 781250},
234 	{0x02, 1, 562500},
235 	{0x03, 3, 125000},
236 	{0x04, 6, 250000},
237 	{0x05, 12, 500000},
238 	{0x06, 25, 0},
239 	{0x07, 50, 0},
240 	{0x08, 100, 0},
241 	{0x09, 200, 0},
242 	{0x0A, 400, 0},
243 	{0x0B, 800, 0},
244 	{0x0C, 1600, 0},
245 };
246 
247 static const struct bmi160_odr bmi160_gyro_odr[] = {
248 	{0x06, 25, 0},
249 	{0x07, 50, 0},
250 	{0x08, 100, 0},
251 	{0x09, 200, 0},
252 	{0x0A, 400, 0},
253 	{0x0B, 800, 0},
254 	{0x0C, 1600, 0},
255 	{0x0D, 3200, 0},
256 };
257 
258 struct bmi160_odr_item {
259 	const struct bmi160_odr *tbl;
260 	int num;
261 };
262 
263 static const struct  bmi160_odr_item bmi160_odr_table[] = {
264 	[BMI160_ACCEL] = {
265 		.tbl	= bmi160_accel_odr,
266 		.num	= ARRAY_SIZE(bmi160_accel_odr),
267 	},
268 	[BMI160_GYRO] = {
269 		.tbl	= bmi160_gyro_odr,
270 		.num	= ARRAY_SIZE(bmi160_gyro_odr),
271 	},
272 };
273 
274 static const struct iio_mount_matrix *
275 bmi160_get_mount_matrix(const struct iio_dev *indio_dev,
276 			const struct iio_chan_spec *chan)
277 {
278 	struct bmi160_data *data = iio_priv(indio_dev);
279 
280 	return &data->orientation;
281 }
282 
283 static const struct iio_chan_spec_ext_info bmi160_ext_info[] = {
284 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, bmi160_get_mount_matrix),
285 	{ }
286 };
287 
288 static const struct iio_chan_spec bmi160_channels[] = {
289 	BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
290 	BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
291 	BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
292 	BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
293 	BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
294 	BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
295 	IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
296 };
297 
298 static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
299 {
300 	switch (iio_type) {
301 	case IIO_ACCEL:
302 		return BMI160_ACCEL;
303 	case IIO_ANGL_VEL:
304 		return BMI160_GYRO;
305 	default:
306 		return -EINVAL;
307 	}
308 }
309 
310 static
311 int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
312 		    bool mode)
313 {
314 	int ret;
315 	u8 cmd;
316 
317 	if (mode)
318 		cmd = bmi160_regs[t].pmu_cmd_normal;
319 	else
320 		cmd = bmi160_regs[t].pmu_cmd_suspend;
321 
322 	ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
323 	if (ret)
324 		return ret;
325 
326 	usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000);
327 
328 	return 0;
329 }
330 
331 static
332 int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
333 		     int uscale)
334 {
335 	int i;
336 
337 	for (i = 0; i < bmi160_scale_table[t].num; i++)
338 		if (bmi160_scale_table[t].tbl[i].uscale == uscale)
339 			break;
340 
341 	if (i == bmi160_scale_table[t].num)
342 		return -EINVAL;
343 
344 	return regmap_write(data->regmap, bmi160_regs[t].range,
345 			    bmi160_scale_table[t].tbl[i].bits);
346 }
347 
348 static
349 int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
350 		     int *uscale)
351 {
352 	int i, ret, val;
353 
354 	ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
355 	if (ret)
356 		return ret;
357 
358 	for (i = 0; i < bmi160_scale_table[t].num; i++)
359 		if (bmi160_scale_table[t].tbl[i].bits == val) {
360 			*uscale = bmi160_scale_table[t].tbl[i].uscale;
361 			return 0;
362 		}
363 
364 	return -EINVAL;
365 }
366 
367 static int bmi160_get_data(struct bmi160_data *data, int chan_type,
368 			   int axis, int *val)
369 {
370 	u8 reg;
371 	int ret;
372 	__le16 sample;
373 	enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
374 
375 	reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample);
376 
377 	ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample));
378 	if (ret)
379 		return ret;
380 
381 	*val = sign_extend32(le16_to_cpu(sample), 15);
382 
383 	return 0;
384 }
385 
386 static
387 int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
388 		   int odr, int uodr)
389 {
390 	int i;
391 
392 	for (i = 0; i < bmi160_odr_table[t].num; i++)
393 		if (bmi160_odr_table[t].tbl[i].odr == odr &&
394 		    bmi160_odr_table[t].tbl[i].uodr == uodr)
395 			break;
396 
397 	if (i >= bmi160_odr_table[t].num)
398 		return -EINVAL;
399 
400 	return regmap_update_bits(data->regmap,
401 				  bmi160_regs[t].config,
402 				  bmi160_regs[t].config_odr_mask,
