xref: /linux/drivers/iio/humidity/hdc3020.c (revision 06a130e42a5bfc84795464bff023bff4c16f58c5)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * hdc3020.c - Support for the TI HDC3020,HDC3021 and HDC3022
4  * temperature + relative humidity sensors
5  *
6  * Copyright (C) 2023
7  *
8  * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH
9  *
10  * Datasheet: https://www.ti.com/lit/ds/symlink/hdc3020.pdf
11  */
12 
13 #include <linux/bitfield.h>
14 #include <linux/bitops.h>
15 #include <linux/cleanup.h>
16 #include <linux/crc8.h>
17 #include <linux/delay.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/i2c.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/math64.h>
23 #include <linux/module.h>
24 #include <linux/mutex.h>
25 #include <linux/pm.h>
26 #include <linux/regulator/consumer.h>
27 #include <linux/units.h>
28 
29 #include <linux/unaligned.h>
30 
31 #include <linux/iio/events.h>
32 #include <linux/iio/iio.h>
33 
34 #define HDC3020_S_AUTO_10HZ_MOD0	0x2737
35 #define HDC3020_S_STATUS		0x3041
36 #define HDC3020_HEATER_DISABLE		0x3066
37 #define HDC3020_HEATER_ENABLE		0x306D
38 #define HDC3020_HEATER_CONFIG		0x306E
39 #define HDC3020_EXIT_AUTO		0x3093
40 #define HDC3020_S_T_RH_THRESH_LOW	0x6100
41 #define HDC3020_S_T_RH_THRESH_LOW_CLR	0x610B
42 #define HDC3020_S_T_RH_THRESH_HIGH_CLR	0x6116
43 #define HDC3020_S_T_RH_THRESH_HIGH	0x611D
44 #define HDC3020_R_T_RH_AUTO		0xE000
45 #define HDC3020_R_T_LOW_AUTO		0xE002
46 #define HDC3020_R_T_HIGH_AUTO		0xE003
47 #define HDC3020_R_RH_LOW_AUTO		0xE004
48 #define HDC3020_R_RH_HIGH_AUTO		0xE005
49 #define HDC3020_R_T_RH_THRESH_LOW	0xE102
50 #define HDC3020_R_T_RH_THRESH_LOW_CLR	0xE109
51 #define HDC3020_R_T_RH_THRESH_HIGH_CLR	0xE114
52 #define HDC3020_R_T_RH_THRESH_HIGH	0xE11F
53 #define HDC3020_R_STATUS		0xF32D
54 
55 #define HDC3020_THRESH_TEMP_MASK	GENMASK(8, 0)
56 #define HDC3020_THRESH_TEMP_TRUNC_SHIFT	7
57 #define HDC3020_THRESH_HUM_MASK		GENMASK(15, 9)
58 #define HDC3020_THRESH_HUM_TRUNC_SHIFT	9
59 
60 #define HDC3020_STATUS_T_LOW_ALERT	BIT(6)
61 #define HDC3020_STATUS_T_HIGH_ALERT	BIT(7)
62 #define HDC3020_STATUS_RH_LOW_ALERT	BIT(8)
63 #define HDC3020_STATUS_RH_HIGH_ALERT	BIT(9)
64 
65 #define HDC3020_READ_RETRY_TIMES	10
66 #define HDC3020_BUSY_DELAY_MS		10
67 
68 #define HDC3020_CRC8_POLYNOMIAL		0x31
69 
70 #define HDC3020_MIN_TEMP_MICRO		-39872968
71 #define HDC3020_MAX_TEMP_MICRO		124875639
72 #define HDC3020_MAX_TEMP_HYST_MICRO	164748607
73 #define HDC3020_MAX_HUM_MICRO		99220264
74 
75 struct hdc3020_data {
76 	struct i2c_client *client;
77 	struct gpio_desc *reset_gpio;
78 	struct regulator *vdd_supply;
79 	/*
80 	 * Ensure that the sensor configuration (currently only heater is
81 	 * supported) will not be changed during the process of reading
82 	 * sensor data (this driver will try HDC3020_READ_RETRY_TIMES times
83 	 * if the device does not respond).
