1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * hdc3020.c - Support for the TI HDC3020,HDC3021 and HDC3022 4 * temperature + relative humidity sensors 5 * 6 * Copyright (C) 2023 7 * 8 * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH 9 * 10 * Datasheet: https://www.ti.com/lit/ds/symlink/hdc3020.pdf 11 */ 12 13 #include <linux/bitfield.h> 14 #include <linux/bitops.h> 15 #include <linux/cleanup.h> 16 #include <linux/crc8.h> 17 #include <linux/delay.h> 18 #include <linux/gpio/consumer.h> 19 #include <linux/i2c.h> 20 #include <linux/init.h> 21 #include <linux/interrupt.h> 22 #include <linux/math64.h> 23 #include <linux/module.h> 24 #include <linux/mutex.h> 25 #include <linux/pm.h> 26 #include <linux/regulator/consumer.h> 27 #include <linux/units.h> 28 29 #include <linux/unaligned.h> 30 31 #include <linux/iio/events.h> 32 #include <linux/iio/iio.h> 33 34 #define HDC3020_S_AUTO_10HZ_MOD0 0x2737 35 #define HDC3020_S_STATUS 0x3041 36 #define HDC3020_HEATER_DISABLE 0x3066 37 #define HDC3020_HEATER_ENABLE 0x306D 38 #define HDC3020_HEATER_CONFIG 0x306E 39 #define HDC3020_EXIT_AUTO 0x3093 40 #define HDC3020_S_T_RH_THRESH_LOW 0x6100 41 #define HDC3020_S_T_RH_THRESH_LOW_CLR 0x610B 42 #define HDC3020_S_T_RH_THRESH_HIGH_CLR 0x6116 43 #define HDC3020_S_T_RH_THRESH_HIGH 0x611D 44 #define HDC3020_R_T_RH_AUTO 0xE000 45 #define HDC3020_R_T_LOW_AUTO 0xE002 46 #define HDC3020_R_T_HIGH_AUTO 0xE003 47 #define HDC3020_R_RH_LOW_AUTO 0xE004 48 #define HDC3020_R_RH_HIGH_AUTO 0xE005 49 #define HDC3020_R_T_RH_THRESH_LOW 0xE102 50 #define HDC3020_R_T_RH_THRESH_LOW_CLR 0xE109 51 #define HDC3020_R_T_RH_THRESH_HIGH_CLR 0xE114 52 #define HDC3020_R_T_RH_THRESH_HIGH 0xE11F 53 #define HDC3020_R_STATUS 0xF32D 54 55 #define HDC3020_THRESH_TEMP_MASK GENMASK(8, 0) 56 #define HDC3020_THRESH_TEMP_TRUNC_SHIFT 7 57 #define HDC3020_THRESH_HUM_MASK GENMASK(15, 9) 58 #define HDC3020_THRESH_HUM_TRUNC_SHIFT 9 59 60 #define HDC3020_STATUS_T_LOW_ALERT BIT(6) 61 #define HDC3020_STATUS_T_HIGH_ALERT BIT(7) 62 #define HDC3020_STATUS_RH_LOW_ALERT BIT(8) 63 #define HDC3020_STATUS_RH_HIGH_ALERT BIT(9) 64 65 #define HDC3020_READ_RETRY_TIMES 10 66 #define HDC3020_BUSY_DELAY_MS 10 67 68 #define HDC3020_CRC8_POLYNOMIAL 0x31 69 70 #define HDC3020_MIN_TEMP_MICRO -39872968 71 #define HDC3020_MAX_TEMP_MICRO 124875639 72 #define HDC3020_MAX_TEMP_HYST_MICRO 164748607 73 #define HDC3020_MAX_HUM_MICRO 99220264 74 75 /* Divide 65535 from the datasheet by 5 to avoid overflows */ 76 #define HDC3020_THRESH_FRACTION (65535 / 5) 77 78 struct hdc3020_data { 79 struct i2c_client *client; 80 struct gpio_desc *reset_gpio; 81 struct regulator *vdd_supply; 82 /* 83 * Ensure that the sensor configuration (currently only heater is 84 * supported) will not be changed during the process of reading 85 * sensor data (this driver will try HDC3020_READ_RETRY_TIMES times 86 * if the device does not respond). 