403 				  bmi160_odr_table[t].tbl[i].bits);
404 }
405 
406 static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
407 			  int *odr, int *uodr)
408 {
409 	int i, val, ret;
410 
411 	ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
412 	if (ret)
413 		return ret;
414 
415 	val &= bmi160_regs[t].config_odr_mask;
416 
417 	for (i = 0; i < bmi160_odr_table[t].num; i++)
418 		if (val == bmi160_odr_table[t].tbl[i].bits)
419 			break;
420 
421 	if (i >= bmi160_odr_table[t].num)
422 		return -EINVAL;
423 
424 	*odr = bmi160_odr_table[t].tbl[i].odr;
425 	*uodr = bmi160_odr_table[t].tbl[i].uodr;
426 
427 	return 0;
428 }
429 
430 static irqreturn_t bmi160_trigger_handler(int irq, void *p)
431 {
432 	struct iio_poll_func *pf = p;
433 	struct iio_dev *indio_dev = pf->indio_dev;
434 	struct bmi160_data *data = iio_priv(indio_dev);
435 	int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
436 	__le16 sample;
437 
438 	for_each_set_bit(i, indio_dev->active_scan_mask,
439 			 indio_dev->masklength) {
440 		ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample),
441 				       &sample, sizeof(sample));
442 		if (ret)
443 			goto done;
444 		data->buf[j++] = sample;
445 	}
446 
447 	iio_push_to_buffers_with_timestamp(indio_dev, data->buf, pf->timestamp);
448 done:
449 	iio_trigger_notify_done(indio_dev->trig);
450 	return IRQ_HANDLED;
451 }
452 
453 static int bmi160_read_raw(struct iio_dev *indio_dev,
454 			   struct iio_chan_spec const *chan,
455 			   int *val, int *val2, long mask)
456 {
457 	int ret;
458 	struct bmi160_data *data = iio_priv(indio_dev);
459 
460 	switch (mask) {
461 	case IIO_CHAN_INFO_RAW:
462 		ret = bmi160_get_data(data, chan->type, chan->channel2, val);
463 		if (ret)
464 			return ret;
465 		return IIO_VAL_INT;
466 	case IIO_CHAN_INFO_SCALE:
467 		*val = 0;
468 		ret = bmi160_get_scale(data,
469 				       bmi160_to_sensor(chan->type), val2);
470 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
471 	case IIO_CHAN_INFO_SAMP_FREQ:
472 		ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
473 				     val, val2);
474 		return ret ? ret : IIO_VAL_INT_PLUS_MICRO;
475 	default:
476 		return -EINVAL;
477 	}
478 
479 	return 0;
480 }
481 
482 static int bmi160_write_raw(struct iio_dev *indio_dev,
483 			    struct iio_chan_spec const *chan,
484 			    int val, int val2, long mask)
485 {
486 	struct bmi160_data *data = iio_priv(indio_dev);
487 
488 	switch (mask) {
489 	case IIO_CHAN_INFO_SCALE:
490 		return bmi160_set_scale(data,
491 					bmi160_to_sensor(chan->type), val2);
492 	case IIO_CHAN_INFO_SAMP_FREQ:
493 		return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
494 				      val, val2);
495 	default:
496 		return -EINVAL;
497 	}
498 
499 	return 0;
500 }
501 
502 static
503 IIO_CONST_ATTR(in_accel_sampling_frequency_available,
504 	       "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600");
505 static
506 IIO_CONST_ATTR(in_anglvel_sampling_frequency_available,
507 	       "25 50 100 200 400 800 1600 3200");
508 static
509 IIO_CONST_ATTR(in_accel_scale_available,
510 	       "0.000598 0.001197 0.002394 0.004788");
511 static
512 IIO_CONST_ATTR(in_anglvel_scale_available,
513 	       "0.001065 0.000532 0.000266 0.000133 0.000066");
514 
515 static struct attribute *bmi160_attrs[] = {
516 	&iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr,
517 	&iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr,
518 	&iio_const_attr_in_accel_scale_available.dev_attr.attr,
519 	&iio_const_attr_in_anglvel_scale_available.dev_attr.attr,
520 	NULL,
521 };
522 
523 static const struct attribute_group bmi160_attrs_group = {
524 	.attrs = bmi160_attrs,
525 };
526 
527 static const struct iio_info bmi160_info = {
528 	.read_raw = bmi160_read_raw,
529 	.write_raw = bmi160_write_raw,
530 	.attrs = &bmi160_attrs_group,
531 };
532 
533 static int bmi160_write_conf_reg(struct regmap *regmap, unsigned int reg,
534 				 unsigned int mask, unsigned int bits,
535 				 unsigned int write_usleep)
536 {
537 	int ret;
538 	unsigned int val;
539 
540 	ret = regmap_read(regmap, reg, &val);
541 	if (ret)
542 		return ret;
543 
544 	val = (val & ~mask) | bits;
545 
546 	ret = regmap_write(regmap, reg, val);
547 	if (ret)
548 		return ret;
549 
550 	/*
551 	 * We need to wait after writing before we can write again. See the
552 	 * datasheet, page 93.
