1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * AFE4404 Heart Rate Monitors and Low-Cost Pulse Oximeters 4 * 5 * Copyright (C) 2015-2016 Texas Instruments Incorporated - https://www.ti.com/ 6 * Andrew F. Davis <afd@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/interrupt.h> 12 #include <linux/i2c.h> 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/regmap.h> 16 #include <linux/sysfs.h> 17 #include <linux/regulator/consumer.h> 18 19 #include <linux/iio/iio.h> 20 #include <linux/iio/sysfs.h> 21 #include <linux/iio/buffer.h> 22 #include <linux/iio/trigger.h> 23 #include <linux/iio/triggered_buffer.h> 24 #include <linux/iio/trigger_consumer.h> 25 26 #include "afe440x.h" 27 28 #define AFE4404_DRIVER_NAME "afe4404" 29 30 /* AFE4404 registers */ 31 #define AFE4404_TIA_GAIN_SEP 0x20 32 #define AFE4404_TIA_GAIN 0x21 33 #define AFE4404_PROG_TG_STC 0x34 34 #define AFE4404_PROG_TG_ENDC 0x35 35 #define AFE4404_LED3LEDSTC 0x36 36 #define AFE4404_LED3LEDENDC 0x37 37 #define AFE4404_CLKDIV_PRF 0x39 38 #define AFE4404_OFFDAC 0x3a 39 #define AFE4404_DEC 0x3d 40 #define AFE4404_AVG_LED2_ALED2VAL 0x3f 41 #define AFE4404_AVG_LED1_ALED1VAL 0x40 42 43 /* AFE4404 CONTROL2 register fields */ 44 #define AFE440X_CONTROL2_OSC_ENABLE BIT(9) 45 46 enum afe4404_fields { 47 /* Gains */ 48 F_TIA_GAIN_SEP, F_TIA_CF_SEP, 49 F_TIA_GAIN, TIA_CF, 50 51 /* LED Current */ 52 F_ILED1, F_ILED2, F_ILED3, 53 54 /* Offset DAC */ 55 F_OFFDAC_AMB2, F_OFFDAC_LED1, F_OFFDAC_AMB1, F_OFFDAC_LED2, 56 57 /* sentinel */ 58 F_MAX_FIELDS 59 }; 60 61 static const struct reg_field afe4404_reg_fields[] = { 62 /* Gains */ 63 [F_TIA_GAIN_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 0, 2), 64 [F_TIA_CF_SEP] = REG_FIELD(AFE4404_TIA_GAIN_SEP, 3, 5), 65 [F_TIA_GAIN] = REG_FIELD(AFE4404_TIA_GAIN, 0, 2), 66 [TIA_CF] = REG_FIELD(AFE4404_TIA_GAIN, 3, 5), 67 /* LED Current */ 68 [F_ILED1] = REG_FIELD(AFE440X_LEDCNTRL, 0, 5), 69 [F_ILED2] = REG_FIELD(AFE440X_LEDCNTRL, 6, 11), 70 [F_ILED3] = REG_FIELD(AFE440X_LEDCNTRL, 12, 17), 71 /* Offset DAC */ 72 [F_OFFDAC_AMB2] = REG_FIELD(AFE4404_OFFDAC, 0, 4), 73 [F_OFFDAC_LED1] = REG_FIELD(AFE4404_OFFDAC, 5, 9), 74 [F_OFFDAC_AMB1] = REG_FIELD(AFE4404_OFFDAC, 10, 14), 75 [F_OFFDAC_LED2] = REG_FIELD(AFE4404_OFFDAC, 15, 19), 76 }; 77 78 /** 79 * struct afe4404_data - AFE4404 device instance data 80 * @dev: Device structure 81 * @regmap: Register map of the device 82 * @fields: Register fields of the device 83 * @regulator: Pointer to the regulator for the IC 84 * @trig: IIO trigger for this device 85 * @irq: ADC_RDY line interrupt number 86 * @buffer: Used to construct a scan to push to the iio buffer. 