87 */ 88 struct mutex lock; 89 }; 90 91 static const int hdc3020_heater_vals[] = {0, 1, 0x3FFF}; 92 93 static const struct iio_event_spec hdc3020_t_rh_event[] = { 94 { 95 .type = IIO_EV_TYPE_THRESH, 96 .dir = IIO_EV_DIR_RISING, 97 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 98 BIT(IIO_EV_INFO_HYSTERESIS), 99 }, 100 { 101 .type = IIO_EV_TYPE_THRESH, 102 .dir = IIO_EV_DIR_FALLING, 103 .mask_separate = BIT(IIO_EV_INFO_VALUE) | 104 BIT(IIO_EV_INFO_HYSTERESIS), 105 }, 106 }; 107 108 static const struct iio_chan_spec hdc3020_channels[] = { 109 { 110 .type = IIO_TEMP, 111 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 112 BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) | 113 BIT(IIO_CHAN_INFO_TROUGH) | BIT(IIO_CHAN_INFO_OFFSET), 114 .event_spec = hdc3020_t_rh_event, 115 .num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event), 116 }, 117 { 118 .type = IIO_HUMIDITYRELATIVE, 119 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | 120 BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) | 121 BIT(IIO_CHAN_INFO_TROUGH), 122 .event_spec = hdc3020_t_rh_event, 123 .num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event), 124 }, 125 { 126 /* 127 * For setting the internal heater, which can be switched on to 128 * prevent or remove any condensation that may develop when the 129 * ambient environment approaches its dew point temperature. 130 */ 131 .type = IIO_CURRENT, 132 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), 133 .info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW), 134 .output = 1, 135 }, 136 }; 137 138 DECLARE_CRC8_TABLE(hdc3020_crc8_table); 139 140 static int hdc3020_write_bytes(struct hdc3020_data *data, u8 *buf, u8 len) 141 { 142 struct i2c_client *client = data->client; 143 struct i2c_msg msg; 144 int ret, cnt; 145 146 msg.addr = client->addr; 147 msg.flags = 0; 148 msg.buf = buf; 149 msg.len = len; 150 151 /* 152 * During the measurement process, HDC3020 will not return data. 153 * So wait for a while and try again 154 */ 155 for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) { 156 ret = i2c_transfer(client->adapter, &msg, 1); 157 if (ret == 1) 158 return 0; 159 160 mdelay(HDC3020_BUSY_DELAY_MS); 161 } 162 dev_err(&client->dev, "Could not write sensor command\n"); 163 164 return -ETIMEDOUT; 165 } 166 167 static 168 int hdc3020_read_bytes(struct hdc3020_data *data, u16 reg, u8 *buf, int len) 169 { 170 u8 reg_buf[2]; 171 int ret, cnt; 172 struct i2c_client *client = data->client; 173 struct i2c_msg msg[2] = { 174 [0] = { 175 .addr = client->addr, 176 .flags = 0, 177 .buf = reg_buf, 178 .len = 2, 179 }, 180 [1] = { 181 .addr = client->addr, 182 .flags = I2C_M_RD, 183 .buf = buf, 184 .len = len, 185 }, 186 }; 187 188 put_unaligned_be16(reg, reg_buf); 189 /* 190 * During the measurement process, HDC3020 will not return data. 191 * So wait for a while and try again 192 */ 193 for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) { 194 ret = i2c_transfer(client->adapter, msg, 2); 195 if (ret == 2) 196 return 0; 197 198 mdelay(HDC3020_BUSY_DELAY_MS); 199 } 200 dev_err(&client->dev, "Could not read sensor data\n"); 201 202 return -ETIMEDOUT; 203 } 204 205 static int hdc3020_read_be16(struct hdc3020_data *data, u16 reg) 206 { 207 u8 crc, buf[3]; 208 int ret; 209 210 ret = hdc3020_read_bytes(data, reg, buf, 3); 211 if (ret < 0) 212 return ret; 213 214 crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE); 215 if (crc != buf[2]) 216 return -EINVAL; 217 218 return get_unaligned_be16(buf); 219 } 220 221 static int hdc3020_exec_cmd(struct