84 	 */
85 	struct mutex lock;
86 };
87 
88 static const int hdc3020_heater_vals[] = {0, 1, 0x3FFF};
89 
90 static const struct iio_event_spec hdc3020_t_rh_event[] = {
91 	{
92 		.type = IIO_EV_TYPE_THRESH,
93 		.dir = IIO_EV_DIR_RISING,
94 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
95 		BIT(IIO_EV_INFO_HYSTERESIS),
96 	},
97 	{
98 		.type = IIO_EV_TYPE_THRESH,
99 		.dir = IIO_EV_DIR_FALLING,
100 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
101 		BIT(IIO_EV_INFO_HYSTERESIS),
102 	},
103 };
104 
105 static const struct iio_chan_spec hdc3020_channels[] = {
106 	{
107 		.type = IIO_TEMP,
108 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
109 		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) |
110 		BIT(IIO_CHAN_INFO_TROUGH) | BIT(IIO_CHAN_INFO_OFFSET),
111 		.event_spec = hdc3020_t_rh_event,
112 		.num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event),
113 	},
114 	{
115 		.type = IIO_HUMIDITYRELATIVE,
116 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
117 		BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) |
118 		BIT(IIO_CHAN_INFO_TROUGH),
119 		.event_spec = hdc3020_t_rh_event,
120 		.num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event),
121 	},
122 	{
123 		/*
124 		 * For setting the internal heater, which can be switched on to
125 		 * prevent or remove any condensation that may develop when the
126 		 * ambient environment approaches its dew point temperature.
127 		 */
128 		.type = IIO_CURRENT,
129 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
130 		.info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW),
131 		.output = 1,
132 	},
133 };
134 
135 DECLARE_CRC8_TABLE(hdc3020_crc8_table);
136 
137 static int hdc3020_write_bytes(struct hdc3020_data *data, u8 *buf, u8 len)
138 {
139 	struct i2c_client *client = data->client;
140 	struct i2c_msg msg;
141 	int ret, cnt;
142 
143 	msg.addr = client->addr;
144 	msg.flags = 0;
145 	msg.buf = buf;
146 	msg.len = len;
147 
148 	/*
149 	 * During the measurement process, HDC3020 will not return data.
150 	 * So wait for a while and try again
151 	 */
152 	for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) {
153 		ret = i2c_transfer(client->adapter, &msg, 1);
154 		if (ret == 1)
155 			return 0;
156 
157 		mdelay(HDC3020_BUSY_DELAY_MS);
158 	}
159 	dev_err(&client->dev, "Could not write sensor command\n");
160 
161 	return -ETIMEDOUT;
162 }
163 
164 static
165 int hdc3020_read_bytes(struct hdc3020_data *data, u16 reg, u8 *buf, int len)
166 {
167 	u8 reg_buf[2];
168 	int ret, cnt;
169 	struct i2c_client *client = data->client;
170 	struct i2c_msg msg[2] = {
171 		[0] = {
172 			.addr = client->addr,
173 			.flags = 0,
174 			.buf = reg_buf,
175 			.len = 2,
176 		},
177 		[1] = {
178 			.addr = client->addr,
179 			.flags = I2C_M_RD,
180 			.buf = buf,
181 			.len = len,
182 		},
183 	};
184 
185 	put_unaligned_be16(reg, reg_buf);
186 	/*
187 	 * During the measurement process, HDC3020 will not return data.