87 */ 88 struct afe4404_data { 89 struct device *dev; 90 struct regmap *regmap; 91 struct regmap_field *fields[F_MAX_FIELDS]; 92 struct regulator *regulator; 93 struct iio_trigger *trig; 94 int irq; 95 s32 buffer[10] __aligned(8); 96 }; 97 98 enum afe4404_chan_id { 99 LED2 = 1, 100 ALED2, 101 LED1, 102 ALED1, 103 LED2_ALED2, 104 LED1_ALED1, 105 }; 106 107 static const unsigned int afe4404_channel_values[] = { 108 [LED2] = AFE440X_LED2VAL, 109 [ALED2] = AFE440X_ALED2VAL, 110 [LED1] = AFE440X_LED1VAL, 111 [ALED1] = AFE440X_ALED1VAL, 112 [LED2_ALED2] = AFE440X_LED2_ALED2VAL, 113 [LED1_ALED1] = AFE440X_LED1_ALED1VAL, 114 }; 115 116 static const unsigned int afe4404_channel_leds[] = { 117 [LED2] = F_ILED2, 118 [ALED2] = F_ILED3, 119 [LED1] = F_ILED1, 120 }; 121 122 static const unsigned int afe4404_channel_offdacs[] = { 123 [LED2] = F_OFFDAC_LED2, 124 [ALED2] = F_OFFDAC_AMB2, 125 [LED1] = F_OFFDAC_LED1, 126 [ALED1] = F_OFFDAC_AMB1, 127 }; 128 129 static const struct iio_chan_spec afe4404_channels[] = { 130 /* ADC values */ 131 AFE440X_INTENSITY_CHAN(LED2, BIT(IIO_CHAN_INFO_OFFSET)), 132 AFE440X_INTENSITY_CHAN(ALED2, BIT(IIO_CHAN_INFO_OFFSET)), 133 AFE440X_INTENSITY_CHAN(LED1, BIT(IIO_CHAN_INFO_OFFSET)), 134 AFE440X_INTENSITY_CHAN(ALED1, BIT(IIO_CHAN_INFO_OFFSET)), 135 AFE440X_INTENSITY_CHAN(LED2_ALED2, 0), 136 AFE440X_INTENSITY_CHAN(LED1_ALED1, 0), 137 /* LED current */ 138 AFE440X_CURRENT_CHAN(LED2), 139 AFE440X_CURRENT_CHAN(ALED2), 140 AFE440X_CURRENT_CHAN(LED1), 141 }; 142 143 static const struct afe440x_val_table afe4404_res_table[] = { 144 { .integer = 500000, .fract = 0 }, 145 { .integer = 250000, .fract = 0 }, 146 { .integer = 100000, .fract = 0 }, 147 { .integer = 50000, .fract = 0 }, 148 { .integer = 25000, .fract = 0 }, 149 { .integer = 10000, .fract = 0 }, 150 { .integer = 1000000, .fract = 0 }, 151 { .integer = 2000000, .fract = 0 }, 152 }; 153 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4404_res_table); 154 155 static const struct afe440x_val_table afe4404_cap_table[] = { 156 { .integer = 0, .fract = 5000 }, 157 { .integer = 0, .fract = 2500 }, 158 { .integer = 0, .fract = 10000 }, 159 { .integer = 0, .fract = 7500 }, 160 { .integer = 0, .fract = 20000 }, 161 { .integer = 0, .fract = 17500 }, 162 { .integer = 0, .fract = 25000 }, 163 { .integer = 0, .fract = 22500 }, 164 }; 165 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4404_cap_table); 166 167 static ssize_t afe440x_show_register(struct device *dev, 168 struct device_attribute *attr, 169 char *buf) 170 { 171 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 172 struct afe4404_data *afe = iio_priv(indio_dev); 173 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); 174 unsigned int reg_val; 175 int vals[2]; 176 int ret; 177 178 ret = regmap_field_read(afe->fields[afe440x_attr->field], ®_val); 179 if (ret) 180 return ret; 181 182 if (reg_val >= afe440x_attr->table_size) 183 return -EINVAL; 184 185 vals[0] = afe440x_attr->val_table[reg_val].integer; 186 vals[1] = afe440x_attr->val_table[reg_val].fract; 187 188 return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals); 189 } 190 191 static ssize_t afe440x_store_register(struct device *dev, 192 struct device_attribute *attr, 193 const char *buf, size_t count) 194 { 195 struct iio_dev *indio_dev = dev_to_iio_dev(dev); 196 struct afe4404_data *afe = iio_priv(indio_dev); 197 struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr); 198 int val, integer, fract, ret; 199 200 ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract); 201 if (ret) 202 return ret; 203 204 for (val = 0; val < afe440x_attr->table_size; val++) 205 if (afe440x_attr->val_table[val].integer == integer && 206 afe440x_attr->val_table[val].fract == fract) 207 break; 208 if (val == afe440x_attr->table_size) 209 return -EINVAL; 210 211 ret = regmap_field_write(afe->fields[afe440x_attr->field], val); 212 if (ret) 213 return ret; 214 215 return count; 216 } 217 218 static AFE440X_ATTR(in_intensity1_resistance, F_TIA_GAIN_SEP, afe4404_res_table); 219 static AFE440X_ATTR(in_intensity1_capacitance, F_TIA_CF_SEP, afe4404_cap_table); 220 221 static AFE440X_ATTR(in_intensity2_resistance, F_TIA_GAIN_SEP, afe4404_res_table); 222 static AFE440X_ATTR(in_intensity2_capacitance, F_TIA_CF_SEP, afe4404_cap_table); 223 224 static AFE440X_ATTR(in_intensity3_resistance, F_TIA_GAIN, afe4404_res_table); 225 static AFE440X_ATTR(in_intensity3_capacitance, TIA_CF, afe4404_cap_table); 226 227 static AFE440X_ATTR(in_intensity4_resistance, F_TIA_GAIN, afe4404_res_table); 228 static AFE440X_ATTR(in_intensity4_capacitance, TIA_CF, afe4404_cap_table); 229 230 static struct attribute *afe440x_attributes[] = { 231 &dev_attr_in_intensity_resistance_available.attr, 232 &dev_attr_in_intensity_capacitance_available.attr, 233 &afe440x_attr_in_intensity1_resistance.dev_attr.attr, 234 &afe440x_attr_in_intensity1_capacitance.dev_attr.attr, 235 &afe440x_attr_in_intensity2_resistance.dev_attr.attr, 236 &afe440x_attr_in_intensity2_capacitance.dev_attr.attr, 237 &afe440x_attr_in_intensity3_resistance.dev_attr.attr, 238 &afe440x_attr_in_intensity3_capacitance.dev_attr.attr, 239 &afe440x_attr_in_intensity4_resistance.dev_attr.attr, 240 &afe440x_attr_in_intensity4_capacitance.dev_attr.attr, 241 NULL 242 }; 243 244 static const struct attribute_group afe440x_attribute_group = { 245 .attrs = afe440x_attributes 246 }; 247 248 static int afe4404_read_raw(struct iio_dev *indio_dev, 249 struct iio_chan_spec const *chan, 250 int *val, int *val2, long mask) 251 { 252 struct afe4404_data *afe = iio_priv(indio_dev); 253 unsigned int value_reg, led_field, offdac_field; 254 int ret; 255 256 switch (chan->type) { 257 case IIO_INTENSITY: 258 switch (mask) { 259 case IIO_CHAN_INFO_RAW: 260 value_reg = afe4404_channel_values[chan->address]; 261 ret = regmap_read(afe->regmap, value_reg, val); 262 if (ret) 263 return ret; 264 return IIO_VAL_INT; 265 case IIO_CHAN_INFO_OFFSET: 266 offdac_field = afe4404_channel_offdacs[chan->address]; 267 ret = regmap_field_read(afe->fields[offdac_field], val); 268 if (ret) 269 return ret; 270 return IIO_VAL_INT; 271 } 272 break; 273 case IIO_CURRENT: 274 switch (mask) { 275 case IIO_CHAN_INFO_RAW: 276 led_field = afe4404_channel_leds[chan->address]; 277 ret = regmap_field_read(afe->fields[led_field], val); 278 if (ret) 279 return ret; 280 return IIO_VAL_INT; 281 case IIO_CHAN_INFO_SCALE: 