553 	 */
554 	usleep_range(write_usleep, write_usleep + 1000);
555 
556 	return 0;
557 }
558 
559 static int bmi160_config_pin(struct regmap *regmap, enum bmi160_int_pin pin,
560 			     bool open_drain, u8 irq_mask,
561 			     unsigned long write_usleep)
562 {
563 	int ret;
564 	struct device *dev = regmap_get_device(regmap);
565 	u8 int_out_ctrl_shift;
566 	u8 int_latch_mask;
567 	u8 int_map_mask;
568 	u8 int_out_ctrl_mask;
569 	u8 int_out_ctrl_bits;
570 	const char *pin_name;
571 
572 	switch (pin) {
573 	case BMI160_PIN_INT1:
574 		int_out_ctrl_shift = BMI160_INT1_OUT_CTRL_SHIFT;
575 		int_latch_mask = BMI160_INT1_LATCH_MASK;
576 		int_map_mask = BMI160_INT1_MAP_DRDY_EN;
577 		break;
578 	case BMI160_PIN_INT2:
579 		int_out_ctrl_shift = BMI160_INT2_OUT_CTRL_SHIFT;
580 		int_latch_mask = BMI160_INT2_LATCH_MASK;
581 		int_map_mask = BMI160_INT2_MAP_DRDY_EN;
582 		break;
583 	}
584 	int_out_ctrl_mask = BMI160_INT_OUT_CTRL_MASK << int_out_ctrl_shift;
585 
586 	/*
587 	 * Enable the requested pin with the right settings:
588 	 * - Push-pull/open-drain
589 	 * - Active low/high
590 	 * - Edge/level triggered
591 	 */
592 	int_out_ctrl_bits = BMI160_OUTPUT_EN;
593 	if (open_drain)
594 		/* Default is push-pull. */
595 		int_out_ctrl_bits |= BMI160_OPEN_DRAIN;
596 	int_out_ctrl_bits |= irq_mask;
597 	int_out_ctrl_bits <<= int_out_ctrl_shift;
598 
599 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_OUT_CTRL,
600 				    int_out_ctrl_mask, int_out_ctrl_bits,
601 				    write_usleep);
602 	if (ret)
603 		return ret;
604 
605 	/* Set the pin to input mode with no latching. */
606 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_LATCH,
607 				    int_latch_mask, int_latch_mask,
608 				    write_usleep);
609 	if (ret)
610 		return ret;
611 
612 	/* Map interrupts to the requested pin. */
613 	ret = bmi160_write_conf_reg(regmap, BMI160_REG_INT_MAP,
614 				    int_map_mask, int_map_mask,
615 				    write_usleep);
616 	if (ret) {
617 		switch (pin) {
618 		case BMI160_PIN_INT1:
619 			pin_name = "INT1";
620 			break;
621 		case BMI160_PIN_INT2:
622 			pin_name = "INT2";
623 			break;
624 		}
625 		dev_err(dev, "Failed to configure %s IRQ pin", pin_name);
626 	}
627 
628 	return ret;
629 }
630 
631 int bmi160_enable_irq(struct regmap *regmap, bool enable)
632 {
633 	unsigned int enable_bit = 0;
634 
635 	if (enable)
636 		enable_bit = BMI160_DRDY_INT_EN;
637 
638 	return bmi160_write_conf_reg(regmap, BMI160_REG_INT_EN,
639 				     BMI160_DRDY_INT_EN, enable_bit,
640 				     BMI160_NORMAL_WRITE_USLEEP);
641 }
642 EXPORT_SYMBOL_NS(bmi160_enable_irq, IIO_BMI160);
643 
644 static int bmi160_get_irq(struct fwnode_handle *fwnode, enum bmi160_int_pin *pin)
645 {
646 	int irq;
647 
648 	/* Use INT1 if possible, otherwise fall back to INT2. */
649 	irq = fwnode_irq_get_byname(fwnode, "INT1");
650 	if (irq > 0) {
651 		*pin = BMI160_PIN_INT1;
652 		return irq;
653 	}
654 
655 	irq = fwnode_irq_get_byname(fwnode, "INT2");
656 	if (irq > 0)
657 		*pin = BMI160_PIN_INT2;
658 
659 	return irq;
660 }
661 
662 static int bmi160_config_device_irq(struct iio_dev *indio_dev, int irq_type,
663 				    enum bmi160_int_pin pin)
664 {
665 	bool open_drain;
666 	u8 irq_mask;
667 	struct bmi160_data *data = iio_priv(indio_dev);
668 	struct device *dev = regmap_get_device(data->regmap);
669 
670 	/* Level-triggered, active-low is the default if we set all zeroes. */