188 	 * So wait for a while and try again
189 	 */
190 	for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) {
191 		ret = i2c_transfer(client->adapter, msg, 2);
192 		if (ret == 2)
193 			return 0;
194 
195 		mdelay(HDC3020_BUSY_DELAY_MS);
196 	}
197 	dev_err(&client->dev, "Could not read sensor data\n");
198 
199 	return -ETIMEDOUT;
200 }
201 
202 static int hdc3020_read_be16(struct hdc3020_data *data, u16 reg)
203 {
204 	u8 crc, buf[3];
205 	int ret;
206 
207 	ret = hdc3020_read_bytes(data, reg, buf, 3);
208 	if (ret < 0)
209 		return ret;
210 
211 	crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE);
212 	if (crc != buf[2])
213 		return -EINVAL;
214 
215 	return get_unaligned_be16(buf);
216 }
217 
218 static int hdc3020_exec_cmd(struct hdc3020_data *data, u16 reg)
219 {
220 	u8 reg_buf[2];
221 
222 	put_unaligned_be16(reg, reg_buf);
223 	return hdc3020_write_bytes(data, reg_buf, 2);
224 }
225 
226 static int hdc3020_read_measurement(struct hdc3020_data *data,
227 				    enum iio_chan_type type, int *val)
228 {
229 	u8 crc, buf[6];
230 	int ret;
231 
232 	ret = hdc3020_read_bytes(data, HDC3020_R_T_RH_AUTO, buf, 6);
233 	if (ret < 0)
234 		return ret;
235 
236 	/* CRC check of the temperature measurement */
237 	crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE);
238 	if (crc != buf[2])
239 		return -EINVAL;
240 
241 	/* CRC check of the relative humidity measurement */
242 	crc = crc8(hdc3020_crc8_table, buf + 3, 2, CRC8_INIT_VALUE);
243 	if (crc != buf[5])
244 		return -EINVAL;
245 
246 	if (type == IIO_TEMP)
247 		*val = get_unaligned_be16(buf);
248 	else if (type == IIO_HUMIDITYRELATIVE)
249 		*val = get_unaligned_be16(&buf[3]);
250 	else
251 		return -EINVAL;
252 
253 	return 0;
254 }
255 
256 static int hdc3020_read_raw(struct iio_dev *indio_dev,
257 			    struct iio_chan_spec const *chan, int *val,
258 			    int *val2, long mask)
259 {
260 	struct hdc3020_data *data = iio_priv(indio_dev);
261 	int ret;
262 
263 	if (chan->type != IIO_TEMP && chan->type != IIO_HUMIDITYRELATIVE)
264 		return -EINVAL;
265 
266 	switch (mask) {
267 	case IIO_CHAN_INFO_RAW: {
268 		guard(mutex)(&data->lock);
269 		ret = hdc3020_read_measurement(data, chan->type, val);
270 		if (ret < 0)
271 			return ret;
272 
273 		return IIO_VAL_INT;
274 	}
275 	case IIO_CHAN_INFO_PEAK: {
276 		guard(mutex)(&data->lock);
277 		if (chan->type == IIO_TEMP)
278 			ret = hdc3020_read_be16(data, HDC3020_R_T_HIGH_AUTO);
279 		else
280 			ret = hdc3020_read_be16(data, HDC3020_R_RH_HIGH_AUTO);
281 
282 		if (ret < 0)
283 			return ret;
284 
285 		*val = ret;
286 		return IIO_VAL_INT;
287 	}
288 	case IIO_CHAN_INFO_TROUGH: {
289 		guard(mutex)(&data->lock);
290 		if (chan->type == IIO_TEMP)
291 			ret = hdc3020_read_be16(data, HDC3020_R_T_LOW_AUTO);
292 		else
293 			ret = hdc3020_read_be16(data, HDC3020_R_RH_LOW_AUTO);
294 
295 		if (ret < 0)
296 			return ret;
297 
298 		*val = ret;
299 		return IIO_VAL_INT;
300 	}
301 	case IIO_CHAN_INFO_SCALE:
302 		*val2 = 65536;
303 		if (chan->type == IIO_TEMP)
304 			*val = 175;
305 		else
306 			*val = 100;
307 		return IIO_VAL_FRACTIONAL;
308 
309 	case IIO_CHAN_INFO_OFFSET:
310 		if (chan->type != IIO_TEMP)
311 			return -EINVAL;
312 
313 		*val = -16852;
314 		return IIO_VAL_INT;
315 
316 	default:
317 		return -EINVAL;
318 	}
319 }
320 
321 static int hdc3020_read_available(struct iio_dev *indio_dev,
322 				  struct iio_chan_spec const *chan,
323 				  const int **vals,
324 				  int *type, int *length, long mask)
325 {
326 	if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_CURRENT)
327 		return -EINVAL;
328 
329 	*vals = hdc3020_heater_vals;
330 	*type = IIO_VAL_INT;
331 
332 	return IIO_AVAIL_RANGE;
333 }
334 
335 static int hdc3020_update_heater(struct hdc3020_data *data, int val)
336 {
337 	u8 buf[5];
338 	int ret;
339 
340 	if (val < hdc3020_heater_vals[0] || val > hdc3020_heater_vals[2])
341 		return -EINVAL;
342 
343 	if (!val)
344 		hdc3020_exec_cmd(data, HDC3020_HEATER_DISABLE);
345 
346 	put_unaligned_be16(HDC3020_HEATER_CONFIG, buf);
347 	put_unaligned_be16(val & GENMASK(13, 0), &buf[2]);
348 	buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
349 	ret = hdc3020_write_bytes(data, buf, 5);
350 	if (ret < 0)
351 		return ret;
352 
353 	return hdc3020_exec_cmd(data, HDC3020_HEATER_ENABLE);
354 }
355 
356 static int hdc3020_write_raw(struct iio_dev *indio_dev,
357 			     struct iio_chan_spec const *chan,
358 			     int val, int val2, long mask)
359 {
360 	struct hdc3020_data *data = iio_priv(indio_dev);
361 
362 	switch (mask) {
363 	case IIO_CHAN_INFO_RAW:
364 		if (chan->type != IIO_CURRENT)
365 			return -EINVAL;
366 
367 		guard(mutex)(&data->lock);
368 		return hdc3020_update_heater(data, val);
369 	}
370 
371 	return -EINVAL;
372 }
373 
374 static int hdc3020_thresh_get_temp(u16 thresh)
375 {
376 	int temp;
377 
378 	/*
379 	 * Get the temperature threshold from 9 LSBs, shift them to get
380 	 * the truncated temperature threshold representation and
381 	 * calculate the threshold according to the formula in the
382 	 * datasheet. Result is degree celsius scaled by 65535.