282 *val = 0; 283 *val2 = 800000; 284 return IIO_VAL_INT_PLUS_MICRO; 285 } 286 break; 287 default: 288 break; 289 } 290 291 return -EINVAL; 292 } 293 294 static int afe4404_write_raw(struct iio_dev *indio_dev, 295 struct iio_chan_spec const *chan, 296 int val, int val2, long mask) 297 { 298 struct afe4404_data *afe = iio_priv(indio_dev); 299 unsigned int led_field, offdac_field; 300 301 switch (chan->type) { 302 case IIO_INTENSITY: 303 switch (mask) { 304 case IIO_CHAN_INFO_OFFSET: 305 offdac_field = afe4404_channel_offdacs[chan->address]; 306 return regmap_field_write(afe->fields[offdac_field], val); 307 } 308 break; 309 case IIO_CURRENT: 310 switch (mask) { 311 case IIO_CHAN_INFO_RAW: 312 led_field = afe4404_channel_leds[chan->address]; 313 return regmap_field_write(afe->fields[led_field], val); 314 } 315 break; 316 default: 317 break; 318 } 319 320 return -EINVAL; 321 } 322 323 static const struct iio_info afe4404_iio_info = { 324 .attrs = &afe440x_attribute_group, 325 .read_raw = afe4404_read_raw, 326 .write_raw = afe4404_write_raw, 327 }; 328 329 static irqreturn_t afe4404_trigger_handler(int irq, void *private) 330 { 331 struct iio_poll_func *pf = private; 332 struct iio_dev *indio_dev = pf->indio_dev; 333 struct afe4404_data *afe = iio_priv(indio_dev); 334 int ret, bit, i = 0; 335 336 for_each_set_bit(bit, indio_dev->active_scan_mask, 337 indio_dev->masklength) { 338 ret = regmap_read(afe->regmap, afe4404_channel_values[bit], 339 &afe->buffer[i++]); 340 if (ret) 341 goto err; 342 } 343 344 iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer, 345 pf->timestamp); 346 err: 347 iio_trigger_notify_done(indio_dev->trig); 348 349 return IRQ_HANDLED; 350 } 351 352 static void afe4404_regulator_disable(void *data) 353 { 354 struct regulator *regulator = data; 355 356 regulator_disable(regulator); 357 } 358 359 /* Default timings from data-sheet */ 360 #define AFE4404_TIMING_PAIRS \ 361 { AFE440X_PRPCOUNT, 39999 }, \ 362 { AFE440X_LED2LEDSTC, 0 }, \ 363 { AFE440X_LED2LEDENDC, 398 }, \ 364 { AFE440X_LED2STC, 80 }, \ 365 { AFE440X_LED2ENDC, 398 }, \ 366 { AFE440X_ADCRSTSTCT0, 5600 }, \ 367 { AFE440X_ADCRSTENDCT0, 5606 }, \ 368 { AFE440X_LED2CONVST, 5607 }, \ 369 { AFE440X_LED2CONVEND, 6066 }, \ 370 { AFE4404_LED3LEDSTC, 400 }, \ 371 { AFE4404_LED3LEDENDC, 798 }, \ 372 { AFE440X_ALED2STC, 480 }, \ 373 { AFE440X_ALED2ENDC, 798 }, \ 374 { AFE440X_ADCRSTSTCT1, 6068 }, \ 375 { AFE440X_ADCRSTENDCT1, 6074 }, \ 376 { AFE440X_ALED2CONVST, 6075 }, \ 377 { AFE440X_ALED2CONVEND, 6534 }, \ 378 { AFE440X_LED1LEDSTC, 800 }, \ 379 { AFE440X_LED1LEDENDC, 1198 }, \ 380 { AFE440X_LED1STC, 880 }, \ 381 { AFE440X_LED1ENDC, 1198 }, \ 382 { AFE440X_ADCRSTSTCT2, 6536 }, \ 383 { AFE440X_ADCRSTENDCT2, 6542 }, \ 384 { AFE440X_LED1CONVST, 6543 }, \ 385 { AFE440X_LED1CONVEND, 7003 }, \ 386 { AFE440X_ALED1STC, 1280 }, \ 387 { AFE440X_ALED1ENDC, 1598 }, \ 388 { AFE440X_ADCRSTSTCT3, 7005 }, \ 389 { AFE440X_ADCRSTENDCT3, 7011 }, \ 390 { AFE440X_ALED1CONVST, 7012 }, \ 391 { AFE440X_ALED1CONVEND, 