hdc3020_data *data, u16 reg) 222 { 223 u8 reg_buf[2]; 224 225 put_unaligned_be16(reg, reg_buf); 226 return hdc3020_write_bytes(data, reg_buf, 2); 227 } 228 229 static int hdc3020_read_measurement(struct hdc3020_data *data, 230 enum iio_chan_type type, int *val) 231 { 232 u8 crc, buf[6]; 233 int ret; 234 235 ret = hdc3020_read_bytes(data, HDC3020_R_T_RH_AUTO, buf, 6); 236 if (ret < 0) 237 return ret; 238 239 /* CRC check of the temperature measurement */ 240 crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE); 241 if (crc != buf[2]) 242 return -EINVAL; 243 244 /* CRC check of the relative humidity measurement */ 245 crc = crc8(hdc3020_crc8_table, buf + 3, 2, CRC8_INIT_VALUE); 246 if (crc != buf[5]) 247 return -EINVAL; 248 249 if (type == IIO_TEMP) 250 *val = get_unaligned_be16(buf); 251 else if (type == IIO_HUMIDITYRELATIVE) 252 *val = get_unaligned_be16(&buf[3]); 253 else 254 return -EINVAL; 255 256 return 0; 257 } 258 259 static int hdc3020_read_raw(struct iio_dev *indio_dev, 260 struct iio_chan_spec const *chan, int *val, 261 int *val2, long mask) 262 { 263 struct hdc3020_data *data = iio_priv(indio_dev); 264 int ret; 265 266 if (chan->type != IIO_TEMP && chan->type != IIO_HUMIDITYRELATIVE) 267 return -EINVAL; 268 269 switch (mask) { 270 case IIO_CHAN_INFO_RAW: { 271 guard(mutex)(&data->lock); 272 ret = hdc3020_read_measurement(data, chan->type, val); 273 if (ret < 0) 274 return ret; 275 276 return IIO_VAL_INT; 277 } 278 case IIO_CHAN_INFO_PEAK: { 279 guard(mutex)(&data->lock); 280 if (chan->type == IIO_TEMP) 281 ret = hdc3020_read_be16(data, HDC3020_R_T_HIGH_AUTO); 282 else 283 ret = hdc3020_read_be16(data, HDC3020_R_RH_HIGH_AUTO); 284 285 if (ret < 0) 286 return ret; 287 288 *val = ret; 289 return IIO_VAL_INT; 290 } 291 case IIO_CHAN_INFO_TROUGH: { 292 guard(mutex)(&data->lock); 293 if (chan->type == IIO_TEMP) 294 ret = hdc3020_read_be16(data, HDC3020_R_T_LOW_AUTO); 295 else 296 ret = hdc3020_read_be16(data, HDC3020_R_RH_LOW_AUTO); 297 298 if (ret < 0) 299 return ret; 300 301 *val = ret; 302 return IIO_VAL_INT; 303 } 304 case IIO_CHAN_INFO_SCALE: 305 *val2 = 65536; 306 if (chan->type == IIO_TEMP) 307 *val = 175 * MILLI; 308 else 309 *val = 100 * MILLI; 310 return IIO_VAL_FRACTIONAL; 311 312 case IIO_CHAN_INFO_OFFSET: 313 if (chan->type != IIO_TEMP) 314 return -EINVAL; 315 316 *val = -16852; 317 return IIO_VAL_INT; 318 319 default: 320 return -EINVAL; 321 } 322 } 323 324 static int hdc3020_read_available(struct iio_dev *indio_dev, 325 struct iio_chan_spec const *chan, 326 const int **vals, 327 int *type, int *length, long mask) 328 { 329 if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_CURRENT) 330 return -EINVAL; 331 332 *vals = hdc3020_heater_vals; 333 *type = IIO_VAL_INT; 334 335 return IIO_AVAIL_RANGE; 336 } 337 338 static int hdc3020_update_heater(struct hdc3020_data *data, int val) 339 { 340 u8 buf[5]; 341 int ret; 342 343 if (val < hdc3020_heater_vals[0] || val > hdc3020_heater_vals[2]) 344 return -EINVAL; 345 346 if (!val) 347 hdc3020_exec_cmd(data, HDC3020_HEATER_DISABLE); 348 349 put_unaligned_be16(HDC3020_HEATER_CONFIG, buf); 350 put_unaligned_be16(val & GENMASK(13, 0), &buf[2]); 351 buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE); 