671 	if (irq_type == IRQF_TRIGGER_RISING)
672 		irq_mask = BMI160_ACTIVE_HIGH | BMI160_EDGE_TRIGGERED;
673 	else if (irq_type == IRQF_TRIGGER_FALLING)
674 		irq_mask = BMI160_EDGE_TRIGGERED;
675 	else if (irq_type == IRQF_TRIGGER_HIGH)
676 		irq_mask = BMI160_ACTIVE_HIGH;
677 	else if (irq_type == IRQF_TRIGGER_LOW)
678 		irq_mask = 0;
679 	else {
680 		dev_err(&indio_dev->dev,
681 			"Invalid interrupt type 0x%x specified\n", irq_type);
682 		return -EINVAL;
683 	}
684 
685 	open_drain = device_property_read_bool(dev, "drive-open-drain");
686 
687 	return bmi160_config_pin(data->regmap, pin, open_drain, irq_mask,
688 				 BMI160_NORMAL_WRITE_USLEEP);
689 }
690 
691 static int bmi160_setup_irq(struct iio_dev *indio_dev, int irq,
692 			    enum bmi160_int_pin pin)
693 {
694 	struct irq_data *desc;
695 	u32 irq_type;
696 	int ret;
697 
698 	desc = irq_get_irq_data(irq);
699 	if (!desc) {
700 		dev_err(&indio_dev->dev, "Could not find IRQ %d\n", irq);
701 		return -EINVAL;
702 	}
703 
704 	irq_type = irqd_get_trigger_type(desc);
705 
706 	ret = bmi160_config_device_irq(indio_dev, irq_type, pin);
707 	if (ret)
708 		return ret;
709 
710 	return bmi160_probe_trigger(indio_dev, irq, irq_type);
711 }
712 
713 static int bmi160_check_chip_id(const u8 chip_id)
714 {
715 	for (int i = 0; i < ARRAY_SIZE(bmi_chip_ids); i++) {
716 		if (chip_id == bmi_chip_ids[i])
717 			return 0;
718 	}
719 
720 	return -ENODEV;
721 }
722 
723 static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
724 {
725 	int ret;
726 	unsigned int val;
727 	struct device *dev = regmap_get_device(data->regmap);
728 
729 	ret = regulator_bulk_enable(ARRAY_SIZE(data->supplies), data->supplies);
730 	if (ret) {
731 		dev_err(dev, "Failed to enable regulators: %d\n", ret);
732 		return ret;
733 	}
734 
735 	ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
736 	if (ret)
737 		goto disable_regulator;
738 
739 	usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
740 
741 	/*
742 	 * CS rising edge is needed before starting SPI, so do a dummy read
743 	 * See Section 3.2.1, page 86 of the datasheet
744 	 */
745 	if (use_spi) {
746 		ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
747 		if (ret)
748 			goto disable_regulator;
749 	}
750 
751 	ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
752 	if (ret) {
753 		dev_err(dev, "Error reading chip id\n");
754 		goto disable_regulator;
755 	}
756 
757 	ret = bmi160_check_chip_id(val);
758 	if (ret)
759 		dev_warn(dev, "Chip id not found: %x\n", val);
760 
761 	ret = bmi160_set_mode(data, BMI160_ACCEL, true);
762 	if (ret)
763 		goto disable_regulator;
764 
765 	ret = bmi160_set_mode(data, BMI160_GYRO, true);
766 	if (ret)
767 		goto disable_accel;
768 
769 	return 0;
770 
771 disable_accel:
772 	bmi160_set_mode(data, BMI160_ACCEL, false);
773 
774 disable_regulator:
775 	regulator_bulk_disable(ARRAY_SIZE(data->supplies), data->supplies);
776 	return ret;
777 }
778 
779 static int bmi160_data_rdy_trigger_set_state(struct iio_trigger *trig,
780 					     bool enable)
781 {
782 	struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
783 	struct bmi160_data *data = iio_priv(indio_dev);
784 
785 	return bmi160_enable_irq(data->regmap, enable);
786 }
787 
788 static const struct iio_trigger_ops bmi160_trigger_ops = {
789 	.set_trigger_state = &bmi160_data_rdy_trigger_set_state,
790 };