7471 }, \ 392 { AFE440X_PDNCYCLESTC, 7671 }, \ 393 { AFE440X_PDNCYCLEENDC, 39199 } 394 395 static const struct reg_sequence afe4404_reg_sequences[] = { 396 AFE4404_TIMING_PAIRS, 397 { AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN }, 398 { AFE4404_TIA_GAIN_SEP, AFE440X_TIAGAIN_ENSEPGAIN }, 399 { AFE440X_CONTROL2, AFE440X_CONTROL2_OSC_ENABLE }, 400 }; 401 402 static const struct regmap_range afe4404_yes_ranges[] = { 403 regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL), 404 regmap_reg_range(AFE4404_AVG_LED2_ALED2VAL, AFE4404_AVG_LED1_ALED1VAL), 405 }; 406 407 static const struct regmap_access_table afe4404_volatile_table = { 408 .yes_ranges = afe4404_yes_ranges, 409 .n_yes_ranges = ARRAY_SIZE(afe4404_yes_ranges), 410 }; 411 412 static const struct regmap_config afe4404_regmap_config = { 413 .reg_bits = 8, 414 .val_bits = 24, 415 416 .max_register = AFE4404_AVG_LED1_ALED1VAL, 417 .cache_type = REGCACHE_RBTREE, 418 .volatile_table = &afe4404_volatile_table, 419 }; 420 421 static const struct of_device_id afe4404_of_match[] = { 422 { .compatible = "ti,afe4404", }, 423 { /* sentinel */ } 424 }; 425 MODULE_DEVICE_TABLE(of, afe4404_of_match); 426 427 static int afe4404_suspend(struct device *dev) 428 { 429 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 430 struct afe4404_data *afe = iio_priv(indio_dev); 431 int ret; 432 433 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2, 434 AFE440X_CONTROL2_PDN_AFE, 435 AFE440X_CONTROL2_PDN_AFE); 436 if (ret) 437 return ret; 438 439 ret = regulator_disable(afe->regulator); 440 if (ret) { 441 dev_err(dev, "Unable to disable regulator\n"); 442 return ret; 443 } 444 445 return 0; 446 } 447 448 static int afe4404_resume(struct device *dev) 449 { 450 struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); 451 struct afe4404_data *afe = iio_priv(indio_dev); 452 int ret; 453 454 ret = regulator_enable(afe->regulator); 455 if (ret) { 456 dev_err(dev, "Unable to enable regulator\n"); 457 return ret; 458 } 459 460 ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2, 461 AFE440X_CONTROL2_PDN_AFE, 0); 462 if (ret) 463 return ret; 464 465 return 0; 466 } 467 468 static DEFINE_SIMPLE_DEV_PM_OPS(afe4404_pm_ops, afe4404_suspend, 469 afe4404_resume); 470 471 static int afe4404_probe(struct i2c_client *client) 472 { 473 struct iio_dev *indio_dev; 474 struct afe4404_data *afe; 475 int i, ret; 476 477 indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*afe)); 478 if (!indio_dev) 479 return -ENOMEM; 480 481 afe = iio_priv(indio_dev); 482 i2c_set_clientdata(client, indio_dev); 483 484 afe->dev = &client->dev; 485 afe->irq = client->irq; 486 487 afe->regmap = devm_regmap_init_i2c(client, &afe4404_regmap_config); 488 if (IS_ERR(afe->regmap)) { 489 dev_err(afe->dev, "Unable to allocate register map\n"); 490 return PTR_ERR(afe->regmap); 491 } 492 493 for (i = 0; i < F_MAX_FIELDS; i++) { 494 afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap, 495 afe4404_reg_fields[i]); 496 if (IS_ERR(afe->fields[i])) { 