352 ret = hdc3020_write_bytes(data, buf, 5); 353 if (ret < 0) 354 return ret; 355 356 return hdc3020_exec_cmd(data, HDC3020_HEATER_ENABLE); 357 } 358 359 static int hdc3020_write_raw(struct iio_dev *indio_dev, 360 struct iio_chan_spec const *chan, 361 int val, int val2, long mask) 362 { 363 struct hdc3020_data *data = iio_priv(indio_dev); 364 365 switch (mask) { 366 case IIO_CHAN_INFO_RAW: 367 if (chan->type != IIO_CURRENT) 368 return -EINVAL; 369 370 guard(mutex)(&data->lock); 371 return hdc3020_update_heater(data, val); 372 } 373 374 return -EINVAL; 375 } 376 377 static int hdc3020_thresh_get_temp(u16 thresh) 378 { 379 int temp; 380 381 /* 382 * Get the temperature threshold from 9 LSBs, shift them to get the 383 * truncated temperature threshold representation and calculate the 384 * threshold according to the explicit formula in the datasheet: 385 * T(C) = -45 + (175 * temp) / 65535. 386 * Additionally scale by HDC3020_THRESH_FRACTION to avoid precision loss 387 * when calculating threshold and hysteresis values. Result is degree 388 * celsius scaled by HDC3020_THRESH_FRACTION. 389 */ 390 temp = FIELD_GET(HDC3020_THRESH_TEMP_MASK, thresh) << 391 HDC3020_THRESH_TEMP_TRUNC_SHIFT; 392 393 return -2949075 / 5 + (175 / 5 * temp); 394 } 395 396 static int hdc3020_thresh_get_hum(u16 thresh) 397 { 398 int hum; 399 400 /* 401 * Get the humidity threshold from 7 MSBs, shift them to get the 402 * truncated humidity threshold representation and calculate the 403 * threshold according to the explicit formula in the datasheet: 404 * RH(%) = 100 * hum / 65535. 405 * Additionally scale by HDC3020_THRESH_FRACTION to avoid precision loss 406 * when calculating threshold and hysteresis values. Result is percent 407 * scaled by HDC3020_THRESH_FRACTION. 408 */ 409 hum = FIELD_GET(HDC3020_THRESH_HUM_MASK, thresh) << 410 HDC3020_THRESH_HUM_TRUNC_SHIFT; 411 412 return hum * 100 / 5; 413 } 414 415 static u16 hdc3020_thresh_set_temp(int s_temp, u16 curr_thresh) 416 { 417 u64 temp; 418 u16 thresh; 419 420 /* 421 * Calculate temperature threshold, shift it down to get the 422 * truncated threshold representation in the 9LSBs while keeping 423 * the current humidity threshold in the 7 MSBs. 424 */ 425 temp = (u64)(s_temp + 45000000) * 65535ULL; 426 temp = div_u64(temp, 1000000 * 175) >> HDC3020_THRESH_TEMP_TRUNC_SHIFT; 427 thresh = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, temp); 428 thresh |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, curr_thresh) << 429 HDC3020_THRESH_HUM_TRUNC_SHIFT); 430 431 return thresh; 432 } 433 434 static u16 hdc3020_thresh_set_hum(int s_hum, u16 curr_thresh) 435 { 436 u64 hum; 437 u16 thresh; 438 439 /* 440 * Calculate humidity threshold, shift it down and up to get the 441 * truncated threshold representation in the 7MSBs while keeping 442 * the current temperature threshold in the 9 LSBs. 443 */ 444 hum = (u64)(s_hum) * 65535ULL; 445 hum = div_u64(hum, 1000000 * 100) >> HDC3020_THRESH_HUM_TRUNC_SHIFT; 446 thresh = FIELD_PREP(HDC3020_THRESH_HUM_MASK, hum); 447 thresh |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, curr_thresh); 448 449 return thresh; 450 } 451 452 static 453 int hdc3020_thresh_clr(s64 s_thresh, s64 s_hyst, enum iio_event_direction dir) 454 { 455 s64 s_clr; 456 457 /* 458 * Include directions when calculation the clear value, 459 * since hysteresis is unsigned by definition and the 460 * clear value is an absolute value which is signed. 