791 
792 int bmi160_probe_trigger(struct iio_dev *indio_dev, int irq, u32 irq_type)
793 {
794 	struct bmi160_data *data = iio_priv(indio_dev);
795 	int ret;
796 
797 	data->trig = devm_iio_trigger_alloc(&indio_dev->dev, "%s-dev%d",
798 					    indio_dev->name,
799 					    iio_device_id(indio_dev));
800 
801 	if (data->trig == NULL)
802 		return -ENOMEM;
803 
804 	ret = devm_request_irq(&indio_dev->dev, irq,
805 			       &iio_trigger_generic_data_rdy_poll,
806 			       irq_type, "bmi160", data->trig);
807 	if (ret)
808 		return ret;
809 
810 	data->trig->dev.parent = regmap_get_device(data->regmap);
811 	data->trig->ops = &bmi160_trigger_ops;
812 	iio_trigger_set_drvdata(data->trig, indio_dev);
813 
814 	ret = devm_iio_trigger_register(&indio_dev->dev, data->trig);
815 	if (ret)
816 		return ret;
817 
818 	indio_dev->trig = iio_trigger_get(data->trig);
819 
820 	return 0;
821 }
822 
823 static void bmi160_chip_uninit(void *data)
824 {
825 	struct bmi160_data *bmi_data = data;
826 	struct device *dev = regmap_get_device(bmi_data->regmap);
827 	int ret;
828 
829 	bmi160_set_mode(bmi_data, BMI160_GYRO, false);
830 	bmi160_set_mode(bmi_data, BMI160_ACCEL, false);
831 
832 	ret = regulator_bulk_disable(ARRAY_SIZE(bmi_data->supplies),
833 				     bmi_data->supplies);
834 	if (ret)
835 		dev_err(dev, "Failed to disable regulators: %d\n", ret);
836 }
837 
838 int bmi160_core_probe(struct device *dev, struct regmap *regmap,
839 		      const char *name, bool use_spi)
840 {
841 	struct iio_dev *indio_dev;
842 	struct bmi160_data *data;
843 	int irq;
844 	enum bmi160_int_pin int_pin;
845 	int ret;
846 
847 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
848 	if (!indio_dev)
849 		return -ENOMEM;
850 
851 	data = iio_priv(indio_dev);
852 	dev_set_drvdata(dev, indio_dev);
853 	data->regmap = regmap;
854 
855 	data->supplies[0].supply = "vdd";
856 	data->supplies[1].supply = "vddio";
857 	ret = devm_regulator_bulk_get(dev,
858 				      ARRAY_SIZE(data->supplies),
859 				      data->supplies);
860 	if (ret) {
861 		dev_err(dev, "Failed to get regulators: %d\n", ret);
862 		return ret;
863 	}
864 
865 	ret = iio_read_mount_matrix(dev, &data->orientation);
866 	if (ret)
867 		return ret;
868 
869 	ret = bmi160_chip_init(data, use_spi);
870 	if (ret)
871 		return ret;
872 
873 	ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data);
874 	if (ret)
875 		return ret;
876 
877 	indio_dev->channels = bmi160_channels;
878 	indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
879 	indio_dev->name = name;
880 	indio_dev->modes = INDIO_DIRECT_MODE;
881 	indio_dev->info = &bmi160_info;
882 
883 	ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
884 					      iio_pollfunc_store_time,
885 					      bmi160_trigger_handler, NULL);
886 	if (ret)
887 		return ret;
888 
889 	irq = bmi160_get_irq(dev_fwnode(dev), &int_pin);
890 	if (irq > 0) {
891 		ret = bmi160_setup_irq(indio_dev, irq, int_pin);
892 		if (ret)
893 			dev_err(&indio_dev->dev, "Failed to setup IRQ %d\n",
894 				irq);
895 	} else {
896 		dev_info(&indio_dev->dev, "Not setting up IRQ trigger\n");
897 	}
898 
899 	return devm_iio_device_register(dev, indio_dev);
900 }
901 EXPORT_SYMBOL_NS_GPL(bmi160_core_probe, IIO_BMI160);
902 
903 MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com>");
904 MODULE_DESCRIPTION("Bosch BMI160 driver");
905 MODULE_LICENSE("GPL v2");
906