383 	 */
384 	temp = FIELD_GET(HDC3020_THRESH_TEMP_MASK, thresh) <<
385 	       HDC3020_THRESH_TEMP_TRUNC_SHIFT;
386 
387 	return -2949075 + (175 * temp);
388 }
389 
390 static int hdc3020_thresh_get_hum(u16 thresh)
391 {
392 	int hum;
393 
394 	/*
395 	 * Get the humidity threshold from 7 MSBs, shift them to get the
396 	 * truncated humidity threshold representation and calculate the
397 	 * threshold according to the formula in the datasheet. Result is
398 	 * percent scaled by 65535.
399 	 */
400 	hum = FIELD_GET(HDC3020_THRESH_HUM_MASK, thresh) <<
401 	      HDC3020_THRESH_HUM_TRUNC_SHIFT;
402 
403 	return hum * 100;
404 }
405 
406 static u16 hdc3020_thresh_set_temp(int s_temp, u16 curr_thresh)
407 {
408 	u64 temp;
409 	u16 thresh;
410 
411 	/*
412 	 * Calculate temperature threshold, shift it down to get the
413 	 * truncated threshold representation in the 9LSBs while keeping
414 	 * the current humidity threshold in the 7 MSBs.
415 	 */
416 	temp = (u64)(s_temp + 45000000) * 65535ULL;
417 	temp = div_u64(temp, 1000000 * 175) >> HDC3020_THRESH_TEMP_TRUNC_SHIFT;
418 	thresh = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, temp);
419 	thresh |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, curr_thresh) <<
420 		  HDC3020_THRESH_HUM_TRUNC_SHIFT);
421 
422 	return thresh;
423 }
424 
425 static u16 hdc3020_thresh_set_hum(int s_hum, u16 curr_thresh)
426 {
427 	u64 hum;
428 	u16 thresh;
429 
430 	/*
431 	 * Calculate humidity threshold, shift it down and up to get the
432 	 * truncated threshold representation in the 7MSBs while keeping
433 	 * the current temperature threshold in the 9 LSBs.
434 	 */
435 	hum = (u64)(s_hum) * 65535ULL;
436 	hum = div_u64(hum, 1000000 * 100) >> HDC3020_THRESH_HUM_TRUNC_SHIFT;
437 	thresh = FIELD_PREP(HDC3020_THRESH_HUM_MASK, hum);
438 	thresh |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, curr_thresh);
439 
440 	return thresh;
441 }
442 
443 static
444 int hdc3020_thresh_clr(s64 s_thresh, s64 s_hyst, enum iio_event_direction dir)
445 {
446 	s64 s_clr;
447 
448 	/*
449 	 * Include directions when calculation the clear value,
450 	 * since hysteresis is unsigned by definition and the
451 	 * clear value is an absolute value which is signed.