461 */ 462 if (dir == IIO_EV_DIR_RISING) 463 s_clr = s_thresh - s_hyst; 464 else 465 s_clr = s_thresh + s_hyst; 466 467 /* Divide by HDC3020_THRESH_FRACTION to get units of micro */ 468 return div_s64(s_clr, HDC3020_THRESH_FRACTION); 469 } 470 471 static int _hdc3020_write_thresh(struct hdc3020_data *data, u16 reg, u16 val) 472 { 473 u8 buf[5]; 474 475 put_unaligned_be16(reg, buf); 476 put_unaligned_be16(val, buf + 2); 477 buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE); 478 479 return hdc3020_write_bytes(data, buf, 5); 480 } 481 482 static int hdc3020_write_thresh(struct iio_dev *indio_dev, 483 const struct iio_chan_spec *chan, 484 enum iio_event_type type, 485 enum iio_event_direction dir, 486 enum iio_event_info info, 487 int val, int val2) 488 { 489 struct hdc3020_data *data = iio_priv(indio_dev); 490 u16 reg, reg_val, reg_thresh_rd, reg_clr_rd, reg_thresh_wr, reg_clr_wr; 491 s64 s_thresh, s_hyst, s_clr; 492 int s_val, thresh, clr, ret; 493 494 /* Select threshold registers */ 495 if (dir == IIO_EV_DIR_RISING) { 496 reg_thresh_rd = HDC3020_R_T_RH_THRESH_HIGH; 497 reg_thresh_wr = HDC3020_S_T_RH_THRESH_HIGH; 498 reg_clr_rd = HDC3020_R_T_RH_THRESH_HIGH_CLR; 499 reg_clr_wr = HDC3020_S_T_RH_THRESH_HIGH_CLR; 500 } else { 501 reg_thresh_rd = HDC3020_R_T_RH_THRESH_LOW; 502 reg_thresh_wr = HDC3020_S_T_RH_THRESH_LOW; 503 reg_clr_rd = HDC3020_R_T_RH_THRESH_LOW_CLR; 504 reg_clr_wr = HDC3020_S_T_RH_THRESH_LOW_CLR; 505 } 506 507 guard(mutex)(&data->lock); 508 ret = hdc3020_read_be16(data, reg_thresh_rd); 509 if (ret < 0) 510 return ret; 511 512 thresh = ret; 513 ret = hdc3020_read_be16(data, reg_clr_rd); 514 if (ret < 0) 515 return ret; 516 517 clr = ret; 518 /* Scale value to include decimal part into calculations */ 519 s_val = (val < 0) ? (val * 1000 - val2) : (val * 1000 + val2); 520 switch (chan->type) { 521 case IIO_TEMP: 522 switch (info) { 523 case IIO_EV_INFO_VALUE: 524 s_val = max(s_val, HDC3020_MIN_TEMP_MICRO); 525 s_val = min(s_val, HDC3020_MAX_TEMP_MICRO); 526 reg = reg_thresh_wr; 527 reg_val = hdc3020_thresh_set_temp(s_val, thresh); 528 ret = _hdc3020_write_thresh(data, reg, reg_val); 529 if (ret < 0) 530 return ret; 531 532 /* Calculate old hysteresis */ 533 s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000; 534 s_clr = (s64)hdc3020_thresh_get_temp(clr) * 1000000; 535 s_hyst = div_s64(abs(s_thresh - s_clr), 536 HDC3020_THRESH_FRACTION); 537 /* Set new threshold */ 538 thresh = reg_val; 539 /* Set old hysteresis */ 540 s_val = s_hyst; 541 fallthrough; 542 case IIO_EV_INFO_HYSTERESIS: 543 /* 544 * Function hdc3020_thresh_get_temp returns temperature 545 * in degree celsius scaled by HDC3020_THRESH_FRACTION. 546 * Scale by 1000000 to be able to subtract scaled 547 * hysteresis value. 548 */ 549 s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000; 550 /* 551 * Units of s_val are in micro degree celsius, scale by 552 * HDC3020_THRESH_FRACTION to get same units as s_thresh. 