497 dev_err(afe->dev, "Unable to allocate regmap fields\n"); 498 return PTR_ERR(afe->fields[i]); 499 } 500 } 501 502 afe->regulator = devm_regulator_get(afe->dev, "tx_sup"); 503 if (IS_ERR(afe->regulator)) 504 return dev_err_probe(afe->dev, PTR_ERR(afe->regulator), 505 "Unable to get regulator\n"); 506 507 ret = regulator_enable(afe->regulator); 508 if (ret) { 509 dev_err(afe->dev, "Unable to enable regulator\n"); 510 return ret; 511 } 512 ret = devm_add_action_or_reset(afe->dev, afe4404_regulator_disable, afe->regulator); 513 if (ret) { 514 dev_err(afe->dev, "Unable to enable regulator\n"); 515 return ret; 516 } 517 518 ret = regmap_write(afe->regmap, AFE440X_CONTROL0, 519 AFE440X_CONTROL0_SW_RESET); 520 if (ret) { 521 dev_err(afe->dev, "Unable to reset device\n"); 522 return ret; 523 } 524 525 ret = regmap_multi_reg_write(afe->regmap, afe4404_reg_sequences, 526 ARRAY_SIZE(afe4404_reg_sequences)); 527 if (ret) { 528 dev_err(afe->dev, "Unable to set register defaults\n"); 529 return ret; 530 } 531 532 indio_dev->modes = INDIO_DIRECT_MODE; 533 indio_dev->channels = afe4404_channels; 534 indio_dev->num_channels = ARRAY_SIZE(afe4404_channels); 535 indio_dev->name = AFE4404_DRIVER_NAME; 536 indio_dev->info = &afe4404_iio_info; 537 538 if (afe->irq > 0) { 539 afe->trig = devm_iio_trigger_alloc(afe->dev, 540 "%s-dev%d", 541 indio_dev->name, 542 iio_device_id(indio_dev)); 543 if (!afe->trig) { 544 dev_err(afe->dev, "Unable to allocate IIO trigger\n"); 545 return -ENOMEM; 546 } 547 548 iio_trigger_set_drvdata(afe->trig, indio_dev); 549 550 ret = devm_iio_trigger_register(afe->dev, afe->trig); 551 if (ret) { 552 dev_err(afe->dev, "Unable to register IIO trigger\n"); 553 return ret; 554 } 555 556 ret = devm_request_threaded_irq(afe->dev, afe->irq, 557 iio_trigger_generic_data_rdy_poll, 558 NULL, IRQF_ONESHOT, 559 AFE4404_DRIVER_NAME, 560 afe->trig); 561 if (ret) { 562 dev_err(afe->dev, "Unable to request IRQ\n"); 563 return ret; 564 } 565 } 566 567 ret = devm_iio_triggered_buffer_setup(afe->dev, indio_dev, 568 &iio_pollfunc_store_time, 569 afe4404_trigger_handler, NULL); 570 if (ret) { 571 dev_err(afe->dev, "Unable to setup buffer\n"); 572 return ret; 573 } 574 575 ret = devm_iio_device_register(afe->dev, indio_dev); 576 if (ret) { 577 dev_err(afe->dev, "Unable to register IIO device\n"); 578 return ret; 579 } 580 581 return 0; 582 } 583 584 static const struct i2c_device_id afe4404_ids[] = { 585 { "afe4404", 0 }, 586 { /* sentinel */ } 587 }; 588 MODULE_DEVICE_TABLE(i2c, afe4404_ids); 589 590 static struct i2c_driver afe4404_i2c_driver = { 591 .driver = { 592 .name = AFE4404_DRIVER_NAME, 593 .of_match_table = afe4404_of_match, 594 .pm = pm_sleep_ptr(&afe4404_pm_ops), 595 }, 596 .probe = afe4404_probe, 597 .id_table = afe4404_ids, 598 }; 599 module_i2c_driver(afe4404_i2c_driver); 600 601 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>"); 602 MODULE_DESCRIPTION("TI AFE4404 Heart Rate Monitor and Pulse Oximeter AFE"); 603 MODULE_LICENSE("GPL v2"); 604