452 	 */
453 	if (dir == IIO_EV_DIR_RISING)
454 		s_clr = s_thresh - s_hyst;
455 	else
456 		s_clr = s_thresh + s_hyst;
457 
458 	/* Divide by 65535 to get units of micro */
459 	return div_s64(s_clr, 65535);
460 }
461 
462 static int _hdc3020_write_thresh(struct hdc3020_data *data, u16 reg, u16 val)
463 {
464 	u8 buf[5];
465 
466 	put_unaligned_be16(reg, buf);
467 	put_unaligned_be16(val, buf + 2);
468 	buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE);
469 
470 	return hdc3020_write_bytes(data, buf, 5);
471 }
472 
473 static int hdc3020_write_thresh(struct iio_dev *indio_dev,
474 				const struct iio_chan_spec *chan,
475 				enum iio_event_type type,
476 				enum iio_event_direction dir,
477 				enum iio_event_info info,
478 				int val, int val2)
479 {
480 	struct hdc3020_data *data = iio_priv(indio_dev);
481 	u16 reg, reg_val, reg_thresh_rd, reg_clr_rd, reg_thresh_wr, reg_clr_wr;
482 	s64 s_thresh, s_hyst, s_clr;
483 	int s_val, thresh, clr, ret;
484 
485 	/* Select threshold registers */
486 	if (dir == IIO_EV_DIR_RISING) {
487 		reg_thresh_rd = HDC3020_R_T_RH_THRESH_HIGH;
488 		reg_thresh_wr = HDC3020_S_T_RH_THRESH_HIGH;
489 		reg_clr_rd = HDC3020_R_T_RH_THRESH_HIGH_CLR;
490 		reg_clr_wr = HDC3020_S_T_RH_THRESH_HIGH_CLR;
491 	} else {
492 		reg_thresh_rd = HDC3020_R_T_RH_THRESH_LOW;
493 		reg_thresh_wr = HDC3020_S_T_RH_THRESH_LOW;
494 		reg_clr_rd = HDC3020_R_T_RH_THRESH_LOW_CLR;
495 		reg_clr_wr = HDC3020_S_T_RH_THRESH_LOW_CLR;
496 	}
497 
498 	guard(mutex)(&data->lock);
499 	ret = hdc3020_read_be16(data, reg_thresh_rd);
500 	if (ret < 0)
501 		return ret;
502 
503 	thresh = ret;
504 	ret = hdc3020_read_be16(data, reg_clr_rd);
505 	if (ret < 0)
506 		return ret;
507 
508 	clr = ret;
509 	/* Scale value to include decimal part into calculations */
510 	s_val = (val < 0) ? (val * 1000000 - val2) : (val * 1000000 + val2);
511 	switch (chan->type) {
512 	case IIO_TEMP:
513 		switch (info) {
514 		case IIO_EV_INFO_VALUE:
515 			s_val = max(s_val, HDC3020_MIN_TEMP_MICRO);
516 			s_val = min(s_val, HDC3020_MAX_TEMP_MICRO);
517 			reg = reg_thresh_wr;
518 			reg_val = hdc3020_thresh_set_temp(s_val, thresh);
519 			ret = _hdc3020_write_thresh(data, reg, reg_val);
520 			if (ret < 0)
521 				return ret;
522 
523 			/* Calculate old hysteresis */
524 			s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
525 			s_clr = (s64)hdc3020_thresh_get_temp(clr) * 1000000;
526 			s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
527 			/* Set new threshold */
528 			thresh = reg_val;
529 			/* Set old hysteresis */
530 			s_val = s_hyst;
531 			fallthrough;
532 		case IIO_EV_INFO_HYSTERESIS:
533 			/*
534 			 * Function hdc3020_thresh_get_temp returns temperature
535 			 * in degree celsius scaled by 65535. Scale by 1000000
536 			 * to be able to subtract scaled hysteresis value.
537 			 */
538 			s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000;
539 			/*
540 			 * Units of s_val are in micro degree celsius, scale by
541 			 * 65535 to get same units as s_thresh.