553 */ 554 s_val = min(abs(s_val), HDC3020_MAX_TEMP_HYST_MICRO); 555 s_hyst = (s64)s_val * HDC3020_THRESH_FRACTION; 556 s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir); 557 s_clr = max(s_clr, HDC3020_MIN_TEMP_MICRO); 558 s_clr = min(s_clr, HDC3020_MAX_TEMP_MICRO); 559 reg = reg_clr_wr; 560 reg_val = hdc3020_thresh_set_temp(s_clr, clr); 561 break; 562 default: 563 return -EOPNOTSUPP; 564 } 565 break; 566 case IIO_HUMIDITYRELATIVE: 567 s_val = (s_val < 0) ? 0 : min(s_val, HDC3020_MAX_HUM_MICRO); 568 switch (info) { 569 case IIO_EV_INFO_VALUE: 570 reg = reg_thresh_wr; 571 reg_val = hdc3020_thresh_set_hum(s_val, thresh); 572 ret = _hdc3020_write_thresh(data, reg, reg_val); 573 if (ret < 0) 574 return ret; 575 576 /* Calculate old hysteresis */ 577 s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000; 578 s_clr = (s64)hdc3020_thresh_get_hum(clr) * 1000000; 579 s_hyst = div_s64(abs(s_thresh - s_clr), 580 HDC3020_THRESH_FRACTION); 581 /* Set new threshold */ 582 thresh = reg_val; 583 /* Try to set old hysteresis */ 584 s_val = min(abs(s_hyst), HDC3020_MAX_HUM_MICRO); 585 fallthrough; 586 case IIO_EV_INFO_HYSTERESIS: 587 /* 588 * Function hdc3020_thresh_get_hum returns relative 589 * humidity in percent scaled by HDC3020_THRESH_FRACTION. 590 * Scale by 1000000 to be able to subtract scaled 591 * hysteresis value. 592 */ 593 s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000; 594 /* 595 * Units of s_val are in micro percent, scale by 596 * HDC3020_THRESH_FRACTION to get same units as s_thresh. 597 */ 598 s_hyst = (s64)s_val * HDC3020_THRESH_FRACTION; 599 s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir); 600 s_clr = max(s_clr, 0); 601 s_clr = min(s_clr, HDC3020_MAX_HUM_MICRO); 602 reg = reg_clr_wr; 603 reg_val = hdc3020_thresh_set_hum(s_clr, clr); 604 break; 605 default: 606 return -EOPNOTSUPP; 607 } 608 break; 609 default: 610 return -EOPNOTSUPP; 611 } 612 613 return _hdc3020_write_thresh(data, reg, reg_val); 614 } 615 616 static int hdc3020_read_thresh(struct iio_dev *indio_dev, 617 const struct iio_chan_spec *chan, 618 enum iio_event_type type, 619 enum iio_event_direction dir, 620 enum iio_event_info info, 621 int *val, int *val2) 622 { 623 struct hdc3020_data *data = iio_priv(indio_dev); 624 u16 reg_thresh, reg_clr; 625 int thresh, clr, ret; 626 627 /* Select threshold registers */ 628 if (dir == IIO_EV_DIR_RISING) { 629 reg_thresh = HDC3020_R_T_RH_THRESH_HIGH; 630 reg_clr = HDC3020_R_T_RH_THRESH_HIGH_CLR; 631 } else { 632 reg_thresh = HDC3020_R_T_RH_THRESH_LOW; 633 reg_clr = HDC3020_R_T_RH_THRESH_LOW_CLR; 634 } 635 636 guard(mutex)(&data->lock); 637 ret = hdc3020_read_be16(data, reg_thresh); 638 if (ret < 0) 639 return ret; 640 641 switch (chan->type) { 642 case IIO_TEMP: 643 thresh = hdc3020_thresh_get_temp(ret); 644 switch (info) { 645 case IIO_EV_INFO_VALUE: 646 *val = thresh * MILLI; 647 break; 648 case IIO_EV_INFO_HYSTERESIS: 649 ret = hdc3020_read_be16(data, reg_clr); 650 if (ret < 0) 651 return ret; 652 653 clr = hdc3020_thresh_get_temp(ret); 654 *val = abs(thresh - clr) * MILLI; 655 break; 656 default: 657 return -EOPNOTSUPP; 658 } 659 *val2 = HDC3020_THRESH_FRACTION; 660 return IIO_VAL_FRACTIONAL; 661 case IIO_HUMIDITYRELATIVE: 662 thresh = hdc3020_thresh_get_hum(ret); 663 switch (info) { 664 case IIO_EV_INFO_VALUE: 665 *val = thresh * MILLI; 666 break; 667 case IIO_EV_INFO_HYSTERESIS: 668 ret = hdc3020_read_be16(data, reg_clr); 669 if (ret < 0) 670 return ret; 671 672 clr = hdc3020_thresh_get_hum(ret); 673 *val = abs(thresh - clr) * MILLI; 674 break; 675 default: 676 return -EOPNOTSUPP; 677 } 678 *val2 = HDC3020_THRESH_FRACTION; 679 return IIO_VAL_FRACTIONAL; 680 default: 681 return -EOPNOTSUPP; 682 } 683 } 684 685 static irqreturn_t hdc3020_interrupt_handler(int irq, void *private) 686 { 687 struct iio_dev *indio_dev = private; 688 struct hdc3020_data *data; 689 s64 time; 690 int ret; 691 692 data = iio_priv(indio_dev); 693 ret = hdc3020_read_be16(data, HDC3020_R_STATUS); 694 if (ret < 0) 695 return IRQ_HANDLED; 696 697 if (!(ret & (HDC3020_STATUS_T_HIGH_ALERT | HDC3020_STATUS_T_LOW_ALERT | 698 HDC3020_STATUS_RH_HIGH_ALERT | HDC3020_STATUS_RH_LOW_ALERT))) 699 return IRQ_NONE; 700 701 time = iio_get_time_ns(indio_dev); 702 if (ret & HDC3020_STATUS_T_HIGH_ALERT) 703 iio_push_event(indio_dev, 704 IIO_MOD_EVENT_CODE(IIO_TEMP, 0, 705 IIO_NO_MOD, 706 IIO_EV_TYPE_THRESH, 707 IIO_EV_DIR_RISING), 708 time); 709 710 if (ret & HDC3020_STATUS_T_LOW_ALERT) 711 iio_push_event(indio_dev, 712 IIO_MOD_EVENT_CODE(IIO_TEMP, 0, 713 IIO_NO_MOD, 714 IIO_EV_TYPE_THRESH, 715 IIO_EV_DIR_FALLING), 716 time); 717 718 if (ret & HDC3020_STATUS_RH_HIGH_ALERT) 719 iio_push_event(indio_dev, 720 IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0, 721 IIO_NO_MOD, 722 IIO_EV_TYPE_THRESH, 723 IIO_EV_DIR_RISING), 724 time); 725 726 if (ret & HDC3020_STATUS_RH_LOW_ALERT) 727 iio_push_event(indio_dev, 728 IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0, 729 IIO_NO_MOD, 730 IIO_EV_TYPE_THRESH, 731 IIO_EV_DIR_FALLING), 732 time); 733 734 return IRQ_HANDLED; 735 } 736 737 static const struct iio_info hdc3020_info = { 738 .read_raw = hdc3020_read_raw, 739 .write_raw = hdc3020_write_raw, 740 .read_avail = hdc3020_read_available, 741 .read_event_value = hdc3020_read_thresh, 742 .write_event_value = hdc3020_write_thresh, 743 }; 744 745 static int hdc3020_power_off(struct hdc3020_data *data) 746 { 747 hdc3020_exec_cmd(data, HDC3020_EXIT_AUTO); 748 749 if (data->reset_gpio) 750 gpiod_set_value_cansleep(data->reset_gpio, 1); 751 752 return regulator_disable(data->vdd_supply); 753 } 754 755 static int hdc3020_power_on(struct hdc3020_data *data) 756 { 757 int ret; 758 759 ret = regulator_enable(data->vdd_supply); 760 if (ret) 761 return ret; 762 763 fsleep(5000); 764 765 if (data->reset_gpio) { 766 gpiod_set_value_cansleep(data->reset_gpio, 0); 767 fsleep(3000); 768 } 769 770 if (data->client->irq) { 771 /* 772 * The alert output is activated by default upon power up, 773 * hardware reset, and soft reset. Clear the status register. 