542 			 */
543 			s_val = min(abs(s_val), HDC3020_MAX_TEMP_HYST_MICRO);
544 			s_hyst = (s64)s_val * 65535;
545 			s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
546 			s_clr = max(s_clr, HDC3020_MIN_TEMP_MICRO);
547 			s_clr = min(s_clr, HDC3020_MAX_TEMP_MICRO);
548 			reg = reg_clr_wr;
549 			reg_val = hdc3020_thresh_set_temp(s_clr, clr);
550 			break;
551 		default:
552 			return -EOPNOTSUPP;
553 		}
554 		break;
555 	case IIO_HUMIDITYRELATIVE:
556 		s_val = (s_val < 0) ? 0 : min(s_val, HDC3020_MAX_HUM_MICRO);
557 		switch (info) {
558 		case IIO_EV_INFO_VALUE:
559 			reg = reg_thresh_wr;
560 			reg_val = hdc3020_thresh_set_hum(s_val, thresh);
561 			ret = _hdc3020_write_thresh(data, reg, reg_val);
562 			if (ret < 0)
563 				return ret;
564 
565 			/* Calculate old hysteresis */
566 			s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
567 			s_clr = (s64)hdc3020_thresh_get_hum(clr) * 1000000;
568 			s_hyst = div_s64(abs(s_thresh - s_clr), 65535);
569 			/* Set new threshold */
570 			thresh = reg_val;
571 			/* Try to set old hysteresis */
572 			s_val = min(abs(s_hyst), HDC3020_MAX_HUM_MICRO);
573 			fallthrough;
574 		case IIO_EV_INFO_HYSTERESIS:
575 			/*
576 			 * Function hdc3020_thresh_get_hum returns relative
577 			 * humidity in percent scaled by 65535. Scale by 1000000
578 			 * to be able to subtract scaled hysteresis value.
579 			 */
580 			s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000;
581 			/*
582 			 * Units of s_val are in micro percent, scale by 65535
583 			 * to get same units as s_thresh.
584 			 */
585 			s_hyst = (s64)s_val * 65535;
586 			s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir);
587 			s_clr = max(s_clr, 0);
588 			s_clr = min(s_clr, HDC3020_MAX_HUM_MICRO);
589 			reg = reg_clr_wr;
590 			reg_val = hdc3020_thresh_set_hum(s_clr, clr);
591 			break;
592 		default:
593 			return -EOPNOTSUPP;
594 		}
595 		break;
596 	default:
597 		return -EOPNOTSUPP;
598 	}
599 
600 	return _hdc3020_write_thresh(data, reg, reg_val);
601 }
602 
603 static int hdc3020_read_thresh(struct iio_dev *indio_dev,
604 			       const struct iio_chan_spec *chan,
605 			       enum iio_event_type type,
606 			       enum iio_event_direction dir,
607 			       enum iio_event_info info,
608 			       int *val, int *val2)
609 {
610 	struct hdc3020_data *data = iio_priv(indio_dev);
611 	u16 reg_thresh, reg_clr;
612 	int thresh, clr, ret;
613 
614 	/* Select threshold registers */
615 	if (dir == IIO_EV_DIR_RISING) {
616 		reg_thresh = HDC3020_R_T_RH_THRESH_HIGH;
617 		reg_clr = HDC3020_R_T_RH_THRESH_HIGH_CLR;
618 	} else {
619 		reg_thresh = HDC3020_R_T_RH_THRESH_LOW;
620 		reg_clr = HDC3020_R_T_RH_THRESH_LOW_CLR;
621 	}
622 
623 	guard(mutex)(&data->lock);
624 	ret = hdc3020_read_be16(data, reg_thresh);
625 	if (ret < 0)
626 		return ret;
627 
628 	switch (chan->type) {
629 	case IIO_TEMP:
630 		thresh = hdc3020_thresh_get_temp(ret);
631 		switch (info) {
632 		case IIO_EV_INFO_VALUE:
633 			*val = thresh;
634 			break;
635 		case IIO_EV_INFO_HYSTERESIS:
636 			ret = hdc3020_read_be16(data, reg_clr);
637 			if (ret < 0)
638 				return ret;
639 
640 			clr = hdc3020_thresh_get_temp(ret);
641 			*val = abs(thresh - clr);
642 			break;
643 		default:
644 			return -EOPNOTSUPP;
645 		}
646 		*val2 = 65535;
647 		return IIO_VAL_FRACTIONAL;
648 	case IIO_HUMIDITYRELATIVE:
649 		thresh = hdc3020_thresh_get_hum(ret);
650 		switch (info) {
651 		case IIO_EV_INFO_VALUE:
652 			*val = thresh;
653 			break;
654 		case IIO_EV_INFO_HYSTERESIS:
655 			ret = hdc3020_read_be16(data, reg_clr);
656 			if (ret < 0)
657 				return ret;
658 
659 			clr = hdc3020_thresh_get_hum(ret);
660 			*val = abs(thresh - clr);
661 			break;
662 		default:
663 			return -EOPNOTSUPP;
664 		}
665 		*val2 = 65535;
666 		return IIO_VAL_FRACTIONAL;
667 	default:
668 		return -EOPNOTSUPP;
669 	}
670 }
671 
672 static irqreturn_t hdc3020_interrupt_handler(int irq, void *private)
673 {
674 	struct iio_dev *indio_dev = private;
675 	struct hdc3020_data *data;
676 	s64 time;
677 	int ret;
678 
679 	data = iio_priv(indio_dev);
680 	ret = hdc3020_read_be16(data, HDC3020_R_STATUS);
681 	if (ret < 0)
682 		return IRQ_HANDLED;
683 
684 	if (!(ret & (HDC3020_STATUS_T_HIGH_ALERT | HDC3020_STATUS_T_LOW_ALERT |
685 		HDC3020_STATUS_RH_HIGH_ALERT | HDC3020_STATUS_RH_LOW_ALERT)))
686 		return IRQ_NONE;
687 
688 	time = iio_get_time_ns(indio_dev);
689 	if (ret & HDC3020_STATUS_T_HIGH_ALERT)
690 		iio_push_event(indio_dev,
691 			       IIO_MOD_EVENT_CODE(IIO_TEMP, 0,
692 						  IIO_NO_MOD,
693 						  IIO_EV_TYPE_THRESH,
694 						  IIO_EV_DIR_RISING),
695 						  time);
696 
697 	if (ret & HDC3020_STATUS_T_LOW_ALERT)
698 		iio_push_event(indio_dev,
699 			       IIO_MOD_EVENT_CODE(IIO_TEMP, 0,
700 						  IIO_NO_MOD,
701 						  IIO_EV_TYPE_THRESH,
702 						  IIO_EV_DIR_FALLING),
703 						  time);
704 
705 	if (ret & HDC3020_STATUS_RH_HIGH_ALERT)
706 		iio_push_event(indio_dev,
707 			       IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0,
708 						  IIO_NO_MOD,
709 						  IIO_EV_TYPE_THRESH,
710 						  IIO_EV_DIR_RISING),
711 						  time);
712 
713 	if (ret & HDC3020_STATUS_RH_LOW_ALERT)
714 		iio_push_event(indio_dev,
715 			       IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0,
716 						  IIO_NO_MOD,
717 						  IIO_EV_TYPE_THRESH,
718 						  IIO_EV_DIR_FALLING),
719 						  time);
720 
721 	return IRQ_HANDLED;
722 }
723 
724 static const struct iio_info hdc3020_info = {
725 	.read_raw = hdc3020_read_raw,
726 	.write_raw = hdc3020_write_raw,
727 	.read_avail = hdc3020_read_available,
728 	.read_event_value = hdc3020_read_thresh,
729 	.write_event_value = hdc3020_write_thresh,
730 };
731 
732 static int hdc3020_power_off(struct hdc3020_data *data)
733 {
734 	hdc3020_exec_cmd(data, HDC3020_EXIT_AUTO);
735 
736 	if (data->reset_gpio)
737 		gpiod_set_value_cansleep(data->reset_gpio, 1);
738 
739 	return regulator_disable(data->vdd_supply);
740 }
741 
742 static int hdc3020_power_on(struct hdc3020_data *data)
743 {
744 	int ret;
745 
746 	ret = regulator_enable(data->vdd_supply);
747 	if (ret)
748 		return ret;
749 
750 	fsleep(5000);
751 
752 	if (data->reset_gpio) {
753 		gpiod_set_value_cansleep(data->reset_gpio, 0);
754 		fsleep(3000);
755 	}
756 
757 	if (data->client->irq) {
758 		/*
759 		 * The alert output is activated by default upon power up,
760 		 * hardware reset, and soft reset. Clear the status register.