774 */ 775 ret = hdc3020_exec_cmd(data, HDC3020_S_STATUS); 776 if (ret) { 777 hdc3020_power_off(data); 778 return ret; 779 } 780 } 781 782 ret = hdc3020_exec_cmd(data, HDC3020_S_AUTO_10HZ_MOD0); 783 if (ret) 784 hdc3020_power_off(data); 785 786 return ret; 787 } 788 789 static void hdc3020_exit(void *data) 790 { 791 hdc3020_power_off(data); 792 } 793 794 static int hdc3020_probe(struct i2c_client *client) 795 { 796 struct iio_dev *indio_dev; 797 struct hdc3020_data *data; 798 int ret; 799 800 if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) 801 return -EOPNOTSUPP; 802 803 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); 804 if (!indio_dev) 805 return -ENOMEM; 806 807 dev_set_drvdata(&client->dev, indio_dev); 808 809 data = iio_priv(indio_dev); 810 data->client = client; 811 mutex_init(&data->lock); 812 813 crc8_populate_msb(hdc3020_crc8_table, HDC3020_CRC8_POLYNOMIAL); 814 815 indio_dev->name = "hdc3020"; 816 indio_dev->modes = INDIO_DIRECT_MODE; 817 indio_dev->info = &hdc3020_info; 818 indio_dev->channels = hdc3020_channels; 819 indio_dev->num_channels = ARRAY_SIZE(hdc3020_channels); 820 821 data->vdd_supply = devm_regulator_get(&client->dev, "vdd"); 822 if (IS_ERR(data->vdd_supply)) 823 return dev_err_probe(&client->dev, PTR_ERR(data->vdd_supply), 824 "Unable to get VDD regulator\n"); 825 826 data->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", 827 GPIOD_OUT_HIGH); 828 if (IS_ERR(data->reset_gpio)) 829 return dev_err_probe(&client->dev, PTR_ERR(data->reset_gpio), 830 "Cannot get reset GPIO\n"); 831 832 ret = hdc3020_power_on(data); 833 if (ret) 834 return dev_err_probe(&client->dev, ret, "Power on failed\n"); 835 836 ret = devm_add_action_or_reset(&data->client->dev, hdc3020_exit, data); 837 if (ret) 838 return ret; 839 840 if (client->irq) { 841 ret = devm_request_threaded_irq(&client->dev, client->irq, 842 NULL, hdc3020_interrupt_handler, 843 IRQF_ONESHOT, "hdc3020", 844 indio_dev); 845 if (ret) 846 return dev_err_probe(&client->dev, ret, 847 "Failed to request IRQ\n"); 848 } 849 850 ret = devm_iio_device_register(&data->client->dev, indio_dev); 851 if (ret) 852 return dev_err_probe(&client->dev, ret, "Failed to add device"); 853 854 return 0; 855 } 856 857 static int hdc3020_suspend(struct device *dev) 858 { 859 struct iio_dev *iio_dev = dev_get_drvdata(dev); 860 struct hdc3020_data *data = iio_priv(iio_dev); 861 862 return hdc3020_power_off(data); 863 } 864 865 static int hdc3020_resume(struct device *dev) 866 { 867 struct iio_dev *iio_dev = dev_get_drvdata(dev); 868 struct hdc3020_data *data = iio_priv(iio_dev); 869 870 return hdc3020_power_on(data); 871 } 872 873 static DEFINE_SIMPLE_DEV_PM_OPS(hdc3020_pm_ops, hdc3020_suspend, hdc3020_resume); 874 875 static const struct i2c_device_id hdc3020_id[] = { 876 { "hdc3020" }, 877 { "hdc3021" }, 878 { "hdc3022" }, 879 { } 880 }; 881 MODULE_DEVICE_TABLE(i2c, hdc3020_id); 882 883 static const struct of_device_id hdc3020_dt_ids[] = { 884 { .compatible = "ti,hdc3020" }, 885 { .compatible = "ti,hdc3021" }, 886 { .compatible = "ti,hdc3022" }, 887 { } 888 }; 889 MODULE_DEVICE_TABLE(of, hdc3020_dt_ids); 890 891 static struct i2c_driver hdc3020_driver = { 892 .driver = { 893 .name = "hdc3020", 894 .pm = pm_sleep_ptr(&hdc3020_pm_ops), 895 .of_match_table = hdc3020_dt_ids, 896 }, 897 .probe = hdc3020_probe, 898 .id_table = hdc3020_id, 899 }; 900 module_i2c_driver(hdc3020_driver); 901 902 MODULE_AUTHOR("Javier Carrasco <javier.carrasco.cruz@gmail.com>"); 903 MODULE_AUTHOR("Li peiyu <579lpy@gmail.com>"); 904 MODULE_DESCRIPTION("TI HDC3020 humidity and temperature sensor driver"); 905 MODULE_LICENSE("GPL"); 906