761 		 */
762 		ret = hdc3020_exec_cmd(data, HDC3020_S_STATUS);
763 		if (ret) {
764 			hdc3020_power_off(data);
765 			return ret;
766 		}
767 	}
768 
769 	ret = hdc3020_exec_cmd(data, HDC3020_S_AUTO_10HZ_MOD0);
770 	if (ret)
771 		hdc3020_power_off(data);
772 
773 	return ret;
774 }
775 
776 static void hdc3020_exit(void *data)
777 {
778 	hdc3020_power_off(data);
779 }
780 
781 static int hdc3020_probe(struct i2c_client *client)
782 {
783 	struct iio_dev *indio_dev;
784 	struct hdc3020_data *data;
785 	int ret;
786 
787 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
788 		return -EOPNOTSUPP;
789 
790 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
791 	if (!indio_dev)
792 		return -ENOMEM;
793 
794 	dev_set_drvdata(&client->dev, indio_dev);
795 
796 	data = iio_priv(indio_dev);
797 	data->client = client;
798 	mutex_init(&data->lock);
799 
800 	crc8_populate_msb(hdc3020_crc8_table, HDC3020_CRC8_POLYNOMIAL);
801 
802 	indio_dev->name = "hdc3020";
803 	indio_dev->modes = INDIO_DIRECT_MODE;
804 	indio_dev->info = &hdc3020_info;
805 	indio_dev->channels = hdc3020_channels;
806 	indio_dev->num_channels = ARRAY_SIZE(hdc3020_channels);
807 
808 	data->vdd_supply = devm_regulator_get(&client->dev, "vdd");
809 	if (IS_ERR(data->vdd_supply))
810 		return dev_err_probe(&client->dev, PTR_ERR(data->vdd_supply),
811 				     "Unable to get VDD regulator\n");
812 
813 	data->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset",
814 						   GPIOD_OUT_HIGH);
815 	if (IS_ERR(data->reset_gpio))
816 		return dev_err_probe(&client->dev, PTR_ERR(data->reset_gpio),
817 				     "Cannot get reset GPIO\n");
818 
819 	ret = hdc3020_power_on(data);
820 	if (ret)
821 		return dev_err_probe(&client->dev, ret, "Power on failed\n");
822 
823 	ret = devm_add_action_or_reset(&data->client->dev, hdc3020_exit, data);
824 	if (ret)
825 		return ret;
826 
827 	if (client->irq) {
828 		ret = devm_request_threaded_irq(&client->dev, client->irq,
829 						NULL, hdc3020_interrupt_handler,
830 						IRQF_ONESHOT, "hdc3020",
831 						indio_dev);
832 		if (ret)
833 			return dev_err_probe(&client->dev, ret,
834 					     "Failed to request IRQ\n");
835 	}
836 
837 	ret = devm_iio_device_register(&data->client->dev, indio_dev);
838 	if (ret)
839 		return dev_err_probe(&client->dev, ret, "Failed to add device");
840 
841 	return 0;
842 }
843 
844 static int hdc3020_suspend(struct device *dev)
845 {
846 	struct iio_dev *iio_dev = dev_get_drvdata(dev);
847 	struct hdc3020_data *data = iio_priv(iio_dev);
848 
849 	return hdc3020_power_off(data);
850 }
851 
852 static int hdc3020_resume(struct device *dev)
853 {
854 	struct iio_dev *iio_dev = dev_get_drvdata(dev);
855 	struct hdc3020_data *data = iio_priv(iio_dev);
856 
857 	return hdc3020_power_on(data);
858 }
859 
860 static DEFINE_SIMPLE_DEV_PM_OPS(hdc3020_pm_ops, hdc3020_suspend, hdc3020_resume);
861 
862 static const struct i2c_device_id hdc3020_id[] = {
863 	{ "hdc3020" },
864 	{ "hdc3021" },
865 	{ "hdc3022" },
866 	{ }
867 };
868 MODULE_DEVICE_TABLE(i2c, hdc3020_id);
869 
870 static const struct of_device_id hdc3020_dt_ids[] = {
871 	{ .compatible = "ti,hdc3020" },
872 	{ .compatible = "ti,hdc3021" },
873 	{ .compatible = "ti,hdc3022" },
874 	{ }
875 };
876 MODULE_DEVICE_TABLE(of, hdc3020_dt_ids);
877 
878 static struct i2c_driver hdc3020_driver = {
879 	.driver = {
880 		.name = "hdc3020",
881 		.pm = pm_sleep_ptr(&hdc3020_pm_ops),
882 		.of_match_table = hdc3020_dt_ids,
883 	},
884 	.probe = hdc3020_probe,
885 	.id_table = hdc3020_id,
886 };
887 module_i2c_driver(hdc3020_driver);
888 
889 MODULE_AUTHOR("Javier Carrasco <javier.carrasco.cruz@gmail.com>");
890 MODULE_AUTHOR("Li peiyu <579lpy@gmail.com>");
891 MODULE_DESCRIPTION("TI HDC3020 humidity and temperature sensor driver");
892 MODULE_LICENSE("GPL");
893